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The Clausius relation between entropy change and heat flux has previously been used to derive

Einstein’s field equations as an equation of state. In that derivation the entropy is proportional to the area

of a local causal horizon, and the heat is the energy flux across the horizon, defined relative to an

approximate boost Killing vector. We examine here whether a similar derivation can be given for

extensions beyond Einstein gravity to include higher-derivative and higher-curvature terms. We review

previous proposals which, in our opinion, are problematic or incomplete. Refining one of these, we

assume that the horizon entropy depends on an approximate local Killing vector in a way that mimics the

diffeomorphism Noether charge that yields the entropy of a stationary black hole. We show how this can

be made to work if various restrictions are imposed on the nature of the horizon slices and the approximate

Killing vector. Also, an integrability condition on the assumed horizon entropy density must hold. This

can yield field equations of a Lagrangian constructed algebraically from the metric and Riemann tensor,

but appears unlikely to allow for derivatives of curvature in the Lagrangian.

DOI: 10.1103/PhysRevD.85.064017 PACS numbers: 04.70.Dy

I. INTRODUCTION

The notion of horizon entropy and thermodynamics was
first discovered for black holes in general relativity (GR)
and quickly generalized to other sorts of horizons. The
origin of this thermodynamic behavior can be traced to
local physics, and in a sense arises from the nature of the
vacuum. This led to the observation that the Einstein
equation can be derived as an equation of state for local
causal horizons in the neighborhood of a point ‘‘p’’ in
spacetime, by imposing the Clausius relation between their
entropy change and the energy flux across them [1]. In this
paper we examine approaches to generalizing this equation
of state derivation to allow for higher-derivative contribu-
tions to the entropy and field equations. The Einstein-
Hilbert Lagrangian is only the lowest-order term (other
than the cosmological constant) in a derivative expansion
of generally covariant actions for a metric theory, and the
presence of higher-derivative terms is presumably inevi-
table. Several approaches to including higher-derivative
terms in the entropy and equation of state have been tried.
In our view none have fully succeeded, except in the case
ofLðRÞ theories. Those theories are special however, since
they are trivially related to GR coupled to a scalar field by a
field-dependent conformal rescaling of the metric. Here we
will explain the problems that arise with previous pro-
posals, and propose a solution that adopts aspects of
some of the proposals.

The solution differs in several ways from the original
derivation for GR, among which are: (i) the entropy is

compared on two horizon slices that share a common
boundary, (ii) the bifurcation surface lies to the past of
the terminal point p and, (iii) the entropy depends on the
approximate Killing vector. In particular, it has the same
dependence on the approximate Killing vector as have the
Noether charges associated with a Lagrangian, in analogy
with the Wald entropy [2,3] for stationary black holes.
Such dependence will be referred to as ‘‘Noetheresque,’’
but by itself does not make the entropy a Noether charge. It
makes some sense that the entropy depends on the approxi-
mate Killing vector, because the latter determines the
notion of stationarity and enters the definition of the heat
flux. However, at present we can offer no statistical inter-
pretation for this form of the entropy.
The equation of state we can derive is consistent with

local energy-momentum conservation only if the leading-
order term in the entropy satisfies an integrability condi-
tion. This condition is satisfied if the entropy arises from
variation of a generally covariant function with respect to
curvature. In other words, the entropy coincides with a
Noether charge associated with a (particular type of)
gravitational Lagrangian. The need for such an integra-
bility condition was anticipated in Ref. [1], since it was
known that the entropy of stationary black hole horizons
has this form [3–5]. We have not been able to ascertain
whether this is the only way to satisfy the integrability
condition, and, in particular, whether field equations for
Lagrangians involving derivatives of curvature can be
obtained.
Besides the lack of a statistical interpretation, and the

dependence of the entropy on the local Killing vector, a
strange feature of this approach is that in the case of GR the
entropy on a general horizon slice differs from the area at
the same order as the relevant area changes in the Clausius
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relation. So this approach seems to lose contact with some
of the original statistical motivation for the local Clausius
relation. On the other hand, it is quite analogous to the first
law of black hole mechanics in generalized gravity theo-
ries. Therefore it is not clear to us whether this approach is
purely formal, or maintains some significance as true
thermodynamics of spacetime.

II. THE EINSTEIN EQUATION OF STATE

We begin with a review of the derivation of the Einstein
equation as an equation of state, which emerges from black
hole thermodynamics as follows. General relativity and
quantum field theory in a black hole background imply the
so-called ‘‘first law of black hole thermodynamics’’ [6–8],

dM��HdJ ¼ THdSBH; (1)

whereM is the black hole mass,�H the angular velocity of
the horizon, J the angular momentum, TH ¼ ℏ�=2� with
surface gravity � is the Hawking temperature, and SBH ¼
A=ð4ℏGÞ with horizon area A is the Bekenstein-Hawking
entropy. This relation can be viewed as a comparison be-
tween two stationary black holes, but it also holds for small,
slowly time-dependent changes of a single black hole. Its
validity in that setting hinges on the fact that the evolution of
horizon area is governed by spacetime curvature, which in
turn is linked via Einstein’s equation to the energy flux.
Specifically, it relies on the relation Rabk

akb ¼
8�GTabk

akb, where Rab is the Ricci tensor, Tab is the
energy-momentum tensor of matter, and ka is a 4-vector
tangent to the horizon-generating null geodesics.

The term ‘‘first law’’ is actually a misnomer for (1). In
thermodynamics that name refers to energy conservation,
dU ¼ �Qþ �W, where dU is the internal energy change,
�Q is the heat flow into, and �W is the work done on the
system. Instead, the thermodynamic nature of (1) is the
Clausius relation

�Q ¼ T�S (2)

between the heat flow and the entropy change. In the black
hole context, energy that flows across the horizon is, in
effect, heat, since after crossing the horizon its microscopic
nature is effaced for an outside observer. Since the horizon
is a causal barrier, it is a ‘‘perfect dissipator’’ [9]. The heat
flux is

�Q ¼ dM��HdJ ¼
Z
H
ð�Tab�

aÞdHb; (3)

where the integral is over the horizon and �a¼@at þ�H@
a
�

is the horizon-generating Killing vector.1 That is, the heat
is the energy flux conjugate to the spacetime symmetry that

translates along the horizon generators. The work term �W
in the usual first law of thermodynamics has no analog in
the relation (1). Although ‘‘first law’’ is not an appropriate
name, we will use it here since it is entirely standard
terminology.
Close to a black hole horizon the Hawking temperature

becomes the Unruh temperature ℏa=2� for stationary,
uniformly accelerated observers, and the Clausius relation
takes on a local form (how local depends on how slowly the
changes take place) whose validity requires that the
Einstein equation hold, as mentioned above. Moreover,
there is good reason to believe this applies not just to black
holes but to any causal horizon. (See e.g. [10] for a review
of the arguments, and [11] for further discussion and
clarification.)
The idea of Ref. [1] (see also [12] for a slight reformu-

lation) was that, conversely, the Einstein equation can be
derived, as an equation of state, by requiring that the
Clausius relation hold for the entropy of sufficiently small
patches of all local causal horizons (LCHs) in spacetime.
Any such horizon H is defined as the boundary of the past
of a patch of ðD� 2Þ-dimensional spacelike surface, where
D is the spacetime dimension. (LCHs will be defined
precisely in what follows; for now it suffices to remain
somewhat vague.) In that derivation the heat is taken as the
boost energy flux, defined with respect to an approximate
local boost Killing vector field �a as

�Q ¼
Z
H
ð�Tab�

aÞdHb; (4)

and the temperature is taken as the Unruh boost tempera-
ture ℏ=2�. This is natural since the Minkowski vacuum
state of quantum fields is thermal with respect to the boost
Hamiltonian at this temperature, and any state looks like
the Minkowski vacuum at sufficiently short distances. The
entropy is taken to be A=l20, where l0 is some UV length

scale. (A compelling case can be made that the origin of
horizon entropy is quantum entanglement of vacuum cor-
relations across the horizon. Since this is dominated by UV
degrees of freedom, yet finite, dimensional analysis sug-
gests that the leading-order contribution should scale in
this way.) The change in horizon area in a small neighbor-
hood of a point p can be related to the Ricci tensor via the
Raychaudhuri equation. If the horizon is chosen so its
expansion and shear vanish at p, and �a is chosen so it
too vanishes at p, the Clausius relation is then seen to
require Tabk

akb ¼ ðℏ=ð2�l20ÞÞRabk
akb at every point in

spacetime and for all null vectors ka. Together with energy
conservation raTab ¼ 0 this implies the Einstein equation

Rab � 1

2
Rgab ��gab ¼ 8�G0Tab; (5)

where the value of Newton’s constant is determined by the
entropy density 1=l20 to be G0 ¼ l20=4ℏ and � is an un-

determined cosmological constant.

