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We present an exact solution to the five-dimensional Einstein-Maxwell-dilaton equations describing a

static black hole on the Taub-NUT instanton. By construction, the solution does not possess a charge, but

is magnetized along the compact dimension. As a limit, we obtain a new regular solution representing a

magnetized Kaluza-Klein monopole. We investigate the relevant physical properties and derive the Smarr-

like relations.
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I. INTRODUCTION

In recent years, it has been demonstrated that higher-
dimensional gravity admits a variety of solutions with
nontrivial geometry. Among the different configurations,
certain black holes were constructed, which were de-
scribed as ‘‘sitting on’’ gravitational instantons. This class
of solutions includes the so-called black holes on Kaluza-
Klein bubbles [1–8], as well as black holes on the
Taub-NUT, Taub-Bolt, Kerr- and Eguchi-Hanson instan-
tons [9–14]. A recent review on the topic is available
written by Chen and Teo [13].

The instanton solutions possess interesting physical
properties induced by their complicated geometry. In a
recent work, we discussed the thermodynamics of vacuum
and electrostatic black holes on asymptotically locally flat
gravitational instantons [15]. The goal of the current paper
is to achieve some progress in the investigation of their
behavior in magnetic fields.

Magnetized black holes have attracted a lot of attention
in astrophysics since it is considered that they can provide
viable models for realistic stellar-mass and supermassive
black holes. Different mechanisms of electromagnetic en-
ergy extraction from rotating magnetized black holes have
been proposed, the Blandford-Znajek one considered the
most relevant [16], hoping to explain the formation of the
highly relativistic jets from galactic nuclei. Other interest-
ing physical phenomena were discovered as well concern-
ing black holes in magnetic fields [17]. Such is the
gravitational analog of the Meissner effect, which consists
in the expulsion of the magnetic flux lines from black holes
horizons as they approach extremality [18–21], and the
charge accretion leading to the charging up of rotating
black holes immersed in an external magnetic field
[22–24]. The scattering and Hawking radiation of magne-
tized black holes were also actively investigated, as well as
the motion of charged particles in their vicinity [25–27]. It
was demonstrated that the super-radiant instability

exhibited by rotating black holes and the intensity of the
Hawking evaporation is amplified in the presence of a
magnetic field [28,29]. Very recently, it was argued that
particles with high center-of-mass energy can be produced
as a result of certain particle collisions in the vicinity of a
weakly magnetized nonrotating black hole [30]. Thus,
magnetized nonrotating black holes could serve as particle
accelerators under some conditions.
Exact solutions to the Einstein-Maxwell equations pro-

vide valuable intuition for examining black hole astrophys-
ics. Magnetized black hole solutions were constructed
early in four-dimensional spacetime [31–34] by applying
Harrison transformation. Recently, they were generalized
to a variety of solutions to the five-dimensional Einstein-
Maxwell, and Einstein-Maxwell-dilaton equations describ-
ing black objects in external magnetic fields [35,36]. Since
only the simplest solution representing a black hole on a
gravitational instanton, the black hole on a Kaluza-Klein
bubble, has been magnetized so far [6], we consider that it
is important to obtain further magnetized solutions belong-
ing to this class.
The paper is organized as follows. In the first section,

we present a new exact solution to the five-dimensional
Einstein-Maxwell equations representing a static magne-
tized black hole on the Taub-NUT instanton. We exam-
ine its limits and obtain another solution of physical
importance—a magnetized version of the Kaluza-Klein
monopole. Next, we investigate the physical properties
of the solution, and calculate its mass and tension using
both Komar integrals and the counterterm method and
comparing the results. The NUT charge and potential
are obtained as well, using the relations demonstrated in
[15] and generalizing the definition of the NUT poten-
tial appropriately for the current case. Section IV is
devoted to a rigorous derivation of the relevant Smarr
relations.

