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We present a new code, named COCAL—Compact Object CALculator, for the computation of

equilibriums and quasiequilibrium initial data sets of single or binary compact objects of all kinds. In

the COCAL code, those solutions are calculated on one or multiple spherical coordinate patches covering

the initial hypersurface up to the asymptotic region. The numerical method used to solve field equations

written in elliptic form is an adaptation of self-consistent field iterations in which Green’s integral formula

is computed using multipole expansions and standard finite difference schemes. We extended the method

so that it can be used on a computational domain with excised regions for a black hole and a binary

companion. Green’s functions are constructed for various types of boundary conditions imposed at the

surface of the excised regions for black holes. The numerical methods used in COCAL are chosen to make

the code simpler than any other recent initial data codes, accepting the second order accuracy for the finite

difference schemes. We perform convergence tests for time symmetric single black hole data on a single

coordinate patch, and binary black hole data on multiple patches. Then, we apply the code to obtain

spatially conformally flat binary black hole initial data using boundary conditions, including the one based

on the existence of equilibrium apparent horizons.
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I. INTRODUCTION

In the last decades, simulation codes for compact objects
have been successfully developed in the field of numerical
relativity, and various dynamical simulations have been
performed. Those simulations include inspirals to mergers
of binary neutron stars and black holes [1], a massive core
collapse to a neutron star (NS) or black hole (BH) [2], and
BH dynamics in higher dimensions [3]. Recent efforts are
moving towards more realistic situations such as incorpo-
rating the microphysics of nuclear matter [4], performing
binary black hole (BBH) merger simulations in a wider
range of parameter space (mass ratio and spins [5]), or
performing BBH mergers in an ambient disk [6].
Accordingly, more realistic and accurate constructions of
initial data for such compact objects are required.

Several researchers have developed methods for com-
puting various types of initial data sets for those simula-
tions [7–14] and equilibriums of rotating compact objects
(see, e.g., [15]). Many of such initial data codes are speci-
alized to a certain problem such as a single stationary and
axisymmetric neutron star or BBH data on a conformally
flat initial hypersurface. An exception is LORENE [16],
which is one of most used codes for computing initial
data for the merger simulations of binary neutron stars
and black holes. The LORENE code was originally devel-
oped for computing rapidly rotating neutron stars, but has
been extended to be capable of computing various kinds of
equilibriums and quasiequilibrium initial data sets.

In this paper, we introduce our project for developing new
codes for computing initial data of astrophysical compact
objects, a single object as well as binary compact objects of
all kinds, and present several tests for the new codes. Our

aim is to develop a set of codes for computing, on an initial
hypersurface, a single neutron star (or a compact star such as
a quark star), binary neutron stars and black holes, a central
neutron star or black hole surrounded by a toroidal disk, and
all these systems with magnetic fields. We call our new
codes ‘‘COCAL,’’ which is the abbreviation for Compact
Object CALculator.1 A noteworthy idea of the COCAL

project is to develop a code using less technical numerical
methods than the recent initial data solvers with spectral
methods [8–10,16].Also, themodules and subroutines of the
FORTRAN 90 code are structured simply so that the code may

be accessible by those who mastered introductory courses
for programing. Such features will help future developments
to incorporate more complex physics in the code, such as
radiation, neutrino radiation transfers, or realistic equations
of state for the high density nuclear matter.
The numerical method used in COCAL is based on the

Komatsu-Eriguchi-Hachisu (KEH) method for computing
the equilibrium of a rotating neutron star [17]. In our pre-
vious works [11,12], we have extended the KEHmethod for
computing initial data for binary compact objects in quasie-
quilibriums. In Ref. [13], we have introduced multiple
spherical coordinate patches for computing binary compact
objects. We improve the idea of the multiple patches in all
aspects in the new COCAL code. In Ref. [14], we have
presented convergence tests and solution sequences for ro-
tating neutron star initial data, which were calculated by the
first version of COCAL. In this paper, to introduce the COCAL

code, we focus on the basic setup of the multiple spherical
coordinate patches and the coordinate grids, the method of

1‘‘Cocàl’’ means ‘‘seagull’’ in the Trieste dialect of Italian.
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the elliptic equation solver on the multiple patches, and
convergence tests for binary black hole initial data. The
paper is organized as follows: in Sec. II we introduce an
overview of the COCAL project, then coordinate setups, the
elliptic solver, and other materials on numerical computing.
In Sec. III the results of convergence tests are presented. In
Sec. IV solutions of BBH data on a conformally flat initial
hypersurface are presented. We use geometric units with
G ¼ c ¼ 1 throughout the paper.

II. COCAL CODE

A. Overview

In the COCAL project, we aim to develop numerical codes
for computing a single compact object as well as binary
compact objects in (quasi)equilibrium using a common
numerical method as much as possible. A plan for such
codes also depends on how to formulate the problem to
solve such compact objects. Usually, a system of equations
to describe equilibriums of compact objects involves a set of
elliptic equations for the gravitational fields, and relativistic
hydrodynamical equations including the Euler equations
and the rest mass conservation equation, to which a sta-
tionary condition, either a time or a helical symmetry [18],
is imposed. When the magnetic field is present, elliptic
equations for the electromagnetic fields are added, and the
equations for the fluid are replaced by magnetohydrody-
namical (MHD) Euler equations. Because the stationary
Euler, or MHD-Euler, equations are difficult to integrate
numerically, a set of first integrals in the form of algebraic
equations, a sufficient condition for the stationary (MHD)
Euler equations, is derived and solved simultaneously with
the field equations (see, e.g., [19,20]).

A choice for the numerical method is therefore made
according to what kind of solver is used for solving the
system of elliptic equations. The numerical method used in
COCAL is based on the KEH method for computing equili-

briums of rotating neutron stars [17]. In this method, the
elliptic equations are solved on spherical coordinates using
Green’s formula iteratively. This is done by separating the
flat Laplacian or Helmholtz operator on the variable to be
solved for, then moving the remaining (possibly nonlinear)
terms to the source, and rewriting it in the integral form
using Green’s formula. Expanding Green’s function using
spherical harmonics, the formula is integrated on the spheri-
cal coordinate grids numerically (see, e.g., [11,12,21]). The
method is extended for computations of binary compact
objects as discussed in this section.

We choose simple finite difference formulas which are
mostly second order accurate, and in some cases we choose
third or fourth order formulas only if they are necessary
(see Sec. III B 1). No symmetry, such as an equatorial
plane symmetry, is assumed a priori on the 3D spherical
computational domain. The COCAL code is written in
FORTRAN 90 language, and runs with a few GB of memory

for a model with a moderate resolution.

We have developed basic subroutines for the COCAL

code, including the coordinate grid setups for single and
multiple spherical coordinates, as well as the elliptic solv-
ers for a single or binary compact object, which we discuss
in detail below. Mainly, two types of initial value formu-
lations for Einstein’s equation have been coded so far; one
assumes spatial conformal flatness (Isenberg-Wilson-
Mathews formulation [22,23]), and the other nonconformal
flatness (waveless formulation [12,24]).
Also, the quadrupole formula, to compute the gravita-

tional wave amplitude and luminosity, and a Helmholtz
solver have been developed. We are in the phase to test all
basic subroutines by computing simple test problems as
well as known problems such as BBH initial data or rotat-
ing neutron star solutions. In the next step, wewill combine
these developments and start computing new equilibriums
and initial data sets such as helically symmetric binary
compact objects or magnetized compact objects.

B. Coordinate patches for binary systems

We assume that the spacetimeM is foliated by a family
of spacelike hypersurfaces ð�tÞt2R, M ¼ R� � parame-
trized by t 2 R. In the COCAL code, we solve fields
on an initial hypersurface �t which may be stationary
(in equilibrium) or quasistationary (in quasiequilibrium).
The initial hypersurface �t is covered by overlapping
multiple spherical coordinate patches whose coordinates
are denoted by ðr; �;�Þ. Angular coordinates cover all
directions ð�;�Þ 2 ½0; �� � ½0; 2��without any symmetry
imposed. We also introduce Cartesian coordinates as
a convenient reference frame in a standard manner,
that is, to have the positive side of the x axis coincide
with a ð�;�Þ ¼ ð�=2; 0Þ line, that of the y axis with a
ð�;�Þ ¼ ð�=2; �=2Þ line, and that of the z axis with
a � ¼ 0 line.
In Fig. 1 a schematic diagram of three spherical coor-

dinate patches whose coordinates are discretized in grid
points is shown for the case of computing BH-NS binary
systems by COCAL. We show the 2D section of the 3D
hypersurface that may agree with the equatorial or meri-
dional plane of the compact objects. Even though this may
be the most complex setup for coordinate grids in COCAL, it
is not technical at all compared to those of existing codes in
which adaptive coordinates are used.
For the computation of binary systems, two compact

objects are placed at the centers of the two patches. We
call these two patches the compact object coordinate patch
(COCP) and the third patch the asymptotic region coordi-
nate patch (ARCP). A domain of the COCP is defined
between two concentric spheres Sa and Sb from which an
interior of an another sphere Se is excised. Writing radii of
Sa, Sb, and Se as ra, rb, and re, respectively, we define
spherical coordinates of the COCP as ðr; �;�Þ 2 ½ra; rb� �
½0; �� � ½0; 2�� and locate the center of the excised sphere
at ðr; �; �Þ ¼ ðds; �=2; 0Þ, which is on the positive side of
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the x axis.2We introduce the excision of a domain interior of
the sphereSe for computing binary systems and elucidate its
role in the following section. When a single and/or axisym-
metric object is computed, the excision insideSe is not used.
When BH is computed on the COCP-BH with certain BH
boundary conditions on Saðra > 0Þ, the region inside Sa is
excised. When a NS or a puncture BH is calculated, the
sphere Sa of the COCP is removed by setting ra ¼ 0, so the
radial coordinate covers up to r ¼ 0. A domain of theARCP
is defined between two concentric spheres Sa and Sb, and its
spherical coordinates are defined as ðr; �;�Þ 2 ½ra; rb� �
½0; �� � ½0; 2��.Whenvalues of the field potentials or other
variables are communicated from one patch to the other,
those values on a certain sphere aremapped to a correspond-
ing boundary sphere as indicated by arrows in Fig. 1.

Values of radii ra, rb, and re for each of the coordinate
patches used in actual computations will be summarized in

Sec. III. Typically, they are set as follows. For the case of
using three patches as in Fig. 1, the radius ra of the inner
boundarySa of theARCP is taken large enough to be placed
outside the excised spheres Se for compact objects on the
COCP, but small compared to the size of the domain rb of
the COCP. The outer boundary of theARCP, the radius rb of
the sphere Sb, is extended to the asymptotic region when a
field falls off like aCoulombfield,while it is truncated at the
near zone when a radiation field is calculated. The center of
the ARCP is located at the center of mass of binary compact
objects. Therefore, for a compact object of mass M, the
orders of radii become ra ¼ OðMÞ (0 for NS), rb¼
Oð100MÞ, re ¼ OðMÞ �Oð10MÞ for the COCP, and ra ¼
Oð10MÞ, rb¼Oð106MÞ or larger for the ARCP.
As another option for the choice of coordinate patch, the

outer radius of each COCP rb may be extended to asymp-
totics, say, rb¼Oð106MÞ, and the ARCP is removed. This
option simplifies the code, but it cannot be used when a
radiation field is computed by solving the Helmholtz
equation. We present tests for the Helmholtz solver in a
separate paper.

