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During the evolution of the universe there are at least two epochs during which electromagnetic waves

cannot scan the universe’s internal structure to bring information to outside observers. The first epoch is

when photons are in local thermodynamic equilibrium with other particles, and the second is when photon

scattering by charged particles is strong. One can call these two periods of cosmological time as standard

unlighted epochs. After the last scattering surface, photons become relic photons and turn into a source of

information about the universe. Unlighted cosmic epochs can also appear when one considers nonminimal

theories, i.e., theories inwhich the electromagnetic field is coupled in an intricatewaywith the cosmological

gravitational field. By considering a cosmological model where the dark sector, i.e., the dark energy and

dark matter, self-interacts via an Archimedean-type force, and taking into account a nonminimal coupling

theory for the electromagnetic field, we discuss the appearance of unlighted epochs. In the framework of our

nonminimal theory, a three-parameter nonminimal Einstein-Maxwell model, the curvature coupling can be

formulated in terms of an effective refraction index nðtÞ. Then, taking advantage of a well-known classical
analogy, namely, in amediumwith n2 < 0 electromagnetic waves do not propagate and their group velocity,

i.e., energy transfer velocity, has zero value at the boundary of the corresponding zone, one can search for the

unlighted epochs arising in the interacting dark fluid cosmological model. We study here, both analytically

and numerically, cosmological models admitting unlighted epochs.
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I. INTRODUCTION

A. The cosmology, two-component dark fluid
and Archimedean-type interaction

In order to examine important features happening within
the universe, such as light propagation, one has to set up
from the start a model for the dynamics of the universe as a
whole, smoothing out all irregularities. General relativity
tells that both geometry and matter are important in the
dynamics of the universe and, moreover, through Einstein’s
equations one finds that geometry guides the matter and
matter changes the geometry.

In relation to geometry, we now have a good idea of the
spacetime geometry of the universe. It is governed by a
cosmological time t, which is the proper time of the
fundamental particles, usually considered as galaxies, of
the substratum. Slices of this time yield, by the use of
the cosmological principle, a homogeneous and isotropic
spatial geometry, so that the metric is the Friedmann-

Lemaı̂tre-Robertson-Walker (FLRW) metric. From obser-
vations the universe is expanding, which is then taken into
account by a single function, the cosmological scale factor
aðtÞ, which once known, also yields the rate of expansion,
i.e., the Hubble function HðtÞ � _a

a , and the rate of accel-

eration, i.e., the acceleration parameter �qðtÞ � €a
aH2 .

Moreover, the spatial slices are flat, or almost flat, simpli-
fying the problem even further (see, e.g., [1]).
In relation to matter, we also have now a good idea of the

matter content of the universe. There are three main com-
ponents, namely, dark energy which accounts for 70% of
the matter, dark matter which accounts for around 25%,
and the rest, which includes baryonic matter, radiation, and
other forms such as black holes, which accounts for 5%.
Dark energy and dark matter are essential building blocks
in any cosmological model. Their precise nature, both of
the dark energy and dark matter, is unknown, but this does
not preclude a good understanding of the gross features of
the dynamics of the universe. Dark energy [2–4] is essen-
tial in the explanation of the observed accelerated expan-
sion of the universe [5,6]. Dark matter provides an
excellent explanation for the flat velocity curves seen in
the outskirts of a galaxy and for the dispersion velocities of
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galaxies in clusters of galaxies [7,8]. Given there are these
two important matter components that essentially drive the
dynamics, it is worth contemplate them as a single whole.
There are various manners in which this could be per-
formed. One intriguing possibility is considering both com-
ponents as manifestations of a single dark fluid [9–13].
Other possibility is to postulate an interaction between
them so that the two components although really dis-
tinct have to be treated in a broader unified scheme, see
e.g., [14,15].

In [16,17] this latter possibility of a unified interaction
scheme between dark energy and dark matter has been
followed. The background for the interaction itself was
given by relativistic hydrodynamics theory for the dark
energy component and a relativistic kinetics framework
for the dark matter component. Baryonic matter is negli-
gible in the context of cosmological dynamics and so it has
been left out in the scheme. The interaction itself between
both components has been provided by an Archimedean-
type four-force, a direct generalization of the Archimedean
buoyancy law, inwhich the three-force is proportional to the
gradient of the pressure. The dark energy pressure is of the
same order as the dark energy-density and for this reason,
the influence of the Archimedean-type force on the dark
matter component can be important. Now, the dark energy
pressure can be negative, in which case the Archimedean-
type force can be negative, instead of positive as in the usual
buoyancy force case. In the case the pressure changes sign
as the universe evolves, there appear several different stages
in its acceleration, in which the acceleration itself can
change sign. It was further shown in [16,17] that the
Archimedean-type force is able to distribute between the
two fluid components the corresponding energy content of
the universe, which in turn guides the whole evolution of
the universe, in its one or several stages of acceleration.
Multistage universes have also appeared in [18].

B. Nonminimal coupling

The way in which the electromagnetic field couples to
gravity is an open question. Usually it is assumed a mini-
mal coupling where simple flat spacetime derivatives in-
volving the field are replaced by covariant derivatives but
this might not be so. For instance, one can replace the flat
spacetime derivatives by covariant derivatives along with
terms involving the curvature tensor and its contractions,
yielding a nonminimal coupled theory. In a gravitational
strong regime, like in the vicinity of black holes or in a
cosmological context, these additional terms, if present,
can be felt and are important (see, e.g., original papers and
reviews [19–40]).

A simple and most fruitful nonminimal theory, a non-
minimal Einstein-Maxwell theory, possesses an action
with a Lagrangian which includes a linear combination
of three cross-invariants, namely, q1RFmnF

mn,
q2R

ikFimFkng
mn, and q3R

ikmnFikFmn, where q1, q2, and

q3 are free parameters. The scalars appearing in the
Lagrangian are linear in the Riemann tensor Ri

kmn, Ricci

tensor Rkn, and Ricci scalar R, and are quadratic in the
Maxwell tensor Fik. An interesting fact about this non-
minimal theory is that the corresponding nonminimal elec-
trodynamic equations have the same form as the equations
for the electrodynamics of anisotropic inhomogeneous
continuous media (see, e.g., [41–43]). This circumstance
makes it possible to consider nonminimal analogs of well-
known phenomena in classical electrodynamics of continu-
ous media, such as birefringence induced by curvature
[30], anomalous behavior of electric and magnetic fields
nonminimally coupled to the gravitational radiation [44],
curvature-induced Cherenkov effects [45], and optical ac-
tivity in a vacuum [46]. Of course, the variety of non-
minimal effects depends on the spacetime of the model
and its symmetries.
Since electromagnetic waves, from radio waves, to light,

to gamma rays, are a very important source of information
about the universe, it is worthwhile to study the changes
that might operate in a universe with a nonminimal cou-
pling between the electromagnetic and gravitational fields.

C. Nonminimal electromagnetic wave propagation in
an expanding universe with a cosmic dark fluid with
Archimedean-type interaction, and unlighted epochs

1. Prologue

In a generic gravitational background field, electromag-
netic waves nonminimally coupled propagate with a ve-
locity which differs from the velocity of light in a vacuum.
These waves, influenced by tidal interactions induced
by curvature, do not travel along null geodesics of the
background spacetime. Thus, nonminimal coupling may
produce significant changes in the propagation of electro-
magnetic waves. It is therefore worthwhile to study this
coupling in a cosmological context.
In cosmology, in particular, when one deals with a spatially

homogeneous isotropic expansion for the universe, one is
faced with electromagnetic effects, possibly nonminimal, of
two types: first, the phase and group wave velocities depend
on the cosmological time, and second, the amplitude and
energy-density of the electromagnetic waves decrease with
time. Different aspects of these two phenomena have already
been studied within a nonminimal setting. For instance, in
[38] the deviation of the photon velocity from the velocity
of light in vacuum was estimated in the framework of
Drummond and Hathrell’s approach [21].

2. Motivation

We are interested here in developing the study of the
propagation of electromagnetic waves nonminimally
coupled to the gravitational field in an isotropically ex-
panding universe. Since cosmological models with dark
fluid interaction are of great interest, such as those studied
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in [16,17], there are now new motives to study anew the
propagation of these electromagnetic waves nonminimally
coupled to the gravitational field in an isotropically ex-
panding universe governed by a dark fluid. We mention
three such motives.

The first motive is related with the synergy between
nonminimal electromagnetic wave propagation and a cos-
mology in which a dark fluid (i.e., a fluid with two compo-
nents, namely, dark energy plus dark matter) plays a major
role [16,17]. In our nonminimal theory there are three
coupling constants q1, q2, and q3. These nonminimal con-
stants can be determined directly from a more fundamental
theory, as was done in the case of quantum electrodynamics
vacuum polarization effects in a curved background by
Drummond and Hathrell [21], or they can be considered
as phenomenological inputs. Of course, the results for q1,
q2, and q3, in [21] should be thought of as providing a
portion of the whole values to the three constants, since
other effects can provide curvature-induced interactions
between the fields, and all the effects should be summed
together. Our idea here is that a dark fluid can also support
nonminimal interactions. Thus, we consider the parameters
q1, q2, and q3 to be phenomenologically introduced and do
trust that a mechanism of nonminimal coupling between
electromagnetism and gravity via a dark fluid can be clari-
fied in the future. In other words, if a dark fluid, as amedium
with unusual properties, can act as a mediator of nonmini-
mal coupling between photons and gravitons, we expect
that the coupling parametersq1,q2, andq3will be estimated
theoretically and established from observations.