II. EXACT SOLUTION

We consider the Einstein-Maxwell-dilaton gravity in
five-dimensional spacetime with the action
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I ¼ 1

16�

Z
d5x

ffiffiffiffiffiffiffi�g
p ðR� 2g��@�’@�’� e�2a’F��F��Þ;

(1)

which leads to the field equations

R�� ¼ 2@�’@�’þ 2e�2a’

�
F��F

�
� � 1

6g��F��F
��

�
;

r�r�’ ¼ �a

2
e�2a’F��F

��; r�½e�2a’F��� ¼ 0;

(2)

where R�� is the Ricci tensor for the spacetime metric g��,

F�� is the Maxwell tensor, ’ is the dilaton field, and a is

the dilaton coupling parameter.
In the present paper, we are interested in Einstein-

Maxwell-dilaton solutions admitting three commuting
Killing vectors, one asymptotically timelike Killing vector
�, and two spacelike Killing vectors � and k or more
precisely, solutions with a group of symmetry R�Uð1Þ2.
We focus on pure magnetic solutions with i�F ¼ 0 and

nonzero magnetic potentials �� ¼ i�F and �k ¼ ikF. In

this case and for dilaton coupling parameter a ¼ ffiffiffiffiffiffiffiffi
8=3

p
, we

have found the following exact solution to the field equa-
tions

ds2 ¼ V1=3ðrÞ
�
�
�
1� rþ

r

�
dt2 þ rþ r0

r� rþ
dr2

þ rðrþ r0Þðd�2 þ sin2�d	2Þ
�

þ V�ð2=3ÞðrÞ r

rþ r0
ðdc þ r1 cos�d	Þ2;

e�a’ ¼ V2=3ðrÞ; �k ¼ � 

2

r
rþr0

V�1ðrÞ;
�� ¼ �kr1 cos�;

(3)

where metric function VðrÞ is given by

VðrÞ ¼ 1

1þ 
2

�
1þ 
2r

rþ r0

�
: (4)

Here, �1< 
<1, 0 � rþ <1, 0 � r0 <1 are pa-
rameters and r1 is defined by

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0ðr0 þ rþÞ
1þ 
2

s
: (5)

The Maxwell 2-form F is given by

F ¼ dc ^ d�k þ d	 ^ d��: (6)

In the coordinates of the solution, the Killing vectors are
given by � ¼ @=@t, � ¼ @=@	, and k ¼ @=@c .
As the expression reveals, the electromagnetic vector

potential is directed along the 1-form corresponding to the
compact dimension, which is parameterized by the angular
coordinate c .
In the limit 
 ! 0, the magnetic field vanishes and the

solution reduces to the vacuum black hole on the Taub-
NUT instanton [9]. It is also interesting to consider another
limit by setting rþ ¼ 0. In this case, we obtain a com-
pletely regular metric in the form

ds2 ¼ V1=3

�
�dt2 þ rþ r0

r
dr2

þ rðrþ r0Þðd�2 þ sin2�d	2Þ
�

þ V�ð2=3Þ r

rþ r0
ðdc þ r1 cos�d	Þ2: (7)

It represents a magnetized generalization of Kaluza-Klein
monopole discovered by [37], and Sorkin [38].
The solution possesses a horizon located at r ¼ rþ and

its spacelike cross sections at r ¼ const are diffeomorphic
to a Hopf fibration of S3. Taking also into account the
natural limits of the solution mentioned above, we can
interpret our solution as a magnetized black hole on the
Taub-NUT instanton.
The interval structure of the solution is the following

(see Fig. 1):
(i) a semi-infinite spacelike interval located at (r � rþ,

� ¼ �) with direction lL ¼ ð0; r1; 1Þ;
(ii) a finite timelike interval located at (r ¼ rþ, 0 �

� � �) with direction lH ¼ 1
�H

ð1; 0; 0Þ correspond-
ing to the black hole horizon;

(iii) a semi-infinite spacelike interval at (r � rþ,
� ¼ 0) with direction lR ¼ ð0;�r1; 1Þ.

The directions of the intervals are determined by their
coordinates with respect to a basis of Killing vectors
f@@t ; @

@c ; @
@	g. The length of the S1 fiber at infinity is equal

to L ¼ 4�r1, and �H is the surface gravity of the horizon.
Note that the parameters of the interval structure are not

directly inherited from the vacuum black hole on the Taub-
NUT instanton since the parameter r1 is modified by the
presence of magnetizing parameter 
.
In the spirit of the uniqueness theorem of [39], the

solution is completely determined not only by its interval
structure but also by an appropriately defined magnetic
flux. In the case under consideration, we can use the

