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We investigate the shadow cast by a rotating braneworld black hole, in the Randall-Sundrum scenario.

In addition to the angular momentum, the tidal charge term deforms the shape of the shadow. For a given

value of the rotation parameter, the presence of a negative tidal charge enlarges the shadow and reduces its

deformation with respect to Kerr spacetime, while for a positive charge, the opposite effect is obtained.

We also analyze the case in which the combination of the rotation parameter and the tidal charge results in

a naked singularity. We discuss the observational prospects corresponding to the supermassive black hole

at the Galactic center.
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I. INTRODUCTION

In braneworld cosmologies, the ordinary matter is on a
three-dimensional space (the brane) which is embedded in
a larger space (the bulk), where only gravity can propagate.
These models, which have received great attention in
recent years [1], were proposed to solve the hierarchy
problem (the difficulty in explaining why the gravity scale
is 16 orders of magnitude greater than the electroweak
scale), and they have motivation in recent developments
of string theory, known as M-theory. The presence of the
extra dimensions would modify the properties of black
holes [2]. Clancy et al. [3] showed that, in the simplest
of braneworld scenarios, the Randall-Sundrum [4] models
(a positive tension brane in a bulk with one extra dimension
and a negative cosmological constant) primordial black
holes formed in the high-energy epoch would have a longer
lifetime because of a different evaporation law. Braneworld
primordial black holes could have a growth of their mass
through accretion of surrounding radiation during the high-
energy phase, increasing their lifetime [5]. These black
holes could have survived up to the present, and they
have an induced four-dimensional metric on the brane
different from the Schwarzschild metric. In these models,
black holes also may be created in high-energy collisions
in particle accelerators or in cosmic rays [2]. In the
Randall-Sundrum scenario, Dadhich et al. found a spheri-
cally symmetric black hole solution on a three-dimensional
brane [6], which is characterized by a tidal charge, due to
gravitational effects coming from the fifth dimension.
Recently, rotating black hole solutions with a tidal charge
were studied by Aliev et al. [7,8].

The study of the null geodesics around black holes, in
which photons coming from astrophysical sources move, is
useful to obtain information about these objects.

Gravitational lensing by black holes has been investigated
by several authors in the last decade, mainly because of the
strong evidence about the presence of supermassive black
holes at the center of galaxies. A useful approximate
analytical method for obtaining the positions, magnifica-
tions, and time delays of the relativistic images corre-
sponding to black hole lenses is the strong deflection
limit. It was introduced by Darwin [9] for the
Schwarzschild geometry, rediscovered several times [10],
extended to the Reissner-Nordström spacetime [11] and to
any spherically symmetric black holes [12]. Numerical
studies [13] of black hole lenses were performed, too.
Nonrotating braneworld black holes were studied as gravi-
tational lenses [14] as well. Kerr black hole lenses were
considered by several authors [15–18]. Rotating black
holes present apparent shapes or shadows with an optical
deformation due to the spin [19,20], instead of being
circles as in the case of nonrotating ones. This topic has
been reexamined by several authors in the last few years
[17,21–28], with the expectation that the direct observation
of black holes will be possible in the near future [28];
therefore, the study of the shadows will be useful for
measuring the properties of astrophysical black holes.
Optical properties of rotating braneworld black holes
were studied by Schee and Stuchlik [29]. For more details
about black hole gravitational lensing and a discussion of
its observational prospects, see the recent review article
[30] and the references therein.
In this paper, we study how the presence of the tidal

charge modifies the form of the shadow cast by the spin-
ning black hole with a tidal charge introduced by Aliev
et al. [7,8], in the Randall-Sundrum braneworld scenario.
This topic has been previously considered by Schee and
Stuchlik [29]; in our work, we calculate the observables
defined by Hioki and Maeda [26], and we concentrate on
the analysis of the shadow corresponding to the Galactic
black hole. When the appropriate combination of the
rotation parameter and the tidal charge is large enough,
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the event horizon disappears, and a naked singularity is
obtained. This case, not analyzed in Ref. [29], is consid-
ered here. In Sec. II, we review the basic aspects of the
geometry and the geodesics of the rotating braneworld
black hole. In Sec. III, we obtain the shadows of black
holes with different values of the rotation parameter and
the tidal charge. In Sec. IV, the study is extended to naked
singularities. Finally, in Sec. V, we discuss the results
found. We adopt units such that G ¼ c ¼ 1.

