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We show that the scalar wave equation at low frequencies in the Schwarzschild geometry enjoys a

hidden SLð2;RÞ invariance, which is not inherited from an underlying symmetry of the spacetime itself.

Contrary to what happens for Kerr black holes, the vector fields generating the SLð2;RÞ are globally

defined. Furthermore, it turns out that under an SU(2, 1) Kinnersley transformation, which maps the

Schwarzschild solution into the near-horizon limit AdS2 � S2 of the extremal Reissner-Nordström black

hole (with the same entropy), the Schwarzschild hidden symmetry generators become exactly the

isometries of the AdS2 factor. Finally, we use the SLð2;RÞ symmetry to determine algebraically the

quasinormal frequencies of the Schwarzschild black hole and show that this yields the correct leading

behavior for large damping.
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I. INTRODUCTION

The Schwarzschild solution in four spacetime dimen-
sions represents perhaps the simplest black hole at all, but
it is nevertheless very difficult to understand its micro-
states. This is in sharp contrast to some black holes in
string theory, that (though being rather complicated) can be
understood in terms of bound states of D-branes and
strings, which makes it possible to compute their entropy
microscopically [1].

A general feature that has emerged is that, essentially, all
black holes whose entropy was reproduced by a microstate
counting, are described by two-dimensional conformal
field theories. Two of the most prominent examples of
this type are the Bañados-Teitelboim-Zanelli solution [2]
or the extremal Kerr black hole [3].

This universal conformal structure inherent to the phys-

ics of many black holes has triggered numerous attempts

to unveil such a conformal (albeit not necessarily two-

dimensional) symmetry also in the Schwarzschild case.

For instance, [4,5] considered diffeomorphisms preserv-

ing the black hole horizon, and showed that the charges

associated to these diffeomorphisms generate a centrally

extended Virasoro algebra. A different approach was

adopted in [6], where it was shown that the optical metric

of the Schwarzschild solution becomes R� H3 near the

horizon. Since H3 is Euclidean AdS3, this allows us to

apply techniques originating from the anti-de Sitter/con-

formal field theory (AdS/CFT) correspondence. An inter-

esting related development can be found in [7], where it

was argued that the symmetry algebra of asymptotically

flat spacetimes at null infinity in four dimensions should

be taken to be the semidirect sum of supertranslations

with infinitesimal local conformal transformations and

not, as usually done, with the Lorentz algebra.

On the other hand, it was recently discovered [8] that the
scalar wave equation in the nonextremal Kerr black hole
enjoys, in the low frequency limit, a hidden conformal
symmetry that is not derived from an underlying symmetry
of the spacetime itself. The existence of such a hidden
symmetry is related to the fact that black hole scattering
amplitudes are given in terms of hypergeometric functions
[9], which are well-known to form representations of the
conformal group SLð2;RÞ. Together with evidence pro-
vided by the results of [3], this led to the conjecture that
the nonextremal Kerr black hole with angular momentum J
is dual to a two-dimensional CFT with central charges
cL ¼ cR ¼ 12J [8]. Indeed, using cL and cR in the Cardy
formula for a CFT2 gives exactly the Bekenstein-Hawking
entropy of the Kerr solution. Moreover, the low frequency
scalar-Kerr scattering amplitudes coincide with thermal
correlators of a two-dimensional CFT [8].1

In view of these results, one may ask whether an analo-
gous hidden symmetry exists in the Schwarzschild case as
well. Note in this context that one cannot simply take the
zero rotation limit (a ! 0) in the generators of the hidden
SLð2;RÞ � SLð2;RÞ symmetry for Kerr, since this limit is
singular. For instance, the left and right temperatures of the
dual CFT,

TL ¼ M2

2�J
; TR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � J2

p

2�J
; (1.1)

that appear in these generators, clearly diverge for J ! 0.
We shall find that the massless Klein-Gordon equation in
the Schwarzschild background does indeed enjoy such a
symmetry, but with two essential differences to the Kerr
case: First, there is only one SLð2;RÞ factor present for the

1For the near-extremal Kerr black hole, this was first noted
in [10].
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Schwarzschild black hole. Moreover, the generators are
globally defined; whereas, for Kerr they are not periodic
under the angular identification ���þ 2�, which
breaks SLð2;RÞL � SLð2;RÞR down to Uð1ÞL � Uð1ÞR.