COCP-BH

COCP-NS

ARCP

Sb

Sb

Sb

Sa

Se

Se

FIG. 1 (color online). A typical setup for multiple coordinate grid patches in the COCAL code for a BH-NS system. Left top and
bottom patches are those for the COCP centered at each compact object (BH for the top, and NS for the bottom). The smallest circle
with the thick curve in the COCP-BH is the sphere Sa, where the interior region is excised and certain BH boundary conditions are
imposed. The ovals drawn in the COCP-NS denote NS. The right patch is that for the ARCP, centered at the mass center of the system.
The arrows represent maps of potentials between the multiple patches. Alternatively, the radius of the COCP may be extended to the
asymptotic region, instead of using the ARCP. Note that the spheres Sa, Sb, and Se of these coordinate patches are distinct ones on a
spacelike hypersurface �t. The radius of each coordinate patch does not reflect the size used in actual computations.

2The positive side of the x axis of the COCP-NS in Fig. 1 is
pointing from the center of the coordinate grids to the left.
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C. Elliptic equation solver

As mentioned earlier, the formulation for computing
(quasi)equilibriumconfigurations of compact objects results
in a coupled system of elliptic equations, either Poisson or
Helmholtz equations with nonlinear source terms, coupled
with algebraic equations. The numerical method used in
COCAL to solve such a system of equations is an extension

of the KEH method which is an application of a self-
consistent field method for computing equilibriums of
self-gravitating fluids to general relativistic stars [17].
A distinctive feature of these methods is the use of Green’s
formula for an elliptic equation solver. We have introduced
in previous papers our implementation of the KEH method
to compute binary neutron stars and black holes [11–14].

In the COCAL code, we have made a major change in the
choice of coordinate patch, and accordingly in the elliptic
equation solver. Our new implementation is better in all
aspects for computing binary compact objects than our
previous ones. We will come back to this point after we
introduce the elliptic equation solver in COCAL.

In solving each field equation, we separate out a flat
Laplacian or Helmholtz operator L, and write it with a
nonlinear source S,

L� ¼ S; (1)

on an initial slice �t, where� represents metric potentials.
For the case of Laplacian L ¼ �, using Green’s function
without the boundary Gðx; x0Þ ¼ 1=jx� x0j that satisfies

�Gðx; x0Þ ¼ �4��ðx� x0Þ; (2)

Green’s identity is obtained by

�ðxÞ¼� 1

4�

Z
V
Gðx; x0ÞSðx0Þd3x0 þ 1

4�

Z
@V
½Gðx; x0Þr0a�ðx0Þ

��ðx0Þr0aGðx; x0Þ�dS0a; (3)

where V is the domain of integration, x, x0 2 V � �0, and
@V is its boundary. For the case of the BH-NS system shown
in Fig. 1, the boundary of the COCP-BH becomes @V ¼
Sa [ Sb [ Se, that of the COCP-NS @V ¼ Sb [ Se, and that
of the ARCP @V ¼ Sa [ Sb. For the evaluation of the inte-
grals in Eq. (3), a multipole expansion of Gðx; x0Þ in the
associated Legendre functions on the spherical coordinate is
used,

Gðx;x0Þ¼ 1

jx�x0j

¼X1
‘¼0

g‘ðr;r0Þ
X‘
m¼0

�m
ð‘�mÞ!
ð‘þmÞ!

�Pm
‘ ðcos�ÞPm

‘ ðcos�0Þcosmð’�’0Þ; (4)

where the radial Green’s function g‘ðr; r0Þ is defined by
g‘ðr; r0Þ ¼ r‘<

r‘þ1
>

; (5)

with r> :¼ supfr; r0g, r< :¼ inffr; r0g, and the coefficients
�m are equal to �0 ¼ 1, and �m ¼ 2 for m � 1.

Equation (3) is an integral identity but is not a solution of
Eq. (1) in the sense that� and its derivative nara� cannot
be freely specified simultaneously. Equation (3) can be
used to compute a potential over V, only if correct values
of � and nara� are known at the boundary @V. Here, na

is an outward normal to @V. Therefore, as it is commonly
found in standard textbooks for electromagnetism [25], a
homogeneous function Fðx; x0Þ for the Laplacian is added
to evaluate Green’s function that satisfies the boundary
condition at @V. For example, a Green’s function
Gðx; x0Þ þ Fðx; x0Þ ¼ 0 at @V is used to impose the
Dirichlet boundary condition. In our previous paper [13],
we have developed an elliptic equation solver on multiple
coordinate patches that uses such Green’s functions, and
we solve Eq. (3) by iteration.
The construction of such a Green’s function that satisfies

a boundary condition is, however, possible only when a
certain specific geometry of the domain of computation is
adapted to the coordinate systems. In the present case for
the COCP of the COCAL code in Fig. 1, a Green’s function
that satisfies boundary conditions at Sa and Sb may not be
derived in a practical form of the equation, because we
excised the region inside the sphere Se. To impose bound-
ary conditions at Sa and Sb, we introduce a homogeneous
solution �ðxÞ, and write a formal solution as

�ðxÞ ¼ �ðxÞ þ�INTðxÞ; (6)

where �INT is equal to the right-hand side of Eq. (3),

�INTðxÞ¼� 1

4�

Z
V
Gðx;x0ÞSðx0Þd3x0

þ 1

4�

Z
@V
½Gðx;x0Þr0a�ðx0Þ

��ðx0Þr0aGðx;x0Þ�dS0a: (7)

The homogeneous solution is computed so that the
potential � satisfies the boundary conditions, which are
either Dirichlet, Neumann, or Robin boundary conditions
at the boundary spheres Sa or Sb:

Dirichlet: �BC ¼ fD; (8)

Neumann: nara�BC ¼ fN; (9)

Robin: nara�BC þ 1
4ran

a�BC ¼ fR; (10)

where fD, fN, and fR are given functions on the spheres
Sa or Sb. Formulas for �ðxÞ are derived by using a
Legendre expansion in the usual manner, as shown in
Appendixes A and B. Noticing �ðxÞ ¼ �ðxÞ ��INTðxÞ
the formulas for �ðxÞ can be written analogously to the
surface integral terms of Green’s formula, but with a differ-
ent kernel function GBC,

�ðxÞ ¼ 1

4�

Z
Sa[Sb

½GBCðx; x0Þr0að�BC ��INTÞðx0Þ

� ð�BC ��INTÞðx0Þr0aGBCðx; x0Þ�dS0a: (11)
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The function GBCðx; x0Þ is expanded in terms of the asso-
ciated Legendre functions,

GBCðx;x0Þ¼X1
‘¼0

gBC‘ ðr;r0Þ X‘
m¼0

�m
ð‘�mÞ!
ð‘þmÞ!

�Pm
‘ ðcos�ÞPm

‘ ðcos�0Þcosmð’�’0Þ; (12)

where the radial function gBC‘ ðr; r0Þ is chosen according to

the type of boundary conditions used. We derive such
radial functions used in the corresponding surface integrals
for various cases of boundary conditions as listed in
Table I. Concrete forms of these functions are presented
in Appendix B.

D. Iteration procedure

The final solution will be obtained from the iteration of
Eq. (6), with Eqs. (7) and (11), where the explicit form of
Eq. (11) for �ðxÞ depends on the boundary condition, for
example, Eq. (A9) or (A12).

We summarize the nth step of the Poisson solver
in the COCAL code as follows (here, intermediate variables

during an iteration step are denoted with a hat as �̂INT, �̂,

and �̂):

(1) Compute the volume source term Sð�ðn�1ÞÞ as well
as the surface source terms on all possible surfaces
Sa, Sb, Se.

(2) Compute the volume integral and the surface inte-

gral at Se for obtaining �̂INTðxÞ from Eq. (7).
(3) Compute the effective source for the integral on

Sa and Sb. For the Dirichlet boundary condition it

will be �BC � �̂INT, while for Neumann it will be
@�BC

@r � @�̂INT

@r .

(4) Compute the surface integrals at Sa and Sb for obtain-
ing �̂ðxÞ according to Eq. (11) using the appropriate
function GBC for the boundary conditions of the
problem.

(5) Add the results from steps (2) and (4) to obtain �̂ðxÞ
from Eq. (6).

(6) Update �ðnÞ according to

�ðnÞðxÞ :¼ c�̂ðxÞ þ ð1� cÞ�ðn�1ÞðxÞ;
where 0:1 � c � 0:4.

(7) Check if

2
j�ðnÞ ��ðn�1Þj
j�ðnÞj þ j�ðn�1Þj< �c

for all points of the grids, where �c ¼ 10�6 � 10�8

is taken in typical computations, and �c ¼ 10�7 in
this paper. If yes, exit. If no, go back to step (1).

The above iteration procedure is applied to each coordinate
patch one after the other. In step (1) the sources of
the surface terms are computed either from boundary
conditions to be imposed on the surface, or from data of
the corresponding surface on the other patch (see Fig. 1 for
how the potentials are transferred from one boundary
surface to the other). Several different iteration schemes
are possible for solving a set of elliptic equations for more
than one variable. In all our experiments, the convergence
of the iteration does not depend on the order of computing
those variables at each iteration step.
We will see this elliptic equation solver produce accurate

solutions for test problems of binary black hole data. Two
comments on the elliptic equation solver are in order.
Although �INT in Eq. (7) involves surface integrals on all
Sa, Sb, andSe, those onSa and Sb are not included in�INT in
an actual computation. Those computations are redundant
because the homogeneous solution�ðxÞ is determined again
from the surface integrals on Sa and Sb as in Eq. (11). So far,
we do not plan to develop elliptic solvers for vector (tensor)
fields in which Green’s functions are expanded in
vector (tensor) spherical harmonics. Instead, we write the
Cartesian components of vector or tensor equations and
solve each component as a scalar equation on spherical
grids for simplicity. We will see an example in Sec. IV
(see also [12]).

E. Grid spacing

We apply a finite difference scheme to solve the system
of equations for compact objects on the spherical domain
introduced in Sec. II B (see Fig. 1). Spherical coordinates
ðr; �;�Þ for the COCP and the ARCP are bounded by two
concentric spheres Sa and Sb of radius ra and rb, respec-
tively, with the possible excision of a sphere Se of radius re
inside the COCP. The origin of the radial coordinate r is at
the common center of Sa and Sb, and a compact object is
placed as its center agrees with the origin of the COCP. The
excised sphere for a binary companion Se is always posi-
tioned at a positive value on the x axis at a distance ds from
the origin. Clearly, ra < ds � re. For neutron star calcula-
tions the sphere Sa is absent and the coordinate system
extends from r ¼ 0 to rb.

TABLE I. List of Green’s functions available in the COCAL

code. The second and third columns correspond to the types of
boundary conditions imposed on the boundary spheres Sa and
Sb, respectively. The case with no boundary condition is denoted
by ‘‘None.’’

