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We discuss an ambiguity in the one-loop effective action of massive fields which takes place in massive

fermionic theories. The universality of logarithmic UV divergences in different space-time dimensions

leads to the nonuniversality of the finite part of effective action, which can be called the nonlocal

multiplicative anomaly. The general criteria of existence of this phenomena are formulated and applied to

fermionic operators with different external fields.
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I. INTRODUCTION

The effective action (EA) formalism is an important
element of the modern quantum field theory (QFT). The
consistent use of this formalism enables one to deal with
very general kinds of QFT problems and in some cases to
go beyond the traditional S-matrix approach. This is espe-
cially important in case of gravitational interactions, where
the EA is our main source of information about quantum
effects. The main two aspects of using the EA approach are
to derive it for a given QFT system and also to take into
account its ambiguities. The last part is quite relevant,
because one has to distinguish real physical effects from
the apparent properties which depend on the details of the
calculational technique.

The most well-known ambiguities in QFT are the de-
pendence on the renormalization point (e.g., on the pa-
rameter � in the minimal subtraction [MS] scheme of
renormalization) and gauge-fixing dependence in gauge
theories. Usually the last issue is eliminated on shell, but
this procedure can be rather nontrivial, especially beyond
the one-loop approximation. More generally, the result
strongly depends on the renormalization scheme. For ex-
ample, the renormalization group � functions in massive
theories are quite different if they are calculated within the
simplified minimal subtraction scheme or in the more
physical momentum-subtraction schemes. At low energies
the use of the last method enables one to observe the
decoupling phenomenon; in QED it is the Appelquist-
Carazzone theorem [1].

In addition to those mentioned above, there may be other
ambiguities in the quantum contributions, including those
we are going to discuss here. Although UV divergences are
sometimes regarded as the main challenge of QFT, there is
one curious thing about them, which will be important for
our consideration. Indeed, the leading logarithmic diver-
gences define the most stable and universal part of

quantum corrections. For example, these divergences are
behind the UV limit of the � functions, which do not
depend on the renormalization scheme. At one-loop order
the EA of average fields is in many cases proportional to

the expressions LnDet Ĥ, where Ĥ is some differential
operator depending on these fields. Many manipulations
of such expressions are justified for the UV part, which is
related to the logarithmic divergences, but they may be not
valid at all for the finite nonleading part of the EA. The
reason for this special feature of the UV divergences is as
follows. The divergences are related to the leading loga-
rithmic behavior of the EA (or amplitudes) and therefore
they are always related to the simple logarithmic form
factors, which do not actually depend on the mass of the
field [2]. On the other hand, the counterterms that are
necessary to remove the UV divergences are local, and
hence one can completely control the algebraic structure of
the UV divergences by looking at the form of the possible
local terms in the classical action of the theory.
At the same time, the subleading terms are typically

nonlocal and have, in the quantum theory of massive fields,
a much more complicated structure. For this reason we
may expect them to be essentially more ambiguous too. It
is interesting that to our knowledge after Salam [2] no one
explored the limits of the universality of the UV divergen-
ces at the formal level. What we will show here is that the
universality of UV divergences is directly related to the
nonuniversality of the finite contributions in the massive
theories. This phenomena can be observed in the fermionic
determinants and can be the called nonlocal multiplicative
anomaly. In what follows we will discuss this phenomenon
for a general fermionic determinant and also consider in
full detail the case of a Dirac fermion coupled to external
scalar field by the Yukawa interaction.
The paper is organized as follows. In Sec. 2 we present

some general arguments concerning the ambiguous feature
of the finite parts of functional fermionic determinants in
the form of the nonlocal multiplicative anomaly. A few
particular cases are briefly addressed in Sec. III and in
Sec. IV we present a full illustrative analysis of the sim-
plest case of a single scalar background field. In Sec. V we
draw our conclusions and discuss the ambiguity due to the
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nonlocal multiplicative anomaly and another one that is
local and mass independent.