The remainder of this paper is organized as follows: In
Sec. II, we describe the hidden SLð2;RÞ symmetry appear-
ing in the scalar wave equation at low frequencies. In the
following section, we use the fact that the four-dimensional
stationary Einstein-Maxwell equations are invariant under
an SU(2, 1) group of transformations [11,12] to map
the Schwarzschild solution into the near-horizon limit
AdS2 � S2 of the extremal Reissner-Nordström black
hole. We show that this transformation preserves the en-
tropy and makes the hidden SLð2;RÞ symmetry manifest,
since its generators become exactly the isometries of the
AdS2 factor. After that, in Sec. IV, the SLð2;RÞ symmetry
is used to algebraically determine the Schwarzschild
quasinormal modes as descendents of a lowest weight
state. Although this takes us out of the validity of our
low (and real) frequency approximation, it surprisingly
yields the correct leading behavior of the quasinormal
frequencies for large damping. We conclude in Sec. V
with some final remarks. In the Appendix it is shown
that the hidden SLð2;RÞ symmetry extends to the
Schwarzschild black hole in any dimension.

II. HIDDEN CONFORMAL SYMMETRY

Let us consider the massless Klein-Gordon equation

1ffiffiffiffiffiffiffi�g
p @�ð ffiffiffiffiffiffiffi�g

p
g��@��Þ ¼ 0 (2.1)

in the Schwarzschild geometry,

ds2 ¼ �VðrÞdt2 þ dr2

VðrÞ þ r2ðd�2 þ sin2�d�2Þ;

VðrÞ ¼ 1� 2M

r
: (2.2)

Using the separation ansatz

�ðt; r; �; �Þ ¼ e�i!tRðrÞYl
mð�;�Þ; (2.3)

together with

�S2Y
l
mð�;�Þ¼ 1

sin�
@�ðsin�@�Yl

mð�;�ÞÞþ 1

sin2�
@2�Y

l
mð�;�Þ

¼�lðlþ1ÞYl
mð�;�Þ;

(2.1) reduces to

@r�@rRþ!2r4

�
R� lðlþ 1ÞR ¼ 0; (2.4)

where we defined � ¼ r2 � 2Mr � rðr� rþÞ. Now, use
!2r4

�
¼ !2r2 þ!2rrþ þ!2r2þ þ!2r3þ

r
þ!2r4þ

�
:

The first four terms on the right-hand side are much smaller
than 1 in the near-region, low frequency limit !r � 1,
!rþ � 1; whereas, the last term blows up if one goes
sufficiently close to the horizon. We shall thus approxi-
mate2 the expression !2r4=� by !2r4þ=�. Then (2.4)
becomes

@r�@rRþ!2r4þ
�

R� lðlþ 1ÞR ¼ 0: (2.5)

Next, we define the vector fields

H1 ¼ ieðt=4MÞð�1=2@r � 4Mðr�MÞ��1=2@tÞ;
H0 ¼ �4iM@t;

H�1 ¼ �ie�ðt=4MÞð�1=2@r þ 4Mðr�MÞ��1=2@tÞ; (2.6)

which obey the SLð2;RÞ commutation relations

½H0; H�1� ¼ �iH�1; ½H1; H�1� ¼ 2iH0: (2.7)

The SLð2;RÞ Casimir reads

H 2 ¼ �H2
0 þ

1

2
ðH1H�1 þH�1H1Þ

¼ �@2r þ 2ðr�MÞ@r � 16M4

�
@2t ; (2.8)

and thus the near-region Klein-Gordon equation can be
rewritten as

H 2� ¼ lðlþ 1Þ�: (2.9)