1We (unfortunately) use spacetime signature ð� þ � � �þÞ.
The horizon integration measure is dHb ¼ �kbdVdA, where
V is the affine parameter along the horizon generators, kb ¼
ð@VÞb is tangent to the generators, and dA is the area element of a
constant V horizon slice.
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III. PREVIOUS APPROACHES TO INCLUDING
HIGHER DERIVATIVES

There have been a number of attempts to include higher-
derivative terms in the equation of state derived from
causal horizon entropy; all these attempts can be divided
into two broad classes: The first deals with a specific
theory, LðRÞ gravity (see Refs. [12–14]), while the second
class studies a more general case (e.g. Refs. [15,16]). The
LðRÞ gravity, where the Lagrangian depends only on the
Ricci scalar, is equivalent to GR with an auxiliary scalar
field [17,18] and is therefore the simplest generalization
possible. Even in that case, the derivation of the field
equation from the thermodynamics of the local horizon
meets considerable obstacles.

Reference [12] considered the case when the horizon
entropy density is proportional to an arbitrary function
fðRÞ of the spacetime Ricci scalar R. As was done in the
derivation of the Einstein equation, the approximate
Killing vector � is chosen to vanish at a terminal point p
on the horizon. The Clausius relation equates the entropy
change to the heat flux �Q, which is the flux of boost
energy current �Tab�b across the horizon. Since � van-
ishes at the terminal point, the rate of change of entropy
with respect to the affine parameter must also vanish there.
However, at a generic spacetime point p the gradient raR
is nonvanishing, so the horizon entropy will have a non-
vanishing rate of change unless the change of R is balanced
by a change of horizon area. Thus it is necessary to adjust
the terminal surface of the horizon so that the expansion �
of the horizon generators at the equilibrium point has the

nonzero value �p ¼ � _f=f. The Clausius relation involves

a �2p term via the Raychaudhuri equation, and one ends up

with a field equation that is inconsistent with matter-energy
conservation unless this term is identified as internal en-
tropy production due to a bulk viscosity proportional to
fðRÞ and added to the entropy balance law. Hence, instead
of equilibrium thermodynamics, a nonequilibrium ap-
proach is needed. The resulting field equation is the one
that follows from the Lagrangian L, where f ¼ dL=dR.
That is, L is the Lagrangian for which fðRÞ is the Wald
entropy [3]. (The properties of Wald entropy will be briefly
reviewed in Sec. VII.)

In Ref. [13], this entropy production term is interpreted
as a separate contribution to the heat flux from the addi-
tional scalar degree of freedom present in LðRÞ gravity.
Then it is possible to derive the field equations using only
reversible thermodynamics as in the case of GR. Although
such an interpretation may offer a possible understanding
of entropy production terms for the specific case of LðRÞ
gravity, it is unclear how to generalize that for a broader
class of theories.

In Ref. [14] it was proposed that the need for internal
entropy production could be eliminated by adopting the
instantaneous boost invariant (IBI) prescription for dy-
namical horizon entropy proposed in [3]. This prescription

goes as follows. In the neighborhood of a spatial slice � of
a causal horizon one constructs, by a unique recipe of
dropping selected terms in a Taylor expansion of the true
metric in an adapted coordinate system, a new spacetime
metric that has an exact boost Killing field for which� is a
fixed-point set. The entropy density of the slice � was
taken in [14] to be a scalar formed from the IBI metric
associated to �. In particular the case with entropy density
fðRÞ was discussed, but it is not clear to us that all con-
tributions to the change in this entropy were taken into
account. The difficulty arises because the IBI metric
changes with the horizon slice, so the R on each slice is
defined with respect to a different metric. Also, even if the
field equation arrived at in [14] were correct, it refers to the
curvature of the IBI metric, and it remains unclear how this
is related to the curvature of the original metric.
Next wewould like to discuss attempts to obtain the field

equation from local horizon thermodynamics beyond
LðRÞ gravity. Reference [15] starts from the Wald entropy
formula [3] for a stationary black hole, but applied
to a local horizon. A formula for the entropy of a
[ðD� 1Þ-dimensional] patch of a local horizon is written
as a surface integral over the boundary of the patch. It is
unclear to us why an entropy should be assigned to a
(D� 1)-patch rather than only to a (D� 2)-slice of the
horizon. Moreover, in the case of a stationary black hole
horizon this integral vanishes, whereas the entropy of the
horizon surely does not vanish. Hence this quantity cannot
be interpreted as the entropy of the horizon. The variation
of this entropy is then considered, and a formula is written
in terms of an integral of a covariant directional derivative
of part of the integrand of the previously mentioned inte-
gral. It is unclear to us why this expression should be
interpreted as the change of entropy. A similar formula is
written for the boost energy flux across the horizon. Also,
the binormal on horizon cross sections is identified with the
covariant derivative of the approximate Killing vector.
Whereas this can certainly be satisfied to lowest order,
given the small changes involved in the Clausius relation
it would be necessary to check whether neglecting the
differences at subleading order is justified. Another issue
is that the approximate Killing vector �a in these calcu-
lations is treated as if it satisfies the Killing identity
rarb�c ¼ Rd

abc�d exactly. Although this is not possible

in general, we will show in the present paper that the
identity can be satisfied to the required order, provided
one restricts to a narrow neighborhood of a particular
horizon generator.
In Ref. [16] the proposal is to define the entropy of

horizon slices as the integral of a Noether potential for-
mally identical to a potential introduced in [3], except that
in the former case no matter fields are included in the
Lagrangian with which the potential is associated. Using
Stokes’ theorem, the entropy change between two slices
of the horizon is then expressed as an integral of the
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corresponding Noether current over the enclosed horizon
patch. However, since slices of a LCH have boundaries, the
entropy change also involves a surface integral over the
null outer boundary, unless the two slices have their bound-
ary in common. This contribution was missed in Ref. [16].
In addition, as in Ref. [15], the Killing identity was used
without justification at an order it cannot be expected to
hold in a generic spacetime. Thus this derivation too is not
complete. The present paper starts from a similar but more
general form for the entropy, and fills these gaps in the
argument by studying slices that do have their boundary in
common and thus enclose a compact patch of the horizon.

Finally we note that Refs. [19,20] (see also [21] and
references therein) discuss a thermodynamic interpretation
of gravitational field equations beyond GR in terms of a
local entropy balance law. A matter entropy flux across the
horizon is associated with a small spatial volume and is
related to the boost energy by the Clausius relation. This is
then equated to a gravitational entropy change in the
volume, which is constructed from the Noether current
associated with a Lagrangian L½gab; Ra

bcd�. This balance
law at a point is then shown to imply that the gravitational
field equations hold, thus giving a thermodynamical inter-
pretation of those equations. The approach we will pursue
in this paper uses similar ingredients, but we have different
objectives. We start by assigning a horizon entropy func-
tional to a small but finite-sized horizon slice, and inves-
tigate what properties it must have if it is to satisfy the
Clausius relation with the matter boost energy flux.

IV. IMPOSSIBILITY OF GENERALIZING THE
NON-EQUILIBRIUM APPROACH

A natural question to ask is whether the nonequilibrium
approach of Ref. [12] can be extended beyond theories for
which the horizon entropy density s is a function only of
the Ricci scalar. In this section it will be shown that the
nonequilibrium approach of Ref. [12] cannot be extended
beyond the results found there. For this discussion, we
adopt the geometric set up of [1,12] and we assume that
the entropy associated with the LCH takes the form

S ¼
Z

s dA; (6)

where s is some arbitrary scalar function and the integra-
tion is over a ðD� 2Þ-dimensional spacelike slice of the
horizon with ‘‘area’’ element dA. The change in entropy
from one horizon slice to another is

�S ¼
Z �

ds

d�
þ �s

�
d� dA; (7)

where � is an affine parameter on the local horizon gen-
erators and � ¼ dðlndAÞ=d� is the expansion of the
generators.

The Clausius relation asserts that the entropy change
�S is equal to �Q=T, where T ¼ ℏ=2� is the boost

temperature, �Q is the heat flux (4) through the horizon,
and �a is the approximate Killing vector which vanishes at
the final equilibrium point p. Since the heat integrand
vanishes at p, the Clausius relation can hold only if the
�S integrand also vanishes there. This requires that the
expansion at p is nonzero, to wit,

�p ¼ � 1

s

ds

d�

��������p
: (8)

In the case of GR s is a constant, so this condition states
that the horizon must have vanishing expansion at p. The
Raychaudhuri equation can be used to find �ð�Þ. If the
horizon shear does not vanish at p we must add internal
entropy production due to shear viscosity to the Clausius
relation [12]. Assuming the shear at p vanishes, we have
� ¼ �p þ �ð��2p=ðD� 2Þ � Rabk

akbÞ þOð�2Þ, where ka
is the affine horizon tangent vector ðd=d�Þa, and �p ¼ 0.