II. GENERAL CONSIDERATIONS

Consider the one-loop EA of the Dirac fermion coupled
to some external field. For the sake of generality, we will
deal also with a curved space-time background. The one-
loop EA can be defined via the path integral

ei
��ð1Þ ¼

Z
DcD �c eiSf ; (1)

where the free fermionic action is defined as

Sf ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �c Ĥ c ; Ĥ ¼ ið��r� � im1̂� i�̂Þ:
(2)

The �̂ is a condensed notation for a generic external field.
For example, we can set

�̂ ¼ h’þ h��5�þ e��A� þ ��5��S� þ . . . ; (3)

where h and h� are Yukawa couplings corresponding to
scalar and axial scalar fields, e is electromagnetic charge,
� is nonminimal coupling to the axial vector related to
torsion, etc. It is assumed that the one-loop EA is the sum
of the classical action of background fields and the one-
loop correction which will be the subject of our interest,

�� ð1Þ ¼ �iLnDet Ĥ; (4)

where theDet does not take into account Grassmann parity.
We will define Eq. (4) through the heat-kernel method

and the Schwinger-DeWitt technique, and this requires

reducing the problem to the derivation of lndetÔ, where

Ô ¼ ĥþ 2ĥ�r� þ �̂: (5)

In order to make the reduction, one has to multiply Ĥ by an

appropriate conjugate operator Ĥ�,

Ô ¼ Ĥ � Ĥ� (6)

and use the relation

LnDet Ĥ ¼ LnDet Ô� LnDet Ĥ�: (7)

Indeed, there is more than one option for choosing the
conjugate operator which enables one to use the relation
(7) in an efficient way. The simplest choice is

Ĥ �
1 � Ĥ ¼ ið��r� � im1̂� i�̂Þ (8)

and therefore

Ln Det Ĥ ¼ 1
2 LnDet ðĤĤ�

1Þ: (9)

An alternative choice of the conjugate operator is

Ĥ �
2 ¼ ið��r� � im1̂Þ: (10)

This operator does not depend on �̂ and hence

LnDet Ĥj�̂ ¼ LnDet ðĤĤ�
2Þj�̂; (11)

where the index �̂ means we are interested only in the

�̂-dependent part of the EA. It is easy to note that if the
relation

Det ðÂ � B̂Þ ¼ DetÂ � DetB̂ (12)

holds for the fermionic functional determinants, we are
going to meet the two equal expressions,

1
2 LnDet ðĤĤ�

1Þj�̂ ¼ LnDet ðĤĤ�
2Þj�̂: (13)

As we shall see below, in reality Eq. (13) is satisfied for
divergencies, but not for the nonlocal finite parts of the two
effective actions. This is nothing else but the nonlocal
version of the multiplicative anomaly (MA) [3–7]. The
possibility of this mathematical feature of the functional
determinants has been discussed for a long time on the
basis of � regularization (see, e.g., [8]). The direct calcu-
lations on the constant curvature background confirmed the
existence of the MA [3,4], but it was soon realized that the
difference could just be a manifestation of the different
choice of � for the distinct determinants [5–7]. The only
safe way to obtain the MA is to detect it in the nonlocal part
of the EA, which is qualitatively different from the local
one related to divergences1 In this case we will see that the
MA is some new ambiguity of the EA and not a particular
case of the well-known � dependence.
Before starting our practical calculations, let us make

some general observations on relation (13) for divergencies
and for the finite part of the EA. Within the heat-kernel
method, the one-loop EA is given by the expression (see,
e.g., [10])

�� ð1Þ ¼ i sTrlim
x0!x

Z 1

0

ds

s
Ûðx; x0; sÞ; (14)

where the evolution operator satisfies the equation

i
@Ûðx; x0; sÞ

@s
¼ �Ô Ûðx; x0; sÞ; Uðx; x0; 0Þ ¼ �ðx; x0Þ:

(15)

A useful representation for the evolution operator is

Ûðx; x0; sÞ ¼ Û0ðx; x0; sÞ
X1
k¼0

ðisÞkâkðx; x0Þ; (16)

where âkðx; x0Þ are the so-called Schwinger-DeWitt
coefficients,

Û 0ðx; x0; sÞ ¼ D1=2ðx; x0Þ
ð4	isÞn=2 exp

�
i
ðx; x0Þ

2s
�m2s

�
; (17)