FIG. 1. Interval structure of a magnetized black hole on the Taub-NUT instanton.
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magnetic flux � through the base space S21 of the S1

fibration at infinity, namely,

� ¼
Z
S21

F ¼ L�kð1Þ ¼ �2�
r1

¼ �2�


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0ðr0 þ rþÞ
1þ 
2

s
: (8)

III. PHYSICAL QUANTITIES

A. Mass and tension

The solution is characterized by two conserved gravita-
tional charges—the mass and the tension [40,41], which
can be calculated either by generalized Komar integrals
[6,42], or by the counterterm method [43]. In the latter
approach, we consider the counterterm introduced by
Mann and Stelea [44] (see also [45])

Ict ¼ 1

8�

Z
d4x

ffiffiffiffiffiffiffi�h
p ffiffiffiffiffiffiffiffi

2R
p

; (9)

leading to a boundary stress-energy tensor in the form

Tij ¼ 1

8�
½Kij � Khij ��ðRij �RhijÞ

� hijD
kDk�þDiDj��; (10)

where K is the trace of the extrinsic curvature Kij of the

boundary, R and Dk are the Ricci scalar and the covariant
derivative with respect to the boundary metric hij, and

� ¼
ffiffiffiffi
2
R

q
.

We will use both methods in our computations and show
that they lead to equivalent results. The generalized Komar
integrals for the Arnowitt-Deser-Misner mass MADM and
the tension T are defined as

MADM ¼ � L

16�

Z
S21
½2ik ? d�� i� ? dk�;

T ¼ � 1

16�

Z
S21
½ik ? d�� 2i� ? dk�;

(11)

where � ¼ @
@t is the Killing field associated with time

translations, k ¼ @
@c is the Killing field corresponding to

the compact dimension, L is the length of the S1 fiber, and
S21 is the base space of S1 fibration at infinity. By direct
calculation, we obtain the result

MADM ¼ L

2

�
rþ þ 1

2
r0

�
; T ¼ 1

4

�
rþ þ 2þ 
2

1þ 
2
r0

�
:

(12)

On the other hand, we can calculate the relevant com-
ponents of the stress-energy tensor

8�Tt
t ¼ 1

r2

�
1

2
r0 þ rþ

�
þO

�
1

r3

�
;

8�Tc
c ¼ 1

2r2

�
rþ þ 2þ 
2

1þ 
2
r0

�
þO

�
1

r3

�
:

(13)

According to the counterterm method, the conserved
quantities are obtained from the boundary stress-energy
tensor as

Q ¼
Z
�
d�iT

i
j�

j; (14)

where � is a Killing vector generating an isometry of the
boundary. The conserved quantity represents the mass in
the case when � ¼ @=@t, and the tension, when � ¼ @=@c
[46]. Thus, we obtain

MADM ¼ 1

8�

Z �
1

2
r0 þ rþ

�
sin�d�d	dc ;

T ¼ 1

16�

Z �
rþ þ 2þ 
2

1þ 
2
r0

�
sin�d�d	;

(15)

which leads to the same result as (12) after performing the
integration. Although the expression for the ADM mass
formally coincides with the corresponding one in the vac-
uum case [9,11], it should be recognized that the value of
the parameter L is different, since it is affected by the
external magnetic field.
In addition to the ADM mass, an intrinsic mass of the

black hole can be introduced by the Komar integral

MH ¼ � L

16�

Z
H
½2ik ? d�� i� ? dk�; (16)

which in our case obtains the explicit form

MH ¼ L

2
rþ: (17)

The black hole mass can be expressed also in terms of the
horizon area AH and surface gravity �H as

MH ¼ 1

4�
�HAH: (18)

The surface gravity on the black hole horizon is deter-
mined by

�H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1

2��;��
�;�

q
jH; (19)

where � ¼ @=@t is the timelike Killing field. It leads to the
result

�H ¼ 2�

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0

rþð1þ 
2Þ
s

¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþðr0 þ rþÞ

p : (20)

The area of the horizon is calculated as
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AH ¼
Z
H

ffiffiffiffiffiffi
gH

p
d�d	dc ¼ L2rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþð1þ 
2Þ

r0

s

¼ 16�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 
2

p r3=2þ r1=20 ðrþ þ r0Þ: (21)

It is obvious by the explicit expressions that (18) is
satisfied.