II. SPINNING BRANEWORLD BLACK HOLES

We adopt for the rotating black hole in the Randall-
Sundrum braneworld scenario the metric introduced in
Ref. [7], which in the Boyer-Lindquist coordinates has
the form

ds2 ¼ ��

�
ðdt� asin2�d�Þ2 þ �

�
dr2

�
þ d�2

�

þ sin2�

�
½adt� ðr2 þ a2Þd��2; (1)

with

� ¼ r2 þ a2 � 2MrþQ; � ¼ r2 þ a2cos2�;

where M is the mass, a is the rotation parameter (angular
momentum per unit mass, a ¼ J=M), and Q is the tidal
charge of the black hole. This metric was obtained by
adopting the assumption that the induced geometry on
the 3D brane has the Kerr-Schild form [7]. It is unclear if
this choice of the metric on the brane is indeed fulfilled by
an exact bulk metric [7]. The tidal charge is interpreted as
an imprint of the gravitational effects from the bulk space
[7]. We let the tidal charge take any sign, but some authors
argue that the negative sign is more natural (see Refs. [7,8]
and references therein). When Q ¼ 0, one recovers the
Kerr geometry. The nonrotating case, i.e. a ¼ 0, corre-
sponds to the brane black hole metric previously studied
in Ref. [6]. The properties of the geometry (1) are similar to
those of the Kerr-Newman metric in general relativity. The
event horizon is determined by largest root of the equation
� ¼ 0, given by

rþ ¼ Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2 �Q

q
: (2)

Thus, the event horizon exists ifQ � Qc ¼ M2 � a2, with
the equal sign corresponding to a maximally rotating black
hole (with rþ ¼ M). When the tidal charge is positive, this
condition leads to the Kerr-type bound on the angular
momentum, i.e. the rotation parameter cannot exceed the
mass. But the situation is different for the negative tidal
charge, for which the maximally rotating black hole has the
rotation parameter greater than the mass. In what follows,
for simplicity, we adimensionalize all quantities with
the mass of the black hole, which is equivalent to put
M ¼ 1 in all equations.

When a black hole is between a source of light and an
observer, the light reaches the observer after being
deflected by the black hole gravitational field; but some
part of the photons emitted by the source, those with small
impact parameters, end up falling into the black hole, not
reaching the observer, giving as result a dark zone in the
sky called the shadow. The apparent shape of a black hole
is thus defined by the boundary of the shadow. In order to
obtain the apparent shape, we need to study the geodesic
structure. The Hamilton-Jacobi equation determines the
geodesics for a given geometry:

@S

@�
¼ � 1

2
g�� @S

@x�
@S

@x�
; (3)

where � is an affine parameter along the geodesics, g�� are

the components of the metric tensor, and S is the Jacobi
action. When the problem is separable, the Jacobi action S
can be written in the form

S ¼ 1
2m

2�� Etþ Lz�þ SrðrÞ þ S�ð�Þ: (4)

where m is the mass of a test particle. The second term on
the right-hand side is related to the conservation of energy
E, while the third term is related to the conservation of the
angular momentum in the direction of the axis of symmetry
Lz. In the case of null geodesics, we have that m ¼ 0, and
from the Hamilton-Jacobi equation, the following equa-
tions of motion are obtained [8]:

�
dt

d�
¼ aðLz � aEsin2�Þ þ r2 þ a2

�
½ðr2 þ a2ÞE� aLz�;

(5)

�
d�

d�
¼

�
Lz

sin2�
� aE

�
þ a

�
½ðr2 þ a2ÞE� aLz�; (6)

�
dr

d�
¼

ffiffiffiffiffiffi
R

p
; (7)