ðx; x0Þ is the geodesic distance between x and x0 points
and D is the Van Vleck-Morette determinant

1Another possibility is to consider some unusual version of
QFT, e.g., in the presence of chemical potential. In this case one
can observe a MA in the local sector which depends on this
parameter and does not necessary reduce to the� dependence [9].
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D ðx; x0Þ ¼ det

�
�@2
ðx; x0Þ

@x�@x0�

�
: (18)

The EA is related to the coincidence limits

lim
x!x0

âkðx; x0Þ ¼ âkj: (19)

For the general operator (5), the linear term can be
absorbed into the covariant derivative r�!D�¼
r�þ ĥ�, with the following commutator:

Ŝ �� ¼ 1̂½r�;r�� � ðr�ĥ� �r�ĥ�Þ � ½ĥ�; ĥ��: (20)

In this way we arrive at the well-known formulas

â 1j ¼ â1ðx; xÞ ¼ P̂ ¼ �̂þ 1̂
6R�r�ĥ

� � ĥ�ĥ
� (21)

and

â 2j ¼ â2ðx; xÞ
¼ 1̂

180ðR2
���� � R2

�� þhRÞ þ 1
2P̂

2 þ 1
6ðhP̂Þ þ 1

12Ŝ
2
��:

(22)

One can derive the next coefficients â3j and â4j [11,12], but
we do not present these (more bulky) expressions here.

The coefficients âkj enable one to analyze the EA in a
given space-time dimension for numerous field theory
models. For instance, in the two-dimensional space-time
â1j defines logarithmic divergences. In four-dimensional
space-time â2j defines logarithmic divergences, while â1j
defines quadratic divergences. In six-dimensional space-
time â3j defines logarithmic divergences while â2j defines
quadratic divergences and â1j defines quartic divergences.

An important observation is that the general expressions
for the coefficients âkj do not depend on the space-time
dimension [13]. However, the particular traces for a given
theory do have such dependence. As we have already
mentioned in the Introduction, the logarithmic divergences
are universal and scheme-independent. Then, as far as the
coincidence limits âkj are universal in the space-time
dimension where the given coefficient defines logarithmic
divergences, they can be nonuniversal in other dimensions.
It is easy to see what this means. The finite part of the EA in
d ¼ 4 is given by a sum of all âkj with k > 2. As far as
these coefficients are scheme-dependent in d ¼ 4, we can
expect that the finite part of the EA will be nonuniversal,
for example, the (12) may be not satisfied.

From the arguments presented above we can figure out
how to verify the presence of the MA in the general
fermionic determinant (7). One has to derive the difference
(12) between the traces âkj for the operators in an arbitrary
dimension n. The expected result is that such a difference
vanish for â1j in (and only in) the case of n ¼ 2, for
â2j only in the case of n ¼ 4, for â3j only in the case of
n ¼ 6, etc.

This program has been realized in [14] for the particular
case of QED in curved space and we meet a perfect
correspondence between general arguments and the output
of direct calculations.

In fact, there is no need to perform a cumbersome
analysis of â3j, because one can directly work with the
particular sum of the Schwinger-DeWitt series. The corre-
sponding heat-kernel solution has been obtained indepen-
dently by Barvinsky and Vilkovisky [15] and Avramidi
[16], and it was used in [17] for calculating the complete
form factors and � functions for massive fields.2 So, we
can safely restrict ourselves by considering â1j, â2j and the
form factors.