We see that the scalar wave equation in the Schwarzschild
geometry enjoys a hidden conformal symmetry similar to
the Kerr case, but with two essential differences: First, for
the Kerr black hole, there is an SLð2;RÞL � SLð2;RÞR
symmetry; whereas, here only one SLð2;RÞ factor is
present. This indicates that the Schwarzschild black hole
might be described by a chiral CFT. Second, the vector
fields (2.6) are globally defined, while the ones in [8] are
not periodic under the angular identification ���þ 2�.
This fact was interpreted in [8] as a spontaneous breaking
of the SLð2;RÞL � SLð2;RÞR symmetry down to Uð1ÞL �
Uð1ÞR by left and right temperatures TL and TR.
Notice also that the existence of a hidden SLð2;RÞ

symmetry stems from the fact that the solution of (2.4) is
given in terms of Heun functions, which can be expanded
in a series of hypergeometric functions (cf. e.g. [14]), and
the latter form representations of the conformal group.
(One can show that this series can be truncated to the
leading term in a low energy limit, cf. [15] for a review
of such an expansion for the Kerr black hole).
The condition (2.9) implies that the field � has confor-

mal weight h ¼ lþ 1 [15]. To see this, define Ln ¼ �iHn,
n ¼ 0, �1, such that

2Note that this approximation is exactly the same as the one in
Eqs. (2.11, 2.12) of [13] (set a ¼ Q ¼ 0 there). The authors of
[13] have r� rþ � 1=! as near-region condition, which is
implied by !r � 1, !rþ � 1 and r > rþ.
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½Ln; Lm� ¼ ðn�mÞLnþm: (2.10)

Then the second Casimir is

H 2 ¼ L2
0 � 1

2ðL1L�1 þ L�1L1Þ ¼ hðh� 1Þ; (2.11)

which implies hðh� 1Þ ¼ lðlþ 1Þ, whose positive solu-
tion is h ¼ lþ 1.

Note that a similar conformal structure was discovered
before in [16] and further explored in [17,18]: If we set

R ¼ �=�1=2, the radial Eq. (2.4) reduces to

@2r�þM2 þ!2r4

�2
�� lðlþ 1Þ

�
� ¼ 0: (2.12)

Defining x ¼ r� rþ and expanding the potential near the
horizon x ¼ 0, this boils down to�

� d2

dx2
� g

4x2
þOðx�1Þ

�
� ¼ 0; (2.13)

where g ¼ 1þ ð4M!Þ2. The operator

H ¼ � d2

dx2
� g

4x2
(2.14)

is nothing else than the Hamiltonian of the De Alfaro-
Fubini-Furlan model of conformal quantum mechanics
[19]. H, together with

D ¼ i

4

�
x
d

dx
þ d

dx
x

�
; K ¼ 1

4
x2; (2.15)

generating dilatations and special conformal transforma-
tions, respectively, satisfy the slð2;RÞ algebra
½D;H� ¼ �iH; ½D;K� ¼ iK; ½H;K� ¼ 2iD:

(2.16)

While it is well-known that the dynamics of a particle near
the horizon of an extremal Reissner-Nordström black hole
is governed by a model of conformal mechanics [20] [this
is just a consequence of the SLð2;RÞ isometry group of the
AdS2 factor contained in the near-horizon geometry],
the appearance of the De Alfaro-Fubini-Furlan model for
the Schwarzschild black hole is less obvious. In this case,
the conformal symmetry is hidden, i.e., it is not inherited
from a near-horizon geometry that has this symmetry.