The second motive is related to the existence of un-
lighted epochs in our models. The nonminimal coupling
of the electromagnetic waves with the gravitational field
can be codified in terms of an effective time-dependent
refraction index nðtÞ, where t denotes cosmological time.
From this, we will show that for specific values of the
nonminimal parameters q1, q2, and q3, n

2ðtÞ can be nega-
tive during some finite time interval, and can either vanish
or take infinite values at some transition points tðsÞ, i.e.,
points where the sign of n2ðtÞ changes, the subscript s,
labeling the several possible transition points s ¼ 1; 2; . . .
and denoting sign change. This means that the universe can
pass through epochs when electromagnetic waves cannot
propagate as their phase velocity is a pure imaginary
quantity during this period of time. Taking into account
that in order to read the history of the universe one should
reconstruct the sequence of the events by using the whole
spectrum of electromagnetic radiation, we coin such
epochs as unlighted epochs, since portraits of the universe
of those epochs cannot be available. Moreover, the equa-
tions for trapped surfaces in the universe have here the
form t ¼ tðsÞ, and they are time-like in contrast to the

standard space-like ones that appear in black hole forma-
tion. The use of the term unlighted epoch is then well fit,
since it distinguishes clearly the two situations, namely

unlighted epochs in the universe versus trapped surfaces in
black holes.
The third motive is determined by the necessity to divide

properly the history of the universe into epochs according
to various physical scenaria. Since the transition points in
the universe history are fixed by the critical temperatures
TðcÞ of some basic physical processes, one should link the

temperature evolution TðtÞ and the cosmological time t by
using the cosmological scale factor aðtÞ. When the cosmo-
logical time scale is defined upon using relic cosmic mi-
crowave background photons traveling along null geodesic
lines, the corresponding law is very simple, TðtÞaðtÞ ¼
Tðt0Þaðt0Þ, where t0 is some reference time, like now,
say. On the other hand, when we take into account a non-
minimal coupling between photons and gravitons, the cor-
responding link between the temperature TðtÞ and the scale
factor aðtÞ is much more sophisticated. Indeed, it is deter-
mined not only by aðtÞ, but also by its first and second
derivatives, _aðtÞ and €aðtÞ, respectively. In other words, the
temperature TðtÞ is tied to the scale factor aðtÞ, the Hubble
function HðtÞ � _a

a and the acceleration parameter�qðtÞ �
€a

aH2 . This fact, of course, should induce novel and interest-

ing features.

3. This work

In [16,17] a cosmological model based on a dark fluid
made of two components, the dark energy, considered as
the fluid substratum, and the dark matter, described in
the framework of kinetic theory, interacting via an
Archimedean-type force was considered. The evolution
models for the universe were classified in terms of the
admissible transition points, i.e., the points in which an
accelerated expansion of the universe is changed to a
decelerated expansion and vice versa. This classification
is based on the analysis of the function acceleration pa-
rameter �qðtÞ � €a

aH2 . Now, we find here that the function

n2ðtÞ, describing the behavior of the effective refraction
index, also includes the functions HðtÞ and�qðtÞ. Thus, in
order to analyze non-minimal light propagation, it is useful
to use n2ðtÞ instead of �qðtÞ. In this work we study,
analytically and numerically, the propagation of electro-
magnetic waves nonminimally coupled, along with their
phase and group velocities, in six cosmological models
based on a dark fluid which self-interacts through an
Archimedean-type force [16,17]. This work is thus an
interesting sequel of [16,17].

4. The organization of the paper

The paper is organized as follows. In Sec. II, we intro-
duce the cosmological model. In Sec. II A, we give the
cosmological model itself and recall the basic formulas of
the Archimedean-type model, which are necessary for
further numerical analysis. In Sec. II B, we give the basic
setup for nonminimal interaction and light propagation. In
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Sec. II C, using the master equations of nonminimal elec-
trodynamics we reconstruct the effective dielectric and
magnetic permeabilities, the effective refraction index
nðtÞ, the effective (optical) metric in terms of the scale
factor aðtÞ, the Hubble function HðtÞ, acceleration
parameter �qðtÞ, and the three nonminimal coupling phe-
nomenological constants q1, q2, and q3. We also discuss
the refraction index nðtÞ, focus on the derivation of the
expression for the group velocity of the waves (i.e., the
velocity of energy transfer) using the analogy with electro-
dynamics of continua, and define unlighted epochs. In
Sec. III, we make an analytical study of the unlighted
epochs. In Sec. III A, using the Kohlrausch stretched ex-
ponential functions we give the cosmological models fit for
the study, in Sec. III B, we provide the choice for the
nonminimal models, and in Sec. III C, we give some ana-
lytical cosmological examples describing unlighted
epochs. In Sec. IV, we consider the results of numerical
analysis for the refraction index nðtÞ, phase and group
velocities and effective lengths of the photon trips for six
basic Archimedean-type submodels. In Sec. IVA, we dis-
cuss the cosmology, in Sec. IVB, we provide the choice for
the nonminimal models, and in Sec. IVC, the models are
analyzed in detail, including the submodels of perpetually
accelerated universes, periodic and quasiperiodic uni-
verses, and various submodels with one, two, and three
transition points. We also study the photon path length, the
true duration of epochs, and the universe lifetime for these
models. In Sec. V, we draw conclusions. In the Appendix,
we analyze a number of one-parameter examples for which
the coupling constants are linked by two relations moti-
vated physically and geometrically.

II. THE COSMOLOGICAL MODEL

A. Cosmological context

1. The Cosmology

We start from the action functional

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

2�
þ Lmatter

�
; (1)

where R is the Ricci scalar, g is the determinant of the four-
dimensional spacetime metric gik, Lmatter is the matter
Lagrangian which we assume includes a cosmological
constant �, and � ¼ 8�G

c4
with G being Newton’s constant,

and c the velocity of the light. Using the standard variation
procedure with respect to the metric gik one can obtain
Einstein’s equations. Latin indices run from 0 to 3. In the
above we assume that Lmatter, and so the corresponding
energy-momentum tensor, Tmatter

ik , comes from both the

dark energy and dark matter, which together make up
most of the total energy of the universe. Thus, the master
equations for the gravity field are assumed to be the usual
Einstein’s equations,

Rik � 1
2Rgik ¼ �Tmatter

ik ; (2)

where Rik is the Ricci tensor, given by the contraction of
the Riemann curvature tensor Rl

imk.

We use the spatially homogeneous flat metric of
Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) type
given by

ds2 ¼ dt2 � a2ðtÞðdx2 þ dy2 þ dz2Þ; (3)

where we chose units with c ¼ 1. The energy-momentum
tensor is described by the functions �ðtÞ and�ðtÞ, andEðtÞ,
and PðtÞ. The functions �ðtÞ and�ðtÞ describe the energy-
density and pressure of the dark energy, respectively. The
functions EðtÞ and PðtÞ are the energy-density and pressure
of the dark matter, respectively. The cosmological constant
� is incorporated into the dark energy state functions, i.e.,

the term �
8�G is included into � and � [16]. With these

assumptions the equations coming out of Eq. (2) for the
gravitational field read�

_a

a

�
2 ¼ 8�G

3
ð�þ EÞ; (4)

�
_a

a

�
_ þ

�
_a

a

�
2 ¼ � 4�G

3
½ð�þ EÞ þ 3ð�þ PÞ�; (5)

with the dot denoting a derivative with respect to time.

2. Two-component dark fluid: Archimedean-type
interaction between dark energy and dark matter

In order to describe the evolution of several quantities,
in particular, of the refraction index nðtÞ, as this is the
quantity we are interested in, we need the Hubble func-
tion HðtÞ, defined as

HðtÞ � _a

a
; (6)

and the acceleration parameter �qðtÞ,

� qðtÞ � €a

aH2
: (7)

Sometimes it is useful to swap �qðtÞ for _H, given by,

_HðtÞ ¼ �H2ðtÞ½1þ qðtÞ�: (8)

Now, we obtain these functions using an Archimedean-
type interaction between the dark energy and dark matter
model [16,17]. The function HðtÞ can be found from
Eq. (6) and Einstein’s Eq. (4), yielding

H2ðtÞ ¼ 8�G

3
ð�þ EÞ: (9)

The acceleration parameter �qðtÞ can be found from
Eq. (7) and Einstein’s Eq. (5), yielding

� qðtÞ ¼ � 1

2

�
1þ 3

�
�þ P

�þ E

��
: (10)

BALAKIN, BOCHKAREV, AND LEMOS PHYSICAL REVIEW D 85, 064015 (2012)

064015-4



As for the function _HðtÞ, one uses Eqs. (8)–(10) to find

_HðtÞ ¼ �4�Gð�þ Eþ�þ PÞ: (11)