Now we require that the Clausius relation hold for all
local horizons through p, i.e. for all ka. If the entropy
density is independent of ka, as would be the case if it is
a spacetime scalar, then we obtain the tensorial equation

sRab�rarbsþD�1

D�2
s�1s;a s;bþ�gab¼2�

ℏ
Tab; (9)

where � is some scalar function. This function can be
determined by imposing energy conservation, i.e.
raTab¼0, which yields the condition

�;a ¼ � 1

2
sR;a þ@ahs�

�
D� 1

D� 2
s�1s;a s;b

�
;b
: (10)

Since�;a is the gradient of a scalar, a solution exists only if

the right-hand side is also the gradient of a scalar.
In the case of GR s is a constant, so � ¼ �sR=2 is the

unique solution up to a constant (the cosmological con-
stant). If s ¼ sðRÞ is a function only of the Ricci scalar,
then the first term on the right-hand side of (10) is a
gradient, but the last term is not. In the nonequilibrium
approach of Ref. [12] the Clausius relation is replaced by
an entropy balance relation �S ¼ �Q=T þ �Si, where �Si
is an internal entropy production term due to bulk viscosity,
which is proportional to the square of the expansion and
which cancels the last term in (10). This yields an equation
of state that coincides with the field equations for LðRÞ
gravity. For more general spacetime scalar entropy den-
sities, e.g. sðRabcdÞ, even the first term is not a gradient, so
there is apparently no way to satisfy an entropy balance
law, even allowing for internal entropy production. Hence,
the methods devolved in [1,12] can not be generalized
beyond LðRÞ.
The situation is even more problematic if the

entropy density is not a spacetime scalar but, for
example, is constructed from the intrinsic curvature of
the ðD� 2Þ-dimensional horizon slice, as in Lovelock
gravities [22]. In that case, we do not even have a tensorial
relationship like Eq. (9). The Raychaudhuri equation then
does not seem to be of any help at all, so a very different
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approach is needed. In this paper we will present such an
alternative approach, which involves an entropy density
that depends explicitly on the Killing vector, a different
choice of horizon slices, and the application of Stokes’
theorem.

V. NEW CHOICE OF APPROXIMATE
KILLING VECTOR

It turns out that the new approach to the thermodynamic
derivation of field equations, even in the case of GR, calls
for a small but essential adjustment in the choice of
approximate Killing vector. This adjustment amounts to
locating the bifurcation surface2 at a time earlier than the
terminal point, rather than being coincident with the ter-
minal point as originally formulated in Ref. [1]. The
change also makes the application of the Clausius relation
more closely analogous to the first law of black hole
mechanics [23] and resolves an uncomfortable aspect of
the earlier derivation. In this section we explain the ther-
modynamic motivation for the new choice of approximate
Killing vector, and show how the original derivation of
Ref. [1] is modified by this choice. The role in the new
approach will be explained in Sec. VIII.

The role of the approximate Killing field �a in the
approach of Ref. [1] is to define the heat in the Clausius
relation (4). The bifurcation surface of this Killing field
was previously taken to coincide with the future boundary
through p, whereas in the first law of global horizon
mechanics the bifurcation surface lies to the past of the
perturbation. Moreover, the approximate Killing field was
spacelike rather than timelike in the region outside the
horizon, so it was necessary to think of the heat as going
into the reservoir behind the horizon (see Fig. 1).3

However, this reservoir is not observable on the outside,
so should play no role in the outside thermodynamics. It
seems much more satisfactory to place the bifurcation
surface to the past, so that the Killing field is timelike
outside the horizon, and the reservoir can be thought of
in direct analogy with the thermal atmosphere of a black
hole, below the stretched horizon.4

It appears at first that modifying the location of the
bifurcation point of the Killing vector will change the heat
flux and, in the original approach of Ref. [1], ruin the
derivation of the Einstein equation from the Clausius rela-
tion. However, that is not what happens. The old Killing
vector on the generator through p (see Fig. 1) was �old

b ¼
��kb, where � is the affine parameter that vanishes at p.
The new Killing vector vanishes instead at p0 and is given
by �b ¼ ð�� �0Þkb, where �0 is the value of � atp0. The
corresponding boost energy currents are thus

� Tab�old
b ¼ �Tabkb (11)

� Tab�b ¼ ð�0 � �ÞTabkb (12)

Although these differ, their integrals from the bifurcation
point to p are the same, since

Z 0

�0

�d� ¼ ��2
0=2 ¼

Z 0

�0

ð�0 � �Þd�: (13)

With the heat defined using �a, applying the Clausius
relation to the horizon interval ½�0; 0� in the limit �0 ! 0
thus yields the field equations as described above. This
corresponds to a transition between a stationary state at� ¼
�0 (where �

a vanishes) and one at � ¼ 0 (where the expan-
sion and shear vanish). In analogy to the physical process
version of the first lawof black holemechanics, theClausius
relation holds only when applied to this entire interval.
Note that in the approach of Ref. [1], with the new

choice of Killing vector, one must still impose the condi-
tion that the expansion � vanishes at p, because that
condition is used in applying the Raychaudhuri equation
to obtain the area change. By contrast, in the Noetheresque

FIG. 1. Causal spacetime diagram of the local causal horizon
(LCH) and Killing field in the old (left) and new (right) setups.
Each point in the diagram represents a patch of spacelike 2-
surface. The boundary of the past of a patch of 2-surface through
p defines the LCH. The arrows indicate the flow lines of the local
Killing field �a, which is of third order on the bifurcation surface
B, and which vanishes at p (left) or p0 (right). The central
horizon generator � runs from p0 to p. The ‘‘heat’’ is the boost
energy flux across the horizon. In the new setup the Killing
vector is timelike within the horizon and spacelike beyond, while
the old setup is the opposite.

2In the current context, the term ‘‘bifurcation surface’’ is used
somewhat loosely, mainly to fix attention to the analogous role
played by the true bifurcation surface of a quasi-stationary black
hole in the physical process version of the first law [23]. What
we mean is a slice on which the components of the approximate
Killing vector are third-order in an appropriate coordinate sys-
tem (see Sec. VID). Accordingly, the approximate Killing vector
vanishes at the center of the bifurcation surface (see Fig. 1).

3We use the term ‘‘outside’’ to refer to the region accessible to
observers to the past of p, like the observers outside a black hole
horizon. For a cosmological horizon, the standard terminology
would be opposite: outside a cosmological horizon is the region
that can not be seen.

4This same point wasmade recently in Ref. [24], with reference
to the choice of the ‘‘observer’’ who is defining the heat flux.
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approach of the present paper the expansion at p will turn
out to play no role whatsoever.

VI. PROPERTIES OF THE LOCAL HORIZON
AND KILLING VECTOR

In this section we spell out the detailed geometric
construction and properties of the local causal horizon
(LCH) and Killing vector.

A. Local causal horizon

We define a LCH H as follows. Consider any spacetime
point p in a D-dimensional spacetime, and let �p be any

small patch of spacelike ðD� 2Þ-surface through p. The
boundary of the past of �p in the neighborhood of p has

two components, each of which is a null surface generated
by a congruence of null geodesics orthogonal to �p. The

LCH H is defined as one of these components.
As mentioned in the previous section, it will not matter

for the present approach whether the congruence is sta-
tionary at p. However, if p is to be a stationary point, the
expansion and shear of this congruence must vanish there.
That is, the extrinsic curvature of �p must vanish at p,

which is equivalent to saying that �p is generated by geo-

desics at p. For concreteness we will go further and assume
that �p is fully generated by geodesics emanating from p.

This will be convenient for studying concrete examples of
the approximate Killing vector and of entropy values.

B. Null normal coordinates

To establish the existence of an approximate Killing
vector with the required properties, we will employ a
‘‘null normal coordinate’’ (NNC) system [25] adapted to
the LCH. This is an explicit realization of the coordinate
systems first introduced in [3,26] and is defined as follows.
At a spacetime point p an orthonormal set of ðD� 2Þ
spacelike vectors feaAg; A ¼ 1; 2; . . . ; ðD� 2Þ, is chosen,
and a ðD� 2Þ-surface �p is generated by geodesics with

tangent vectors at p in the space spanned by feaAg. The point
reached on such a geodesic at unit affine parameter is
assigned the coordinates xA, when xAeaA is the tangent
vector in that parametrization at p. This defines standard
Riemann normal coordinates on �p based at p. A pair of

future pointing null vector fields ðka; laÞ normal to �p is

chosen on�p, normalized such that kal
a ¼ �1. Each point

r in a small enough spacetime neighborhood of p lies on a
unique geodesic orthogonal to �p at some point q. Let the

tangent to that geodesic at q be given by Vka þUla when r
lies at unit affine parameter from q. The NNCs of r are then
defined by5

x	r ¼ ðU;V; xAq Þ: (14)

These coordinates are defined uniquely up to a rotation of
the ðD� 2Þ-frame at p and a q-dependent rescaling of ka,
with inverse rescaling of la. The horizon H is the surface
U ¼ 0, restricted to V � 0. In particular, the central hori-
zon generator � is the coordinate curve U ¼ 0, xA ¼ 0,
V � 0, with bifurcation point p0 2 � at V ¼ V0 < 0. Note
that onH the coordinate V is an affine parameter along the
null generators. The details of the construction, including
the derivation of metric coefficients and Christoffel sym-
bols, are presented in Ref. [25]. It is also shown there that
the ambiguity in the choice of ka can be exploited to make
the coordinates locally inertial at p and to further special-
ize the properties of the metric components. A preferred
choice is made by starting with the D-dimensional
Riemann normal coordinates at p and adjusting them.
This also induces a particular choice of affine parameter V.