B. NUT charge and potential

The spacial boundary at infinity of the solution manifold
is diffeomorphic to a nontrivial S1 bundle over S2, there-
fore the solution possesses a NUT charge. It is defined by
the Komar-like integral [47]

N ¼ � 1

8�

Z
C2
d

�
k

V

�
; (22)

where k is the Killing 1-form associated with the S1 fiber at
infinity, V is its norm, and C2 is a two-dimensional
surface, encompassing the nut. In our case, this is equiva-
lent to the relation

N ¼ 1

2
r1 ¼ L

8�
; (23)

which was derived in [15] for black holes on asymptoti-
cally locally flat gravitational instantons.

In addition to the NUT charge, there exists a related
characteristic, called a NUT potential. This is revealed if
we examine the 1-form i�ik ? dk, which can be represented
in the form [15]

di�ik ? dk ¼ 2 ? ½RðkÞ ^ k ^ ��: (24)

Taking into account that

? RðkÞ ¼ �2e�2a’

�
�2

3ikF ^ ?Fþ 1
3F ^ ik ? F

�
; (25)

and using the explicit form of the electromagnetic field (6),
we obtain

? ½RðkÞ ^ k ^ �� ¼ 2d�k ^ i�ike
�2a’ ? F: (26)

It follows from the field equations that di�ike
�2a’ ?

F ¼ 0, consequently we can introduce an electromagnetic
potential B such that dB ¼ i�ike

�2a’ ? F. Taking advan-

tage of it, Eq. (24) yields

di�ik ? dk� 4dð�kdBÞ ¼ 0: (27)

The 1-form i�ik ? dk� 4�kdB is invariant under the

Killing fields �, k, and � and can be viewed as defined on

the factor space M̂ ¼ M=R�Uð1Þ2. Since the factor space
M̂ ¼ M=R�Uð1Þ2 is simply connected [48], there exists
a globally defined potential �, such as

d� ¼ i�ik ? dk� 4�kdB: (28)

This relation determines the NUT potential correspond-
ing to the solution we investigate. It should be noted that its
form distinguishes from the vacuum and electrostatic cases
[15] since now it incorporates a term connected with the
electromagnetic field.
The NUT potential and the electromagnetic potential B

possess the following explicit form,

� ¼ r1ð1þ 
2Þ
rþ r0

; B ¼ 


2

r1
rþ r0

; (29)

where they are normalized in such a way that they vanish at
infinity.

IV. SMARR-LIKE RELATIONS

In this section, we are going to derive the relevant
Smarr-like relations for the mass and the tension, which
provide a connection between the different characteristics
of the solution. Let us consider the expression for the
tension (11). It is convenient to reduce it to the factor space

M̂ by acting with the Killing field � ¼ @
@	 associated with

the azimuthal symmetry of the two-dimensional sphere at
infinity [15]

T L ¼ L

8

Z
Arcð1Þ

½i�ik ? d�� 2i�i� ? dk�: (30)

The integration is now performed over the semicircle
representing the boundary of the two-dimensional factor
space at infinity. Using Stokes’s theorem, the integral can

be further expanded into a bulk term over M̂ and an integral
over the rest of the boundary of the factor space, which is
represented by the interval structure Ii,

T L ¼ L

8

Z
M̂
½di�ik ? d�� 2di�i� ? dk�

� L

8

X
i

Z
Ii

½i�ik ? d�� 2i�i� ? dk�: (31)

If we take into account the definition of the intrinsic
mass of the black hole (18) and the fact that the 1-form
i�ik ? d� vanishes along the left and right semi-infinite

intervals IL and IR, we obtain

T L ¼ 1

2
MH þ L

4

Z
IL
S

IR

i�i� ? dk

þ L

8

Z
M̂
½di�ik ? d�� 2di�i� ? dk�: (32)

Let us consider the bulk integral and use the Ricci
identity d ? dK ¼ 2 ? RðKÞ, which applies for any
Killing field K,
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L

8

Z
M̂
½di�ik ? d�� 2di�i� ? dk�

¼ L

8

Z
M̂
½i�ikd ? d�� 2i�i�d ? dk�

¼ L

4

Z
M̂
½i�ik ? Rð�Þ � 2i�i� ? RðkÞ�: (33)

We can further show from the field equations that for any
Killing field it is satisfied

? RðkÞ ¼ �2e�2a’

�
�2

3ikF ^ ?Fþ 1
3F ^ ik ? F

�
: (34)