Thus, we need to find the following state functions: the
energy-density of the dark energy �ðtÞ and its pressure
�ðtÞ, the energy-density of the dark matter EðtÞ and its
pressure PðtÞ. The search scheme for these quantities is
the following. First of all introducing a new convenient
variable

x � aðtÞ
aðt0Þ ; (12)

and using the auxiliary formulas

d

dt
¼ xHðxÞ d

dx
; t� t0 ¼

Z ðaðtÞ=aðt0ÞÞ

0

dx

xHðxÞ ; (13)

we find, through some manipulation of Einstein’s equa-
tions a key equation for �ðxÞ
�x2�00ðxÞþ x�0ðxÞð4�þ�Þþ 3ð1þ�Þ�þ 3�0 ¼J ðxÞ;

(14)

a second-order differential equation, linear in the first
and second derivatives, �0 � d

dx� and �00, and non-

linear in the function �ðxÞ. The parameters �, �, and
�0 are the coupling constants involved into the assumed
linear inhomogeneous equation of state, namely,

�ðxÞ ¼ �0 þ ��ðxÞ þ �x
d

dx
�ðxÞ: (15)

This equation links the pressure to the energy-density of
the dark energy (see [16] for details). The source-term
J ðxÞ ¼ J ðx;���ð1Þ;�0Þ in the right-hand side of
(14) is given by the integral

J ðxÞ ¼ �X
ðaÞ
EðaÞ

½x2FðaÞðxÞ�0
2x4

Z 1

0

y4dye��ðaÞ
ffiffiffiffiffiffiffiffi
1þy2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2FðaÞðxÞ

q ; (16)

where we used the definitions

FðaÞðxÞ ¼ 1

x2
expf2V ðaÞ½�ð1Þ ��ðxÞ�g; (17)

EðaÞ �
NðaÞmðaÞ�ðaÞ
K2ð�ðaÞÞ ; �ðaÞ �

mðaÞ
kBTðaÞ

; (18)

K�ð�ðaÞÞ �
Z 1

0
dz cosh�z exp½��ðaÞ coshz�: (19)

Here V ðaÞ are the constants of the Archimedean-type

coupling (see [16] for details), K�ð�ðaÞÞ are the modified

Bessel functions of second kind of order� (we are interested
in the � ¼ 2 case),�ð1Þ � �ðt0Þ is the initial value of the
dark energy pressure, kB is the Boltzmann constant, and
TðaÞ,mðaÞ, andNðaÞ, are the partial temperature, themass, and

the number of particles per unit volume of the sort ðaÞ,

respectively. When the quantity �ðxÞ is found, other state
functions can be calculated using the integrals

EðxÞ¼X
ðaÞ

EðaÞ
x3

Z 1

0
y2dy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þy2FðaÞðxÞ

q
e��ðaÞ

ffiffiffiffiffiffiffiffi
1þy2

p
; (20)

PðxÞ ¼ X
ðaÞ

EðaÞ
3x3

Z 1

0

FðaÞðxÞy4dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2FðaÞðxÞ

q e��ðaÞ
ffiffiffiffiffiffiffiffi
1þy2

p
: (21)

Thus we have formulated our integration scheme. From
here, we want to work out novel features that appear in
such a cosmological context.

B. Nonminimal coupling: setup

Now we want to study light propagation envisaged as a
perturbation in the background cosmological manifold.
This means that the electromagnetic field propagates in a
given geometry, without modifying the geometry itself.
The electromagnetic field is a test field. This is well
justified since it is known that the energy-density of radia-
tion is thoroughly negligible in relation to the dark energy,
dark matter, and baryonic matter. We also assume that the
field is nonminimally coupled and write the electromag-
netic action functional as,

Selectromag ¼ 1

4

Z
d4x

ffiffiffiffiffiffiffi�g
p ðFmnF

mn þRikmnFikFmnÞ:
(22)

Using the standard variation procedure with respect to the
electromagnetic potential four-vector Ai one can obtain the
nonminimally extended Maxwell equations (see, e.g., [43],
see also [34]). Here Fik ¼ @iAk � @kAi is the Maxwell
tensor. Then, the nonminimal Maxwell equations have
the following form:

rkH
ik ¼ 0; rkF

�ik ¼ 0; (23)

where the excitation tensor Hik is linked with the Maxwell
tensor Fmn by a linear constitutive equation

Hik ¼ CikmnFmn; (24)

with the linear response tensor Cikmn given by

Cikmn ¼ 1

2
ðgimgkn � gingkmÞ þRikmn: (25)

The dual tensor F�ik � 1
2 �

ikmnFmn is defined in a stan-

dard way through the Levi-Civita tensor �ikmn. The
tensor Rikmn is the nonminimal susceptibility tensor
decomposed as

Rikmn � q1R

2
ðgimgkn � gingkmÞ

þ q2
2
ðRimgkn � Ringkm þ Rkngim � RkmginÞ

þ q3R
ikmn; (26)
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where q1, q2, and q3 are the phenomenological parame-
ters of the nonminimal coupling, and Rikmn, Rim, and R,
are the Riemann tensor, the Ricci tensor, and the Ricci
scalar of the background cosmological manifold, respec-
tively. It is appropriate here to recall that the contracted
susceptibility tensor Rim satisfies

R im � gknRikmn ¼ 1

2
Rgimð3q1 þ q2Þ þ Rimðq2 þ q3Þ;

(27)

and so vanishes in a generic curved spacetime when the
nonminimal coupling parameters are linked through two
relations 3q1 þ q2 ¼ 0 and q2 þ q3 ¼ 0. Analogously,
the scalar R given by

R � gimgknRikmn ¼ gimRim ¼ Rð6q1 þ 3q2 þ q3Þ;
(28)

has zero value in a generic curved spacetime when
6q1 þ 3q2 þ q3 ¼ 0.

C. Nonminimal light propagation in a cosmological
context: Optical metric and refraction index, phase

and group velocities, and unlighted epochs

1. Optical metric and refraction index

The optical metric—Based on the metric (3) and on the
symmetries of the spacetime one obtains that the nonvan-
ishing components of the nonminimal susceptibility tensor
Rik

mn, see Eq. (26), have the following form:

�R1t
1t ¼ �R2t

1t ¼ �R3t
1t

¼ ð3q1 þ 2q2 þ q3Þ €aaþ ð3q1 þ q2Þ
�
_a

a

�
2
; (29)

�R12
12 ¼ �R13

13 ¼ �R23
23

¼ ð3q1 þ q2Þ €aaþ ð3q1 þ 2q2 þ q3Þ
�
_a

a

�
2
; (30)

where the indices 1, 2, 3 correspond to x, y, z, respectively.
In addition, due to the spacetime isotropy the linear re-
sponse tensor Cikmn can be rewritten in the standard multi-
plicative form

Cikmn ¼ 1

2	ðtÞ ðg
im� gkn� � gin� gkm� Þ; (31)

where

gim� ¼ n2ðtÞ
i
t


m
t � 1

a2ðtÞ ð

i
1


m
1 þ 
i

2

m
2 þ 
i

3

m
3 Þ; (32)

is the so-called associated metric (see [47]), and the func-
tion n2ðtÞ is defined as

n2ðtÞ � "ðtÞ	ðtÞ; (33)

with "ðtÞ and 	ðtÞ given by

"ðtÞ � 1þ 2R1t
1t;

1

	ðtÞ � 1þ 2R12
12: (34)

Taking into account that in a cosmological context the
global velocity four-vector is Ui ¼ 
i

t, one can see that
the associated metric (32) is in fact an optical metric
[48,49] given by

gim� ¼ gim þ ½n2ðtÞ � 1�UiUm: (35)

Its inverse is then

g�km ¼ gkm þ
�

1

n2ðtÞ � 1

�
UkUm; (36)

with

gim� g�km ¼ 
i
k; (37)

holding. The quantity nðtÞ is then interpreted as an effec-
tive refraction index due to its correspondence, in conjunc-
tion with the optical metric gim� , to the effective refraction
in the geometrical optics approximation framework.
Let us see this in detail. In the geometrical optics ap-

proximation, the electromagnetic potential Ak and the field
strength Fkl can be put as follows:

Ak ¼ ~Ake
i�; Fkl ¼ i½pk

~Al � pl
~Ak�ei�;

pk ¼ rk�;
(38)

for some amplitude ~Ak and phase function �. In the lead-
ing order approximation the Maxwell equations (23) re-

duce to Cikmnpkpm
~An ¼ 0, i.e.,

½gim� gkn� � gin� gkm� �pkpm
~An ¼ 0: (39)

Using the optical metric property gim� Um ¼ n2Ui, the

Landau gauge Um ~Am ¼ 0, and the requirement that the
frequency ! � Umpm is nonvanishing, one can show that
Eq. (39) leads to the dispersion equation

gkm� pkpm ¼ 0: (40)

Thus, the propagation of photons nonminimally coupled to
the gravity field is equivalent to their motion along a null
geodesic line in an effective spacetime with metric (35)
(see, e.g., [48,49] for details). In our setting, the refraction
index nðtÞ determines the effective phase velocity of
light in our FLRW-type spacetime, namely, Vph � c

nðtÞ .
Thus, let us consider in more detail the properties of the
quantity n2ðtÞ.
The expression for the refraction index—The square

of the effective refraction index can be obtained from
Eqs. (33) and (34) and is given by

n2ðtÞ ¼ 1� 2ð3q1 þ 2q2 þ q3Þ €a
a � 2ð3q1 þ q2Þð _aaÞ2

1� 2ð3q1 þ q2Þ €a
a � 2ð3q1 þ 2q2 þ q3Þð _aaÞ2

:

(41)

BALAKIN, BOCHKAREV, AND LEMOS PHYSICAL REVIEW D 85, 064015 (2012)

064015-6



Notably, it can be put as a function of the Hubble function
HðtÞ and the acceleration parameter �qðtÞ, defined in (6)
and (7), as well as of two effective nonminimal coupling
constants, Q1 and Q2 given by,

Q1 � �2ð3q1 þ 2q2 þ q3Þ; Q2 � �2ð3q1 þ q2Þ:
(42)

As a function of these quantities Eq. (41) can be rewritten
as

n2ðtÞ ¼ 1þ ½Q2 �Q1qðtÞ�H2ðtÞ
1þ ½Q1 �Q2qðtÞ�H2ðtÞ : (43)

For the cosmological models with a de Sitter-type final
stage (i.e., �qðt ! 1Þ ! 1), Eq. (43) yields n2 ! 1. The
signs and the values of the parameters Q1 and Q2 are not
yet established, but one can discuss several phenomeno-
logical possibilities using geometric analogies and physi-
cal motivations, see the Appendix.