C. Horizon slices

The Clausius relation applied to a horizon refers to the
entropy change �S between two times. Those times are
spacelike hypersurfaces, one to the future of the other,

FIG. 2. The local causal horizon is part of the boundary of the
past of �p, a spacelike D� 2 dimensional surface. The vertical

lines are horizon generators with affine parameter V and tangent
vector ka, and � is the central generator. �p is geodesic at p, so

the expansion � and shear vanish at p. The horizontal lines
represent constant V slices. The local Killing vector vanishes at
the bifurcation point p0. The entropy is compared on two slices,
�0 and �, which differ only in a compact region.

5We use Greek indices, and upper case Latin indices, for
coordinates and coordinate components in the NNC coordinate
system. Lower case Latin indices are reserved for abstract
indices on tensors.
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which intersect the horizon in two slices. For a black hole
with a compact horizon, the two slices may bound a
cylindrical region of the horizon.

For a local causal horizon, the considered process must
be local, since the LCH is not even well defined except in a
small neighborhood of the terminal point p. To localize the
process we can restrict attention to cases where, rather than
pushing the spacelike hypersurface forward in time every-
where, it is deformed to the future only in a small neigh-
borhood of the bifurcation point p0.

6 Then the two
corresponding horizon slices also coincide everywhere
except in a small region. Parts of two such slices, �0 and
�, are depicted in Fig. 2. �0 corresponds to the V ¼ V0

surface and � lies to the future. If we truncate the horizon
slices outside the region where they differ, their union�0 [
� forms the closed boundary of a patch of the horizon. This
will allow the difference of the entropies on the two slices
to be computed using Stokes’ theorem.

In fact, we shall need to further restrict the choice of
horizon cuts so that they bound a narrow region of the
horizon, because only then can the Killing identity be
satisfied to sufficient accuracy for the approximations
made in the derivation of the equation of state to be valid.7

By narrow, we mean that the ratio of the width in xA to the
length in V goes to zero in the limit as p0 approaches p.

D. Local Killing vector

Next we define precisely the approximate Killing vector
�a that plays a central role in defining both the heat flux
and, in the Noetheresque approach of Sec. VIII B, the
entropy density. We will refer to this vector field as the
‘‘local Killing vector.’’

Of course a general curved spacetime has no Killing
vectors. Nevertheless, in a small enough neighborhood of
any point, any spacetime is approximately flat. In particu-
lar, in local inertial coordinates at p, the metric compo-
nents take the form g	
 ¼ �	
 þOðx2=L2Þ, where �	
 is

the Minkowski metric, x denotes the coordinates, and L
characterizes the shortest radius of curvature of the space-
time at p. (Here and below we use Greek indices to refer to
components in a particular coordinate system, reserving
lower case Latin indices for abstract tensor indices.) An
approximate boost generator �a can be defined in terms of
local inertial coordinates by the formula for an exact flat
spacetime boost generator, e.g. ðx; t; 0; 0Þ in Minkowski
coordinates. This vector satisfies the Killing equation

ra�b þrb�a ¼ 0 (15)

exactly at p, and to OðxÞ near p, but in general rða�bÞ will
have Oðx2Þ terms. This is adequate for our purposes.
However, our application of the Clausius relation is also

sensitive to the OðxÞ part of the Killing identity

rarb�c ¼ Rd
abc�d: (16)

For a true Killing field, this identity follows from the
Killing equation (15). Conversely, the Killing identity
implies the Killing equation if the latter holds at one point,
because of the antisymmetry of the Riemann tensor in the
last index pair. Our computations will rely on this identity
being satisfied at OðxÞ, but for the approximate Killing
field defined above it will generally not hold at that order.
We can try to modify the definition of this vector field so as
to satisfy both the Killing equation and the Killing identity
atOðxÞ, but in fact this is not possible. However, narrowing
our sights, �b can be chosen so that the Killing identity
holds to this order (in fact it can be chosen to hold exactly)
on the single horizon generator � that ends on the terminal
point p, and this turns out to be good enough. In effect, the
local Killing symmetry can be extended away from p to a
better approximation along a single null generator � than
across the whole LCH. This calls to mind null Fermi
coordinates [28], but we have used the NNCs to describe
the situation since they are better adapted to the LCH.
Given that we confine the horizon to a narrow region

surrounding the central horizon generator �, the integrals
appearing in the Clausius relation will be dominated by
their integrands evaluated on �. As such, any conditions
that �a may need to satisfy in order for the Clausius
relation to lead to a consistent equation of state will be
conditions imposed on �.
As motivated in Sec. V, the local Killing vector �a is

taken to have a bifurcation surface �0—or at least a
bifurcation point—at p0 to the past of p, where it vanishes
and where its covariant derivative generates boosts in the
plane orthogonal to the bifurcation surface. The NNCs of
p0 are ðU;V; xAÞ ¼ ð0; V0; 0Þ. It will be convenient to shift
the affine parameter such that its origin coincides with the
bifurcation point, i.e. we define ~V � V � V0, so p0 lies at
~V ¼ 0. We also want �a to be approximately tangent to the
generator � that connects p0 to p, so that the evolution of
the LCH can be interpreted as a small perturbation of a
stationary background, which justifies the use of the
Clausius relation.8 More specifically, the equation of state
derivation will require that, at least to lowest order, �a

coincides with ~Vka, as would be the case on a Killing
horizon. And, finally, the derivation will require the
Killing equation and the Killing identity to hold at Oð ~VÞ.
Expressed in NNC components, the full set of require-
ments that must be imposed on �	 is as follows:

6Hypersurface deformations of this sort were considered in
Ref. [27] in the context of proving a local form of the
Generalized Second Law.

7An alternative option would be to restrict to a horizon patch
that is symmetric in the transverse coordinates, to cancel con-
tributions from terms linear in those coordinates. However, we
consider this symmetry restriction to be artificial.

8Moreover, if we were to let the local Killing vector and the
tangent to the generator vary independently, it appears the
Clausius relation would be overly restrictive.
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r	�
jp0
¼ ðk	l
 � l	k
Þjp0

; (17)

�	j� ¼ ~V�	
V þOð ~V2Þ; (18)

rð	�
Þj� ¼ Oð ~V2Þ; (19)

r	r
��j� ¼ ðR�
	
���Þj� þOð ~V2Þ: (20)

As alluded to above, �a may be subjected to rather
stronger conditions under which it approximates a true
Killing vector more closely. In particular, we may choose
�a such that the Killing identity (16) holds exactly on �.
This can be demonstrated by a perturbative argument
which is given at the end of this section (see also [25] for
further details). The identity then implies that the Killing
equation also is exact on �, provided it holds exactly at one
point. Another consequence is that �a becomes exactly
tangential to �, as will be shown next. Hence our
claim is that all terms of quadratic or higher order in ~V in
(18)–(20) may actually be set to zero.

If a vector field a satisfies the Killing identity along a
geodesic with affine tangent vector va, it follows that

varaðvbrbcÞ ¼ Rdabc
dvavb: (21)

Equation (21) is an ordinary differential equation of second
order and has a unique solution along the geodesic, once a

and vbrb
a are given at an initial point. It is easily verified

that sva is a solution to (21), where s is any affine parame-
ter on the geodesic, and vbrbðsvaÞ ¼ _sva. Hence if a ¼
sva and vbrb

a ¼ va at one point, it follows that a ¼
sva everywhere on the geodesic. Now recall that ka is an
affine tangent to �, and the local Killing vector is chosen to
vanish at p0 and to satisfy ra�bjp0

¼ ðkalb � lakbÞjp0
.