�
d�

d�
¼

ffiffiffiffiffi
�

p
; (8)

where the functions RðrÞ and �ð�Þ are defined by

R ¼ ½ðr2 þ a2ÞE� aLz�2 ��½Kþ ðLz � aEÞ2�; (9)

and

� ¼ Kþ cos2�

�
a2E2 � L2

z

sin2�

�
; (10)

with K a constant of separation. These equations deter-
mine the propagation of light in the spacetime of the
braneworld rotating black hole. The geometry (1) is
asymptotically flat, so the trajectory of photons are straight
lines at infinity. The light rays are, in general, characterized
by two impact parameters, which can be expressed in terms
of the constants of motion E, Lz and the Carter constantK.
Combining these quantities, we define as usual � ¼ Lz=E
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and � ¼ K=E2, which are the impact parameters for
general orbits around the black hole. We use Eq. (7) to
derive the orbits with constant r in order to obtain the
boundary of the shadow of the black hole. These orbits
satisfy the conditions RðrÞ ¼ 0 ¼ dRðrÞ=dr, which are
fulfilled by the values of the impact parameters that deter-
mine the contour of the shadow, namely,

�ðrÞ ¼ a2ð1þ rÞ þ r½ðr� 3Þrþ 2Q�
að1� rÞ

¼ �KðrÞ � 2Qr

aðr� 1Þ ; (11)

�ðrÞ ¼ r2f4a2ðr�QÞ � ½rðr� 3Þ þ 2Q�2g
a2ðr� 1Þ2

¼ �KðrÞ � 4Qr2ð�� rÞ
a2ðr� 1Þ2 ; (12)

where

�KðrÞ ¼ r2 � r�K � a2

aðr� 1Þ ;

�KðrÞ ¼ r3½4�K � rðr� 1Þ2�
a2ðr� 1Þ2

(with �K ¼ �jQ¼0) are the corresponding values in Kerr

geometry.

III. BLACK HOLE SHADOW

To describe the shadow, we adopt the celestial coordi-
nates (see, for example, Ref. [16]):

� ¼ lim
r0!1

�
�r20 sin�0

d�

dr

�
(13)

and

	 ¼ lim
r0!1r

2
0

d�

dr
; (14)

where r0 goes to infinity because we consider an observer
far away from the black hole, and �0 is the angular coor-
dinate of the observer, i.e. the inclination angle between the
rotation axis of the black hole and the line of sight of
the observer. The coordinates � and 	 are the apparent
perpendicular distances of the image as seen from the axis
of symmetry and from its projection on the equatorial
plane, respectively. If we calculate d�=dr and d�=dr
from the metric given by Eq. (1) and take the limit of a
far away observer, we have that, as a function of the
constants of motion, the celestial coordinates take the form

� ¼ �� csc�0 (15)

and

	 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ a2cos2�0 � �2cot2�0

q
; (16)

where Eqs. (6)–(8) were used to calculate d�=dr and
d�=dr. These equations have implicitly the same form
as for the Kerr metric, with the new � and � given by
Eqs. (11) and (12) (a detailed calculation of the values of �
and � and the expressions of the celestial coordinates �
and 	 as a function of the constants of motion for Kerr
geometry are given in Ref. [16]).
For the characterization of the form of the shadow, we

adopt the observables defined in Ref. [26]: the radius Rs

and the distortion parameter 
s. The observable Rs is the
radius of a reference circle passing by three points: the
top position (�t, 	t) of the shadow, the bottom position
(�b, 	b) of the shadow, and the point corresponding to the
unstable retrograde circular orbit seen from an observer on
the equatorial plane (�r, 0). The distortion parameter is
defined by D=Rs, where D is the difference between the
endpoints of the circle and of the shadow, both of them at
the opposite side of the point (�r, 0), i.e. corresponding
to the prograde circular orbit. The radius Rs basically gives
the approximate size of the shadow, while 
s measures its
deformation with respect to the reference circle (see
Ref. [26] for more details). If the inclination angle �0 is
independently known (see, for example, Ref. [31]), precise
enough measurements of Rs and 
s could serve to obtain
the rotation parameter a and the tidal charge Q (both
adimensionalized with the black hole mass, as stated
above). A simple way to extract this information is by
plotting the contour curves of constant Rs and 
s in the
plane (a, Q); the point in the plane where they intersect
gives the corresponding values of the rotation parameter a
and the tidal charge Q.
When the observer is situated in the equatorial plane of

the black hole, the inclination angle is �0 ¼ �=2, and the
gravitational effects on the shadow, which grow with �0,
are larger. The inclination angle corresponding to the
Galactic supermassive black hole is also expected to lie
close to �=2. In this interesting case, we have simply