2. Phase velocity and group velocity
(or energy transfer velocity)

The phase velocity of an electromagnetic wave is de-
fined as (c ¼ 1)

Vph � !

k
¼ 1

nðtÞ : (44)

This definition is standard and follows directly from the
dispersion relation [50].

On the other hand, the definition of group velocity, or
energy transfer velocity, V�, is connected with the defini-
tion of the electromagnetic field energy flux, and this
problem requires a preliminary discussion. First of all,
one should state that formally the propagation of electro-
magnetic waves takes place in isotropic backgrounds with
a refraction index equal to one, but under the influence of a
nonminimal coupling the interaction can be reformulated
in terms of an effective refraction index nðtÞ, which de-
pends on time through the Riemann tensor components.
Since, as we have seen, the nonminimal coupling of pho-
tons to gravity is equivalent to the consideration of some
isotropic dispersive medium, it seems reasonable to take
the relevant stress-energy tensor of the electromagnetic
field for the definition of the energy transfer velocity V�.
Now, there is a number of definitions for the electromag-
netic stress-energy tensor in a medium, the best known are
the ones by Minkowski [51], Abraham [52,53], Grot-
Eringen-Israel-Maugin [54–57], Hehl-Obukhov [58], and
de Groot-Suttorp [59]. The energy flux four-vectors in
these definitions differ from one another. Thus for us a
choice between the several definitions is considered as an
ansatz.

We follow the Hehl-Obukhov definition [58], according
to which the stress-energy tensor formally is as in vacuum,

Telectromag
ik , i.e., Telectromag

ik � 1
4gikF

mnFmn � FimFk
m, and

thus is symmetric, traceless, and does not depend on the
macroscopic velocity of the medium. Nevertheless, the
ponderomotive force

Fl ¼ rkT
electromagkl ¼ Fl

mrkðHkm � FkmÞ (45)

is nonvanishing. In contrast to the vacuum case, this
stress-energy tensor is not a conserved quantity, its four-
divergence is equal to the ponderomotive force. According
to this definition [58], the energy flux Ii is

Ii � ðgip �UiUpÞTelectromag
pq Uq ¼ �ipqBpEq; (46)

where

�ipq � �ipqsUs; Bp � F�
pjU

j; Eq � FqjU
j;

(47)

and the energy-density scalar W is

W � UpT
electromag
pq Uq ¼ � 1

2
ðEmEm þ BmBmÞ: (48)

When we deal with test electromagnetic waves in an iso-
tropic universe, the necessary quantities can be found as
follows. The nonminimally extended Maxwell equation
can be rewritten now in the form

rk

�
1

	
Fik þ n2 � 1

	
ðFi

mU
k � Fk

mU
iÞUm

�
¼ 0; (49)

where 	ðtÞ and n2ðtÞ are given by (33) and (34). Let the
direction along which the electromagnetic wave propa-
gates be x1, say. Then Eq. (49) admits the following
solution for the potential four-vector,

Aiðt; x1Þ ¼ 
2
i bðtÞ cos�; (50)

with

� ¼ �ðt0Þ þ k1½x1 � fðtÞ�; (51)

and where k1 is a constant wave-vector, bðtÞ the amplitude
factor, and fðtÞ the frequency function. These satisfy the
following equations:

df

dt
¼ 1

an

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
a	

bk21

�
d

dt

��
an2

	

�
db

dt

�s
; (52)

d

dt

��
b2an2

	

�
df

dt

�
¼ 0: (53)

In the geometrical optics approximation, i.e., for short

waves, one has (k1 ! 1) and (52) gives _f ¼ 1
an , i.e.,

the quantity !ðtÞ � k1 _f ¼ k1
an plays the role of a

time-dependent frequency, the quantity kðtÞ � k1
a is
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a wave-vector modulus, and the dispersion relation takes

the form !ðtÞ ¼ kðtÞ
nðtÞ . In this approximation, Eq. (53) gives

bðtÞ ¼ b0

ffiffiffiffiffiffiffi
	ðtÞ
nðtÞ

q
.

From a physical point of view (see, e.g., [50]) it is
reasonable to calculate the nonvanishing energy flux
four-vector component and the energy-density scalar aver-
aged over a wave period, in which case one can use
hcos2�i ¼ hsin2�i ¼ 1

2 and hcos� sin�i ¼ 0, where h i
denotes average over a period. In the geometrical optics
approximation the energy flux Ii and the energy-density
scalar W have the form

hI1i ¼ � 1

a4
hFt2F12i ¼ b2k21

2na5
; (54)

and

hWi ¼ 1

2a2
hF2

t2i þ
1

2a4
hF2

12i ¼
b2k21ðn2 þ 1Þ

4a4n2
: (55)

Thus, the physical component of the energy transfer ve-
locity V� is

V� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�g11hI1ihI1i

p
hWi ¼ 2n

n2 þ 1
: (56)

The function V�ðnðtÞÞ ¼ 2n
n2þ1

is appropriate for the de-

scription of the energy transfer velocity, since depending
on the refraction index n it vanishes in the limits n ! 0
and n ! 1. In addition, its value is maximum in a pure
vacuum since V� ¼ 1 when n ¼ 1, and generically sat-
isfies the inequality jV�ðnðtÞÞj � 1. Below, to simplify
terminology, we indicate this energy transfer velocity as
group velocity Vgr, i.e., Vgr � V�, and so

Vgr ¼ 2n

n2 þ 1
: (57)

3. Unlighted cosmological epochs: definition

It is remarkable that the square of the effective refraction
index can take negative values, n2ðtÞ< 0, for some set of
the parameters Q1 and Q2. We call the time intervals for
which n2ðtÞ< 0 as unlighted epochs, since during these
periods of time the refraction index is a pure imaginary
quantity, and the phase and group velocities of the electro-
magnetic waves are not defined. The function n2ðtÞ can
change sign at the moments tðsÞ of the cosmological time

when the numerator or the denominator in Eq. (43) vanish.
When the numerator vanishes, one has nðtðsÞÞ ¼ 0,
VphðtðsÞÞ ¼ 1, and VgrðtðsÞÞ ¼ 0. When the denominator

vanishes, one has nðtðsÞÞ ¼ 1, VphðtðsÞÞ ¼ 0, and

VgrðtðsÞÞ ¼ 0. In both cases the unlighted epochs appear

and disappear when the group velocity of the electro-
magnetic waves vanishes, i.e., at these points there is no
energy transfer. In our terminology the times tðsÞ are the

unlighted epochs boundary points. For this reason, the
condition VgrðtðsÞÞ ¼ 0 sets the criterion for the unlighted

epoch appearance or disappearance. In other words, the
unlighted epochs start and finish, when the associated
metric, i.e., the optical metric, given in Eq. (32) becomes
singular.
In our cosmological context we distinguish three types

of unlighted epochs:
(1) Unlighted epochs of the first type: These epochs

start at tð1Þ ¼ 0 with n2ð0Þ< 0 and finish with

n2ðtð2ÞÞ ¼ 0.
(2) Unlighted epochs of the second type: These epochs

start at tð1Þ > 0 with n2ðtð1ÞÞ ¼ 0 and finish at

tð2Þ > tð1Þ with n2ðtð2ÞÞ ¼ 0.
(3) Unlighted epochs of the third type: These epochs

appear when at least one boundary point has a
refraction index with an infinite value, i.e.,
n2ðtð1ÞÞ ¼ 1 or n2ðtð2ÞÞ ¼ 1. Of course, in this

type both quantities may be infinite.

Clearly, only one unlighted epoch of the first type can exist,
whereas the number of unlighted epochs of the second and
third types are predetermined by the guiding parameters
Q1 and Q2.