III. KINNERSLEY TRANSFORMATIONS AND
RELATION TO AdS2 � S2

It is well-known that the four-dimensional stationary
Einstein-Maxwell equations are invariant under an
SU(2, 1) group of transformations [11,12]. In this section,
we shall use this group to map the Schwarzschild solution
to the AdS2 � S2 Bertotti-Robinson spacetime, and show
that the hidden symmetry generators (2.6) go over into the
AdS2 isometries under this mapping.

We first review briefly how the SU(2, 1) acts on the
solution space of the stationary Einstein-Maxwell

equations. Any spacetime admitting a timelike Killing
vector can be written as3

ds2 ¼ fðdt�!idx
iÞ2 � f�1hijdx

idxj; (3.1)

where the scalar f, the oneform!i, and the three-metric hij
depend on the spatial coordinates xi only. The electro-
magnetic field F�� can be parametrized in terms of electric

and magnetic potentials u and v,

Fi0 ¼ @iv; Fij ¼ fh�1=2�ijk@ku: (3.2)

Moreover, one defines the twist or nut-potential � by

@i� ¼ �f2h�1=2hij�
jkl@k!l þ 2ðu@iv� v@iuÞ; (3.3)

and combines the four real scalars f, �, u, v to the complex
Ernst potentials according to

E ¼ fþ i�� �c c ; c ¼ vþ iu: (3.4)

Then the stationary Einstein-Maxwell equations boil down
to [11,21]

fr2E ¼ rE 	 ðrE þ 2 �crc Þ;
fr2c ¼ rc 	 ðrE þ 2 �crc Þ;

f2RijðhÞ ¼ Re

�
1

2
E;ði �E;jÞ þ 2c E;ði �c ;jÞ � 2Ec ;ði �c ;jÞ

�
;

(3.5)

where the scalar products and the Laplacian are computed
with the metric hij. The Eqs. (3.5) are invariant under an

SU(2, 1) group of transformations [11,12], acting as fol-
lows: Parametrize the Ernst potentials in terms of the three
Kinnersley potentials U, V,W (one of which is redundant)
by [12]

E ¼ U�W

UþW
; c ¼ V

UþW
: (3.6)

Then, the SU(2, 1) acts linearly on the complex vector
(U, V, W), and transforms solutions of (3.5) with spatial
metric hij into new solutions with the same hij. Note that

the SU(2, 1) invariance is just a consequence of the
fact that the timelike Kaluza-Klein reduction of the
four-dimensional Einstein-Maxwell action yields three-
dimensional gravity coupled to an SUð2; 1Þ=SðUð1; 1Þ �
Uð1ÞÞ nonlinear sigma model, which describes the four
scalars f, �, u, v [22].4

In order to apply this to the Schwarzschild solution,
rewrite the latter as

3In order to conform to some of the older literature on this
subject, in this section (and only here) we use mostly minus
signature.

4This extends also to generalizations of the Einstein-Maxwell
action which typically arise from Kaluza-Klein theories. In that
case one gets more complicated G=H nonlinear sigma
models [22].
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ds2 ¼ fdt2 � f�1M2½dx2 þ ðx2 � 1Þðd�2 þ sin2�d�2Þ�;
f ¼ x� 1

xþ 1
; (3.7)

where the new coordinate x is given by x ¼ r=M� 1, such
that the horizon is at x ¼ 1. As Ernst potentials we may
thus take U ¼ x, V ¼ 0, W ¼ 1. We now apply a boost in
the (V, W) subspace, followed by an involution in U, V,

V0

W 0

 !
¼ cosh� sinh�

sinh� cosh�

 !
V

W

 !
; U0 ¼ U; (3.8)

U00 ¼ V0; V00 ¼ U0; W 00 ¼ W 0; (3.9)

which leads to the new metric5

ds002 ¼ e�2�ðx2 � 1Þdt2 � e2�M2dx2

x2 � 1

� e2�M2ðd�2 þ sin2�d�2Þ; (3.10)

and gauge field

F00 ¼ e��dx ^ dt: (3.11)