GBCðx; x0Þ Boundary Sa Boundary Sb

GNBðx; x0Þ None None

GDDðx; x0Þ Dirichlet Dirichlet

GNDðx; x0Þ Neumann Dirichlet

GDNðx; x0Þ Dirichlet Neumann

GNNðx; x0Þ Neumann Neumann

GRDðx; x0Þ Robin Dirichlet

GDRðx; x0Þ Dirichlet Robin
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In the COCAL code, the spacing of all coordinate grid
points ðri; �j; �kÞ, with i ¼ 0; . . . ; Nr, j ¼ 0; . . . ; N�, and

k ¼ 0; . . . ; N�, are freely specifiable. However, in ð�;�Þ
directions, uniform grids are recommended to resolve
evenly the trigonometric and associated Legendre func-
tions used in the elliptic equation solver, as well as the
structure of compact objects. That is, we set the grid
interval in these directions as

��j ¼ �j � �j�1 ¼ �� ¼ �

N�

; (13)

��k ¼ �k ��k�1 ¼ �� ¼ 2�

N�

: (14)

The grid spacing in the radial direction r is usually
constructed, on one hand, to resolve the vicinity of the
compact object with finer grid spacings and, on the other
hand, to extend to asymptotics using increasingly sparse
spacings.3 The setup for radial grids of the COCP in the
present computation is illustrated in Fig. 2. The grid is
composed of regions I, II, and III. For the case with ra < 1,
region I is set by r 2 ½ra; 1�, region II by r 2 ½1; rc�, and
region III by r 2 ½rc; rb�. We introduce grid numbers Nf

r,
Nm

r , which correspond to the numbers of intervals in
regions I and Iþ II, respectively. We introduce a standard
grid spacing �r as �r ¼ 1=Nf

r. For the case with ra < 1,
the grid intervals, �ri :¼ ri � ri�1, are defined by

�riþ1 ¼ h�ri; for i ¼ 1; � � � ; Nf
r � 1; (15)

�ri ¼ �r; for i ¼ Nf
r; � � � ; Nm

r ; (16)

�riþ1 ¼ k�ri; for i ¼ Nm
r ; � � � ; Nr � 1; (17)

which correspond to regions I, II, and III in Fig. 2, respec-
tively, where the ratios hð� 1Þ and kð>1Þ are, respectively,
determined from the relations

1� ra ¼ �r
1� hN

f
r

1� h
; (18)

rb � rc ¼ �r
kðkNr�Nm

r � 1Þ
k� 1

: (19)

For the case with ra > 1, which is mostly for the ARCP, the
grid intervals �ri are defined by

�ri ¼ �r for i ¼ 1; � � � ; Nm
r ; (20)

�riþ1 ¼ k�ri for i ¼ Nm
r ; � � � ; Nr � 1; (21)

where the ratio k is determined from Eq. (19). Parameters
for the grid setup are listed in Table II.

F. Finite differences and multipole expansion

Approximations made in our numerical method are a
truncation of the series of Legendre expansions at a finite
order of the multipole, and an evaluation of a solution on
discretized grids—the finite differencing. The accuracy of
the code is, therefore, determined from finite difference
formulas to be used, the number of grid points and their
spacings, and the number of multipoles being included.

FIG. 2. Radial coordinate grids for the COCP for the case of regions for BHs and binary companions being excised. The radial
coordinate grids correspond to those of lowest resolutions, A1, B1, D1, and F1 in Tables III and IV. The position of the center of mass d
may vary depending on the mass ratio of the binary system.

3For the case of solving the Helmholtz equation, the region
extends to a near zone (the size of several wavelengths of a
dominant mode).
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In the COCAL code we use a second order midpoint rule
for numerical integrations and differentiations, along with
the second order linear interpolation rule. In the elliptic
equation solver (6), the source terms are evaluated at the
midpoints,

ðri�1=2;�j�1=2;�k�1=2Þ¼
�
riþri�1

2
;
�jþ�j�1

2
;
�kþ�k�1

2

�
;

and integrated with the weights �ri��j��k (other than a

Jacobian). The midpoint rule has a few advantages. The
second order accuracy of the midpoint rule for a quadrature
formula is maintained even with a discontinuity of the
derivative of Green’s function for a volume integral at
r ¼ r0. It may be possible to derive a higher order quad-
rature formula for numerically integrating such functions,
but for instance, a Simpson rule does not guarantee fourth
order accuracy at grid points ri, with i being odd integers.
Also, an excision of a region inside a sphere Se for a binary
companion on the COCP complicates a derivation of
a higher order quadrature formula which maintains the
degree of precision near the sphere. Because of the sim-
plicity of the midpoint rule, it is not difficult to modify the
weights for an integration to maintain the accuracy.
Another advantage of the midpoint rule is that it avoids
the coordinate singularities of the spherical coordinates.

In some cases, we also use a third or higher order finite
difference formula for the numerical differentiations. In
particular, it is found that it is necessary to use the third
order finite difference formula for the radial derivatives to
maintain second order convergence of the field near the BH
(see Sec. III B 1). Interpolations of scalar functions from the
grid points to the midpoints are done using a second order
linear interpolation formula. We often need to interpolate a
function from one coordinate patch to the other, such as to
compute the source term at Se of the COCP. In such a case,
the functions are interpolated using the fourth order

Lagrange formula. For example, when the surface integral
at the excised sphere is computed, we need the potential and
its derivative at point x0 on Se as seen from the center of Se.
These values are taken by interpolating the nearby 43 ¼ 64
points of the other coordinate system. Some examples of
finite difference formulas frequently used in the COCAL

code are summarized in Appendix C.
As discussed in [13], the excised region Se is introduced

to improve the resolution in angular directions and, accord-
ingly, to reduce the number of multipoles to resolve a
companion object. Without this excised region, the size
of the companion object itself has to be resolved by angular
grids, while in our setup, it is enough to resolve the size of
the excised region, which is usually taken as large as half of
the separation �ds=2. Then the angle to be resolved can
always be about �2 arcsinð1=2Þ ¼ �=3. Note that
although it is, in principle, possible to excise Se with a
different radius from each COCP, and it is allowed in
COCAL, it is more practical to have the same size of the

excised region for the same reason as above. To summa-
rize, the angular resolution of a COCP is determined from
the degree of accuracy needed to resolve the deformation
of the compact objects centered at the patch, and to resolve
the size of the excised sphere, ��=3. The angular resolu-
tion of the ARCP depends on just how many multipoles
one wishes to keep in the near zone to asymptotics. For
both the COCP and the ARCP, the number of Legendre
expansions is in the range ‘� 10–16 for computing binary
systems.
The Legendre polynomial Pm

‘ may have ‘ zero crossings
in � 2 ½0; �Þ, and sinm� or cosm� have 2m zeros in � 2
½0; 2�Þ. The number of grid points along the angular
coordinates has to be large enough to resolve these multi-
poles with maximum ‘ or m, say, 4 times more than the
number of zeros.

III. CODE TESTS

A. A toy problem for black holes

Convergence tests for time symmetric BH and BBH data
are performed to check the numerical method of COCAL

presented in Sec. II. We assume the spacetime M is
foliated by a family of spacelike hypersurfaces ð�tÞt2R,
M ¼ R�� parametrized by t 2 R. To obtain simple
black hole solutions on �t, we assume time symmetric
initial data and that the extrinsic curvature Kab on �t

vanishes, or in other words, we assume the line element
in the neighborhood of �t,

ds2 ¼ ��2dt2 þ c 4fijdx
idxj; (22)

where fij is the flat spatial metric. Decomposing Einstein’s

equation G�� ¼ 0 with respect to the foliation using hy-

persurface normal n� to �t, and the projection tensor
	ab ¼ g�� þ n�n� to it, we write the Hamiltonian
constraint G��n

�n� ¼ 0, and a combination of the

TABLE II. Summary of grid parameters. The radius re is
defined only for the COCP.

ra : Radial coordinate where the radial grids start.

rb : Radial coordinate where the radial grids end.

rc : Radial coordinate between ra and rb where the radial grid

spacing changes from equidistant to nonequidistant.

re : Radius of the excised sphere.

Nr : Number of intervals �ri in r 2 ½ra; rb�.
Nf

r : Number of intervals �ri in r 2 ½ra; 1�
for ra < 1 or r 2 ½ra; ra þ 1� for ra � 1.

Nm
r : Number of intervals �ri in r 2 ½ra; rc�.

N� : Number of intervals ��j in � 2 ½0; ��.
N� : Number of intervals ��k in � 2 ½0; 2��.
d : Coordinate distance between the center of

Saðr ¼ 0Þ and the center of mass.

ds : Coordinate distance between the center of

Saðr ¼ 0Þ and the center of Se.
L : Order of included multipoles.
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spatial trace of Einstein’s equation and the constraint
G��ð	�� þ 1

2n
�n�Þ ¼ 0, as

r2c ¼ 0 and r2ð�c Þ ¼ 0: (23)

These equations have solutions which correspond to the
Schwarzschild metric in isotropic coordinates for a single
BH. For a two-BH case, a BBH solution is given by Brill
and Lindquist [26],

c ¼ 1þ M1

2r1
þM2

2r2
and �c ¼ 1� M1

2r1
� M2

2r2
; (24)

where subscripts 1 and 2 correspond to those of the first and
second BH; r1 and r2 are distances from the first and
second BH, respectively; andM1 andM2 are mass parame-
ters. The coordinates r1 and r2 are written in terms of each
other; for example, in the first coordinate system of the
COCP, the radial coordinates are

r1 ¼ r and r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ d2s � 2rds sin� cos�

q
;

where �,� are the angular spherical coordinates of the first
coordinate system, and 1 $ 2 are for the second COCP. On
the third coordinate system of the ARCP,

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ d21 � 2rd1 sin� cos�

q
;

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ d22 � 2rd2 sin� cos�

q
;

where d1 and d2 are the distance between the center of the
ARCP and that of the COCP, and hence ds ¼ d1 þ d2.

Instead of solving two Laplace equations, Eq. (23), we
write an equation for � with a source on the whole domain
of �t,

r2c ¼ 0 and r2� ¼ � 2

c
fij@ic @j�: (25)

In an actual computation, the BH centered at the COCP is
excised at the radii ra of Sa, and the binary companion is
excised at the radii re of Se which is centered at x ¼ ds.
Boundary conditions for these elliptic equations at Sa are
taken from analytic solutions (24) when Dirichlet bound-
ary conditions are imposed. Neumann boundary conditions
can be imposed with the use of

@c

@r1
¼ �M1

2r21
�M2

2r22

@r2
@r1

at r1 ¼ ra; (26)

@�

@r1
¼ 1

c

�
M1

2r21
þM2

2r22

@r2
@r1

� �
@c

@r1

�
at r1 ¼ ra: (27)

For the outer boundary conditions, we choose Dirichlet
boundary conditions whose data are taken from the ana-
lytic solution Eq. (24) in all tests in this section. When the
third patch, the ARCP, is not used, Dirichlet data are
imposed on Sbðr ¼ rbÞ of the COCP, while when the
ARCP is used, as in Fig. 1, Dirichlet data are imposed
only at Sb of the ARCP.

B. Convergence tests

Convergence tests are performed to examine that the
code produces solutions with an expected order of finite
difference errors, and to find experimentally an (almost)
optimally balanced set of resolutions for each coordinate
grid ðri; �j; �kÞwhich is not over-resolved in one coordinate
direction so as not towaste the computational resources.We
find, from convergence tests for a single BH solution, it is
necessary to use a third order finite difference formula for a
radial derivative in the volume source terms in Eq. (7). We
also find an optimally balanced resolution between the ri
and �j grids. From convergence tests for BBH data, we find

appropriate resolutions for the�i direction and a number of
multipoles. Results for the convergence tests are discussed
in this section.