Taking va ¼ ka thus yields vbrb�
ajp0

¼ vajp0
, so we

may conclude that �a ¼ ~Vka everywhere on �.9

As regards the Killing equation, we recall that the NNC
system is local inertial at p. As discussed at the beginning
of the current section, it is then possible for the Killing
equation (15) to hold at OðxÞ, and this turns out to be
consistent with the Killing identity on �. In NNCs, the
approximate Killing equation implies that the components
of the local Killing vector are of the form �	 ¼ ~V�	

V �
U�	

U þOðx3Þ.
In summary, the main properties exhibited by our choice

of local Killing vector are given by (17) together with

�	j� ¼ ~V�	
V; (22)

rð	�
Þ ¼ Oðx2Þ; (23)

r	r
��j� ¼ ðR�
	
���Þj�: (24)

To conclude this section, we turn to the perturbative
argument that the Killing identity (16) can be satisfied
exactly on �. We specify �a in a neighborhood of � by
its (covariant) components in NNCs as the Taylor series

�	¼U�V
	� ~V�U

	þC
�	~x

~x�þD
��	~x


~x�~x�þ ...; (25)

where ~x	 ¼ x	 � V0�
	
V and in particular ~V ¼ V � V0.

Similarly, on � the deviation away from the Killing identity
is written as a power series in the affine parameter ~V. As
shown in [25], the latter series may be set to zero order by
order through an appropriate choice of the expansion co-
efficients occurring in (25).
More specifically, at the linear order (20) needed for the

equation of state derivation, one finds

C	
� � V0 � ðRiemann components at pÞ (26)

DV	
� � ðRiemann components at pÞ: (27)

Thus the terms that are quadratic and cubic in ~x in the
expansion (25) both contribute to �	 only at Oðx3Þ, count-
ing V0 as OðxÞ. This is consistent with the Killing equation
(23) at OðxÞ, from which one finds that quadratic order
terms must be absent in (25).
For the purpose of the general derivation of field

equations all we need to know is that the conditions
(17)–(20) can be met. For the purpose of computing the
actual entropy (which will have a dependence on the
local Killing vector, see Sec. VIII B) and comparing
with the area in the GR case or with other expressions
in higher-derivative gravity, the detailed form of the local
Killing vector is generally needed. For more explicit
expressions of the higher-order coefficients in (25) we
refer to [25].

BLACK HOLE ENTROPYAS NOETHER CHARGE

In this section we review Wald’s expression for black
hole entropy in terms of the Noether charge [2,3]. This
expression will motivate the form of LCH entropy that we
adopt.
Consider a diffeomorphism-invariant Lagrangian field

theory of gravity in arbitrary dimensions. Avariation of the
action is always equal to a sum of terms proportional to the
field equations and a surface term. When the variation is
induced by a vector field �a, this equality can be expressed
as the statement that a certain current ja is closed, i.e.
raj

a ¼ 0. The current is closed even when evaluated
off-shell and takes the form

ja ¼ �a � L�a � ð2Eab � TabÞ�b þ . . . ; (28)

where the symplectic current �a stems from the surface
term, L is the Lagrangian scalar in the action, 2Eab �
Tab ¼ 0 is the metric field equation, and the dots indicate
off-shell terms corresponding to the matter field equations.

9It will generally be inconsistent with the Killing identity on �
to choose �a to be tangential to all the generators of a small
horizon patch. Moreover, if the horizon expansion does not
vanish at the bifurcation point, such a choice would also be
inconsistent with the Killing equation imposed at linear order in
a spacetime neighborhood.
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The Noether current Ja is defined as Ja ¼ �a � L�a, and
on-shell coincides with the closed current ja. Furthermore,
since the on-shell Noether current is closed for any pos-
sible vector field �a, it can be expressed as Ja ¼ 2rbQ

ab,
where the antisymmetric tensor Qab is a local function of
the fields and their derivatives [29]. The tensor Qab is
referred to as a Noether potential.10

Since the vector field �a only enters the expression for a
Noether potential when taking Lie derivatives of tensor
fields with respect to �a, any Noether potential is of the
form

Qab½�� ¼ Wabc�c þ Pabcdrc�d; (29)

apart from the possible addition of a total divergence. More
specifically,

Qab½�� ¼ Wabc�c þ Xabcdr½c�d� þ Yab þrcZ
abc; (30)

where the tensors W;X; Y; Z are locally constructed from
the dynamical fields, Y is linear in Lie derivatives with
respect to �, and Zabc is totally antisymmetric. The decom-
position of Q in terms of W;X; Y; Z is not unique, and in
addition the Noether potential has three sources of ambi-
guity, coming from the freedom to add a total divergence to
the Lagrangian, the symplectic potential, or the Noether
potential itself. Using all this freedom Y and Z can be set to
zero, X can be chosen [3] as

Xabcd ¼ � @L

@Rabcd

þ . . . (31)

and W is then given by [30]

Wabc ¼ 2rdX
abcd þmatter termsþ . . . ; (32)

where the dots indicate terms that stem from derivatives of
the Riemann tensor in the Lagrangian.

If the theory admits stationary black hole solutions with
a regular bifurcation surface, variations away from these
solutions satisfy the first law (1), with the entropy SBH
defined by [3]

SBH ¼ 2�

ℏ

I
�
Qab½�̂�NabdA: (33)

Here, � denotes any slice of the stationary horizon, Nab ¼
2k½alb� is its binormal (normalized asNabN

ab ¼ �2), dA is

the ðD� 2Þ dimensional area element, and �̂a is the
horizon-generating Killing vector normalized to unit sur-
face gravity. The integral is referred as the Noether charge
and is invariant under the three sources of ambiguity [3,5].
Invoking the stationary symmetry, it was further shown in

these references that the entropy may equally be expressed
by substituting Qab½�̂� in (33) with XabcdNcd. Thus the W
term does not contribute to the black hole entropy. For
general relativity, SBH becomes the familiar Bekenstein-
Hawking entropy A=4ℏG.

VIII. CLAUSIUS RELATION AND EQUATION
OF STATE

In this section we adopt the assumption that LCH’s have
an entropy of Noetheresque form, i.e. the entropy density
depends on the local Killing vector in the sameway that the
Noether potential (29) depends on the horizon-generating
Killing field. With this entropy, we shall find that the
Clausius relation applied to all LCHs, together with the
local conservation law for the matter stress tensor, can be
satisfied provided that (i) the entropy density can be iden-
tified with (the gravitational part of) a Noether potential of
some Lagrangian, and (ii) the fields satisfy the metric field
equation for that Lagrangian.11 This is the equation of state
for the corresponding entropy function.

A. Clausius relation for a local causal horizon

This Clausius relation for a LCH is analogous to the first
law for stationary black holes. However, the latter relies on
the stationarity of the black hole horizon, as well as the fact
that a horizon slice is a complete boundary component of a
spacetime slice, neither of which hold for a LCH.
Nevertheless, it turns out that the construction can be
localized enough to make the Clausius relation at least
well defined. First, as explained in Sec. VIC and Fig. 2,
we compare the entropy on two LCH slices � and �0 that
share a common boundary, so that together they form the
boundary of a local patch H of the horizon. The lack of
stationarity looks more problematic because, for a dynami-
cal black hole horizon in a general theory, there is no well-
defined notion of entropy available.12 The problem is that
there is no Killing vector and, if a vector field is somehow
selected, the ambiguities in the definition of the Noether
charge will make the entropy ambiguous, unlike for a
stationary black hole horizon.13 On the other hand, locally
there is always an approximate Killing vector, the ‘‘local
Killing vector’’ constructed in Sec. VID. This turns out to
act enough like a Killing vector to make the Clausius

10In this paper we use tensor notation. The formalism in
Refs. [2,3] makes use of differential forms, which are dual to
these tensors. The relation between a p-form F and the corre-
sponding tensor ~F is Fa1...ap ¼ ~Fb1...bn�p�b1...bn�pa1...ap , where � is
the volume element. The tensor corresponding to the exterior
derivative dF is ðn� pÞra

~Fb1...bn�p�1a.

11Note that for the equation of state to be well defined the
matter stress tensor need not be the functional derivative with
respect to the metric of an action.
12General relativity is an exception, where the area of the
horizon slices is a good candidate for the dynamical entropy.
This is motivated by the area theorem, as well as by the form of
entanglement entropy; see Sec. II.
13Although the proposed dynamical entropy of Ref. [3] (in
terms of the instantaneous boost-invariant metric) manages to
bypass the ambiguities, it most likely does not satisfy a second
law [31].
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relation well defined in a certain local limit, once a form for
the entropy is adopted.

In the context of horizon thermodynamics it is natural to
expect that the entropy is an extensive quantity. Thus we
assume that it can be expressed as an integral of a
ðD� 2Þ-form over a spacelike slice � of the horizon. We
adopt the dual description, and express the entropy as the
integral

S ¼
Z
�
sabNabdA; (34)

where the entropy density sab is an antisymmetric tensor,
Nab is the binormal to the slice and dA is the area element
on the slice. The change of this entropy between the two
horizon slices is

�S ¼ S� S0 ¼
I
�[�0

sabNabdA

¼ 2
Z
H
rbs

abdHa ¼ �2
Z
H
rbs

abkadVdA; (35)

where�0 is taken with the opposite orientation to�, and in
the third line we have used Stokes’ theorem (for details of
Stokes’ theorem on a null surface see Ref. [32]).