(3.10) is the Bertotti-Robinson spacetime AdS2 � S2, with
the AdS2 seen by an accelerated observer, and x ¼ 1 the
acceleration horizon. It represents the near-horizon geo-
metry of the extremal Reissner-Nordström black hole, with
entropy

S ¼ Ahor

4G
¼ e2��M2

G
: (3.12)

Apparently, this is different from the entropy 4�M2=G
of the Schwarzschild black hole we started with, unless
e� ¼ 2. However, there is a subtlety here: Consider the
timelike Kaluza-Klein reduction from four to three dimen-
sions, using the ansatz (3.1), and Wick-rotate t ¼ �i	,
with 	� 	þ 
, where 
 denotes the inverse temperature.
This yields an effective three-dimensional Newton con-
stant G3 ¼ G4=
. If the Kinnersley transformation maps

a solution with Euclidean time period 
 into one with 
̂,
we have obviously

1

G3

¼ 


G4

¼ 
̂

Ĝ4

: (3.13)

The entropy of the new solution is thus

Ŝ ¼ Âhor

4Ĝ4

¼ Âhor


4G4
̂
: (3.14)

In our case, the inverse temperature associated to
the horizon at x ¼ 1 of (3.10) is easily seen to be


̂ ¼ 2�Me2�; whereas, 
 ¼ 8�M for Schwarzschild.

Since Âhor ¼ e2�Ahor=4, (3.14) gives Ŝ ¼ S, so that the

entropy is actually invariant, no matter what the value
of the boost parameter � is. We are not aware of any
general proof that Kinnersley transformations leave the
Bekenstein-Hawking entropy invariant, as it happens e.g.
for T duality in string theory [24] (it is not even evident that
they map black holes into solutions that have again a
horizon), but in our special case they obviously do.
Notice that the value e� ¼ 2 is nevertheless special, in
that the temperature of (3.10) coincides exactly with the
temperature of the Schwarzschild black hole. Moreover,
the SLð2;RÞ generators (2.6), which in the coordinate
x read

H1 ¼ ieðt=4MÞððx2 � 1Þ1=2@x � 4Mxðx2 � 1Þ�1=2@tÞ;
H0 ¼ �4iM@t;

H�1 ¼ �ie�ðt=4MÞððx2 � 1Þ1=2@x þ 4Mxðx2 � 1Þ�1=2@tÞ;
(3.15)

are exactly the Killing vectors of the AdS2 factor in (3.10)
for e� ¼ 2. (For other values of the boost parameter, one
has to rescale time in order to have this identification.)
Also, the near-region, low frequency Klein-Gordon
Eq. (2.9) becomes precisely the Klein-Gordon equation
on AdS2 � S2.

IV. QUASINORMAL MODES

Quasinormal modes [25] are defined to be perturbations
of the black hole whose boundary conditions are purely
outgoing both at the horizon and at infinity. These bound-
ary conditions single out discrete complex frequencies !n.
It has been argued [26] that the asymptotic (large n)
behavior of the high overtone black hole quasinormal
frequencies captures important information about the
spectrum of black hole observables; in particular, that the
asymptotic value of Re!n is related to the so-called
Barbero-Immirzi parameter of loop quantum gravity.
In general, the !n have to be determined numerically,

for instance by using continued fraction techniques. In this
way, Nollert [27] obtained

M!n ¼ 0:0437123� i

4

�
nþ 1

2

�
þO½ðnþ 1Þ�1=2� (4.1)

for the scalar quasinormal modes of the Schwarzschild
black hole. It was first realized by Hod [28] that the
numerical value 0.0437123 agrees (up to the available
precision) with ln3=ð8�Þ, a number required by statistical
physics arguments and Bohr’s correspondence principle.
Later it was shown in [29,30] that the asymptotic real part
of !n is indeed precisely ln3=ð8�Þ.
The authors of [31] realized that in black hole space-

times with hidden conformal symmetry, one can use the
latter to algebraically determine the quasinormal mode
spectrum as descendents of a lowest weight state.
Looking at (4.1), we see that for large n the imaginary

5Notice that the boost (3.8) alone maps the Schwarzschild into
the nonextremal Reissner-Nordström solution, cf. e.g. [23].