1. Single BH

For the first test, we compute a single BH solution with
mass parameterM1 ¼ 2ra ¼ 0:4 (andM2 ¼ 0). Equations
(25) are solved on a single patch with a single excision
region inside Sa for the BH. In Fig. 3 a fractional error of
the lapse �, ��������

��

�

��������:¼
��������
�� �exact

�exact

��������; (28)

is plotted along the x axis for different resolutions in the
radial coordinate grids ri (top and bottom left panels), in
the zenith angle grids �j (top right panel), and in all grids

(bottom right panel). These resolutions are tabulated
in Table III and are indicated by A1–A4, B1–B4, and
D1–D4, respectively. In the set A1–A4, the radial resolu-
tion �r is doubled, in B1–B4, the zenith angle resolution
�� is doubled, and in D1–D4, the resolutions in all direc-
tions are doubled at each level. Another difference in these
results is the order of the finite difference formula used to
compute a radial derivative in the volume source term in
Eq. (7), where the second order (midpoint) formula is used
in the top left and right panels, and the third order
(Lagrange) formula is used in the bottom left and right
panels. We notice from the top left panel in Fig. 3 that the
error does not decrease as Oð�r2Þ when the number of
radial grid points is increased as the parameter sets A1–A4
in Table III even for such a spherically symmetric solution.
It appears that there are two reasons for that. In the top

right panel, a convergence test is performed, changing the
number of grid points in zenith angle �j as the parameter

sets B1-B4. This test shows an improvement of the accu-
racy in Oð��2Þ in the larger radius r * 100; that is, the
error in this region is dominated by the finite differencing
in the � direction to resolve the integration of the Legendre
polynomial accurately. However, the accuracy near the BH
is not improved in either test of A1-A4 and B1-B4. In the
bottom left panel of Fig. 3, the same convergence test as in
the top left panel is performed, but the finite difference
formula for the radial derivatives is replaced by that of the

KŌJI URYŪ AND ANTONIOS TSOKAROS PHYSICAL REVIEW D 85, 064014 (2012)

064014-8



third order Lagrange formula Oð�r3Þ. This shows that it is
necessary to set the order of the finite difference formula
for the radial derivative as Oð�r3Þ to see Oð�r2Þ accuracy
near the BH. This Oð�r2Þ error must be due to the mid-
point rule used in the numerical integration. However, the

error in the larger radius does not decrease in the outer
region with the radius r * 100. Finally, as shown in the
bottom right panel of Fig. 3, the error decreases in the
second order for the set D1-D4, in which the third order
finite difference formula is used for the radial derivatives.
Convergence tests are done for increasing grid points in �
directions �k and also for changing the number of
Legendre expansions as L ¼ 4� 10, but they do not
change the results for such spherically symmetric
BH tests.

2. Equal mass BBH computed with a single patch

In Fig. 4 results of convergence tests for equal mass
BBH data are plotted. In this test we used only a single
patch, shown in Fig. 5, where the potential at the
radius r ¼ re rotated by � in the � coordinate is mapped
to the excision sphere Se on the same patch to compute the
equal mass data when the elliptic equations are solved.
This amounts to imposing the �-rotation symmetry about
the center of mass which is located at ðr; �; �Þ ¼
ðds=2; �=2; 0Þ. In this test the number of grid points is
chosen as D1–D4 in Table III, the separation between the
coordinate centers of two BHs (a distance between the
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FIG. 3 (color online). Plots of fractional errors in the lapse ��=� along the positive x axis. Plots show the errors by changing the
number of radial grid points ri as A1–A4 (top left panel), zenith grid points �i as B1–B4 (top right panel), radial grid points ri as
A1–A4 (bottom left panel), and all grid points ðri; �j; �kÞ as D1–D4 (bottom right panel). In each panel, solid (red), long dashed

(green), dashed (blue), and dotted (magenta) lines are in order from lowest to highest resolutions. In the top panels, a second order
finite difference formula is used for calculating radial derivatives, while the third order formula is used in the bottom panels.

TABLE III. Grid parameters used in convergence tests for a
single BH and equal mass BBH data solved on a single coor-
dinate patch, the COCP.

Type ra rb rc Nf
r Nm

r Nr N� N� L

A1 0.2 104 1.25 16 20 48 48 96 12

A2 0.2 104 1.25 32 40 96 48 96 12

A3 0.2 104 1.25 64 80 192 48 96 12

A4 0.2 104 1.25 128 160 384 48 96 12

B1 0.2 104 1.25 16 20 48 24 96 12

B2 0.2 104 1.25 16 20 48 48 96 12

B3 0.2 104 1.25 16 20 48 96 96 12

B4 0.2 104 1.25 16 20 48 192 96 12

D1 0.2 104 1.25 16 20 48 24 24 12

D2 0.2 104 1.25 32 40 96 48 48 12

D3 0.2 104 1.25 64 80 192 96 96 12

D4 0.2 104 1.25 128 160 384 192 192 12
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centers of Sa and Se) is set as ds ¼ 2:5, the excision
radius of the BH ra ¼ 0:2, the excision radius of the
binary companion re ¼ 1:125, and the mass parameters
M1 ¼ M2 ¼ 2ra. Hereafter, the third order finite differ-
ence formula is always used for computing the radial
derivatives, as discussed in Sec. III B 1.

In the top panel of Fig. 4, fractional errors of the lapse
j��=�j defined in Eq. (28) are plotted along the x axis
near the BH. Because of the excision of the interior of the
sphereSe and of the use of Legendre expansion in the elliptic
solver, a certain modulation is seen in the errors. Therefore,
hereafter we show fractional errors averaged over the num-
ber of ð�j; �kÞ grids points at a radius r ¼ ri defined by���������

��

�

��������
�
:¼ 1

#ðGiÞ
X

�j;�k2Gi

��������
�� �exact

�exact

��������; (29)
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FIG. 4 (color online). Same as Fig. 3 but for the equal mass
BBH data calculated on a single patch, Fig. 5. Top panel: Plots for
the fractional errors in the lapse ��=� for the equal mass BBH
data along the positive x axis. Middle panel: Averaged fractional
errors in the lapse hj��=�ji. Bottom panel: Averaged fractional
errors in the conformal factor hj�c =c ji. Plots show the errors by
changing the number of all grid points as D1–D4 in Table III.

Se

Sb

FIG. 5 (color online). The setup for a single coordinate grid
patch for the calculation of equal mass BBHs. The radius of the
coordinate patch does not reflect the actual size.

TABLE IV. Grid parameters used in convergence tests for
nonequal mass BBH data solved on multiple coordinate patches.
The separation of two BHs is set as ds ¼ 2:5.

Type Patch ra rb rc re Nf
r Nm

r Nr N� N� L

E1 COCP-1 0.2 104 1.25 1.125 16 20 64 24 24 12

COCP-2 0.4 104 1.25 1.125 16 20 64 24 24 12

E2 COCP-1 0.2 104 1.25 1.125 32 40 128 48 48 12

COCP-2 0.4 104 1.25 1.125 32 40 128 48 48 12

E3 COCP-1 0.2 104 1.25 1.125 64 80 256 96 96 12

COCP-2 0.4 104 1.25 1.125 64 80 256 96 96 12

E4 COCP-1 0.2 104 1.25 1.125 128 160 512 192 192 12

COCP-2 0.4 104 1.25 1.125 128 160 512 192 192 12

F1 COCP-1 0.2 102 1.25 1.125 16 20 48 24 24 12

COCP-2 0.4 102 1.25 1.125 16 20 48 24 24 12

ARCP 5.0 106 6.25 ��� 4 5 48 24 24 12

F2 COCP-1 0.2 102 1.25 1.125 32 40 96 48 48 12

COCP-2 0.4 102 1.25 1.125 32 40 96 48 48 12

ARCP 5.0 106 6.25 ��� 8 10 96 48 48 12

F3 COCP-1 0.2 102 1.25 1.125 64 80 192 96 96 12

COCP-2 0.4 102 1.25 1.125 64 80 192 96 96 12

ARCP 5.0 106 6.25 ��� 16 20 192 96 96 12

F4 COCP-1 0.2 102 1.25 1.125 128 160 384 192 192 12

COCP-2 0.4 102 1.25 1.125 128 160 384 192 192 12

ARCP 5.0 106 6.25 ��� 32 40 384 192 192 12
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where, writing a grid point ðri; �j; �kÞ by p, we define

a set Gi by Gi :¼fðri;�j;�kÞjp2VnSine andri¼constg,
where Sine is an interior domain of Se. Then, #ðGiÞ is the
number of points included in Gi.

The averaged fractional errors for the lapse are plotted
along the radial coordinate r in the middle panel of Fig. 3.
As expected, second order convergence is observed when
the grid points are increased as D1-D4. In the figure, it is
seen that a couple of grid points in the vicinity of the BH
boundary Sa have (averaged) errors as large as �1%, even
for the highest resolution D4. This is due to our choice of
the boundary ra ¼ M=2, which is the same as the single
BH test in the previous section. With this choice, the value
of � becomes negative at the BH excision radius r ¼ ra.
Hence, the fractional error diverges at radii r (depending
on � and �), where � crosses zero, even though the grid
points are slightly off from the zeros. In this way, the worst
possible error in computation for the metric potentials of

BHs is estimated. Even near the radius for � ¼ 0, the
second order convergence is maintained, as seen in the
figure. We also show, in the bottom panel of Fig. 3, aver-
aged fractional errors for the conformal factor c . The
value of c is about 2 near r ¼ ra, and for such a potential
the convergence of the solution is almost uniform in all
radii, as observed.

3. Nonequal mass BBH computed with multiple patches

A convergence test for nonequal mass BBH data using
multi-coordinate patches discussed in Sec. II is performed
with grid parameters presented in Table IV. In the first
example, BBH data are computed on two COCPs whose
boundary radius r ¼ rb is taken to be large enough to reach
the asymptotic region rb ¼ 104. In this computation, the
number of grid points is chosen as E1–E4 in Table IV, in
which the resolution in radial grids ri in the region r > rc is
increased by 44=24 times the corresponding level of reso-
lution for the equal mass BBH case, D1–D4. Separation
between the coordinate centers of two BHs is set as ds ¼
2:5, the excision radius and mass parameter of the first BH
are ra ¼ 0:2withM1 ¼ 2ra ¼ 0:4, and those of the second
BH are ra ¼ 0:4 with M2 ¼ 2ra ¼ 0:8. The results of the
averaged fractional error in the top panel of Fig. 6 are
similar to those of the equal mass BBH case in Fig. 4,
which proves our multiple patch methods work accurately
as expected.
Finally, the BBH data are computed using three multiple

patches, as shown in Fig. 1. The number of grid points is
chosen as F1–F4 in Table IV, and the separation is set as
ds ¼ 2:5. In the bottom panel of Fig. 6, the results for the
averaged fractional errors hj��=�ji are shown. In this
computation we decreased the values of the mass parame-
ter to M1 ¼ 0:8� 2ra ¼ 0:32 with ra ¼ 0:2 for the first
BH and M2 ¼ 0:8� 2ra ¼ 0:64 with ra ¼ 0:4 for the
second BH, so that the lapse � is always positive even
near the BH excision boundary at r ¼ ra. As seen in the
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FIG. 6 (color online). Same as Fig. 3, but averaged fractional
errors in the lapse hj��=�ji are plotted along the radial coordinate
r for the nonequal mass BBH data calculated on multiple patches,
Fig. 1. Top panel: Data computed on two multiple patches by
changing the number of grid points as E1–E4 in Table III. Bottom
panel: Data computed on three multiple patches by changing the
number of all grid points as F1–F4 in Table III.