On the right-hand side of the Clausius relation, dS ¼
�Q=T, we have the heat flux

�Q ¼
Z
H
ð�TabÞ�bdHa (36)

divided by the Unruh boost temperature T ¼ ℏ=2�. The
heat flux integrand is proportional to the local Killing
vector which vanishes at p0 and is thus of OðxÞ in NNCs
in the neighborhood of p0. The Clausius relation is im-
posed in the limit p0 ! p, which means that the entropy
change integrand of (35), multiplied by T, must be equal to
the OðxÞ heat flux integrand, up to Oðx2Þ terms. That is,

� ðℏ=�Þrbs
abka ¼ Tab�bka þOðx2Þ: (37)

This relation is imposed at all points p and for all null
directions at p.

We emphasize that the limit p0 ! p is taken in a formal
sense only, in order to identify the leading-order contribu-
tion for a small region. From a physical point of view, it
makes no sense to consider an arbitrarily small region,
because quantum fluctuations of the metric presumably
invalidate our semiclassical considerations at sufficiently
short distances.

B. Entropy density of Noetheresque form

Inspired by Refs. [16,19], we propose a local entropy
density of the same form as the Noether potential of
Eq. (29), where �a is the local Killing vector, but a priori
no restrictions are placed on W and P, other than that they
are constructed locally from the dynamical fields. We
emphasize that, although we are using a similar notation,
we do not assume at this stage that the divergence of the

local entropy density is a Noether current associated to a
Lagrangian, in contrast to the entropy density of stationary
black holes. This form of entropy density can be viewed as
the most general one that depends linearly on a local
Killing vector that satisfies the Killing identity, and con-
tributes to the entropy change at Oðx2Þ. As mentioned in
the introduction, since the local Killing vector determines
the local notion of equilibrium and heat, it is not entirely
unnatural that the entropy would depend on the Killing
vector. On the other hand, this entropy is not strictly
intrinsic to the horizon, and has no immediate statistical
interpretation that we are aware of.
We thus assume the entropy density takes the form

sab ¼ 2�

ℏ
Qab; (38)

with

Qab ¼ Wabc�c þ Pabcdrc�d

¼ Wabc�c þ ðXabcd þ YabcdÞrc�d: (39)

In the second line of (39), the tensor P is split into an
antisymmetric part X and a symmetric part Y:

Xabcd ¼ Xab½cd� and Yabcd ¼ YabðcdÞ: (40)

We could of course absorb the factor of 2�=ℏ into the
definition of Qab. The only reason we factor it out here is
so that the notation will make the analogy with the first law
for stationary black hole horizons more transparent.
We now show that the symmetric part does not contrib-

ute to the Clausius relation. The contribution of Yabcd to
rbQ

ab is

rbðYabcdrðc�dÞÞ¼rbY
abcdrðc�dÞ þYabcdrbrc�d: (41)

Using the approximate local Killing equation (23), we see
that the first term on the RHS is of Oðx2Þ. The second term
is symmetric in cd, so without any change we may add a
term in the Riemann tensor, yielding

Yabcdðrbrc�d � Rf
bcd �fÞ; (42)

which according to the approximate Killing identity (20) is
of OðxAÞ, where xA are the transverse coordinates of the
NNC system. The contribution of (41) is therefore negli-
gible in the limit of small, narrow horizon patches.
Thus, at least for the part that contributes to the entropy

change, our proposal for the entropy density reduces to
2�=ℏ times

Qab ¼ Wabc�c þ Xabcdrc�d; (43)

whereW and X are, so far, unspecified tensors, constructed
locally from the dynamical fields, antisymmetric in the first
two indices, and in addition X is antisymmetric in the last
two indices. Note that the X term is of Oð1Þ, and the W
term is ofOðxÞ. Had we kept the Y term it would have been
of Oðx2Þ.
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Next we show that the Clausius relation requires that W
is a combination of divergences of X. The divergence of
(43) can be written as

rbQ
ab ¼ ðrrW

arb þ XarstRb
rstÞ�b

þ Xarstðrrrs�t � Rb
rst�bÞ

þ ðWast þrrX
arstÞrs�t: (44)

Again, the first term is proportional to the local Killing
vector and hence of OðxÞ, while the second term involving
the Killing identity may be neglected on narrow patches. It
is precisely here that the need to impose the Killing identity
arises. Were this identity not satisfied by �a, the second
term would make a contribution at the same order as the
first term, which would depend on the higher-order coef-
ficients in the local Killing vector expansion. This would
ruin our extraction of the local field equation from the
Clausius relation and would probably make it impossible
to consistently impose the Clausius relation at all for such
local Killing vectors.

In the third term, the symmetric part in ðstÞ is ofOðx2Þ by
virtue of theKilling equation, but a priori the antisymmetric
part is ofOðx0Þ. On the other hand, the integrand in the heat
flux is ofOðxÞ, so in order to be consistent with the Clausius
relation (37), theOðx0Þ part of the third termmust vanish. It
follows that the local Clausius relation can only be satisfied
at all spacetime points ifW and X are related via

Wa½st� þ rrX
arst ¼ 0: (45)

Because W is antisymmetric in its first two indices, this
relation completely determinesW as a function ofX, to wit,

Warb ¼ rsðXsarb þ Xsbra þ XsrbaÞ: (46)

Thus only the first term in (44) survives.
Notice that although the W term does not contribute to

the entropy at p0, nor at p in the limit p0 ! p, its rate of
change is comparable to that of the X term, so that—in
contrast to the stationary comparison version of the first
law of black hole mechanics [3]—it makes an important
contribution to the Clausius relation, which could not be
satisfied without it.14

C. Equation of state

Substituting (46) into the first term of (44), and using the
fact that �a / ka on the central generator, the validity of the
Clausius relation (37) for all ka implies

Rða
rstX

bÞrst þ 2rrrsX
ðajsjbÞr þ�gab ¼ �1

2T
ab; (47)

where � is some scalar function that may depend on the
metric and curvature. Note that (47) follows from the
Clausius relation irrespective of the values of expansion
and shear anywhere on the horizon patch.
As was done in Sec. IV, we impose local conservation

of energy-momentum to determine the function �. Then
Eq. (47) leads to

ra� ¼ �rbðRða
rstX

bÞrst þ 2rrrsX
ðajsjbÞrÞ: (48)

In order for such a � to exist, the right-hand side must be
the gradient of a scalar. This integrability condition further
constrains the nature of X, which so far is only required to
be antisymmetric in both the first and second pair of
indices.
If the integrability condition is satisfied, then the left-

hand side of (47) is a divergence-free tensor constructed
from the metric and its derivatives. One way to obtain such
a tensor is from the variational derivative of a scalar action
functional with respect to the metric, �Ig½g�=�gab, which
is automatically divergence free. In fact, it was argued in
Ref. [33] that all such tensors arise in this way. If so, then
the ‘‘Clausius equation’’ (47) is precisely the equation of
motion that derives from the action Ig þ Imatter, with an

undetermined cosmological constant.

1. Relation between entropy density and Lagrangian

We can be more specific about the relation between
the entropy and an action whose equation of motion
is (47). If a gravitational Lagrangian L½gab; Ra

bcd� is a

scalar formed algebraically from the metric and Riemann
tensors, then the corresponding equation of motion is pre-
cisely (47), 15 with

Xabcd ¼ � @L

@Rabcd

; (49)

and� ¼ L=2. Note that ifX is assumed to have this form, it
has all the symmetries of the Riemann tensor. Using these

14One might think that perhaps a total divergence can be added
to the entropy density such that the W term is canceled. That is,
if a tensor Zabcd ¼ Z½abc�d could be found such that Wabd ¼
rcZ

abcd, then we would have Qab ¼ ðXabcd � ZabcdÞrc�d þrcðZabcd�dÞ. The total divergence term would not affect the
changes in the entropy from one slice to another with common
boundary, so for the Clausius relation this would be equivalent to
having W ¼ 0 and replacing X by X� Z. The existence of such
a Z is at first glance conceivable since, according to (46),W must
be a divergence. However, the required total antisymmetry of Z
is not shared by the combination of X’s in (46). Only the
divergences of Z and X enter the equation, but still it seems
unlikely that such a Z exists in general.