BERTINI, CACCIATORI, AND KLEMM PHYSICAL REVIEW D 85, 064018 (2012)

064018-4



part of!n is equally spaced,
6 so one might ask whether this

can be realized as an SLð2;RÞ tower. Apparently, the limit
of large Im!n takes us out of the validity of our approxi-
mation. [In order to reduce the Klein-Gordon operator to
an SLð2;RÞ Casimir, we used ! real and !M � 1.] One
might
nevertheless ask how far the applicability of the SLð2;RÞ
symmetry can be pushed, and see which quasinormal
modes result by acting with L�1 on a lowest weight state.
We shall see that this reproduces correctly the leading large
n behavior of (4.1).

Let us denote the lowest weight state by �ð0Þ. By
definition

L0�
ð0Þ ¼ h�ð0Þ; L1�

ð0Þ ¼ 0; (4.2)

where Lm ¼ �iHm. Since

�ð0Þ ¼ e�i!0tRð0ÞðrÞYl
mð�;�Þ; (4.3)

we have h ¼ 4iM!0. Using (4.2) together with L1L�1 ¼
2L0 þ L�1L1 in (2.9), one gets

h ¼ 1
2ð1� ð2lþ 1ÞÞ; (4.4)

and thus

M!0 ¼ � i

8
ð1� ð2lþ 1ÞÞ: (4.5)

Since quasinormal modes have Im!n < 0, we must
choose the upper sign, such that M!0 ¼ �iðlþ 1Þ=4 and
h ¼ lþ 1, in agreement with the conformal weight assign-
ment in Sec. II. One can now construct the descendents

�ðnÞ ¼ ðL�1Þn�ð0Þ: (4.6)

Taking into account (4.3) as well as L�1 ¼ �iH�1, with
the expression for H�1 given in Eq. (2.6), it is not difficult
to show that

�ðnÞ ¼ e�i!ntRðnÞðrÞYl
mð�;�Þ; (4.7)

where

M!n ¼ M!0 � i

4
n; (4.8)

and

RðnÞðrÞ ¼ ð��1=2@r þ 4Mðr�MÞ��1=2i!n�1Þ
� ð��1=2@r þ 4Mðr�MÞ��1=2i!n�2Þ
	 . . . 	 ð��1=2@r þ 4Mðr�MÞ��1=2i!0ÞRð0ÞðrÞ:

(4.9)

Notice that (4.8) implies

L0�
ðnÞ ¼ ðhþ nÞ�ðnÞ; n ¼ 0; 1; . . . ; (4.10)

and thus the quasinormal modes �ðnÞ form a principal
discrete lowest weight representation of SLð2;RÞ.
Comparing (4.8) with (4.1), we see that the leading

behavior�� in=4 for large damping comes out correctly,
while the subleading terms do not. In particular, the fre-
quencies (4.8) are purely imaginary.

Let us finally check if the �ðnÞ satisfy purely outgoing
boundary conditions at the horizon, as it must be for
quasinormal modes. We have to show that

RðnÞ � e�i!nr? as r? ! �1; (4.11)

where r? is the tortoise coordinate

r? ¼ rþ 2M ln

�
r

2M
� 1

�
: (4.12)