0.0

0.5

1.0

1.5

2.0

-15 -10 -5  0  5  10  15

ψ
, α

x

ψ

α

COCP-1
COCP-2
ARCP

FIG. 7 (color online). Plots for the conformal factor c and the
lapse �, computed on the three multi-patches. The model is the
same as that in the bottom panel of Fig. 6.

NEW CODE FOR EQUILIBRIUMS AND . . . PHYSICAL REVIEW D 85, 064014 (2012)

064014-11



figure, the error near the BH boundary is decreased to
about 1=10 of the previous case, although the resolutions
near the BH are the same. In Fig. 7 we present the plots of
the potentials � and c for the same model to show a
smooth transition of potentials from one patch to the other.

IV. INITIAL DATA FOR BINARY BLACK HOLES

Finally, we present examples for initial data sets for equal
mass BBHs, which have been widely used for BBHmerger
simulations in the literature. Among several formulations
for computing such data sets (see, e.g., [1,7] and references
therein), we adopt the Isenberg-Wilson-Mathews (IWM)
formulation. In this sectionwe show the solutions computed
from two different types of boundary conditions. The first
are simple boundary conditions used in our previous paper
[13]. The second are the apparent horizon boundary con-
ditions, which have been used to compute quasicircular
initial data for BBHs (see, e.g., [7,8,27,28]).

A. IWM formulation and boundary conditions

IWM formulation has been widely used for constructing
quasiequilibrium initial data for binary compact objects.
We summarize the basic equations below (for more details
see, e.g., [7,22,23]). The spacetime metric on �t is written
in 3þ 1 form as

ds2¼g
�dx

dx�¼��2dt2þ	ijðdxiþ�idtÞðdxjþ�jdtÞ;

(30)

where the spatial three-metric	ij on the slice�t is assumed

to be conformally flat,	ij ¼ c 4fij. Here, field variables c ,

�, and �i are the conformal factor, lapse, and shift vector,

respectively. We also assume maximal slicing to�t, so that
the trace of the extrinsic curvature Kij :¼ � 1

2� ðLt	ij �
L�	ijÞ vanishes. Then, writing its trace-free part Aij, the

conformally rescaled quantity ~Aij becomes

~A ij ¼ 1

2�

�
@i ~�j þ @j ~�i � 2

3
fij@k ~�

k

�
; (31)

where the derivative @i is associated with the flat metric fij,

and conformally rescaled quantities with tildes are defined

by ~Ai
j ¼ Ai

j and ~�i ¼ �i, whose indices are lowered
(raised) by fij (fij). The system to be solved, which

includes Hamiltonian and momentum constraints and the
spatial trace of Einstein’s equations, becomes

�c ¼ � c 5

8
~Aij

~Aij; (32)

� ~�i ¼ �2� ~Ai
j@j ln

c 6

�
� 1

3
@i@j ~�

j; (33)

�ð�c Þ ¼ 7
8�c

5 ~Aij
~Aij; (34)

where � :¼ @i@
i is a flat Laplacian. It is noted that, for the

shift equation (33), the Cartesian components are solved on
the spherical coordinates.
As a first set of boundary conditions at the BH excision

boundary Sa and at the boundary of computational domain
Sb for the above system, Eqs. (32)–(34), we choose the
following, for simplicity,

FIG. 8 (color online). Schematic figure for the � rotation symmetry of x and y components of the shift from a region inside S0e to the
excised region inside the sphere Se.
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c jr¼ra ¼n1; �ijr¼ra ¼���i
cm; �jr¼ra ¼n0 and

c jr¼rb ¼1:0; �ijr¼rb ¼0:0; �jr¼rb ¼1:0;
(35)

where n1 and n0 are arbitrary positive constants taken as
n1 * 2 and n0 & 1, �i

cm ¼ ð�ycm; xcm; 0Þ is the rotational
vector with respect to the center of mass of the binary
associated with coordinates ðxcm; ycm; zcmÞ :¼ ðx� d; y; zÞ,
and � corresponds to the orbital angular velocity. The
radius rb is taken to be large enough, as in the test problems
in Sec. III. Despite the fact that the boundary conditions
abovemay be of the simplest type for the IWM formulation
deduced for acquiring BBH data with nonzero orbital

angular momentum in an asymptotically flat system, they
capture the qualitative functional behavior of the unknown
fields fc ; �; �ig, as more realistic boundary conditions
mentioned below. The solutions calculated from these
boundary conditions (35) are compared with our previous
code [13] that uses a different structure for the multiple
spherical coordinate patches, as well as the solutions of
different boundary conditions.
For the second set, we impose more realistic boundary

conditions at the BH boundary Sa, in particular, those that
represent apparent horizons in equilibrium [7,8,27–29],

@c

@r
þ c

2r

��������r¼ra

¼ � c 3

4
Kijs

isj; (36)

�ijr¼ra ¼
n0
c 2

si ���i
cm ��s�

i
s; (37)

�jr¼ra ¼ n0; (38)

where n0 is an arbitrary positive constant for which we
choose n0 & 0:1, si is the unit normal to the sphere
Sa, and�s represents the spin of each black hole. The vector
�i

s is the rotational vector with respect to the coordinate
center of the BH that generates the BH spin. The spin axis
is not necessarily parallel to the z axis. Demanding the
sphere Sa to be an apparent horizon (AH) results in
Eq. (36), while demanding the horizon to be in equilibrium
results in Eq. (37).
For the present calculations for BBH initial data, we also

assume �-rotation symmetry of the system around the

TABLE V. Boundary conditions and their parameters used in
the computations for BBH initial data. The first column, Type,
denotes the types of boundary conditions used, TU corresponds
to Eq. (35), and AH corresponds to apparent horizon boundary
conditions, Eqs. (36)–(38). The model of Fig. 9 is computed with
a binary separation ds ¼ 2:8, a radius of BH excision ra ¼ 0:1,
and a radius of binary excision re ¼ 1:3. All the other models are
computed with the parameter set D3 in Table III.

Type n1 n0 � �s Spin axis Figures

TU 3.0 1.0 0.3 0.0 � � � Figure 9

TU 2.2 0.005 0.08 0.0 � � � Figure 10 and 11

AH � � � 0.1 0.08 0.0 � � � Figures 12–18

AH � � � 0.005 0.08 0.0 � � � Figures 12–16

AH � � � 0.1 0.08 0.1 z axis Figure 17

AH � � � 0.1 0.08 0.1 y axis Figure 18
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FIG. 9 (color online). Plots for the y component of shift vector
along the x axis of BBH initial data computed from the boundary
conditions (35). Parameters in the boundary conditions are the
same as the solution presented in [13] as n1 ¼ 3, n0 ¼ 0:1, and
� ¼ 0:3. Two BHs are located at x ¼ 0 and x ¼ 2:8. The region
inside the excised sphere Se is interpolated using �-rotation
symmetry. Thin solid (black) vertical lines are the boundaries at
Sa with the radius ra ¼ 0:1, and dotted (blue) vertical lines are
the boundaries at Se with the radius re ¼ 1:3.
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FIG. 10 (color online). Plots for the conformal factor c and
lapse function � along the x axis of BBH initial data computed
for the boundary condition (35). Parameters in the boundary
conditions are chosen as n1 ¼ 0:1, n0 ¼ 0:005, and � ¼ 0:08.
The two BHs are located at x ¼ 0 and x ¼ 2:5. The region inside
the excised sphere Se is interpolated using �-rotation symmetry.
Thin solid (black) vertical lines are the boundaries at Sa with the
radius ra ¼ 0:2, and dotted (blue) vertical lines are the bounda-
ries at Se with the radius re ¼ 1:125.
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center of mass. That is, two BHs have equal masses and
�-rotation symmetric spins, if any. In other words, the
same boundary conditions are imposed on both BHs.
In those cases, the single patch method discussed in
Sec. III B 1 can be used for simplicity. As shown in
Fig. 8, the metric potentials are mapped to the excised

sphere Se from the corresponding sphere S0e, taking into
account the parity of the variables with respect to the �
rotation. As an example, the �-rotation symmetries of the
shift components on the xy plane are shown schematically
(the shift at A0 is mapped to point A), together with the
corresponding rules for the derivatives of a function along
the x axis inside the excised sphere (B0C0 mapped to BC)
and along the y axis (B0D0 mapped to BD). In terms of the
center of mass coordinates, the �-rotation symmetries of
the components of the shift vector become

�xð�xcm;�ycm; zcmÞ ¼ ��xðxcm; ycm; zcmÞ;
�yð�xcm;�ycm; zcmÞ ¼ ��yðxcm; ycm; zcmÞ:

The z component �z is mapped as a scalar quantity.
Mapped quantities are used in the elliptic equation

solver when the sources of surface integrals on the excised
sphere Se, Eq. (7), are evaluated. Also, at the end of each
iteration step, obtained potentials fc ; �; �ig between the
spheres Sa and S0e are interpolated inside the sphere Se
following the same rules for the parity of each variable. At
the end we have the solution at every point inside Sb and
outside of the two black holes of radius ra positioned at the
origin and at x ¼ ds on the x axis.
In the case of no spins �s ¼ 0, or spins that are parallel

to one of the coordinate axes, additional symmetries
with respect to the xyjcm plane occur. In our previous
codes [11–13], a part or all of these symmetries were
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FIG. 11 (color online). Plots for the same model as Fig. 10 but
for the components of the shift �i. Top panel: �x along the y
axis. Middle panel: �y along the x axis. Bottom panel: �y along

the y axis.
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FIG. 12 (color online). Shift vector on the xy plane of the
BBH initial data for the case with AH boundary conditions
(36)–(38). Parameters in the boundary conditions are chosen as
n0 ¼ 0:1,� ¼ 0:08, and�s ¼ 0. The center of mass is located at
x ¼ 1:25 on the x axis. In the computation, the region inside the
thick circle on the left centered at the originwith a radius ra ¼ 0:2,
and the region inside the thin circle (green) with a radius re ¼
1:125 centered at x ¼ 2:5 on the x axis are excised. The data inside
the thin circle are interpolated by a symmetry. Note that the center
of mass does not coincide with the origin of the x axis.
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encoded in the elliptic solver. As a result, a computational
domainwas reducedby assuming the symmetries, andhence
only a part of the whole hypersurface �t was solved. In
COCAL we are solving the whole �t, and therefore such

symmetries are satisfied in the solution within negligible
numerical errors.

B. Solutions for BBH initial data

Finally, we present the BBH initial data sets com-
puted from the above formulation with several parameter
sets for the boundary conditions listed in Table V. As
we concentrate on testing the COCAL code, we do not
discuss the physical contents of the initial data sets
much, but display the plots of the fields to check their
behaviors.