� ¼ �� (17)

and

	 ¼ � ffiffiffiffi
�

p
: (18)

For the visualization of the shape of the black hole shadow,
one needs to plot 	 vs �. In Fig. 1, we show the contour of
the shadows of black holes with rotation parameters a ¼ 0
(upper row, left), a ¼ 0:5 (upper row, right), a ¼ 0:9
(lower row, left), and a ¼ 1:1 (lower row, right), for several
values of the tidal chargeQ. The effect of a positiveQ is to
decrease the size of the shadow, as in the Kerr-Newman
case for the square of the electromagnetic charge [22],
while negative values generate an enlargement of its size.
The plots of the contours of the shadows displayed in Fig. 1
are similar to those previously obtained in Ref. [29] for
other values of the parameters.
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The observable Rs can be calculated from the equation

Rs ¼ ð�t � �rÞ2 þ 	2
t

2j�t � �rj ;

and the observable 
s is given by


s ¼
~�p � �p

Rs

;

where (~�p, 0) and (�p, 0) are the points where the refer-

ence circle and the contour of the shadow cut the horizontal
axis at the opposite side of (�r, 0), respectively. In Fig. 2,
the observables Rs and 
s are shown as functions of the
tidal charge Q for several values of the rotation parameter
of the black hole: a ¼ 0 (full line), a ¼ 0:5 (dashed line),
a ¼ 0:9 (dashed-dotted line), and a ¼ 1:1 (dotted line).
From Fig. 2, we see that for different values of a, the
observable Rs has a similar behavior as a function of Q,

and the curves are not distinguishable. In the frame inside,
the range in Q is smaller, and the curves corresponding to
different rotation parameters can be appreciated; it can be
seen that, for a fixed value ofQ, the difference between the
a ¼ 0 curve and the a ¼ 1:1 one is of order 10�3, leading
to a small variation in the size of the shadow as a function
of a, as expected from Kerr and Kerr-Newman case. As
previously stated, positive values of Q generate a decrease
in the size (and then in Rs) of the shadow, and negative
values generate an enlargement of it. In Fig. 2, the dis-
tortion parameter 
s keeps null for a ¼ 0 (full line), as
expected for the nonrotating case, and increases as a func-
tion ofQ for a ¼ 0:5 (dashed line), a ¼ 0:9 (dashed-dotted
line), and a ¼ 1:1 (dotted line). The distortion is maximal
when Q reaches its limiting value Qc. When the tidal
charge takes negative values, the distortion in the shape
of the shadow with respect to its reference circle decreases
as Q gets more negative. For fixed Q, the deformation of

FIG. 1. Silhouette of the shadow cast by a black hole situated at the origin of coordinates with inclination angle �0 ¼ �=2, having a
rotation parameter a and a tidal charge Q. Upper row, left: a ¼ 0, Q ¼ �2 (full line), 0 (dashed-dotted line), 0.5 (dashed line), and
Qc ¼ 1 (dotted line). Upper row, right: a ¼ 0:5, Q ¼ �2 (full line), 0 (dashed-dotted line), 0.5 (dashed line), and Qc ¼ 0:75 (dotted
line). Lower row, left: a ¼ 0:9, Q ¼ �2 (full line), 0 (dashed-dotted line), 0.1 (dashed line), and Qc ¼ 0:19 (dotted line). Lower row,
right: a ¼ 1:1, Q ¼ �2 (full line), �1 (dashed-dotted line), �0:5 (dashed line), and Qc ¼ �0:21 (dotted line). The shadow
corresponds to each curve and the region inside it. All quantities were adimensionalized with the mass of the black hole (see text).
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the shadow increases with a. The contour curves of
constant Rs and 
s in the plane (a, Q) are shown for
some representative values in Fig. 3. As mentioned above,
if Rs and 
s are obtained from observations, the point in the
plane where the associated contour curves intersect gives
the corresponding values of the rotation parameter a and
the tidal charge Q.