15To show this is a bit tricky. One can regard the Lagrangian as
a function of gab and Rabcd, and use the identity @L=@gab ¼
�2Rða

rst�
bÞ
q @L=@Rqrst. This identity can be easily established by

exploiting the fact that the Lagrangian can also be considered as
a function of the ð2; 2Þ tensor Rab

st , without any explicit depen-
dence on the metric or Rqrst, and taking the partial derivatives
using the chain rule and Rab

st ¼ gaqgbrRqrst. For a detailed
derivation, see Ref. [34].
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symmetries one can show that our condition (46) that
determines W in terms of X becomes exactly the same as
Eq. (32). Thus, with the sufficient condition (49) assumed,
our conjectured entropy density is nothing but the specific
choice discussed in Sec. VII for the Noether potential
associated to a Lagrangian L½gab; Ra

bcd�. 16
For a Noetheresque entropy density with X of the form

(49), and W satisfying (45), the divergence in Eq. (44) is
nothing but the closed current (28) of Sec. VII, for the
Lagrangian scalar L½gab; Ra

bcd�. That is,

2rbQ
ab ¼ �a � L�a � 2Eab�b; (50)

where Eab is the variational derivative of L, given by the
LHS of Eq. (47). Specifically, the first term of the RHS of
(44) is given by �L�a � 2Eab�b, while the symplectic
current �a is given by the last two terms. We further note
that the symplectic current vanishes for a Killing vector,
while it was found here to be negligible for the local
Killing vector. Similar remarks were also made in [19].

Finally, we point out that this particular entropy density
does not include a dependence on matter fields. However,
such a dependence should perhaps not be ruled out a priori.

D. Examples

1. LðRÞ theories
We now illustrate our result by a simple example, with X

given by

Xabcd ¼ f

2
ðgacgbd � gadgbcÞ; (51)

where f ¼ fðR; Rij; RijklÞ is an arbitrary scalar function.

This expression satisfies all the symmetry requirements
imposed so far, but from Eq. (48) we obtain

ra� ¼ � 1

2
fraR; (52)

which can not be integrated unless the function f depends
only on the Ricci scalar. Thus, we find a strong restriction
on the form of the entropy density if the Clausius relation is
to be consistent with energy conservation. For example, the
leading-order term in the entropy density can not be, say,
1þ 	RabR

ab.
If f is only a function of R, it can be written as f ¼

�dL=dR for some function LðRÞ, and then we have � ¼
L=2 (the arbitrary additive constant freedom in � can be
absorbed into L, and corresponds to a cosmological con-
stant). With f of this form, Eq. (47) becomes

L0ðRÞRab�rarbL
0ðRÞþ

�
hL0ðRÞ�1

2
L

�
gab¼1

2
Tab: (53)

This is identical to the equation of motion that results
from the Lagrangian LðRÞ þ Lmatter. In the case of
GR, L ¼ R=ð16�GÞ, and we obtain the usual Einstein
equation.
In the case of generic LðRÞ theories, we have thus ob-

tained the field equation as an equation of state from the
Clausius relation, without the need for a term representing
internal entropy production due to bulk viscosity, unlike
in the nonequilibrium framework of Ref. [12]. As described
in Sec. IV, in that approach the change of the entropy density
fðRÞ coming from the gradient of the background R at the
equilibrium point is canceled by a choice of nonzero horizon
expansion, which then leads to the bulk viscosity term in
the entropy balance equation. Instead, with the Noether
charge entropy density, the W term is chosen so that the
Clausius relation can be satisfied without internal entropy
production.

2. Lovelock theories

Suppose that Xabcd has no higher than second deriva-
tives, and that also raX

abcd ¼ 0, so (46) implies Wabc ¼
0. Then it follows that the tensor on the left-hand side of the
field equation (47) is second order in derivatives.
Moreover, after imposing the integrability condition (48),
we infer that this tensor, built from the metric and its first
and second derivatives, must be identically divergence
free. The only such tensors come from the metric variation
of a Lovelock Lagrangian [35], so the assumed properties
of such an Xabcd, together with the Clausius relation, imply
that Xabcd arises as in (49) from a Lovelock Lagrangian of
the form L ¼ L½gab; Ra

bcd�.

3. General relativity

In example (51) with the choice f ¼ �ð16�GÞ�1,
Eq. (46) implies that W ¼ 0. The corresponding entropy

density obtains from Eqs. (43) and (38) and reads sabGR ¼
�ð8ℏGÞ�1r½a�b�. The steps of Sec. VIII C then lead to the
Einstein equation of state.

For the Killing vector (25) we have r½a�b� ¼ 2k½alb� þ
Oðx2Þ. Any horizon slice has a local binormal of the form
Nab ¼ 2k½alb� þ k½amb� wheremb is some spacelike vector

tangent to the horizon and therefore orthogonal to ka. For
generic slices, the resulting entropy (34) coincides to lead-
ing order with the area in units of 1=4ℏG.
The difference in entropy between two slices requires a

more careful analysis. On a slice of constant affine parame-
ter V, the entropy will differ from the area at subleading
order, as it does on any slice. The coefficients of the terms
of subleading order are given in terms of the coefficients C
and D of Eq. (25), many of which are in turn set by the
Killing identity (20) imposed on �. These coefficients can
be shown to be such that the subleading order terms, in the

16We note that not all Noether potentials associated to a given
Lagrangian satisfy the condition (46), it is curious that the local
Clausius relation restricts the form of the Noether potential in
this manner. Perhaps this stems from the lack of exact symmetry
in a general spacetime background.
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case of a slice of constant V, involve only transverse
coordinates. Therefore, when comparing two slices of
constant affine parameter, the subleading terms drop out
and the entropy difference to leading order coincides with
the area difference.

However, for the Clausius relation of Sec. VIII A, we
need to compare two slices with a common boundary. In
that case, on at least one of these slices the mismatch
between entropy and area at subleading order does depend
on V, in such a way that the entropy and area differences
will not generically coincide to leading order, unlike in the
first law of global horizon mechanics in GR or the original
Einstein equation of state derivation [1]. The easiest way to
see this is to employ Stokes’ theorem (35) with the entropy

density sabGR ¼ �ð8ℏGÞ�1r½a�b�. To evaluate the integrand
of (35), we use (44) and recall that the approximate Killing
vector was chosen such that (44) is dominated by its first
term. In this way we can express the entropy difference as

�S �
Z
H
Rabk

akbðV � V0ÞdVdA; (54)

where the integration range H is a patch of the LCH
enclosed by two slices. This integral will be equal to the
area difference to leading order only for a very special
choice of slices, as we now describe.

Suppose that the first slice�0 is the surface V ¼ V0, and
the shape of the second slice � is such that the enclosed

horizon patch nearly amounts to the entire interval
½V0; 0� (see Fig. 3). Then, as indicated in (13), the entropy
difference may equivalently be approximated by �S �R
H Rabk

akbVdVdA. If in addition the expansion and

shear of the horizon generators vanish at p, then the
Raychaudhuri equation tells us that �S � R

H �dVdA.
Since the integration range is nearly the entire interval
½V0; 0� this evaluates to �S � AðV ¼ 0Þ � AðV ¼ V0Þ,
where AðVÞ denotes the area of a slice of constant
affine parameter V. The area of � nearly coincides with
AðV ¼ 0Þ because its steep sides are ‘‘nearly null’’ and
hence contribute negligibly to the area. Clearly, if the two
slices are not chosen in this special fashion the entropy
difference will not coincide to leading order with the area
difference.
Nevertheless, if the entropy difference between two

generic slices with a common boundary obeys the local
Clausius relation, the Einstein equation must follow as a
consequence. We can illustrate the way this works with a
trivial example in flat spacetime. A small patch of a light
cone may be considered to be part of a LCH, enclosed by
two spacelike slices with a common boundary. The boost
energy flux is identically zero, so the Clausius relation tells
us the entropy on both slices must be identical. Employing
sabGR, this may be easily verified. However, the area of these

slices is clearly not identical.
The entropy density sabGR also shows it is not only ther-

modynamically more natural to place the bifurcation point
of the local Killing vector field to the past of the terminal
point (rather than coincident with the terminal point) as
was discussed in Sec. V, it is actually required if we want
the contribution to the entropy on a constant V slice in the
GR case to correspond to the area rather than minus the
area.
To see why this is so, consider the fact that in the local

Noether charge approach we have derived the Einstein
equation as an equation of state, without specifying
where the bifurcation point lies. However, if we want the
entropy to agree with the area (to leading order), then
sabNab must be a positive constant. In the case of GR,
the entropy density is sab / �r½a�b� � �ra�b, so

sabNab ��kalbra�b. Since to leading order the causal
horizon is a Killing horizon, we have kara�b / 	�b /
	kb, where the þ sign holds when the bifurcation point
lies to the past, so that the Killing vector is stretching in the
future direction, and the� sign holds when the bifurcation
point lies to the future, so the Killing vector is shrinking
(recall that we take the Killing vector to be future pointing
on the horizon). Hence sabNab �
lbkb ¼ 	1. To have a
positive entropy we must therefore take the bifurcation
point in the past. We have no option to reverse the sign
of the assumed entropy density, since that would lead to a
field equation with the opposite sign for the gravitational
constant. That is, a negative entropy change would arise
from a positive heat flux.

