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Scalar-tensor cosmologies with dust matter in the general relativity limit
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We consider flat Friedmann-Lemaitre-Robertson-Walker cosmological models in the framework of
general scalar-tensor theories of gravity with arbitrary coupling functions, set in the Jordan frame, in the
cosmological epoch when the energy density of the ordinary dust matter dominates over the energy
density of the scalar potential. Motivated by cosmological observations, we apply an approximation
scheme in the regime close to the so-called limit of general relativity. The ensuing nonlinear approximate
equations for the scalar field and the Hubble parameter can be solved analytically in cosmological time.
This allows us to distinguish the theories with solutions that asymptotically converge to general relativity
and draw some implications about the cosmological dynamics near this limit.
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L. INTRODUCTION

Various cosmological observations of our Universe can
be fairly well accommodated within the ACDM concord-
ance model [1] based on the theory of general relativity
(GR). However, there is still a number of viable alternative
theories which also manage to conform sufficiently well
with observational data [2]. One such family of theories is
provided by scalar-tensor gravity (STG) [3] where gravi-
tational interaction is mediated by an extra scalar degree of
freedom W in addition to the usual tensor ones. In the so-
called Jordan frame and Brans-Dicke-like parametrization
an STG is characterized by two arbitrary functions, the
coupling function (W) and the scalar potential V(). As
has been discussed by many authors previously [4,5], for a
range of choices of w and V the cosmological evolution of
dust and potential dominated STG models naturally con-
verges close to the one expected from GR. Yet, at the same
time STG models may also offer a possibility to explain
small observational differences from pure GR ACDM
behavior, e.g. the possibly variable effective barotropic
index of dark energy [6] as hinted by some observational
data [7], deviations in the growth of perturbations [8], etc.

The aim of the current paper is to narrow down the class
of STG models that can lead to observationally viable
cosmologies (i.e., spontaneously evolve close to GR),
and by explicitly finding the general solutions applicable
in this regime to provide a basis for further direct checks
with observational data. It is a follow-up work to our recent
papers [9-11] where we investigated Friedmann-Lemaitre-
Robertson-Walker (FLRW) cosmological models in the
framework of general STG with arbitrary coupling func-
tion and scalar potential in the era when the energy density
of the scalar potential dominates over the energy density of
ordinary matter. There we presented, justified and applied
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an approximation scheme for the scalar field equation to
capture the scalar field dynamics near the GR limit. In the
present paper we supplement these studies with analogous
investigations for the cosmological epoch when the energy
density of the ordinary dust matter dominates over the
energy density of the scalar potential. The presence of an
extra dynamical quantity (matter) in the system makes the
procedure now a bit more complicated, yielding two non-
linear equations which explicitly contain time but which
can be nevertheless solved analytically. In a realistic cos-
mological scenario the dust-dominated epoch should be
patched together with the potential dominated era (as well
as with an account of the early universe). For some related
recent studies see Refs. [12].

In Sec. I we recall STG FLRW equations. In Sec. III we
motivate and apply to the dust matter dominated era the
approximation method worked out in Refs. [9,10]. The
resulting nonlinear equations are solved analytically in
cosmological time in Sec. IV. Comparison with earlier
results and implications for selecting a model of STG
viable in cosmology are discussed in Sec. V. Finally,
Sec. VI provides a summary and a brief outlook.

II. THE EQUATIONS OF SCALAR-TENSOR
COSMOLOGY

We consider a general scalar-tensor theory in the Jordan
frame given by the action functional

! 4 — _a)(‘lf) )
S—W[d xq/_g[‘I’R(g) A A

- 2K2V(q,)] + Sm(gp.w /\/m)' (1)