First of all, L1�
ð0Þ ¼ 0 yields

Rð0Þ ¼ Cðr2 � 2MrÞ�2iM!0 ; (4.13)

with C an integration constant. This is easily seen to
behave as

Rð0Þ � e�i!0r?ð1þOðer?=ð2MÞÞÞ (4.14)

as r? ! �1. Let us show (4.11) by induction. To this end,
assume that

Rðn�1Þ�e�i!n�1r?ð1þOðer?=ð2MÞÞÞ as r?!�1; (4.15)

which clearly holds for n ¼ 1. Acting on (4.15) with the

operator (� �1=2@r þ 4Mðr�MÞ��1=2i!n�1), one finds
that (4.15) holds also with n� 1 replaced by n, which

proves (4.11). Note that the functions RðnÞðrÞ do not satisfy
outgoing boundary conditions at infinity, but this was to be
expected, since they are solutions only in some near region,
and have to be matched somewhere with a far region
solution.
In view of the results of this section, it would be very

interesting to see if one can set up a perturbation expansion
organized in terms of the SLð2;RÞ that gives the frequen-
cies (4.1). Work in this direction is in progress.

V. FINAL REMARKS

Our results indicate that the Schwarzschild black hole
might have a description in terms of a two-dimensional
CFT. If this is the case, the SLð2;RÞ (2.7) should be
enlarged to the whole Virasoro algebra, which raises the
question if the corresponding generators are related to
those of [4,5], that generate diffeomorphisms preserving
certain boundary conditions at the black hole horizon. In
this context, it is interesting to consider the transformation
from Schwarzschild to Kruskal coordinates U, V, given by

U ¼ �e�u=4M; V ¼ ev=4M; (5.1)

6Note that the spacing 2�iTHawking in (4.1) is not too surpris-
ing, since the quasinormal modes determine the position of poles
of a Green’s function, and the black hole has Euclidean time
	� 	þ 1=THawking [30].
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where u ¼ t� r?, v ¼ tþ r?, and r? denotes the tortoise
coordinate defined in (4.12). In the Euclidean section we
have t ¼ �i	, where 	 is identified modulo 
 ¼ 1=T ¼
8�M. Defining w ¼ r? þ i	 and z ¼ �U, (5.1) becomes

z ¼ eðw=4MÞ: (5.2)

This is exactly the conformal transformation from a cylin-
der (w) to a plane (z), namely z ¼ expð2�w=LÞ, if the
circumference L of the cylinder is identified with the
inverse temperature 
. It is well-known that such a
transformation induces a shift of c=24 in the Virasoro
generators L0,. ~L0 If we knew how to define the stress
tensor of the dual CFT (in a way similar to that of the
AdS/CFT correspondence [32]), this would allow to
compute the central charge c.

Notice also that the Schwarzschild solution is related
by the duality-type transformation of Sec. III to the
near-horizon limit AdS2 � S2 of the extremal Reissner-
Nordström black hole, and the latter is known to be des-
cribed by a CFT2 [33]. It would be interesting to see what
the Kerr solution maps to under this SU(2, 1) transforma-
tion, and if (part of) the hidden conformal SLð2;RÞ �
SLð2;RÞ symmetry of [8] becomes manifest in this way.

An open question (also in Kerr/CFT) is the massive case:
In the AdS/CFT correspondence, a mass term for a bulk
field modifies the conformal weight of the dual operator.
In order to see whether something similar happens here
(or in Kerr/CFT), one would have to show that the massive
Klein-Gordon equation still enjoys a hidden conformal
symmetry, but now with shifted weight for �. For m � 0
there is an additional term �m2r2R on the left-hand side
of (2.5). Since

r2 ¼ r2þ þ 2rþðr� rþÞ þ ðr� rþÞ2;
one can approximate m2r2 by m2r2þ provided that r�
rþ � rþ. Then, everything goes through as before, with
lðlþ 1Þ replaced by lðlþ 1Þ þm2r2þ ¼ hðh� 1Þ, so that
now � has weight

h ¼ 1

2
½1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2lÞ2 þ ð4MmÞ2

q
�: (5.3)

Note that, contrary to the approximation that reduces the
Klein-Gordon operator to an SLð2;RÞ Casimir used in the
massless case, the replacement of m2r2 by m2r2þ is a true
near-horizon limit. A more detailed study of the massive
case, as well as an investigation if the SLð2;RÞ of Sec. II
extends also to fields of nonvanishing spin, will be pre-
sented elsewhere.
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APPENDIX: SLð2;RÞ SYMMETRY
IN d DIMENSIONS