III. UNLIGHTED COSMOLOGICAL EPOCHS:
ANALYTICAL STUDY

A. The cosmology

In order to illustrate analytically the physics of unlighted
epochs, let us consider a scale factor aðtÞ given by a
stretched exponential function, namely,

aðtÞ ¼ a0 expfðH tÞ�g; (58)

for some constant H and exponent �. This function was
introduced by Kohlrausch [60] in 1854 and now is system-
atically used in various physical and mathematical contexts
(see, e.g., papers concerning the applications of the
Kohlrausch-Williams-Watts (KWW) function [61,62]).
When � ¼ 1 the function (58) coincides with the standard
de Sitter exponent. When � ¼ 2 one deals with an anti-
Gaussian function obtained in [16] as an exact solution
of a model with Archimedean-type interaction between
dark energy and dark matter. This stretched exponent
also appeared in [40] in the context of generalized
Chaplygin gas models. For the function (58) one obtains
from Eqs. (6)–(8),

HðtÞ ¼ �H �t��1; �qðtÞ ¼ 1þ �� 1

�
ðH tÞ��;

_HðtÞ ¼ �ð�� 1ÞH �t��2: (59)
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It is reasonable to assume that � is positive in order to guarantee that aðt ! 1Þ ! 1 and�qðt ! 1Þ ! 1. Clearly, when
0< �< 1, _H is negative, and the Hubble function HðtÞ vanishes at t ! 1. Our ansatz is that � � 2. Note that for � < 2
one has _Hðt ! 1Þ ! 0, and thus, n2ðt ! 1Þ ! 1. Let us focus on the properties of the function n2ðtÞ for a scale factor of
the Kohlrausch type Eq. (58),

n2ðtÞ¼ ðH tÞ2��þ�2H 2ðQ1þQ2ÞðH tÞ�þ�ð��1ÞH 2Q1

ðH tÞ2��þ�2H 2ðQ1þQ2ÞðH tÞ�þ�ð��1ÞH 2Q2

: (60)

When � ¼ 1, there are no unlighted epochs, since
n2ðtÞ � 1. When � ¼ 2, both the numerator and the de-
nominator in (60) are quadratic functions of t, which
means that depending on the values of the parameters Q1

and Q2, one can find zero, one, two, three, or four bound-
ary points tðsÞ. In other words, the number of unlighted
epochs can be zero, one, or two. These models represent
perpetually accelerated universes since �qðtÞ is non-
negative for t � 0. When � is a perfect rational � ¼ m1

m2

with m1 and m2 natural numbers and m1 <m2, the nu-
merator and denominator of the function (60) can be
rewritten as a polynomial of order 2m2 �m1. Such a
polynomial has 2m2 �m1 roots, part of them, say k, can
be real and positive defining the corresponding number of
unlighted epochs.

B. The choice for the nonminimal parameters

In order to develop the unlighted epochs in the cosmo-
logical models of interest one has to choose the nonmini-
mal parameters. Here we give two examples which are
enough to have a feeling of the physics. In one case we
put Q1 ¼ �Q2, and define Q � Q1. In the other case we
choose Q1 ¼ � 81

800H 2 and Q2 ¼ � 729
800H 2 .

C. Two cosmological models and their unlighted epochs

1. Universe with � < 2 and Q1 ¼ �Q2 � Q

We now put Q1 ¼ �Q2 and define Q ¼ Q1. Then, the
square of the refraction index in Eq. (60) has now the form

n2ðtÞ ¼ ðH tÞ2�� þ �ð�� 1ÞH 2Q

ðH tÞ2�� � �ð�� 1ÞH 2Q
: (61)

There is now only one time moment t ¼ tð1Þ when n2 is

either equal to zero or infinite. Equivalently, there is only
one moment when the group velocity takes zero value.
When ð�� 1ÞQ< 0, the denominator is positive, n2ð0Þ ¼
�1< 0, and the numerator vanishes at tð1Þ ¼ 1

H
�

½�H 2jð�� 1ÞQj�1=ð2��Þ; clearly, we deal with an un-
lighted epoch of the first type, see the dashed line in
Fig. 1 left-hand panel. When ð�� 1ÞQ> 0, the numerator
is positive, n2ð0Þ ¼ �1< 0, and the denominator vanishes

at tð1Þ ¼ 1
H

½�ð�� 1ÞH 2Q�1=ð2��Þ; clearly, we deal with

an unlighted epoch of the third type with n2ðtð1ÞÞ ¼ 1, see

the solid line in Fig. 1 left-hand panel.

2. Universe with � ¼ 2
3 and Q1 ¼ � 81

800H 2 , Q2 ¼ � 729
800H 2

Using the auxiliary variable x � ð27H tÞ2=3 we can
rewrite the square of the refraction index in Eq. (60) in
the following form:

n2ðtÞ ¼ x2 þ 4H 2ðQ1 þQ2Þx� 18H 2Q1

x2 þ 4H 2ðQ1 þQ2Þx� 18H 2Q2

: (62)

It is easy to find general conditions when the denomi-
nator has no roots and the numerator has two positive

FIG. 1. A plot of n2ðtÞ as a function of time t in the
Kohlrausch-type model. Left panel: Contains sketches of un-
lighted epochs of the first and third types. For both types the
Kohlrausch parameter is set to � ¼ 1:000 01. The nonminimal
parameters are the following: Q2 ¼ �Q1 ¼ 10 000 for the
model of the first type, andQ2 ¼ �Q1 ¼ �10 000 for the model
of the third type. The unlighted epoch of the first type appears in
the plot as a dashed curve. It is continuous, it starts with a
negative value, n2ð0Þ ¼ �1, and has one zero (the point in which
the phase velocity is infinite and the group velocity is vanishing).
The unlighted epoch of the third type appears in the plot as a
solid curve. It is discontinuous, the function n2ðtÞ has one infinite
jump (in this point the phase and group velocities are vanishing).
Right panel: Illustrates an unlighted epoch of the second type
with parameters � ¼ 2=3, Q1 ¼ �81=800, Q2 ¼ �729=800.
There are two points, in which the refraction index and group
velocity vanish and the phase velocity becomes infinite.
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roots. For instance, Fig. 1 right-hand panel, illustrates the
case with Q1 ¼ � 81

800H 2 and Q2 ¼ � 729
800H 2 . We deal

now with an unlighted epoch of the second type, which

starts at tð1Þ ¼ 1
H

½ 340 ð3�
ffiffiffi
5

p Þ�3=2, and finishes at tð2Þ ¼
1
H

½ 340 ð3þ
ffiffiffi
5

p Þ�3=2.

IV. UNLIGHTED COSMOLOGICAL EPOCHS:
NUMERICAL STUDY. THE REFRACTION INDEX,

PHASE AND GROUP VELOCITIES FOR SIX
MODELS AND THE EFFECTIVE PHOTON

PATH LENGTH

A. The cosmology

In [16,17] several cosmological models were presented
through numerical results. Here we study nonminimal light
propagation in six such models. They include, perpetually
accelerated universes, periodic universes, universes with
one transition, two transition and three transition points,
and quasiperiodic universes.

B. The choice for the nonminimal parameters

To study nonminimal light propagation in the universes
indicated above, there is a plethora of possibilities to make
a choice of the nonminimal parameters. A sample of those
possibilities is presented in the Appendix. For our study we
make one choice, bearing in mind that the other choices
will reproduce qualitatively the same results. We choose
that the nonminimal susceptibility scalar R vanishes,
R ¼ 0. From Eq. (28) this means 6q1 þ 3q2 þ q3 ¼ 0
and thus, from Eq. (42), one has Q1 þQ2 ¼ 0. Putting
Q � Q1 ¼ �Q2, one obtains in this one-parameter ex-
ample the following expression for n2ðtÞ:

n2ðtÞ ¼ 1�QH2ðtÞ½1þ qðtÞ�
1þQH2ðtÞ½1þ qðtÞ� ¼

1þQ _HðtÞ
1�Q _HðtÞ : (63)

Now that we see an explicit expression for n2ðtÞ our
choice can be motivated as follows. First, it is an ex-
ample that best illustrates the several unlighted epochs.
This is because only one function, _H, guides the be-
havior of the effective refraction index. Second, when
t ! 1, _H ! 0 and thus n2 ! 1 providing Vph ! Vgr ! 1

in our late-time Universe, as it should be. We will consider
this one-parameter example as the one which will provide a
substratum for our numerical analysis.