Here (W) is a coupling function, V,, denotes the cova-
riant derivative with respect to the metric g,,,, K2 is the
nonvariable part of the gravitational constant, and S,, is the
matter contribution to the action as all other fields are
included in y,,. In order to keep the effective gravitational
constant 877G = "WZ positive, we assume that 0 < ¥ < co,
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The field equations for the Friedmann-Lemaitre-
Robertson-Walker (FLRW) line element

d 2
ds? = —di* + a(t)z(l L+ e + Sin29d¢2))
— Kr
(2

with curvature parameter k = 0 (flat) and perfect baro-
tropic fluid matter, p = wp, w = const., read
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where H = ¢/a, and we have introduced the notation
d 1
AY) = W(zw(\lf) n 3) ©)

for later convenience. The matter conservation law is the
usual

p+3H(w+ 1)p =0; @)

it is reasonable to assume positive matter density, p = 0.
The Hubble parameter H can be expressed as a function
of W by solving the Friedmann Eq. (3) algebraically,

w2 L K+ V()
v 3w

&
H= —2\1} ‘/(Zw(‘lf) +3)
(3)

oty — O
W # 0 the system faces a spacetime curvature singularity,
since H diverges. Only as long as (2w (W) + 3)W? is finite
are the solutions singularity free.

Let us take the regime where the dominating contribu-
tion to cosmological energy density is provided by dust
matter (w = 0) and the scalar potential can be neglected in
the equations. The system (3)—(7) is characterized by three
variables {W, H, p}, but one of them is algebraically related
to the others via the Friedmann Eq. (3). Eliminating p
yields two equations

For later argument notice that in the limit
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Y = -3HV + %(260 + 3)A(V)P?
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which provide the basis for the present study.

ITII. APPROXIMATE EQUATIONS

In fact, not all possible solutions of Egs. (9) and (10) are
of immediate physical interest, since cosmological obser-
vations give a clear preference towards a certain corner in
the solutions space. Analysis of the anisotropies of the
cosmic microwave background (CMB) radiation sets a
limit on the variation of the gravitational constant from
the recombination process till now, W <5X 1072

[13,14], which for scalar-tensor gravity translates into
¥ < 1. In addition, the best fit of the CMB data indicates
that at the time of recombination W< 7 X 1072
[14], while the value today from the PPN data is bounded
as m <7 X 107 [15].

Therefore it makes sense while considering the dust
dominated cosmological era to focus upon the solutions
near the limit (a) ;o775 — 0 and (b) W — 0. This as-
sumption is consistent with the equations, as one can check
in Eq. (5) how the conditions (a) and (b) keep ¥ negligible,
thus allowing W to remain negligible as well. One may also
argue that if changes in W are sufficiently small, w(\V)
does not change dramatically and the regime expected

from the solutions is sufficiently stable to merit
investigation.
So, let us define W, by
! =0 (11)
20(V,) +3

and focus upon the solutions near this point,
V() =W, +x(1),  H@)=H.0)+ (), (12)

where H,(t) is the Hubble parameter corresponding to the
cosmological evolution with Wy, while x(r) and A(z) are
small deviations. It follows from (12) that W(¢) = x(¢),
where we expect x(7) to be also small due to (b). Under
the two additional mathematical assumptions, (¢) Ay =
A(W,) # 0 and (d) ﬁ is differentiable at W, we can

expand in series

1 1

= + A, x+ ...
20(W)+3  2w0(W,)+3

~ A,x, (13)
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The latter result actually informs us that in order to avoid a
spacetime singularity ’;—2 must not diverge, hence we should
treat x(1) and x(r) as the same order (small) quantities,
cf. the remark after Eq. (8). In passing let us remark that
in our previous papers [9—11] we have tentatively called
(a)—(d) ““the limit of general relativity”’ since under these
conditions the set of STG cosmological Eqgs. (3)-(7)
reduces to those of pure GR (with a cosmological constant
if V(W) # 0).