In Fig. 9 we calculated BBH data for the same model
as shown in our previous paper [13] for a comparison.
Parameters in the boundary condition (35) are chosen as
n1 ¼ 3:0, n0 ¼ 1:0, and � ¼ 0:3. Only in this model, we
choose the binary separation as ds ¼ 2:8 and the BH
excision radius ra ¼ 0:1. We find the solution agrees well
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FIG. 13 (color online). Contour plots on the xy plane for the
conformal factor c (top panel) and the lapse function � (bottom
panel) for the same model as Fig. 12. For c we draw isolines
from c ¼ 1:1 to c ¼ 2:0 with steps of 0.1. For � we draw
isolines from � ¼ 0:2 to � ¼ 0:9 with steps of 0.05.
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FIG. 14 (color online). Plots for the x component of the
shift �x of BBH initial data for the case with AH boundary
conditions (36)–(38). Parameters in the boundary conditions are
chosen as n0 ¼ 0:1 (solid red lines) and n0 ¼ 0:005 (dashed green
lines), with � ¼ 0:08 and �s ¼ 0. Top panel: Along the x axis.
Middle panel: Along the y axis. Bottom panel: Along the z axis.
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with Fig. 11 of [13] as expected, although the structures of
coordinate patches are different in each code. In
Figs. 10 and 11 we use the same boundary conditions
(35) but with different parameters which may be more
common values for the BBH data. In the computation
the grid parameters used are D3 in Table III.When the value
of � is increased, the magnitude of the lapse and the

conformal factor remain almost the same, while the
magnitude of the components of the shift increase, with
the functional behavior staying the same. For example,
when � ¼ 0:1, �x on the y axis varies between 	0:05,
while �y on the x axis varies between 	0:15. For these

boundary conditions the code blows up when � is
approximately greater than 0.2.4

Solutions for the BBH initial data with the AH boundary
conditions (36)–(38) are shown in Figs. 12–16. In this
calculation the resolution is D3 in Table III with � ¼
0:08 and �s ¼ 0. The shift vector plots and the contour
plots of the conformal factor c and the lapse � in the xy
plane are for the model with n0 ¼ 0:1. The behavior
of the field c and � are analogous to those from the
simple boundary condition (35) shown in Fig. 10.
Because of the choice �s ¼ 0, the solution satisfies
xy-plane symmetry.
From a comparison between the results of parameters

n0 ¼ 0:1 and 0.005 shown in Figs. 14–16, it is found that
the results with n0 ¼ 0:005 become more similar to the
results of the first boundary conditions (35) shown in
Fig. 11. For example, it is most evident in the plot for �y

along the y axis, Fig. 15 (middle panel) and Fig. 11 (bottom
panel). This seems to be the correct behavior because the
first term of Eq. (37) contributes less as the value of alpha
(parameter n0) becomes smaller.5 However, we do not
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FIG. 15 (color online). Plots for the same model as Fig. 14 but
for the y component of the shift �y.
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FIG. 16 (color online). Plots for the same model as Fig. 14 but
for the z component of the shift �z along the z axis.

4The convergence of the iteration is not improved by changing the
convergence parameter c for this model. For the same model, the
value of� for the circular solution becomes around 0.1. Note also
that the iterationconverges for� ¼ 0:3 for thefirst exampleofBBH
datawith theTUboundary condition, towhich the larger value of the
lapse � ¼ 1 is given at the BH boundary. Also, we can calculate
solutions with AH boundary conditions for � values greater than
0.2, again by changing the value of the lapse function at the horizon.
These suggest that the initial data with a higher velocity may be
calculated in a different slicing using the COCAL code.

5For the first boundary conditions (35), the solution of the shift
does not depend much on n0 in the region n0 & 0:1.
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expect a solution in the limit n0 ! 0; in fact, for both types
of boundary conditions iterations diverge when n0 & 0:004
in the COCAL code.

All of the solutions above have zero black hole spins.
Setting spins �s ¼ 0:1 in the same direction as the orbital
motion (rotation on the xy plane)we get a solution similar to
Figs. 14–16, except for�x along the y axis and�y along the

x axis. The results with and without spins are compared in
Fig. 17 for the case with n0 ¼ 0:1. For more general black
hole spins we obtain Fig. 18, where we have taken a spin
�s ¼ 0:1 along the y axis. In these plots for the solutions
with the spins, we confirm that all components of the shift
vectors behave correctly along each coordinate axis.

V. DISCUSSION

Although the numerical method presented in this paper
may seem similar to the one presented in our previous

paper [13], the robustness of the convergence and the
control of the numerical errors are greatly improved. In
some cases, the previous method failed to compute a
continuous solution at the interface between multiple
patches during the iterations, and therefore a convergence

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

-6 -4 -2  0  2  4  6

β x

z

COCP-BH

Ωs = 0.1
Ωs = 0.0

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

-6 -4 -2  0  2  4  6  8

β z

x

COCP-BH

Ωs = 0.1
Ωs = 0.0

-2.0e-04

0.0e+00

2.0e-04

4.0e-04

6.0e-04

8.0e-04

1.0e-03

1.2e-03

-6 -4 -2  0  2  4  6

β z

y

COCP-BH

Ωs = 0.1
Ωs = 0.0

FIG. 18 (color online). Same as Fig. 17, but the direction of the
spin is aligned parallel to the y axis. Top panel: �x component
along the z axis. Middle panel: �z component along the x axis.
Bottom panel: �z component along the y axis.
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FIG. 17 (color online). Plots for the components of the shift �i

of BBH initial data for the casewith AH boundary conditions (36)
–(38). Parameters in the boundary conditions are chosen as n0 ¼
0:1 with spin parameters �s ¼ 0 (solid red lines) and �s ¼ 0:1
(dashed green lines). The spins are aligned to the orbital angular
momentum (i.e. parallel to the z axis). Top panel: �x component
along the y axis. Bottom panel: �y component along the x axis.

Solid red curves correspond to those in Figs. 14–16.
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to a solution could not be achieved. A major reason for this
failure turned out to be a lack of enough overlap region
between coordinate patches. The numerical errors of the
field variables are relatively larger near the boundary of the
computational domain as seen, for example, in Fig. 6.
Hence, if the overlap region is small, those potentials
with larger numerical errors overlap, which seems to cause
the nonconvergence of the iteration. In the COCAL code the
overlap region is almost as large as the whole domain for
the two coordinate patch configuration, and is large enough
even for the three coordinate patch configuration. So far we
have not observed a discontinuous behavior of a field in the
solutions of COCAL.

The COCAL code currently runs only on a serial pro-
cessor, which is sufficient to maintain the accuracy
presented in Sec. III. In the computation for BBH initial
data shown in Sec. IV, the size of the main memory and
CPU times per 1 iteration cycle used by COCAL are about
800 MB 50 sec for D3 grid and 6 GB 8 min for D4 grid,
and around 50–150 iterations are needed for a conver-
gence, where the iterations start from an initial guess
c ¼ � ¼ 1 and �i ¼ 0. Because we use second order
accurate formulas in COCAL, we can decrease the nu-
merical error by 2 orders of magnitude with 10 times as
many grid points in each direction, that is, 103 times as
many grid points in total. Considering specs of common
parallel computer systems it seems to be feasible to
achieve this accuracy by parallelizing COCAL. We have
started to develop a prototype of such parallelized
COCAL code, whose results would be presented

elsewhere.
The most advantageous feature of COCAL is its sim-

plicity in coding. This helps the users to introduce more
complex physics on top of the current code. For example,
we have developed subroutines for solving spatially con-
formally flat data (IWM formulation) first, and later
added subroutines for solving nonconformally flat data
(waveless formulation) on top. In the same way, it will be
straightforward to incorporate subroutines to solve elec-
tromagnetic fields, which enables us to investigate, for
example, magnetar models. We are developing codes for
computing various kinds of astrophysically realistic equi-
libriums and quasiequilibrium data and to provide the
results to applications including initial data for numerical
relativity simulations. We plan to make the COCAL code
and computed initial data sets available for public use in
the near future.
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APPENDIX A: COMPUTATIONS FOR
HOMOGENEOUS SOLUTIONS

In this appendix we show a concrete derivation for the
homogeneous solution �ðxÞ used in the elliptic solver (6)
for two cases, onewith the Neumann boundary condition at
the inner boundary sphere Sa and the Dirichlet boundary
condition at the outer boundary sphere Sb, and the other
with Dirichlet conditions at both Sa and Sb. We summarize
the other cases in Appendix B.
As explained in Sec. II C, the solution of L� ¼ S is

written �ðxÞ ¼ �ðxÞ þ�INTðxÞ to impose certain bound-
ary conditions at the two spheres Sa and Sb. In order to do
so, the homogeneous solution � of the Laplacian is split
into two functions �aðxÞ and �bðxÞ as �ðxÞ ¼ �aðxÞ þ
�bðxÞ. Both are solutions of Laplace equations, one for
the exterior of the sphere Sa and the other for the interior of
the sphere Sb (see Fig. 19). Since r‘, r�‘�1 are the solu-
tions of the radial part of the Laplacian, the contribution �a

is taken to be a series of r�‘�1, while the contribution �b is
taken to be a series of r‘. Therefore, we write

�aðxÞ¼ 1

4�

X1
‘¼0

X‘
m¼0

�m
ð‘�mÞ!
ð‘þmÞ!P

m
‘ ðcos�Þr�‘�1

�½A‘mcosðm�ÞþB‘m sinðm�Þ�; (A1)

�bðxÞ¼ 1

4�

X1
‘¼0

X‘
m¼0

�m
ð‘�mÞ!
ð‘þmÞ!P

m
‘ ðcos�Þr‘

�½C‘mcosðm�ÞþD‘m sinðm�Þ�; (A2)

where A‘m, B‘m, C‘m, andD‘m are constants. One common
choice is

@�

@r

��������r¼ra

¼ @�BC

@r

��������r¼ra

; (A3)

FIG. 19. Surface integral for the exterior and the interior of a
sphere.
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�jr¼rb ¼ �BCjr¼rb ; (A4)

where @�BC

@r jr¼ra and�BCjr¼rb are known functions defined

at boundaries Sa and Sb, respectively; we consider the case

with the Neumann boundary condition at the inner surface
Sa and the Dirichlet boundary condition at the outer one Sb.
From boundary condition (A3), with the use of Eqs. (A1),

(A2), (6), and (7), and the orthogonality relations

Z �

0
Pm
‘ ðcos�ÞPm

‘0 ðcos�Þsin�d�¼
2

2‘þ1

ð‘þmÞ!
ð‘�mÞ!�‘‘0 ;

Z 2�

0
sinðm�Þcosðm0�Þd�¼0;

Z 2�

0
cosðm�Þcosðm0�Þd�¼2�

�m
�mm0 ;

we get

� ‘þ 1

r‘þ2
a

A‘m þ ‘r‘�1
a C‘m ¼ ð2‘þ 1Þ

Z �

0

Z 2�

0

�
@�BC

@r
� @�INT

@r

�
r¼ra

Pm
‘ ðcos�Þ cosðm�Þd�; (A5)

� ‘þ 1

r‘þ2
a

B‘m þ ‘r‘�1
a D‘m ¼ 2ð2‘þ 1Þ

�m

Z �

0

Z 2�

0

�
@�BC

@r
� @�INT

@r

�
r¼ra

Pm
‘ ðcos�Þ sinðm�Þd�: (A6)

Using now boundary condition (A4) and again the same equations, we get

r�‘�1
b A‘m þ r‘bC‘m ¼ ð2‘þ 1Þ

Z �

0

Z 2�

0
ð�BC ��INTÞr¼rbP

m
‘ ðcos�Þ cosðm�Þd�; (A7)

r�‘�1
b B‘m þ r‘bD‘m ¼ 2ð2‘þ 1Þ

�m

Z �

0

Z 2�

0
ð�BC ��INTÞr¼rbP

m
‘ ðcos�Þ sinðm�Þd�: (A8)

The system of four equations with respect to A‘m, B‘m, C‘m, D‘m can be solved to yield