III. PARTICULAR CASES OF THE MA

In the general case of the fermionic operator (2) with
conjugate operators (8) and (10), one can take care of the
most simple coefficient of â1j to arrive at the criteria of
existence for the MA. The calculations of the traces can be
done by using Eq. (21) and the results are as follows:

að1Þ1 ðn; �̂Þ ¼ 1

2

Z
dnx

ffiffiffiffiffiffiffi�g
p �

2ðn� 1Þm trð�̂Þ

þ ðn� 2Þ
2

trð�̂ �̂Þ þ 1

2
trð�̂���̂��Þ

�
;

að2Þ1 ðn; �̂Þ ¼ 1

2

Z
dnx

ffiffiffiffiffiffiffi�g
p �

2ðn� 1Þm trð�̂Þ

þ i trðr��̂��Þ þ 1

2
trð�̂���̂��Þ

�
: (23)

The difference between these two expressions can be pre-
sented as

að1Þ1 ðn; �̂Þ � að2Þ1 ðn; �̂Þ ¼ 1

4

Z
dnx

ffiffiffiffiffiffiffi�g
p

�1

�1 ¼ fðn� 2Þtrð�̂ �̂Þ � 2i trðr��̂��Þg:
(24)

We can see that this difference consists of two terms. The
first one is proportional to n� 2, exactly as we have
anticipated in the previous section from general qualitative
arguments. According to what we have discussed, this term
does vanish in the dimension n ¼ 2, where it defines the
logarithmic UV divergence. However, due to the n� 2
factor, it does not vanish in n � 2, and hence the quadratic
divergence in n ¼ 4 is scheme dependent. Another part of
(24) is the surface term, which is also quite remarkable, but
for a different reason. First of all, this kind of ambiguity is
not related to the mass of the quantum field and therefore
has an absolutely different origin compared to the terms of
the first type. As has been discussed previously in the
literature on conformal anomaly [18,19], the total deriva-
tive in the counterterms, in the classically conformal mass-
less theories, contributes to the local terms in the anomaly-
induced EA. As a consequence, these local terms have a
much greater degree of ambiguity than the nonlocal terms

2Equivalent form factors were in fact calculated earlier for the
theory with nonzero temperature in [22], see also [23] for
qualitatively similar expressions in QED.
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in the anomaly-induced EA, which can be classified in a
regular way [20]. Finally, the difference (24) includes two
terms of very different origin, which represent two distinct
types of the QFT ambiguities and hence cannot cancel.

Though it is technically possible to perform the analysis
at higher orders and obtain the expressions similar to (24)
for higher Schwinger-DeWitt coefficients, these expres-
sions are very cumbersome and their sense is sometimes
unclear. For this reason, it is better to consider only the
most interesting terms in (3) and do it separately. Let us
derive the relation (24) for a few particular cases.

(i) Yukawa theory. If we have �̂ ¼ h�1̂, then

�1 ¼ nðn� 2Þh2�2 � 2ihr�� trð��Þ
¼ nðn� 2Þh2�2: (25)

(ii) QED.

The operator �̂ assumes the form �̂ ¼ eA��
�.

According to Eq. (24), we find (see also [14])

�1 ¼ ðn� 2ÞeA�A
� � 2ir�A

�: (26)

(iii) Anomalous magnetic moment. In this case �̂ ¼
� �B

2 
��F
��. Using Eq. (24) we arrive at

�1 ¼ ðn� 2Þ�
2
B

4
F��F��tr½
��


���
þ i�Br�F

��tr½
���
��

¼ nðn� 2Þ�
2
B

2
F��F��: (27)

(iv) Torsion. In the case of absolutely antisymmetric

torsion, we have �̂ ¼ ��5��S�. As far as �5 is

defined only in n ¼ 4, we consider only this par-

ticular dimension. Replacing operator �̂ ¼
��5��S� into Eq. (24) we arrive at

�1 ¼ 2�2S�S�tr½�5���5���
� 2i�ðr�S�Þtr½�5�����

¼ �8�2S�S
�: (28)

One can see that in this case there is only one type
of anomalous terms.

IV. FULL CALCULATION FOR
YUKAWA MODEL

Let us now perform a complete analysis for the simplest
case of the Yukawa model, which we have already men-
tioned in (25).