Subjecting the H Eq. (10) to the approximation (12)
gives in the first order

) . 3 1 1 \i2
H, +h=—-H; —3Hh — (1+ )—
* 27 o4, 24V, ) x
1 3
+—H,x—~A HZ%x. 1
2\1,* *X 3 * 15X (5)

Taking the limit where the deviations x, x, &, h vanish, we
define
. 3 5
Hy = — EH*’ (16)
which is familiar from the Friedmann solution of the dust
dominated pure GR. It determines the time evolution of H
to be

2

H =——.
o 3(t—1,)

17
Here ¢, is a constant of integration which fixes the begin-
ning of time scale; in what follows we choose #, = 0,
t > 0. For late times when H, is finite, Eq. (15) now
assures that / is also small, at least on a par with /. To
sum up, the approximate first order equations read

xZ

i= o 3H,x + 3A, WV, H3x, (18)
X
. 1 1 i2
h+3Hh=— 1+ -
* 4%( 2A*\If*) x
1 3
+ EH*X - EA*HE(X (19)

with H, given by Eq. (17). Notice that due to H, the
Egs. (18) and (19) depend explicitly on time ¢. This means
that the corresponding system of first order equations is not
autonomous and the standard phase space analysis is not
applicable. However, we can straightforwardly integrate
Egs. (18) and (19) in cosmological time and analyze the
behavior of solutions in the neighborhood of the limit of
general relativity.
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For later reference let us note that the expansion (12) can
be also applied for the effective barotropic index,
2H 2 .
=—-1——5= ——(h+3H,h). 20
Wetf 3 H2 3 Hi ( * ) ( )
Thus once h(z) is found, it can be plugged into the equation
above to reveal how wg evolves in cosmologiqal time. In
an analogous manner one may also deal with % and other
relevant quantities.

IV. SOLUTIONS IN THE COSMOLOGICAL TIME

Despite its nonlinear and nonautonomous structure, one
can solve Eq. (18) analytically. It turns out that the type of
the solution x(#) depends on the constant

8
D=1+ gA*\I’* (2D

which characterizes the underlying STG. Then one can
plug in x(7) into Eq. (19) and solve the latter for 4(z), which
also yields an analytic result. Having found x(z) and A(z), it
is possible to determine the evolution of the effective
barotropic index w. from Eq. (20), and other quantities
of interest.

A. Polynomial solutions
In the case D > 0 the solution of Eq. (18) reads

+ x(1) = %(M1 /P2 — My VP2, (22)

Here and below the “*”" follows from an obvious invari-
ance property of Eq. (18) under reflection x — —x, i.e.
there are solutions which lie in the regions ¥ = WV,
(x = 0), respectively. The constants of integration M,
M, are related to the initial data x, = x(z..), x. = x(z,) at
some arbitrary time z, as

_ X*tw + x*(l + \/5) t(]/z)(li\/b_)

2JD/Ex;

M, (23)

_dt (1 - VD) A1/2)(1+D)
2\/_D_«/tx* : .

Now we can integrate Eq. (19) to obtain

M, (24)

+h(r) =3—2IZ[M%(—a\/5 +5)/P + M2(av/D + b)i—VP + K],
(25)

Here K is another constant of integration and we have

introduced constants a, b which characterize the under-

lying STG,

3+ 6A, VP,
8A, WL

3+ 104,
8A, V3

a b (26)
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As a result, the full Hubble parameter in the approximation
under consideration is

H(r) = %{1 . ;[Mf(—a\/ﬁ + pyr/D
+ M3(a/D + b)r P + K]}. (27)

The effective barotropic index reads

VD
t
— M2(a~/D + b)1P], (28)

FWerr() = —

[M2(—a~/D + b)rP

We can get a better feel of these solutions by considering
their behavior at certain limits and points. Asymptotically
at t — oo the solutions exhibit two distinct behaviors. For
STGs with VD < 1 (i.e. A, W, <0) all cosmological so-
lutions irrespective of their initial conditions monotoni-
cally approach the general relativistic dust matter FLRW
cosmology, W(r) — W, = const., H(t) — H, (1) = 2/(31),
we(f) — 0, since all first order corrections vanish at
this limit. On the other hand STGs with \/5 >1 (ie.
AV, >0) allow only solutions that will diverge,
x(t) — o0, h(r) — 00, Weg(f) — 00, meaning that solutions
in these theories can linger near general relativity only for a
certain period, while as time evolves they will leave and the
approximation scheme will break down eventually. (The
case /D =1 would imply A, =0 or ¥, =0, which
contradicts the assumptions (¢) or 0 <W < oo of the
present study.)