Summarizing, for a fixed value of a, the presence of a
negative (positive) tidal charge leads to a larger (smaller)
shadow than in the case of Kerr geometry, corresponding to

a larger (smaller) value of Rs; while a negative (positive)
value of Q gives a less (more) distorted shadow than for
Kerr spacetime, corresponding to a smaller (larger) value
of 
s.
Instead of the observables Rs and 
s introduced by Hioki

and Maeda [26], other observables can be used from which
the same information will be obtained, for example, those
defined by Schee and Stuchlik [29]. We think that Rs and

s have a more direct physical meaning—the first one
giving an estimate of the size of the shadow and the other
one about its deformation with respect to the nonrotating
case—so we have adopted them for the present work.

IV. NAKED SINGULARITY SHADOW

When Q>Qc ¼ 1� a2, i.e. if a2 þQ> 1, from
Eq. (2), it is easy to see that the horizons fade out; then
for a ¼ 0, a point naked singularity appears at the origin,
while for a � 0, a ring-shaped naked singularity is
obtained. The apparent shape changes radically with
respect to the black hole case. When a ¼ 0, i.e. nonrotating
naked singularity with a tidal charge, the zone inside the
silhouette is not dark, and the shadow consists of a dark
circumference with a dark point at the center, correspond-
ing to the photon sphere and to the singularity, respectively.
If a � 0, the behavior is similar to the naked singularity in
Kerr or Kerr-Newman geometries, studied in Refs. [22,26].
The unstable spherical photon orbits with a positive radius
give way to an open arc instead of a closed curve; the
photons near both sides of the arc can reach the observer
due to the nonexistence of the horizon. The finishing points
of the arc have celestial coordinates (�, 	) given by

Eqs. (15) and (16), where � and � are evaluated at rmin ¼
1� ð1� a2 �QÞ1=3, which is obtained in a similar way as
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FIG. 2. Observables Rs and 
s as functions of the tidal chargeQ, corresponding to the shadow of a black hole situated at the origin of
coordinates with inclination angle �0 ¼ �=2 and spin parameters a ¼ 0 (full line), a ¼ 0:5 (dashed line), a ¼ 0:9 (dashed-dotted
line), and a ¼ 1:1 (dotted line). The curves with different values of a are not distinguishable in the left plot; a smaller range of Q is
shown in the frame inside, in which the different curves can be appreciated.
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FIG. 3. Contour plots of the observables Rs and 
s in the plane
(a, Q) for a black hole situated at the origin of coordinates with
inclination angle �0 ¼ �=2. Each curve is labeled with the
corresponding value of Rs or 
s. The light gray zone represents
naked singularities.
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in Ref. [22]. For naked singularities, it makes sense the
extension of the geometry to r < 0. The unstable spherical
photon orbits with a negative radius construct a dark spot:
the observer will never see the light rays from such direc-
tions because they escape into the other infinity by passing
through the inside of a singular ring. The dark point by the
principal null geodesics appears inside the spot. When the
observer is on the equatorial plane (�0 ¼ �=2), the same
arc exists but the dark spot disappears. The reason is that
the light rays in the direction of negative radius will always
hit on the ring singularity. Those null geodesics result in a
straight line, with its endpoint corresponding to the
principal null geodesics. If the inclination angle �0 is
varied from 0 to �=2, the dark spot shrinks to a single
point, which is the endpoint of the straight line (the
principal null geodesics).

As pointed out above, the shadow of a rotating naked
singularity consists of the arc and the dark spot or the
straight line. The more interesting shape is the arc, from
which we can define two observables for the shadow: the
radius Ra and the central angle ’a, as it was done in
Ref. [26] for Kerr geometry. The value of Ra is defined
as the radius of the circumference passing by the middle
point of the arc and by the two points where the arc
finishes. The observable ’a is determined by the angle
subtended by the arc, seen from the center of the circum-
ference used to define Ra. As in the black hole case, when
the inclination angle is known, if Ra and ’a are obtained
from observations, the associated contour curves of
constant Ra and ’a in the plane (a, Q) can be used to
obtain the corresponding values of the rotation parameter a
and the tidal charge Q.