A. Second Schwinger-DeWitt coefficient

The calculation of the second Schwinger-DeWitt
coefficient can be done in the usual way and provides
the following result for the two calculational schemes
(8) and (10) in n space-time dimensions:

aðkÞ2 ðnÞj¼
Z
dnx

ffiffiffiffiffiffiffi�g
p fAk�þBk�

2þCk�
3þDk�

4þEkg;
k¼1;2 (29)

with

A1 ¼ nmh

12
ð3� nÞRþ nm3h

3
ðn� 3Þðn� 1Þ

þ nh2

6
ðn� 1Þh�;

A2 ¼ nmh

12
ð3� nÞRþ nm3h

3
ðn� 3Þðn� 1Þ þ n2h2

12
h�;

B1 ¼ nh2

24
ð3� nÞRþ nm2h2

6
ð9� 4nþ 2n2Þ;

B2 ¼ nh2

48
ð2� nÞRþ nm2h2

4
ðn� 2Þðn� 1Þ;

C1 ¼ nmh3

3
ðn� 3Þðn� 1Þ;

C2 ¼ nmh3

12
ðn� 1Þ;

D1 ¼ nh4

12
ðn� 3Þðn� 1Þ;

D2 ¼ n2h4

96
ðnþ 2Þ;

E1 ¼ nh2

12
ðn� 1Þðr�Þ2 � nmh

6
h�;

E2 ¼ nh2

24
ðn� 2Þðr�Þ2 � nmh

6
h�:

(30)

The difference að1Þ2 ðnÞ � að2Þ2 ðnÞ can be written in the
form

að1Þ2 ðnÞj � að2Þ2 ðnÞj ¼
Z

dnx
ffiffiffiffiffiffiffi�g

p �
1

4

�
m2h2�2 þmh3�3 þ 7

24
h4�4

�
ðn� 4Þ3

þ 1

4

�
7m2h2�2 � 1

12
Rh2�2 � 1

6
ðr�Þ2h2 þ 7mh3�3 þ 25

12
h4�4

�
ðn� 4Þ2

þ
�
3m2h2�2 � 1

12
Rh2�2 � 1

6
ðr�Þ2h2 þ 3mh3�3 þ 11

12
h4�4

�
ðn� 4Þ þ 1

3
h2h�2

�
: (31)

DE BERREDO-PEIXOTO, PEREIRA, AND SHAPIRO PHYSICAL REVIEW D 85, 064025 (2012)

064025-4



It is easy to see that the difference consists of two kinds of
terms. All but the last term do vanish in and only in the
four-dimensional case, exactly as the difference in the
að1Þ1 ðnÞ � að2Þ1 ðnÞ vanish in two dimensions. Obviously,
the structure of these terms confirms our consideration
about the universality of the dynamical terms in logarith-
mic UV divergences and, at the same time, the nonuniver-
sality of powerlike divergences and finite terms in the case
n � 4. The last term in Eq. (32) has an absolutely different
origin. It shows the nonuniversality of surface terms in the
logarithmic UV divergences. As we already know from
the second article in [19], the ambiguity in the termh�2 in
the one-loop divergences goes, in the massless case, to the
ambiguity in the corresponding term in the trace anomaly
and finally results in the ambiguous finite term R�2 in the
anomaly-induced effective action. All in all, our general
arguments are confirmed here.

B. Calculation of form factors and � functions

The calculation of form factors has been described in
full detail in [14,17,21], so we shall just give the result of
the calculations in our case. The one-loop contribution to
the EA can be presented in the form

��ð1Þ ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffi�g
p fr��kkinðaÞr��þ�2kR�2ðaÞR

þ�2k�2�2ðaÞ�2g; (32)

where the form factors k are defined in terms of useful
notations

Y ¼ 1� 1

a
ln

�
2þ a

2� a

�
; a2 ¼ 4h

h� 4m2
: (33)

We have found the following two sets of form factors
corresponding to the calculational schemes (8) and (10):

kð1Þ
R�2ðaÞ ¼ � h2

9ð4	Þ2a2 ð�14a2 þ 45Ya2 � 168YÞ;

kð1Þ
�2�2ðaÞ ¼ 2h4

3ð4	Þ2a2 ð�8a2 þ 27Ya2 � 96YÞ;

kð1ÞkinðaÞ ¼ � 2h2

3ð4	Þ2a2 ða
2 þ 12YÞ;