C. Six cosmological models, their unlighted epochs,
and the photon path length

The results of our numerical calculations for the six
basic cosmological models in which an Archimedean-
type interaction between dark energy and dark matter plays
a main role are presented in Figs. 2–7. The panels (a) of the
figures display the plots of _HðtÞ. The panels (b) display the
plots of the square of the refraction index n2ð�Þ, where � is

a logarithmic time defined by � � logx, with x � aðtÞ
aðt0Þ . For

the calculations we use formula (63) putting there the
values of the guiding parameter Q for which the square
of the refraction index n2ðtÞ can be negative for some
period of time. The panels (c) display the plots of the

FIG. 2. Perpetually accelerated universe. The plots in panels
(a), (b), (c), and (d) are presented for a typical model with the
following parameters: � ¼ 0:35, � ¼ �0:99 (i.e., 3�þ � ’
0:06> 0), V ð0Þ ¼ 1, Eð0Þ ¼ 0:0205, �ð0Þ ¼ 1, �� ¼
0:333 � 10�4, and�0ð1Þ ¼ �1. Panel (a): Illustrates the behavior
of the function _HðtÞ, the plot of which has a finite number of
visible damped oscillations, and tends to zero asymptotically; it
relates to the case of the non-negative acceleration parameter
�qðtÞ, i.e., there are no transition points in this model, there is no
partition of the universe history into epochs, but there are a few
eras, the start and finish of which are marked by the extrema of
the function _H. Panel (b): The plot of the square of the refraction
index n2ð�Þ is presented in the panel (b) for the parameter
Q ¼ 0:7. It contains at least three eras, in which the refraction
index exceeds one, three eras with n < 1, and n2ð�Þ tends
asymptotically to one at t ! 1. There is an unlighted epoch
of the first kind, which is characterized by negative values of the
function n2ðtÞ; it starts at t ¼ 0 and extends to the middle of the
first era. At the end of this unlighted epoch the refraction index
takes zero value, and starting from this point electromagnetic
waves can propagate and transfer information into the universe.
Panel (c): This panel displays the phase velocity of the electro-
magnetic waves as a function of time; the plot relates to a
parameter Q ¼ �0:55; this choice guarantees that n2ðtÞ is posi-
tive, and Vph is a real function everywhere. The plot of the phase

velocity reflects the history of universe, i.e., it has extrema just at
the moments when one era is changing into another. Clearly, the
waves move more slowly in the early universe, when the
curvature is large, then there are few eras with oscillations of
the phase velocity near the vacuum speed of light, and finally,
Vph tends to one asymptotically. Panel (d): The last panel shows

the behavior of the group velocity of the electromagnetic waves;
the calculations are made for the same values of the guiding
nonminimal parameters as for the phase velocity. Clearly, Vgr

does not exceed one, it tends to one asymptotically, and an
energy transfer takes place slowly in the early universe.
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electromagnetic wave phase velocity. Here we use values
ofQ, for which n2ðtÞ> 0 and the phase velocity happens to
be a pure real function. The panels (d) display the plots of
the group velocity for the same values of the guiding
parameters Q. Additional internal windows clarify fine
details of the plots.

1. Perpetually accelerated universe

The first class of models is the class of perpetually
accelerated universes. This class arises when �qðtÞ is
non-negative for t � 0 and so there are no points in which
�qðtÞ could change sign. In this sense the history of this
class of universes includes only one epoch.

In this model the dark energy-density � is always non-
negative and the dark energy� is nonpositive, see [17] for
more details. Although there is only one epoch for these
universes, one can divide this epoch into eras. The extrema
of the functions �qðtÞ, HðtÞ, �ðtÞ, and �ðtÞ give the
boundary points between the eras, see [17] for more de-
tails. We do not plot �qðtÞ, HðtÞ, �ðtÞ, and �ðtÞ, see [17]
for such plots.

We are interested in light propagation and unlighted
epochs. So we plot _HðtÞ, the square of the refraction index
n2ðtÞ, the phase velocity VphðtÞ, and for the group velocity

VgrðtÞ. Figure 2 shows that indeed for the particular case

chosen there are at least six eras which appear visually.
The first era is an era of superacceleration. During this

era the function _HðtÞ grows monotonically and reaches its
global maximum, as it is shown in the panel (a) of Fig. 2.
The same behavior happens for the square of the refraction
index n2, for the phase velocity VphðtÞ, and for the group

velocity VgrðtÞ, as it is shown in panels (b), (c), and (d) of

Fig. 2, respectively.
The second, third, and following eras appear one after

the other as the parameters �qðtÞ, HðtÞ, �ðtÞ, and �ðtÞ of
the universe relax to a state with asymptotically constant
positive values, namely, �q1, H1, �1, and negative �1.
For the parameters that guide the properties of light propa-
gation we see from Fig. 2 that _HðtÞ asymptotically van-
ishes, see panel (a), and the refraction index, the phase
velocity and the group velocity tend quasiperiodically
asymptotically to one, see panel (b), (c), and (d),
respectively.

Other features can be mentioned: (i) There are at least
three eras, in which the refraction index exceeds one,
n > 1, and three eras with n < 1. (ii) There is one unlighted
epoch of the first type, which is characterized by negative
values of the function n2ðtÞ. This unlighted epoch starts at
t ¼ 0 with a nonzero value of n2, and extends up to the
middle of the first era. At the end of this unlighted epoch
the refraction index takes zero value (the corresponding
effective phase velocity would be infinite), and starting
from this point the electromagnetic waves can propagate
and transfer information into the universe. (iii) Clearly, the
waves move more slowly in the early universe, when the

curvature is large. (iv) Let us note that the plot of the phase
velocity properly reflects the history of the universe, i.e., it
has extrema just at the moments when one era is changing
into another.

2. Periodic universe

The second class of models is the class of periodic
universes. This class arises when the equation qðtÞ ¼ 0
has an infinite number of roots, and the history of the
universe splits into an infinite number of identical epochs
with accelerated and decelerated expansions.
The acceleration parameter�qðtÞ, and the Hubble func-

tion HðtÞ, oscillate with fixed frequency and amplitude
after the second transition point [17]. These oscillations
are reflected in the oscillations of the energy-density and
pressure of the dark energy. We do not plot �qðtÞ, HðtÞ,
�ðtÞ, and �ðtÞ, see [17] for such plots.
We are interested in light propagation and unlighted

epochs. From the plots of Fig. 3 we see that _HðtÞ also

FIG. 3. Periodic universe. The plots in panels (a), (b), (c), and
(d) are presented for a typical model with the following parame-
ters: � ¼ 0:1, � ¼ �0:299 999 (i.e., 3�þ � ’ 10�6 > 0),
V ð0Þ ¼ 1, Eð0Þ ¼ 0:0205, �ð0Þ ¼ 1, �� ¼ 0:333 � 10�4, and

�0ð1Þ ¼ 0:01. The model is characterized by an infinite number
of transition points, in which the acceleration parameter �q
changes sign. Panel (a): The function _HðtÞ (for Q ¼ 15) grows
monotonically in the early universe and then oscillates near zero
value. Panel (b): The plot of the function n2ðtÞ displays, first, an
unlighted epoch of the first type, then grows monotonically up to
the end of the first era, and then oscillates near the value n ¼ 1.
Panel (c): This is a plot of the phase velocity of the electromag-
netic waves (for Q ¼ �0:25). The curve follows the plot of _H,
indicating the starting and finishing points of the corresponding
epochs in the history of the universe. Panel (d): This is a plot of
the group velocity. It shows it also grows monotonically during
the first era, then starts to oscillate so that its maximal value
reaches the speed of light in a vacuum.
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oscillates, which in turn reflects again in the behavior of the
refraction index n2ðtÞ, the phase velocity VphðtÞ, and the

group velocity VgrðtÞ.
Other features can be mentioned: The plot of the func-

tion n2ðtÞ, see panel (b) of Fig. 3, displays an unlighted
epoch of the first kind, which extends from t ¼ 0 into the
middle of the first era.

3. One transition point universe

The third class of models is the class of universes with
one transition point during their evolution. This class arises
when the acceleration parameter �qðtÞ is a deformed
Heaviside step-function, or a hyperbolic tangent (see [17]).

The acceleration parameter �qðtÞ has the property that
the change of a deceleration epoch into an acceleration
epoch takes place only once in a narrow period of time, and
the plot looks like a typical plot for a phase transition. The

second epoch, characterized by an accelerated expansion,
looks like the de Sitter-type stage with �þ� ¼ 0 and
vanishing E and P. The first and second epochs are not
divided into eras within this model. We do not plot �qðtÞ,
HðtÞ, �ðtÞ, and �ðtÞ, see [17] for such plots. We are
interested in light propagation and unlighted epochs.
Figure 4 illustrates this class of models.

4. Two transition points universe

The fourth class of models is the class of universes with
two transition points and one extremal point during
their evolution. This class arises when the acceleration
parameter �qðtÞ has a double root, i.e., an extremal point,
inside the second epoch of acceleration. This model is also
distinguished by the fact that the dark matter pressure
reaches a maximum at the end of the first era of the first
acceleration epoch. We do not plot �qðtÞ, HðtÞ, �ðtÞ, and
�ðtÞ, see [17] for such plots.
We are interested in light propagation and unlighted

epochs. Figure 5 illustrates this class of models. The so-
phisticated behavior that appears in this model is reflected

FIG. 5. Two transition points universe. This gives an example
of a universe evolution with two transition points and one
extremal point. The plots in panels (a), (b), (c), and (d) are
presented for a typical model with the following parameters:
� ¼ 0:1, � ¼ �0:08, V ð0Þ ¼ 1, Eð0Þ ¼ 0:0205, �ð0Þ ¼ 1, �� ¼
0:333 � 10�4, and �0ð1Þ ¼ �15. Panel (a) displays the function
_H. In panel (b) one can see that the plot for the square of the
refraction index n2ðtÞ contains an unlighted epoch of the second
type since the function n2ðtÞ, here for Q ¼ �0:28, vanishes and
then takes negative values at the end of the first era of the first
epoch, in contrast to the case, when an unlighted epoch appears
at t ¼ 0. In panel (c) the phase velocity is plotted. Other new
feature is that in the early universe the group velocity, calculated
here for Q ¼ 0:2, is close to the vacuum speed of light, and then
this velocity reaches the same value asymptotically at t ! 1, see
panel (d).