In d dimensions the Schwarzschild solution reads

ds2 ¼ �VðrÞdt2 þ dr2

VðrÞ þ r2d�2
d�2;

VðrÞ ¼ 1� rd�3þ
rd�3

; rþ ¼ 8��ððd� 2Þ=2Þ
ðd� 2Þ�ðd�1=2Þ M:

(A1)

Using the separation ansatz

�ðt; r; ~�Þ ¼ e�i!tRðrÞYl
�ð ~�Þ; (A2)

where Yl
� are the spherical harmonics on Sd�2, the mass-

less Klein-Gordon equation for � becomes

!2

V
Rþ 1

rd�2
@rðrd�2V@rRÞ � lðlþ d� 3Þ

r2
R ¼ 0: (A3)

To recover the hidden symmetry, let us first introduce the
change of variables

� ¼ rd�3; (A4)

so that (A3) takes the form

@�ð��@�RÞ þ !2r2

ðd� 3Þ2V R� lðlþ d� 3Þ
ðd� 3Þ2 R ¼ 0;

�� ¼ �ð�� rd�3þ Þ:
(A5)

Using the identity

!2r2

ðd� 3Þ2V ¼ !2r2

ðd� 3Þ2
�
1þ

�
rþ
r

�
d�3 þ

�
rþ
r

�
d�2

�
�
1þ rþ

r

�
1P

d�4
i¼0 ðrþr Þi

�
þ !2r2d�4þ

ðd� 3Þ2��

;

we see that the expression r2=V can be approximated by
r2d�4þ =�� in the near-region, low frequency limit !r � 1,

!rþ � 1. Then (A5) becomes

@�ð��@�RÞ þ !2r2d�4þ
ðd� 3Þ2��

R� lðlþ d� 3Þ
ðd� 3Þ2 R ¼ 0; (A6)

which has the same structure as (2.5). The vector fields

H1¼ieðd�3Þt=2rþÞ
�
�1=2

� @�� rþ
d�3

ð2��rd�3þ Þ��1=2
� @t

�
;

H0¼�i
2rþ
d�3

@t;

H�1¼�ieð�ðd�3Þt=2rþÞ
�
�1=2

� @�þ rþ
d�3

ð2��rd�3þ Þ��1=2
� @t

�
;

(A7)

satisfy the SLð2;RÞ commutation relations

½H0; H�1� ¼ �iH�1; ½H1; H�1� ¼ 2iH0; (A8)

and the corresponding Casimir reads
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H 2 ¼ �H2
0 þ

1

2
ðH1H�1 þH�1H1Þ

¼ ��@
2
� þ ð2�� rd�3þ Þ@� � r2d�4þ

ðd� 3Þ2��

@2t ; (A9)

so that the near-region, low frequency Klein-Gordon
equation takes the form

H 2� ¼ ~lð~lþ 1Þ�; ~l ¼ l

d� 3
; (A10)

which implies that the field � has conformal weight

h ¼ ~lþ 1. Going back to the r coordinate and defining
� ¼ rðrd�3 � rd�3þ Þ, we get

H1 ¼ i

ðd� 3Þrðd=2Þ�2
eððd�3Þt=2rþÞ

�
�1=2@r � rþð2rd�3 � rd�3þ Þ

�1=2
@t

�
; H0 ¼ �i

2rþ
d� 3

@t;

H�1 ¼ i

ðd� 3Þrðd=2Þ�2
eð�ðd�3Þt=2rþÞ

�
�1=2@r þ rþð2rd�3 � rd�3þ Þ

�1=2
@t

�
; H 2 ¼ 1

ðd� 3Þ2rd�4

�
@rð�@rÞ � r2d�4þ

�
@2t

�
:

(A11)
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