FIG. 4. Shadow cast by a naked singularity situated at the origin of coordinates with inclination angle �0 ¼ �=2, having a rotation
parameter a and a tidal charge Q. Upper row, left: a ¼ 0, Q ¼ Qc þ 10�5 ¼ 1þ 10�5 (full line), 1.07 (dashed-dotted line), and 1.125
(dashed line). Upper row, right: a ¼ 0:5, Q ¼ Qc þ 10�5 ¼ 0:75þ 10�5 (full line), 1 (dashed-dotted line), and 1.2 (dashed line).
Lower row, left: a ¼ 0:9, Q ¼ Qc þ 10�5 ¼ 0:19þ 10�5 (full line), 0.5 (dashed-dotted line), and 1 (dashed line). Lower row, right:
a ¼ 1:1, Q ¼ Qc þ 10�5 ¼ �0:21þ 10�5 (full line), 0.1 (dashed-dotted line), and 1 (dashed line). All quantities were adimension-
alized with the mass of the naked singularity (see text).
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For the reasons stated in the previous section, the more
interesting case to analyze is the one corresponding to an
observer in the equatorial plane. In Fig. 4, we show the
shadows of naked singularities situated at the origin of
coordinates with inclination angle �0 ¼ �=2, for rotation
parameters a ¼ 0 (upper row, left), a ¼ 0:5 (upper row,
right), a ¼ 0:9 (lower row, left), and a ¼ 1:1 (lower row,
right), for several values of the tidal charge Q, larger than
the corresponding critical value Qc. When a ¼ 0, we see
that the shadow is a circumference with a radius that
decreases with the tidal charge and a central dark point.
If a � 0, we have that the shadow consists of a dark arc
plus a line which finishes in the dark point in the figures.
The arc closes when the tidal charge is near to Qc and
opens up as the charge increases.

In Fig. 5, the observable Ra is shown as a function of the
tidal charge Q for several values of the rotation parameter
of the naked singularity: a ¼ 0:5 (dashed line), a ¼ 0:9
(dashed-dotted line), and a ¼ 1:1 (dotted line). The behav-
ior of Ra is similar for the three values of a, having a small
growth for values of Q near Qc and then a decrease. The
initial growth is related to the particular shape of the
shadow generated by the rotation and the definition of
the circumference of reference. On the other hand, the
decrease continues until the arc generated by the photons
belonging to the photon sphere turns to a single point and
then disappears, indicating the loss of the photon sphere.
As expected, the radius is also an increasing function of the
rotation parameter a which can be deduced from the
position of the curves for different values of a in the figure.
The angle subtended by the end points of the shadow,
measured from the center of the circumference of refer-
ence, is a decreasing function ofQ. In Fig. 5, the plot of the
angle ’a as a function of Q can be seen for a ¼ 0:5, a ¼
0:9 and a ¼ 1:1. The limiting values are ’a ¼ 2� and

’a ¼ 0, corresponding to the critical value of the charge
for which the singularity is covered by the horizon and to
the disappearance of the photon sphere, respectively. For
Q & 1:25, the angle is a decreasing function of the rotation
parameter, while for Q * 1:25, the behavior is the
opposite. The values of the rotation parameter a and the
tidal charge Q can be obtained from the intersection point
of the curves with constant Ra and ’a in the plane (a, Q);
to exemplify this, some representative contour curves are
displayed in Fig. 6.
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FIG. 5. Observables Ra and ’a as functions of the tidal charge Q, corresponding to the shadow of a naked singularity situated at the
origin of coordinates with inclination angle �0 ¼ �=2, and spin parameters a ¼ 0:5 (dashed line), a ¼ 0:9 (dashed-dotted line), and
a ¼ 1:1 (dotted line).
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FIG. 6. Contour plots of the observables Ra (full line) and ’a