FIG. 4. One transition point universe. This is an example of a
universe with one transition point in its evolution. The plots in
panels (a), (b), (c), and (d) are presented for a typical model with
the following parameters: � ¼ 0:1, � ¼ 50, V ð0Þ ¼ 1, Eð0Þ ¼
0:0205, �ð0Þ ¼ 1, �� ¼ 0:333 � 10�4, and�0ð1Þ ¼ �5. The plots

of all functions presented in the panels (a), (b), (c), and (d), look
like the plot for the hyperbolic tangent. The plots have no
extrema and illustrate the one-fold transition from a universe
expanding with negative acceleration to a universe with accel-
erated expansion. The history of this universe is clearly divided
into two epochs of acceleration/deceleration without distin-
guished eras inside. This is clearly seen in panel (a) for _H.
During the first epoch of deceleration an unlighted epoch can
arise, see panel (b) for which Q ¼ 1 was chosen, and both phase
and group velocities are less than the speed of light in a vacuum.
The second epoch can be characterized by parameters which
are close to cosmological values measured nowadays. In par-
ticular, the phase and group velocities during all the second
epoch, see panels (c) and (d) where Q ¼ �0:35 was chosen, are
close to one.
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explicitly in the form of the plot _HðtÞ, see Fig. 5. In this
scenario there is an unlighted epoch of the second kind,
where the function n2ðtÞ vanishes at some t, with t > 0,
then takes negative values at the end of the first era of the
first epoch, and then vanishes again. Thus this unlighted
epoch is separated by two points, where the refraction
index vanishes and the effective phase velocity takes infi-
nite values.

5. Three transition points universe

The fifth class of models is the class of universes with
two epochs of decelerated expansion and two epochs of
accelerated evolution. This class arises when the accelera-
tion parameter�qðtÞ is of the so-calledN -type [17]. This
model is also distinguished by the fact that the start of the
universe’s expansion relates to the deceleration epoch,
which is then replaced by a short acceleration epoch. The
second and final accelerated epoch is of the de Sitter type.
We do not plot �qðtÞ, HðtÞ, �ðtÞ, and �ðtÞ, see [17] for
such plots. We are interested in light propagation and
unlighted epochs. Figure 6 illustrates this class of models.
The unlighted epoch harbors now the first and second
epochs of deceleration, as well as the first epoch of accel-
erated expansion. Clearly, this is a new feature.

6. Quasiperiodic universe

The sixth class of models is the class of universes with
a large albeit finite number of transition points. It is a

quasiperiodic universe. This model is intermediate be-
tween the model with two transition points and the periodic
model.
This class arises when, starting from some transition

point, the curve �qðtÞ remains above the line q ¼ 0.
This means that at a later time the universe’s expansion
is accelerated. We do not plot �qðtÞ, HðtÞ, �ðtÞ, and �ðtÞ,
see [17] for such plots.
We are interested in light propagation and unlighted

epochs. Figure 7 illustrates this class of models. The be-
havior of the functions _HðtÞ, n2ðtÞ, VphðtÞ and VgrðtÞ is

quasiperiodic and the amplitudes of their oscillations de-
crease asymptotically. In addition to the unlighted epoch of
the first type, one can see now one point with n2 ¼ 0, i.e., a
compressed unlighted epoch of the second type. In be-
tween them the square of the refraction index is positive.
The behavior of the phase velocity is unusual in the early
universe since it is greater than the speed of light in a
vacuum during the first era of the first epoch, and then
tends to the asymptotic value equal to one in a quasioscil-
latory manner.

FIG. 7. Quasiperiodic universe. The universe history is divided
into a great number of epochs by a finite number of transition
points. Panel (a) of _HðtÞ shows clearly this behavior. The plot of
n2ðtÞ, see the panel (b) withQ ¼ 2, demonstrates that in addition
to an unlighted epoch of the first type, arising at t ¼ 0, an
unlighted epoch of the second type compressed into a point
also appears. This model shows also an unusual behavior of the
phase velocity in the early universe, namely, it is greater than the
speed of light in a vacuum during the first era of the first epoch,
in contrast to the models described above, and then tends to the
asymptotic value equal to one in the quasioscillatory regime. The
behavior of the group velocity is of a different kind, namely, in
the early universe it grows monotonically, and then tends
asymptotically to one in a quasioscillatory regime, see panels
(c) and (d) with Q ¼ 0:3.

FIG. 6. Three transition points universe. The parameters of the
model are the following: Q ¼ 80 for panels (a) and (b), Q ¼
�0:5 for panels (c) and (d), � ¼ 0:1, � ¼ 1, V ð0Þ ¼ 1, Eð0Þ ¼
0:0205, �ð0Þ ¼ 1, �� ¼ 0:333 � 10�4, and �0ð1Þ ¼ �5. The uni-

verse passes through two epochs of deceleration and two epochs
of accelerated expansion. The unlighted epoch harbors now the
first and second epochs of deceleration, as well as the first epoch
of accelerated expansion.
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7. Generic features of the six models: The photon path
length, the true duration of epochs and the

universe lifetime

Let us define two dimensionless functions,

�phðtÞ � 1

t

Z t

0
dt0Vphðt0Þ; (64)

and

�grðtÞ � 1

t

Z t

0
dt0Vgrðt0Þ: (65)

The first of them, �phðtÞ, gives the ratio between two

quantities: the length traveled during a time t by an elec-
tromagnetic wave with phase velocity VphðtÞ and the length
traveled during the same time t by a photon moving with
the speed of light in a pure vacuum. In the second quantity,
�grðtÞ, the phase velocity is replaced by the group velocity.
Alternatively, one can consider these two functions as
mean values of the phase and group velocities averaged
over time t, respectively. We have calculated these two
functions for the models discussed above. The results are

presented in the Fig. 8. A general feature of all presented
plots is that as t ! 1 both these functions tend to one
limt!1�phðtÞ ¼ 1 and limt!1�grðtÞ ¼ 1. This is not sur-

prising, since when t ! 1 the contributions of the periods
with Vph � 1 and Vgr � 1, which in themselves are short,

become vanishingly small. Thus, for the estimation of the
total life time of the universe we can assume that, on
average, photons propagate with speed of light in a pure
vacuum. On the other hand, when we have to calculate
the duration of epochs and eras in the early universe, the
behavior of �ph and �gr, as well as the estimation of the

photon path lengths, depend on the type and parameters of
the model, and on whether one uses the phase velocity or
the group velocity.

V. CONCLUSIONS

We can draw several conclusions.
1. The standard, concordant, cosmological model deals

with at least two epochs, during which electromagnetic
waves cannot scan the universe’s internal structure to bring
information to observers. The first epoch is when photons
are in local thermodynamic equilibrium with other parti-
cles, and the second is when photon scattering by charged
particles is strong. One can call these two periods of
cosmological time as standard unlighted epochs. After
the last scattering surface, photons become relic photons
and turn into a source of information about the universe.
Now, if one takes into account electromagnetic interac-

tions with the dark sector, i.e., with the dark energy and
dark matter, one can expect that unlighted epochs of a new
type can appear. Here we described one possible example,
namely, the unlighted epochs produced by the nonminimal
coupling of gravitational and electromagnetic fields. Since
in the framework of the nonminimal three-parameter
Einstein-Maxwell model, the curvature coupling can be
formulated in terms of an effective refraction index nðtÞ, as
we did, we can take advantage of the well-known classical
analogy, namely, in a medium with n2 < 0 electromagnetic
waves do not propagate and their group velocity, i.e.,
energy transfer velocity, has zero value at the boundary
of the corresponding zone. This analogy is the key ingre-
dient of our analysis. Indeed, using systematically the
refraction index n2 < 0, we have studied, both analytically
and numerically, cosmological models admitting unlighted
epochs, the photon coupling to the spacetime curvature
being the key element of the models.
2. We established a formula for the group velocity, or

energy transfer velocity, of an electromagnetic wave non-

minimally coupled to the gravity field, namely, VgrðtÞ ¼
2nðtÞ

n2ðtÞþ1
, with jVgrðtÞj � 1. Since unlighted epochs with a

negative effective refraction index squared can start and
finish only when n2ðtð�ÞÞ ¼ 0 or n2ðtð��ÞÞ ¼ 1, the group

velocity is zero at the unlighted epochs boundary points. At
these points the electromagnetic energy transfer stops, and

FIG. 8. Solid lines illustrate the behavior of �phðtÞ and dashed
lines illustrate the behavior of �grðtÞ. �phðtÞ gives the ratio

between the phase length, which the electromagnetic wave
runs during a time t, if we take into account its phase velocity,
and the length traveled by a photon moving at the speed of light
in a pure vacuum. For �grðtÞ, the phase velocity is replaced by the
group velocity. Panel (a) illustrates the periodic model, panel
(b) relates to the model with perpetual acceleration, panel
(c) contains the illustration to the model with one transition
point, and panel (d) illustrates the quasiperiodic model. For the
periodic and quasiperiodic models the plots of the functions
�phðtÞ and �grðtÞ have no intersection points. The other two

models show the presence of crossing points. Generally, in the
late-time universe the quantities �phðtÞ and �grðtÞ give practically
the same results, the ratios are close to one. The difference
between these quantities is, however, essential in the early
universe.
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thus the condition VgrðtÞ ¼ 0 is the condition to be em-

ployed as the criterion for recognizing the beginning and
the end of the unlighted epochs.