FIG. 3. A local causal horizon patch enclosed by a special pair
of slices. The entropy change associated with sabGR ¼
�ð8ℏGÞ�1r½a�b� is equal at leading order to the area change
over 4ℏG if (i) the horizon expansion and shear vanish at p, and
(ii) the patch between the slices �0 and � nearly coincides with
the interval ½V0; 0� across the entire patch.
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On the other hand, choosing the local Killing vector in
this way entails a disturbing feature. If the proposed en-
tropy represents the state of the horizon, one would expect
it, and its difference, to depend only on quantities intrinsic
to the horizon. However, the entropy difference is given by
the boost energy flux, which depends on the local Killing
vector, which in turn depends on a freely chosen location
V0 of the bifurcation surface�0. This is unsatisfying, as V0

is a freely chosen parameter and does not encode any
intrinsic property of the LCH.

Finally, we point out that the entropy density sabGR is

only one among an infinite number to give rise to the
Einstein equation since, by Stokes’ theorem, addition to
the entropy density of any total divergence will have no
influence on the entropy difference This is in keeping
with the fact that the Clausius relation is a thermody-
namic relation, from which the value of the statistical
entropy can only be deduced up to addition of an arbitrary
constant.

E. Including derivatives of curvature

On general grounds, one may expect strong gravitational
fields to be governed by a field equation derived from a
Lagrangian that includes covariant derivatives of the
Riemann tensor. In the present context, this raises the
question whether such a field equation may arise as an
equation of state corresponding to an entropy density of
the form (43), introduced in Sec. VIII B. As was discussed
in that section, in order for this to be possible the tensorsW
andXmust be related by Eq. (46). This may be possible, but
we point out that the specific choice of Sec. VII for the
Noether potential of such a Lagrangian does not satisfy the
relation (46). The problem is that the divergence of this
Noether potential contains a Lie derivative of the Riemann
tensor with respect to the local Killing vector.Whereas such
a derivativewould vanish for a trueKilling vector, it must be
expected to be of order one in a general spacetime.
Furthermore, it does not appear that relation (46) can be
salvaged by appealing to the freedom to add total divergen-
ces at the different stages in the construction of the Noether
potential. If this is true it would mean that the strict analogy
to the first law of black hole mechanics breaks down,
since that law applies for any diffeomorphism-invariant
Lagrangian.

However, it would still leave open the possibility that
entropy densities of the form (43) exist that do satisfy
relation (46) and give rise to the field equations of high-
derivative Lagrangians, but that are not Noether potentials
associated with such Lagrangians. As shown in the
Appendix , the integrability condition that must be sat-
isfied in order for such entropy densities to exist (whether
or not they are Noether potentials) may be written in the
form of a pair of tensor equations of first order, at least for
Lagrangians that depend on no more than first-order co-
variant derivatives of the Riemann tensor.

IX. CONCLUSION

The question we addressed is whether gravitational field
equations with higher-derivative terms can be derived from
the Clausius relation applied to a higher-derivative horizon
entropy. First we discussed problems that arise with
previous approaches to this problem. Then we adapted
the starting point of one of those approaches, and assumed
that horizon entropy depends on an approximate local
Killing vector in a way that mimics the diffeomorphism
Noether charge that yields the entropy of a stationary black
hole. We showed that the problems can all be avoided by a
careful choice of the nature of the horizon patch to which
the Clausius relation is applied. In particular, the Clausius
relation must refer to the change of entropy between two
slices of the horizon that together form the complete
boundary of a patch, and this patch must be narrow enough
to neglect violations of the Killing identity. We exploited a
power-series expansion in a coordinate system adapted to
the horizon to establish the required properties of the local
Killing vector.
Together with matter-energy conservation, the Clausius

relation applied to all such local horizon patches leads to an
integrability condition on the assumed horizon entropy
density. We showed that this condition can be satisfied if
the latter is in fact a Noether potential associated with a
Lagrangian constructed algebraically from the metric and
Riemann tensors. In that case the Clausius relation implies
that the field equation for that Lagrangian holds. We have
not proved that this is the only way to satisfy the integra-
bility condition, but that may be the case. In particular, the
field equation for a theory with derivatives of curvature in
the Lagrangian is unlikely to be obtained in this way using
for the entropy density a Noether potential derived from
the Lagrangian, although it might conceivably arise from a
different entropy density.
The higher-derivative extension of the equation of state

derivation was achieved in this paper at the cost of intro-
ducing a dependence of the entropy on the choice of local
Killing vector. Whereas this dependence occurs at sublead-
ing order, the entropy difference depends on the local
Killing vector at leading order. It is therefore not clear to
us whether the derivation has any thermodynamic signifi-
cance. We regard it as a positive answer to a technical
question, but its physical interpretation remains obscure.
Perhaps the steps we have taken are a valid part of a picture
that will only become clear once subtleties overlooked so
far are taken into account. For example, the arbitrariness of
an additive constant in thermodynamic entropy, the con-
tribution from the entanglement entropy, and the related
need to regularize by some kind of subtraction or compari-
son might play an important role in formulating the local
thermodynamics of the vacuum. Then again, it may just be
that the contribution of higher-curvature terms to a gravi-
tational field equation cannot be sensibly captured at a
local thermodynamic level.

RAF GUEDENS, TED JACOBSON, AND SUDIPTA SARKAR PHYSICAL REVIEW D 85, 064017 (2012)

064017-14



ACKNOWLEDGMENTS

We are grateful to R. Brustein, M. Hadad, T.
Padmanabhan, and A. C. Wall for helpful discussions.
This work was supported in part by the National Science
Foundation under Grant No. PHY-0903572.

APPENDIX A: INTEGRABILITY CONDITION
FOR EQUATIONS OF STATE CORRESPONDING

TO LAGRANGIANS L½gab;Ra
bcd;rfR

a
bcd�.

For notational convenience, we define the tensor Z [5] by

Zf:abcd � @L

@ðrfRabcdÞ : (A1)

Then the choice of Noether potential of Sec. VII for a
Lagrangian L½gab; Ra

bcd;rfR
a
bcd� is given by

Qab
ð0Þ ¼ Wabc

ð0Þ �c þ Xabcd
ð0Þ rc�d; (A2)

where

Xabcd
ð0Þ ¼ � @L

@Rabcd

þrfZ
f:abcd; (A3)

Wabc
ð0Þ ¼ 2rdX

abcd þ a:½bc� � b:½ac� � c:½ab� (A4)

and

a:½bc� � Za:½b
defR

c�def: (A5)

Because of the terms a:½bc�, etc., the relation (46) is not
satisfied for Qab

ð0Þ. We now suppose that the entropy density

consists of the Noether potential Qab
ð0Þ with a further

Noetheresque potential added. That is, we take

sab ¼ 2�=ℏQab; (A6)

whereQab ¼ Qab
ð0Þ þQab

ð1Þ andQ
ab
ð1Þ ¼Wabc

ð1Þ �cþXabcd
ð1Þ rc�d.

The divergence of Qab
ð0Þ is given by

2rbQ
ab
ð0Þ ¼ �a � L�a � 2Eab�b; (A7)

where Eab is the variational derivative of L, the symplectic
current reads

�a ¼ Za:bcdeL�Rbcde þ 2Xabcd
ð0Þ ðrbrc�d � Rf

bcd�fÞ
þ ð4rdX

abcd
ð0Þ þ AabcÞrðb�cÞ; (A8)

and Aabc is a combination of terms of the form ZR. If the
entropy density (A6) is to give rise to the field equation
derived from L, the divergence of Qab

ð1Þ must take the form

2rbQ
ab
ð1Þ ¼ �Za:bcdeL�Rbcde þ F�a

þ Fabcdðrbrc�d � Rf
bcd�fÞ þ Fabcrðb�cÞ;

(A9)

for some tensors F. From the symmetries of the Riemann
tensor and the definition of the Lie derivative, this can be
seen to be equivalent to the system

Wa½bc�
ð1Þ þ rdX

adbc
ð1Þ ¼ �4Za:½b

defR
c�def;rbW

abc
ð1Þ

þ Xabde
ð1Þ Rc

bde

¼ �Za;bdefrcRbdef þ Fgac: (A10)

In conclusion, if entropy densities of the desired form exist,
there must exist an integrating function F such that (A10)
has a solution. There is a relation between the integrating
function F and the integrating function � of Eq. (47).
Namely, comparing (A7)–(A9) with (44) reveals that in
this case � ¼ L=2þ F=2.
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