A‘m

�
1þ ‘

‘þ 1

�
ra
rb
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�
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D‘m

�
1þ ‘

‘þ 1

�
ra
rb

�
2‘þ1

�
¼ 2ð2‘þ 1Þ

�m
r�‘
b

Z
Sb

ð�BC ��INTÞPm
‘ ðcos�Þ sinðm�Þd�

þ 2ð2‘þ 1Þ
ð‘þ 1Þ�m

r2a
r‘þ1
b

�
ra
rb

�
‘ Z

Sa

�
@�BC

@r
� @�INT

@r

�
Pm
‘ ðcos�Þ sinðm�Þd�:

Substituting the above in Eqs. (A1) and (A2), we have

�aðxÞ þ �bðxÞ ¼ 1

4�

X1
‘¼0

X‘
m¼0

�m
ð‘�mÞ!
ð‘þmÞ!P

m
‘ ðcos�Þ

	
ð2‘þ 1Þ

�
ra
rb

�
‘ ð rraÞ‘ þ ‘

‘þ1 ðrar Þ‘þ1

1þ ‘
‘þ1 ðrarbÞ2‘þ1

�
Z
Sb

½�BC ��INT�Pm
‘ ðcos�0Þ cos½mð���0Þ�d�0 þ �2‘� 1

‘þ 1

r‘þ2
a

r‘þ1
b

ðrbr Þ‘þ1 � ð rrbÞ‘
1þ ‘

‘þ1 ðrarbÞ2‘þ1

�
Z
Sa

�
@�BC

@r
� @�INT

@r

�
Pm
‘ ðcos�0Þ cos½mð���0Þ�d�0



: (A9)
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Similarly, when we have Dirichlet boundary conditions on both the inner and the outer spheres Sa and Sb,

�jr¼ra ¼ �BCjr¼ra ; (A10)

�jr¼rb ¼ �BCjr¼rb ; (A11)

the contribution to the potential will be

�aðxÞ þ �bðxÞ ¼ 1

4�

X1
‘¼0

X‘
m¼0

�m
ð‘�mÞ!
ð‘þmÞ!P

m
‘ ðcos�Þ

	
ð2‘þ 1Þ

�
ra
rb

�
‘ ð rraÞ‘ � ðrar Þ‘þ1

1� ðrarbÞ2‘þ1

�
Z
Sb

½�BC ��INT�Pm
‘ ðcos�0Þ cos½mð���0Þ�d�0 þ ð2‘þ 1Þ

�
ra
rb

�
‘þ1 ðrbr Þ‘þ1 � ð rrbÞ‘

1� ðrarbÞ2‘þ1

�
Z
Sa

½�BC ��INT�Pm
‘ ðcos�0Þ cos½mð���0Þ�d�0



: (A12)

The final solution will be obtained from the iteration of

�ðxÞ ¼ �ðxÞ þ�INTðxÞ ¼ �aðxÞ þ �bðxÞ þ�INTðxÞ;
where �a þ �b are taken from Eq. (A9) or (A12) depend-
ing on the boundary condition. For the other boundary
value problem, �ðxÞ ¼ �aðxÞ þ �bðxÞ is modified accord-
ingly as shown in the next appendix.

APPENDIX B: GREEN’S FUNCTIONS AND
SURFACE INTEGRALS

In this appendix we present the explicit forms of the
kernel functions denoted by GBCðx; x0Þ in Eq. (12), which
appear in the surface integrals of the homogeneous solution
�ðxÞ (11). Various types of boundary conditions are im-
posed on a spherical domain bounded by two concentric
spheres Sa and Sb, and the corresponding kernel functions
available in COCAL are tabulated in Table I. In [13] we used
Green’s functions GNBðx; x0Þ, GDDðx; x0Þ, and GNDðx; x0Þ.
Here we also construct GDNðx; x0Þ, GNNðx; x0Þ, GRDðx; x0Þ.

The surface integral

�ðxÞ ¼ 1

4�

Z
Sa[Sb

½GBCðx; x0Þr0��̂ðx0Þ

� �̂ðx0Þr0�GBCðx; x0Þ�dS0�; (B1)

where �̂ðx0Þ :¼ �BCðx0Þ ��INTðx0Þ, is written below for
both the exterior and the interior problem. Noticing that
dS0� is pointing outward, Sa and Sb are the concentric
spheres, and r0�fðx0ÞdS0� ¼ @r0fr

02d�0, we have

�a ¼ 1

4�

Z
Sa

X1
‘¼0

½�gBC‘ ðr; r0Þ@r0�̂þ @r0g
BC
‘ ðr; r0Þ�̂�r0¼ra

� X‘
m¼0

�m
ð‘�mÞ!
ð‘þmÞ!P

m
‘ ðcos�ÞPm

‘ ðcos�0Þ

� cos½mð���0Þ�r2ad�0 (B2)

and

�b ¼ 1

4�

Z
Sb

X1
‘¼0

½gBC‘ ðr; r0Þ@r0�̂� @r0g
BC
‘ ðr; r0Þ�̂�r0¼rb

� X‘
m¼0

�m
ð‘�mÞ!
ð‘þmÞ!P

m
‘ ðcos�ÞPm

‘ ðcos�0Þ

� cos½mð���0Þ�r2bd�0: (B3)

Note that these �a and �b in this section are defined
differently from those in the previous section, Eqs. (A1)
and (A2). As shown in Fig. 19, we denote by ra the radius
of the sphere Sa for the exterior problem and by �a the
corresponding integral, and by rb the radius of the sphere
Sb for the interior problem and �b the corresponding
integral.

1. Kernel function GNBðx; x0Þ
The radial part for the kernel function without the

boundary, GNBðx; x0Þ, is

gNB‘ ðr; r0Þ ¼ r‘<
r‘þ1
>

; (B4)

where r> :¼ maxfr; r0g and r< :¼ minfr; r0g. The radial
part of the kernel function in the surface integral on Sa
(B2) becomes

gNB‘ ðr; raÞ ¼ r‘a
r‘þ1

; @r0g
NB
‘ ðr; raÞ ¼ ‘

r‘�1
a

r‘þ1
; (B5)

while the surface integral on Sb is

gNB‘ ðr;rbÞ¼ r‘

r‘þ1
b

; @r0g
NB
‘ ðr;raÞ¼�ð‘þ1Þ r‘

r‘þ2
b

: (B6)

2. Kernel function GDDðx; x0Þ
When Dirichlet boundary conditions are imposed on

both Sa and Sb, the kernel function GDDðx; x0Þ satisfies
GDDðx; x0ÞjSa ¼ 0; GDDðx; x0ÞjSb ¼ 0:
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These conditions lead to the vanishing of the radial part
gDD‘ ðr; r0Þ on the two spheres Sa and Sb,

gDD‘ ðr; raÞ ¼ gDD‘ ðr; rbÞ ¼ 0;

which results in the following formula for gDDl ðr; r0Þ:

gDD‘ ðr; r0Þ ¼
�
1�

�
ra
rb

�
2‘þ1

��1 r‘a
r‘þ1
b

��
r<
ra

�
‘ �

�
ra
r<

�
‘þ1

�

�
��

rb
r>

�
‘þ1 �

�
r>
rb

�
‘
�
: (B7)

The radial kernel function at Sa becomes

gDD‘ ðr;raÞ¼0; @r0g
DD
‘ ðr;raÞ¼ ð2‘þ1Þr

‘�1
a

r‘þ1
b

ðrbr Þ‘þ1�ð rrbÞ‘
1�ðrarbÞ2‘þ1

;

(B8)

and at Sb,

gDD‘ ðr;rbÞ¼0;

@r0g
DD
‘ ðr;rbÞ¼�ð2‘þ1Þ r‘a

r‘þ2
b

ð rraÞ‘�ðrar Þ‘þ1

1�ðrarbÞ2‘þ1
:

(B9)

A special case is when the surface Sb is absent in the
limit rb ! 1,

@r0g
DD
‘ ðr; raÞ ¼ ð2‘þ 1Þ r

‘�1
a

r‘þ1
; (B10)

for the surface integral at Sa, or when the surface Sa is
absent in the limit ra ! 0,

@r0g
DD
‘ ðr; rbÞ ¼ �ð2‘þ 1Þ r‘

r‘þ2
b

; (B11)

for the surface integral at Sb. The latter will be used for
computing neutron stars.

3. Kernel function GNDðx; x0Þ
When Neumann and Dirichlet boundary conditions are

imposed on Sa and Sb, respectively, the kernel function
GNDðx; x0Þ satisfies

@r0G
NDðx; x0ÞjSa ¼ 0; GNDðx; x0ÞjSb ¼ 0;

or in terms of gND‘ ðr; r0Þ,
@r0g

ND
‘ ðr; raÞ ¼ gND‘ ðr; rbÞ ¼ 0:

Then the radial part of GNDðx; x0Þ is

gND‘ ðr;r0Þ¼
�
1þ ‘

‘þ1

�
ra
rb

�
2‘þ1

��1 r‘a
r‘þ1
b

��
r<
ra

�
‘

þ ‘

‘þ1

�
ra
r<

�
‘þ1

���
rb
r>

�
‘þ1�

�
r>
rb

�
‘
�
: (B12)

The radial kernel function at Sa becomes

gND‘ ðr;raÞ¼2‘þ1

‘þ1

r‘a
r‘þ1
b

ðrbr Þ‘þ1�ð rrbÞ‘
1þ ‘

‘þ1ðrarbÞ2‘þ1
; @r0g

ND
‘ ðr;raÞ¼0

(B13)

and at Sb,

gND‘ ðr; rbÞ ¼ 0

@r0g
ND
‘ ðr; rbÞ ¼ �ð2‘þ 1Þ r‘a

r‘þ2
b

ð rraÞ‘ þ ‘
‘þ1 ðrar Þ‘þ1

1þ ‘
‘þ1 ðrarbÞ2‘þ1

:

(B14)

A special case is when the surface Sb is absent in the
limit rb ! 1,

gND‘ ðr; raÞ ¼ 2‘þ 1

‘þ 1

r‘a
r‘þ1

; (B15)

for the surface integral at Sa.