We have distinguished three types of unlighted epochs:
the first one starts at t ¼ 0 with negative effective refrac-
tion index squared and finishes when n2 ¼ 0; the second
one starts at t ¼ tð1Þ > 0 and finishes at t ¼ tð2Þ > tð1Þ with
n2ðtð1ÞÞ ¼ n2ðtð2ÞÞ ¼ 0; the third one is characterized by the

fact that at least at one of the two boundaries n2 has an
infinite value. The phase velocity VphðtÞ, another important

physical characteristic of an electromagnetic wave, is such
that VphðtÞ ¼ 1

nðtÞ , and so, when n2 ¼ 0 it can take infinite

values at the beginning or at the end of unlighted epochs.
The appearance of unlighted epochs of all three types were
illustrated analytically, using a cosmological model with a
scale factor of the Kohlrausch type, i.e., a stretched ex-
ponential scale factor.

The unlighted epochs of the first and second types were
then described numerically using our Archimedean-type
interaction model between dark energy and dark matter.
Clearly, the appearance or absence of unlighted epochs is
connected with the signs and absolute values of the non-
minimally coupling parameters q1, q2 and q3. Thus, finger-
prints of the unlighted epochs in the cosmic microwave
background data could give some constraints on these
nonminimal coupling parameters. We hope to discuss this
problem in another work.

3. The appearance of unlighted epochs caused by the
nonminimal coupling of photons to the gravitational field
adds new features into the history of the universe as written
by electromagnetic fields. Note that if the universe passes
through an unlighted epoch of the second type, we know
for certain that information scanned by electromagnetic
waves during the preceding epochs is washed out, i.e., such
unlighted epochs act as informational laundry.

In this connection there is a very interesting question:
When and why unlighted epochs of the second type can
appear? Let us note, that quite generally, the behavior of
the function n2ðtÞ inherits the features of the function _HðtÞ;
to see this compare the panels (a) and (b) in Figs. 2–7. In
this sense, the example of the model with two transition
points, see Fig. 5, shows explicitly that the appearance of
an unlighted epoch of the second type is a consequence of
large quasioscillations of the function _HðtÞ and thus a
consequence of large quasioscillations of the spacetime
curvature. Such quasioscillations, in their turn, are the
result of the dark matter and dark energy energy-
momentum redistribution, induced by the Archimedean-
type coupling [16,17].

4. The time span of different eras in the universe’s
history can be estimated using optical information. From
these durations one can estimate the distance traveled by
the electromagnetic waves through their velocity of propa-
gation. But then, one should clarify what is the electro-
magnetic wave propagation velocity which should be used

in the interpretation of the observational data. Is it the
group velocity, the phase velocity, or the velocity of light
in a pure vacuum? As we have seen these quantities differ
in the early universe in an essential way. From Fig. 8 it is
seen, for instance, that the group velocity and the corre-
sponding traveled distance are less sensitive to the details
of the dynamics of the universe.
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APPENDIX

As mentioned in Sec. II C 1, here we give several ex-
amples of specific nonminimal theories by motivating
possible choices for the nonminimal coupling parameters
q1, q2 and q3. Using the two effective nonminimal cou-
pling constants, Q1 and Q2 given by

Q1 � �2ð3q1 þ 2q2 þ q3Þ; Q2 � �2ð3q1 þ q2Þ;
(A1)

we have shown we can write the square of the refraction
index in terms of Hubble function HðtÞ and acceleration
parameter �qðtÞ as

n2ðtÞ ¼ 1þ ½Q2 �Q1qðtÞ�H2ðtÞ
1þ ½Q1 �Q2qðtÞ�H2ðtÞ : (A2)

Of course n2ðtÞ depends on Q1 and Q2, and thus on q1,
q2, and q3. However, independently of this choice, for
the de Sitter universe, one obtains n2ðtÞ ¼ 1. Indeed,
since the acceleration parameter is constant and is
equal to one, �qðtÞ ¼ 1, we obtain that "ðtÞ ¼ 1

	ðtÞ ¼
1þ ðQ2 þQ1ÞH2ðtÞ. Although "ðtÞ � 1 and 	ðtÞ � 1,
one has n2ðtÞ � "ðtÞ	ðtÞ ¼ 1 for arbitrary coupling
parameters.
In general, the cosmological models are sensitive to the

signs and the values of the parameters Q1 and Q2. There is
an infinite variety for the choice. However, six phenome-
nological possibilities using geometric analogies and
physical motivations can be implemented.

1. Vanishing nonminimal susceptibility scalar (R ¼ 0)

When 6q1 þ 3q2 þ q3 ¼ 0 and thus, from Eq. (28),
R ¼ 0, one has Q1 þQ2 ¼ 0. Putting Q � Q1 ¼ �Q2,
one obtains in this one-parameter example the following
expression:
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n2ðtÞ ¼ 1�QH2ðtÞ½1þ qðtÞ�
1þQH2ðtÞ½1þ qðtÞ� ¼

1þQ _HðtÞ
1�Q _HðtÞ : (a3)

This example has attracted our attention and we have used
it in our numerical calculations in Sec. IV. Indeed, the
interest in this choice is that only one function, _H, guides
the behavior of the effective refraction index, with n2 ! 1,
when _H ! 0. From a physical point of view this means
that asymptotically electromagnetic waves coupled non-
minimally to the gravitational field propagate with a phase
velocity equal to the speed of light in a vacuum.

2. Gauss-Bonnet-type relation

When one imposes that the differential equations form-
ing the nonminimal Einstein-Maxwell system are of sec-
ond order (see, e.g., [20,28]), then one should use
q1 þ q2 þ q3 ¼ 0 and 2q1 þ q2 ¼ 0. In this case the non-
minimal susceptibility tensor Rikmn is proportional to the
double dual Riemann tensor �R�

ikmn, i.e.,Rikmn ¼ �R�
ikmn

for some constant  [43]. Then we have Q1 ¼ 0,
Q2 ¼ �2q1, and

n2ðtÞ ¼ 1� 2q1H
2ðtÞ

1þ 2q1qðtÞH2ðtÞ : (A4)

If the nonminimal parameter q1 is negative, then during the
acceleration epoch (i.e., �qðtÞ> 0) the square of the re-
fraction index is positive, and there are no unlighted
epochs.

3. First Weyl-type relation

Assume now that Rmn ¼ 0, in which case one can take
3q1 þ q2 ¼ 0 and q2 þ q3 ¼ 0. Then, the susceptibility
tensor is proportional to the Weyl tensor Cikmn, i.e.,
Rikmn ¼ !Cikmn, and Q1 ¼ 0, Q2 ¼ 0. In this case
the effective permittivity scalars are equal to the unity,
"ðtÞ ¼ 1 and 	ðtÞ ¼ 1. Thus n2ðtÞ ¼ 1 in any epoch.

4. Second Weyl-type relation

Take 3q1 þ q2 ¼ 0 and q3 ¼ 0. Then the susceptibility
tensor is proportional to the difference between the
Riemann and Weyl tensors, i.e., Rikmn ¼ �½Rikmn �
Cikmn�. In this example Q1 ¼ 6q1, Q2 ¼ 0, and thus

n2ðtÞ ¼ 1� 6q1qðtÞH2ðtÞ
1þ 6q1H

2ðtÞ : (A5)

Now the square of the refraction index is positive during
the acceleration epoch (� qðtÞ> 0) when the nonminimal
parameter q1 is positive.

5. Symmetry relation with respect to the left
and right dualizations

If one imposes that the left and right dual tensors coin-
cide �Rikmn ¼ R�ikmn, then one gets the example in which
q2 þ q3 ¼ 0. In this exampleQ1 ¼ Q2, and thus n

2ðtÞ ¼ 1
for arbitrary epochs, although the dielectric permittivity
and magnetic permeability

"ðtÞ ¼ 1

	ðtÞ ¼ 1� 2ð3q1 þ q2ÞH2½1� qðtÞ� (A6)

differ from unity when 3q1 þ q2 � 0.

6. Drummond-Hathrell-type relation

An example of a calculation for the three coupling
parameters based on one-loop corrections to quantum
electrodynamics in curved spacetime has been considered
by Drummond and Hathrell [21]. In this example the non-
minimal coupling parameters are connected by the rela-

tions q1 � �5 ~Q, q2 ¼ 13 ~Q, q3 ¼ �2 ~Q. The parameter ~Q
is positive, and constructed by using the fine-structure
constant � and the Compton wavelength of the electron

�e, i.e., ~Q � ��2
e

180� . So, Q1 ¼ �18 ~Q, Q2 ¼ 4 ~Q, yielding

n2ðtÞ ¼ 1þ 2 ~QH2ðtÞ½2þ 9qðtÞ�
1� 2 ~QH2ðtÞ½9� 2qðtÞ� : (A7)

This example was discussed in [38].
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