Applying this relation for the Killing fields � and k and
considering the explicit form of the electromagnetic field,
we obtain

i�ik ?Rð�Þ�2i�i� ?RðkÞ
¼�2ðikF^ i�i�e

�2a’?Fþ i�F^ iki�e
�2a’?FÞ: (35)

Thus, the bulk term becomes

L

4

Z
M̂
½i�ik ?Rð�Þ�2i�i� ?RðkÞ�

¼�L

2

Z
M̂
½ikF^ i�i�e

�2a’?Fþ i�F^ iki�e
�2a’?F�

¼�L

2

Z
M̂
½d�k^ i�i�e

�2a’?Fþd��^ iki�e
�2a’?F�:

(36)

We can further simplify the expression using Stokes’s
theorem and considering that the 1-form iki� ? F tends to

zero at infinity, as well as that the integral over the horizon
vanishes,

� L

2

Z
M̂
½d�k ^ i�i�e

�2a’ ? Fþ d�� ^ iki�e
�2a’ ? F�

¼ �L

2

Z
Arcð1Þ

�ki�i�e
�2a’ ? F��L

2

�
Z
IL
S

IR

½�ki�i�e
�2a’ ? Fþ��iki�e

�2a’ ? F�:

(37)

Substituting this expression into Eq. (32), we obtain

T L¼1

2
MHþL

4

Z
IL
S

IR

i�i� ?dk

�L

2

Z
Arcð1Þ

�ki�i�e
�2a’?F

�L

2

Z
IL
S

IR

½�ki�i�e
�2a’?Fþ��iki�e

�2a’?F�;

(38)

which can be also represented as

T L¼1

2
MHþL

4
r1

Z
IL

d��L

4
r1

Z
IR

d�

þL

2

Z
IL

ð��þr1�kÞdBþL

2

Z
IR

ð���r1�kÞdB

�L

2

Z
Arcð1Þ

�ki�i�e
�2a	?F: (39)

From the definition (28) of the NUT potential, it follows
that the NUT potential is constant on the horizon, provided
the horizon is bifurcational, and we will denote its value
by �. Using the definition of the NUT charge (23) and the
fact that the NUT potential vanishes at infinity, the last
relation is reduced to

T L ¼ 1

2
MH þ LN�þ L

2

Z
IL

ð�� þ r1�kÞdB

þ L

2

Z
IR

ð�� � r1�kÞdB

� L

2

Z
Arcð1Þ

�ki�i�e
�2a’ ? F: (40)

The explicit form (3) of the electromagnetic potentials
�k and �� and the alignment of the left and right semi-

infinite intervals imply that �� þ r1�k ¼ 0 on IL, and

�� � r1�k ¼ 0 on IR. Since dB is regular on the factor

space M̂, the relevant integrals vanish. It remains to calcu-
late the integral over the semicircle at infinity. We have

L

2

Z
Arcð1Þ

�ki�i�e
�2a’?F¼L

2
�kð1Þ

Z
Arcð1Þ

i�i�e
�2a’?F

¼1

2
�
Z
Arcð1Þ

i�i�e
�2a’?F;

(41)

where � is the magnetic flux defined in (8).
In analogy with magnetostatics, it is natural to interpret

the integral

J ¼ � 1

2

Z
Arcð1Þ

e�2a’i�i� ? F ¼ 1

4�

Z
S21

e�2a’i� ? F

(42)

as the effective current that serves as a source of the
magnetic field.
Thus, we obtain the Smarr-like relation for the tension in

its final form

T L ¼ 1
2MH þ LN�þ�J: (43)

The effective current J can be expressed via the potential
�, which is defined by d� ¼ e�2a’i�i� ? F and is given

explicitly by

� ¼ �


2

r0 cos�ðr� rþÞ
ð1þ 
2Þðrþ r0Þ

; (44)
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where it is normalized appropriately in order to vanish on
the horizon.

It is easy to see that the effective current J is connected
to the restriction of the potential � to the boundary of the
factor space at infinity Arcð1Þ as

J ¼ 1
2½�ð� ¼ �Þ jArcð1Þ ��ð� ¼ 0Þ jArcð1Þ�: (45)

In a similar way, if we take advantage of the Komar
integral definition of the ADM mass we can derive the
Smarr-like relation for the mass

M ¼ MH þ 1
2LN�: (46)
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