4. Kernel function GDNðx; x0Þ
When Dirichlet and Neumann boundary conditions are

imposed on Sa and Sb, respectively, the kernel function
GDNðx; x0Þ satisfies

GDNðx; x0ÞjSa ¼ 0; @r0G
DNðx; x0ÞjSb ¼ 0;

or in terms of gDN‘ ðr; r0Þ,
gDN‘ ðr; raÞ ¼ @r0g

DN
‘ ðr; rbÞ ¼ 0:

Then the radial part of GDNðx; x0Þ is

gDN‘ ðr;r0Þ¼
�

‘

‘þ1
þ
�
ra
rb

�
2‘þ1

��1 r‘a
r‘þ1
b

��
r<
ra

�
‘�

�
ra
r<

�
‘þ1

�

�
��

r>
rb

�
‘þ ‘

‘þ1

�
rb
r>

�
‘þ1

�
: (B16)

The radial kernel function at Sa becomes

gDN‘ ðr;raÞ¼0;

@r0g
DN
‘ ðr;raÞ¼ ð2‘þ1Þr

‘�1
a

r‘þ1
b

ð rrbÞ‘þ ‘
‘þ1ðrbr Þ‘þ1

‘
‘þ1þðrarbÞ2‘þ1

;
(B17)

and at Sb,

gDN‘ ðr;rbÞ¼2‘þ1

‘þ1

r‘a
r‘þ1
b

ð rraÞ‘�ðrar Þ‘þ1

‘
‘þ1þðrarbÞ2‘þ1

; @r0g
DN
‘ ðr;rbÞ¼0:

(B18)

5. Kernel function GRDðx; x0Þ
When Robin and Dirichlet boundary conditions are

imposed on Sa and Sb, respectively, the kernel function
GRDðx; x0Þ satisfies
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�
@GRD

@r
þGRD

2r

�
Sa

¼ 0; GRDðx; x0ÞjSb ¼ 0;

or in terms of gRD‘ ðr; r0Þ,
�
@gRD‘
@r

þ gRD‘
2r

�
r¼ra

¼ 0; gRD‘ ðr; rbÞ ¼ 0:

Then radial part of GRDðx; x0Þ is

gRD‘ ðr;r0Þ¼
�
1þ

�
ra
rb

�
2‘þ1

��1 r‘a
r‘þ1
b

��
r<
ra

�
‘þ

�
ra
r<

�
‘þ1

�

�
��

rb
r>

�
‘þ1�

�
r>
rb

�
‘
�
: (B19)

For the surface integral at Sa, it is more convenient to
rewrite Eq. (B2),

�a ¼ 1

4�

Z
Sa

X1
‘¼0

�
�gRD‘ ðr; r0Þ

�
@r0�̂þ �̂

2r0

�

þ
�
@r0g

RD
‘ ðr; r0Þ þ gRD‘ ðr; r0Þ

2r0

�
�̂

�
r0¼ra

� X‘
m¼0

�m
ð‘�mÞ!
ð‘þmÞ!P

m
‘ ðcos�ÞPm

‘ ðcos�0Þ

� cos½mð���0Þ�r2ad�0; (B20)

while for �b, Eq. (B3) is used. Here, the radial kernel
function at Sa becomes

gRD‘ ðr;raÞ¼2
r‘a
r‘þ1
b

ðrbr Þ‘þ1�ð rrbÞ‘
1þðrarbÞ2‘þ1

@r0g
RD
‘ ðr;raÞþ

gRD‘ ðr;raÞ
2ra

¼0: (B21)

The radial kernel function at Sb in Eq. (B3) becomes

gRD‘ ðr;rbÞ¼0; @r0g
RD
‘ ðr;rbÞ¼�ð2‘þ1Þ r‘a

r‘þ2
b

ð rraÞ‘þðrar Þ‘þ1

1þðrarbÞ2‘þ1
:

(B22)

A special case is when the surface Sb is absent in the
limit rb ! 1. In that case, we use in Eq. (B20), for ‘ ¼
1; 2; . . . ,

gRD‘ ðr; raÞ ¼ 2
r‘a
r‘þ1

: (B23)

6. Kernel function GDRðx; x0Þ
When Dirichlet and Robin boundary conditions are

imposed on Sa and Sb, respectively, the kernel function
GDRðx; x0Þ satisfies

GDRðx; x0ÞjSa ¼ 0;

�
@GDR

@r
þGDR

2r

�
Sb

¼ 0;

or in terms of gDR‘ ðr; r0Þ,

gDR‘ ðr; raÞ ¼ 0;

�
@gDR‘
@r

þ gDR‘
2r

�
r¼rb

¼ 0:

Then the radial part of GDRðx; x0Þ is

gDR‘ ðr; r0Þ ¼
�
1þ

�
ra
rb

�
2‘þ1

��1 r‘a
r‘þ1
b

��
r<
ra

�
‘ �

�
ra
r<

�
‘þ1

�

�
��

rb
r>

�
‘þ1 þ

�
r>
rb

�
‘
�
: (B24)

For the surface integral at Sb, it is more convenient to
rewrite Eq. (B3),

�b ¼ 1

4�

Z
Sb

X1
‘¼0

½gDR‘ ðr; r0Þ
�
@r0�̂þ �̂

2r0

�

�
�
@r0g

DR
‘ ðr; r0Þ þ gDR‘ ðr; r0Þ

2r0

�
�̂

�
r0¼rb

� X‘
m¼0

�m
ð‘�mÞ!
ð‘þmÞ!P

m
‘ ðcos�ÞPm

‘ ðcos�0Þ

� cos½mð���0Þ�r2bd�0; (B25)

while for �a, Eq. (B2) is used. Here, the radial kernel
function at Sa becomes

gDR‘ ðr;raÞ¼0; @r0g
DR
‘ ðr;raÞ¼ð2‘þ1Þr

‘�1
a

r‘þ1
b

ð rrbÞ‘þðrbr Þ‘þ1

1þðrarbÞ2‘þ1
:

(B26)

The radial kernel function at Sb in Eq. (B3) becomes

gDR‘ ðr; rbÞ ¼ 2
r‘a
r‘þ1
b

ð rraÞ‘ � ðrar Þ‘þ1

1þ ðrarbÞ2‘þ1
;

@r0g
DR
‘ ðr; rbÞ þ gDR‘ ðr; rbÞ

2rb
¼ 0:

(B27)

A special case is when the surface Sa is absent in the limit
ra ! 0. In that case, we use in Eq. (B27), for ‘ ¼ 1; 2; . . . ,

gDR‘ ðr; rbÞ ¼ 2
r‘

r‘þ1
b

: (B28)

Such kernel functions for imposing Robin boundary
conditions at the outer surface Sb may improve the accuracy
of the solution, especially near the boundary [30].

7. Kernel function GNNðx; x0Þ
When Neumann boundary conditions are imposed on

both Sa and Sb, the kernel function GNNðx; x0Þ satisfies
@r0G

NNðx; x0ÞjSa ¼ Ga; @r0G
NNðx; x0ÞjSb ¼ Gb;

where Ga, Gb cannot both be zero. In that case GNNðx; x0Þ
does not exist since the ‘ ¼ 0 mode cannot be satisfied.
Therefore, the boundary conditions for the radial part
will be
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@r0g
NN
‘ ðr; raÞ ¼ Ga�0‘; @r0g

NN
‘ ðr; rbÞ ¼ Gb�0‘:

Then for ‘ ¼ 1; 2; . . . we get

gNN‘ ðr; r0Þ ¼
�
1�

�
ra
rb

�
2‘þ1

��1 r‘a
r‘þ1
b

‘þ 1

‘

��
r<
ra

�
‘

þ ‘

‘þ 1

�
ra
r<

�
‘þ1

���
r>
rb

�
‘ þ ‘

‘þ 1

�
rb
r>

�
‘þ1

�

(B29)

(symmetric in r, r0), while for ‘ ¼ 0

gNN0 ðr; r0Þ ¼ 1

r>
�Gar

2
a

r
þ hðr0Þ;

where hðr0Þ is an arbitrary function. Symmetry is imposed by
choosing hðr0Þ ¼ �Gar

2
a=r

0; therefore,

gNN0 ðr; r0Þ ¼ 1

r>
� r2aGa

�
1

r>
þ 1

r<

�
: (B30)

Note also that in order to satisfy the ‘ ¼ 0mode, the follow-
ing condition must hold:

1 ¼ Gar
2
a �Gbr

2
b:

Therefore, Ga and Gb cannot be chosen arbitrarily. The
surface integral at Sa is

�a ¼ 1

4�

X1
‘¼0

X‘
m¼0

�m
ð‘�mÞ!
ð‘þmÞ!P

m
‘ ðcos�Þ

�
Z
Sa

�
�gNN‘ ðr; raÞ@�@r þGa�0‘�

�

� Pm
‘ ðcos�0Þ cos½mð���0Þ�r2ad�0; (B31)

where for ‘ ¼ 1; 2; . . . ,

gNN‘ ðr; raÞ ¼ 2‘þ 1

‘

r‘a
r‘þ1
b

ð rrbÞ‘ þ ‘
‘þ1 ðrbr Þ‘þ1

1� ðrarbÞ2‘þ1
; (B32)

and for ‘ ¼ 0,

gNN0 ðr; raÞ ¼ 1

r
� r2aGa

�
1

r
þ 1

ra

�
: (B33)

The surface integral at Sb is

�b ¼ 1

4�

X1
‘¼0

X‘
m¼0

�m
ð‘�mÞ!
ð‘þmÞ!P

m
‘ ðcos�Þ

�
Z
Sb

�
gNN‘ ðr; rbÞ @�@r �Gb�0‘�

�

� Pm
‘ ðcos�0Þ cos½mð���0Þ�r2bd�0; (B34)

where for ‘ ¼ 1; 2; . . . ,

gNN‘ ðr; rbÞ ¼ 2‘þ 1

‘

r‘a
r‘þ1
b

ð rraÞ‘ þ ‘
‘þ1 ðrar Þ‘þ1

1� ðrarbÞ2‘þ1
; (B35)

and for ‘ ¼ 0,

gNN0 ðr; rbÞ ¼ 1

rb
� r2aGa

�
1

rb
þ 1

r

�
: (B36)

A special case is when the surface Sa is absent in the limit
ra ! 0. In that case, we use in Eq. (B34), for ‘ ¼ 1; 2; . . . ,

gNN‘ ðr; rbÞ ¼ 2‘þ 1

‘

r‘

r‘þ1
b

; (B37)

and for ‘ ¼ 0,

gNN0 ðr; rbÞ ¼ 1

rb
: (B38)

APPENDIX C: FINITE DIFFERENCE FORMULAS

The second order finite difference formulas used in the
elliptic equation solvers of the COCAL code are summarized
in this section. In evaluating the integrals of the solver,
such as Eq. (7), we use the midpoint rule. Hence, we need
to evaluate the source terms in the integrand at the
midpoints ðri�1=2; �j�1=2; �k�1=2Þ of the grid points that

may involve values of potentials and their derivatives.
Those are calculated, respectively, by

fðri�1=2; �j�1=2; �k�1=2Þ

’ 1

8

Xi
I¼i�1

Xj
J¼j�1

Xk
K¼k�1

fðrI; �J;�KÞ; (C1)

@f

@r
ðri�1=2; �j�1=2; �k�1=2Þ

’ 1

4

Xj
J¼j�1

Xk
K¼k�1

fðri; �J;�KÞ � fðri�1; �J; �KÞ
�ri

; (C2)

@f

@�
ðri�1=2; �j�1=2; �k�1=2Þ

’ 1

4

Xi
I¼i�1

Xk
K¼k�1

fðrI; �j; �KÞ � fðrI; �j�1; �KÞ
��j

; (C3)

@f

@�
ðri�1=2; �j�1=2; �k�1=2Þ

’ 1

4

Xi
I¼i�1

Xj
J¼j�1

fðrI; �J; �kÞ � fðrI; �J; �k�1Þ
��k

: (C4)

The quadrature formula for the second order midpoint rule
at the interval ½ri�1;ri��½�j�1;�j��½�k�1;�k� is written

Z ri

ri�1

dr
Z �j

�j�1

d�
Z �k

�k�1

d�Sðr; �; �Þ

’ Sðri�1=2; �j�1=2; �k�1=2Þ�ri��j��k: (C5)
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[13] A. Tsokaros and K. Uryū, Phys. Rev. D 75, 044026 (2007).
[14] X. Huang, C. Markakis, N. Sugiyama, and K. Uryu, Phys.

Rev. D 78, 124023 (2008).
[15] N. Stergioulas, Living Rev. Relativity 6, 3 (2003), http://

www.livingreviews.org/lrr-2003-3; R. Meinel, M. Ansorg,
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