(34)

within the first calculational scheme (8) and the form
factors

kð2Þ
R�2ðaÞ ¼ � h2

3ð4	Þ2a2 ð�3a2 þ 10Ya2 � 36YÞ;

kð2Þ
�2�2ðaÞ ¼ 2h4

3ð4	Þ2a2 ð6Ya
2 � a2 � 12YÞ;

kð2ÞkinðaÞ ¼ � h2

3ð4	Þ2a2 ða
2 þ 3Ya2 þ 12YÞ;

(35)

associated to the second scheme (10). The UV (a ! 2)
limits of the two expressions do coincide,

lim
a!2

kð1;2Þ
R�2 ðaÞ ¼ � h2

6ð4	Þ2 lnða� 2Þ;

lim
a!2

kð1;2Þ
�2�2ðaÞ ¼ h4

ð4	Þ2 lnða� 2Þ;

lim
a!2

kð1;2Þkin ðaÞ ¼ � h2

ð4	Þ2 lnða� 2Þ:

(36)

The reason is that these limits are related to the logarithmic
divergences in n ¼ 4 and are therefore universal. However,
this is not true for the form factors themselves, as can be
seen from Eqs. (35) and (36). In particular, the IR limit
(a ! 0) for the same form factors are different,

lim
a!0

kð1Þ
R�2ðaÞ ¼ 11h2

60ð4	Þ2 a
2 þOða4Þ;

lim
a!0

kð2Þ
R�2ðaÞ ¼ 23h2

180ð4	Þ2 a
2 þOða4Þ;

lim
a!0

kð1Þ
�2�2ðaÞ ¼ � 7h4

10ð4	Þ2 a
2 þOða4Þ;

lim
a!0

kð2Þ
�2�2ðaÞ ¼ � 7h4

30ð4	Þ2 a
2 þOða4Þ;

lim
a!0

kð1ÞkinðaÞ ¼
h2

10ð4	Þ2 a
2 þOða4Þ;

lim
a!0

kð2ÞkinðaÞ ¼
2h2

15ð4	Þ2 a
2 þOða4Þ:

(37)

Another way to observe the MA in massive theories is
though the physical � functions. Such � functions for the
effective charge C can be defined in the framework of the
momentum-subtraction renormalization scheme as

�C ¼ lim
n!4

M
dC

dM
; (38)

where the subtraction of divergences is performed at
p2 ¼ M2, M being the renormalization point. This is in-
deed different from the minimal subtraction scheme �
function for the same quantity, which is given by

�MS
C ¼ lim

n!4
�
dC

d�
: (39)

Both statements also apply to the � functions �kin, which
are related to the renormalization of the kinetic terms in the
scalar field action. The derivative (38) can be expressed in
terms of parameter a as

� p
dC

dp
¼ ð4� a2Þ a

4

dC

da
(40)

of the form factors in the polarization operator. Using this
procedure, we arrive at the following UV and IR limits of
the corresponding � functions:
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�ð1Þ

 ¼ h2

12ð4	Þ2a2 fa
2ð15a2�56Þþð228a2�672�15a4ÞYg;

�ð2Þ

 ¼ h2

6ð4	Þ2a2 fa
2ð5a2�18Þþð74a2�216�5a4ÞYg;

�ð1Þ
� ¼� h4

2ð4	Þ2a2 fa
2ð9a2�32Þþð132a2�384�9a4ÞYg;

�ð2Þ
� ¼� h4

ð4	Þ2a2 fa
2ða2�2Þþð10a2�24�a4ÞYg;

�ð1Þ
kin¼

2h2

ð4	Þ2a2 fa
2þð12�3a2ÞYg;

�ð2Þ
kin¼

h2

4ð4	Þ2a2 fa
2ða2þ4Þþð48�8a2�a4ÞYg: (41)

The UV limit a ! 2 in the complete � functions (41)
corresponds to the simple MS-scheme expressions and is
the same for the two calculational approaches,