(dashed line) in the plane ða;QÞ for a naked singularity situated
at the origin of coordinates with inclination angle �0 ¼ �=2.
Each curve is labeled with the corresponding value of Ra or ’a.
In the light gray zone, the singularity is covered by the horizon,
while in the dark gray zone, the arc is not present due to the
absence of the photon sphere.
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V. DISCUSSION

In this article, we have extended previous studies [8,29]
of gravitational effects corresponding to rotating black
holes in Randall-Sundrum braneworld cosmology. In par-
ticular, we have analyzed how the shadow of the black hole
is distorted by the presence of the tidal charge. From the
observable Rs, we have found that the size of the shadow
for a fixed value of the rotation parameter a decreases with
the tidal chargeQ, resulting in a larger shadow than in Kerr
geometry for negative Q and a smaller shadow for positive
Q. The deformation of the shadow, characterized by the
observable 
s, increases with Q, so a less distorted

silhouette is obtained for negativeQ, and a more deformed
one for positive Q.
The angular size of the shadow can be estimated by

using the observable Rs to obtain the angular radius �s ¼
RsM=Do, with Do the distance from the observer to the
black hole. It is easy to see that �s ¼ 9:87098�
10�6RsðM=M�Þð1 kpc=DoÞ �as. The observable 
s (%)
gives an idea of how the silhouette is deformed with
respect to the nonrotating case. For the supermassive black
hole Sgr A* at the Galactic center, we have M ¼ 4:3�
106M� andDo ¼ 8:3 kpc [32]; then, under the assumption
that the observer is in the equatorial plane, we obtain

a 0 0.9

Q �0:5 �0:1 0 0.1 �0:5 �0:1 0 0.1

�sð�asÞ 28.605 27.006 26.572 26.120 28.612 27.018 26.586 26.136


sð%Þ 0 0 0 0 7.45 11.8 13.9 17.2

where the values of a and Q were chosen only for illus-
trative purposes. We see from the table that resolutions of
less than 1 �as are needed in order to extract useful
information from future observations of the shadow of
the Galactic supermassive black hole.

We have also studied the shadows of naked singularities,
corresponding to the condition a2 þQ> 1, for which the
horizons associated to the braneworld metric considered in
this paper fade out. For a rotating naked singularity, in the
case that this kind of object exists in nature, the shadow
has two parts: the arc and the dark spot or the straight line.
The more interesting shape is the arc, which may not be
observable because it is one-dimensional. In a realistic
scenario, however, the neighborhood of the arc will also
be darkened to be observed as a dark lunate (i.e. crescent
moon shaped) shadow, as it was pointed out in Ref. [26] for
the Kerr metric. Then, we would have a chance to observe
the shadow of a naked singularity, but it will be even more
difficult than in the case of black holes. For a given value of
the rotation parameter a, the size of the arc is slightly
smaller than the size of the distorted dark disk correspond-
ing to a tidal charge satisfying a2 þQ � 1, for which the
horizon is present.

The observation of black hole (or naked singularity)
apparent shapes is a major goal in observational astro-
physics, since those shadows correspond to a full descrip-
tion of the near horizon region, without any theoretical
assumption concerning the underlying theory or astro-
physical processes in the black hole surroundings. In the

near future, some observational facilities, most of them
space-based, will be fully operational and will be able to
measure in the radio and x bands. Two of them are worth
mentioning, namely, RADIOASTRON and MAXIM. The
first one is a space-based radio telescope launched in July
2011. It will be capable of carrying out measurements
with high angular resolution, about 1–10 �as [28,33]. On
the other hand, the MAXIM project is a space-based x-ray
interferometer with an expected angular resolution of
about 0:1 �as (see Ref. [34] for further details). These
instruments will be able to resolve the shadow of the
supermassive Galactic black hole, which, together with
other observations, would serve to obtain its parameters in
the near future. It seems that more subtle effects, like the
comparison of different models of black holes corre-
sponding to alternative theories, will require a second
generation of instruments to be available in the future.
If the braneworld model provides a suitable description of
cosmology, one would expect a small (and negative, as
stated above) value of the tidal charge, so a very large
resolution will be necessary for the observation of the
effects discussed in this work.
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