�ð1;2ÞUV

 ¼ �p

dkð1;2Þ
R�2 ðaÞ
dp

¼ h2

3ð4	Þ2 ;

�ð1;2ÞUV
� ¼ �p

dkð1;2Þ
�2�2ðaÞ
dp

¼ � 2h4

ð4	Þ2 ;

�ð1;2ÞUV
kin ¼ �p

dkð1;2Þkin ðaÞ
dp

¼ 2h2

ð4	Þ2 ;

(42)

In the opposite, IR, limit the situation is quite different,
indicating an ambiguity in the Appelquist-Carazzone
theorem,

�ð1ÞIR

 ¼ �p

dkð1Þ
R�2ðaÞ
dp

¼ 11h2

30ð4	Þ2 a
2 þOða4Þ;

�ð2ÞIR

 ¼ �p

dkð2Þ
R�2ðaÞ
dp

¼ 23h2

90ð4	Þ2 a
2 þOða4Þ;

�ð1ÞIR
� ¼ �p

dkð1Þ
�2�2ðaÞ
dp

¼ � 7h4

5ð4	Þ2 a
2 þOða4Þ;

�ð2ÞIR
� ¼ �p

dkð2Þ
�2�2ðaÞ
dp

¼ � 7h4

15ð4	Þ2 a
2 þOða4Þ;

�ð1ÞIR
kin ¼ �p

dkð1ÞkinðaÞ
dp

¼ h2

5ð4	Þ2 a
2 þOða4Þ;

�ð2ÞIR
kin ¼ �p

dkð2ÞkinðaÞ
dp

¼ 4h2

15ð4	Þ2 a
2 þOða4Þ:

(43)

In the space with Euclidean signature we have, for
p2 � m2, the relation a2 / p2=m2 in the low-energy IR
limit. Then we can see that in all cases the decoupling in
Eqs. (43) is quadratic, according to the Appelquist-
Carazzone theorem, but the coefficients depend on the
choice of calculational scheme, that is whether we use

operator Ĥ�
1 from (8) or operator Ĥ�

2 from (10). Let us

note that from a physical viewpoint the first choice with Ĥ�
1

is much better because it helps to preserve the gauge
invariance in QED [14]. This means we have to make
such a choice in the ad hoc manner. Definitely, it is
important to be aware of the possible risks of making an
alternative choice.

V. CONCLUSION

We have explored in detail an ambiguity that takes place
in the derivation of fermionic functional determinants by
means of the heat-kernel method. There are two kinds of
ambiguities, which have essentially different origins. The
first one takes place only in the case of massive theories
and shows the deep importance and universality of the
logarithmic UV divergences. The divergences can always
be removed by the renormalization procedure, but its rem-
nants in the form of the leading logarithmic behavior of the
form factors do remain and represent the most stable part
of quantum corrections. An important observation, from
our viewpoint, is that the universality of logarithmic UV
divergences should hold in any space-time dimension. As a
consequence of this feature, the finite part of the one-loop
EA in massive theories becomes scheme dependent. In the
case of fermionic determinants, this can be seen in the form
of nonlocal multiplicative anomaly. It is clear that this kind
of ambiguity cannot be seen in massless theories, because
in this case the EA is much more controlled by leading
logarithmic terms. It would be very interesting to find other
examples of such an ambiguity for other (nonfermionic)
theories, and we hope to find such examples in the future.
Another sort of ambiguity that does not depend on

whether the quantum field is massive or massless, occurs
in the divergent total-derivative terms. These terms do not
depend on whether the theory is massive or massless. For
the particular case of fermionic determinants this means
independence on whether the initial classical theory is
conformal or not. And in the case of conformal theories,
these divergent surface terms are known to contribute to
the conformal anomaly and finally to the local terms in the
anomaly-induced EA, where they can be removed by add-
ing a finite local counterterm. Therefore, this ambiguity is
quite different from the one of the first kind, which is
essentially nonlocal and takes place only in massive theo-
ries. The common point is that both of them cannot be
compensated by the change of coefficients in the infinite
local counterterms, which are introduced in the process of
renormalization.
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