Taking + — 0 the quantities x(¢) and h(r) diverge for all
integration constants and parameters of the theory except
for the special M, = 0, /D > 1 case. This indicates that
generally the solutions can not start near the limit of
general relativity and only dynamical evolution can bring
them close to it.

The solution (22) also informs us that if the integration
constants M; and M, are both positive or both negative,
then at a finite moment

1/vD
1, = (%) >0 (29)

the corresponding solutions can go through

* x(t,) =0, *x(t,) =0,

(30)
+x(t,) = 2DM M,t,* > 0.

At t;, these solutions do not stop at x = 0, but bounce back,
i.e. the solutions coming from the x < 0 region return to the
x < 0 and similarly the solutions coming from the x >0
region return to the x > 0 region. There is no crossing from
x <0 tox >0 or vice versa. In terms of the initial data at
some arbitrary time ¢, the bouncing solutions satisfy
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T it < 2x.(1 —+/D), or =it <Fx.(l+ VD),

(€2))
as can be inferred from Egs. (23) and (24).
In addition, at
M,(1 + «/D)\1/vD
t, = (M) >0, (32)
M,(1 = /D)
the solutions may pass through
4DM M
+ x(t,) = 12 +x(t.) =0,
(1 —D)t. (33)

+3(t,) = —2DM M,t. 3.

This happens for two types of solutions: if sign(M;) =
sign(M,) for +/D <1 and if sign(M,) # sign(M,) for
/D > 1. The first type encompasses all /D < 1 solutions
which at 7, have bounced back from x = 0, now at ¢, > 1,
they turn around again to proceed asymptotically towards
x = 0. The second type comprises of the /D > 1 solutions
which never get to x =0, the moment ¢, marks their
closest reach to x = 0 before starting to flow away.

Therefore, in summary, the following picture emerges. If
VD <1 the solutions with initial conditions (31) first
approach x = 0, then at 7, reach x = 0 and bounce back,
further at ¢, turn towards x = 0 again, to get there asymp-
totically as t — oo. The \/5 <1 solutions with initial con-
ditions outside the ranges given by (31) converge to x = 0
monotonically. If \/l_) > 1 the solutions with initial con-
ditions (31) initially approach x = 0, then at 7, reach x = 0
to bounce back and flow away. The /D > 1 solutions with
initial conditions outside the ranges given by (31) move
towards x = 0, but before reaching it turn around at ¢, and
leave. An exceptional case is the VD >1, M, = 0 solution
which starts at x =0 and monotonically flows away
from it.

As is evident from (25) and (28) the behavior of i(z) and
W (f) is not synchronous with x(z). However, one can
make some simple generic observations taking into ac-
count the definitions (21) and (26) and the basic assump-
tion 0 < W < oo, First, as r — 0 the quantity weg(7) — —o0
if § <D <1, while wegy(t) = +00if 0 <D <{orD>1.
Also, as we have noted above, t — oo takes w () — 0 if
D < 1, while wg(f) — +o00 if D > 1. Further, there can be
specific moments

z(% (/Da +b) )””5 Werr(ty) = 0

M} (—VDa+b) ST Gy
Werr(tg) # 0

and
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- (% (1 +/D)\Da + b) )1/2J§
WM (= VD)(—Da+h)
Werr(te) # 0, Werr(2) = 0

(35)

One can check that t;, >0 if 0< D < %, while 7, > 0 if
0<D<jorD>1.

Thus, the picture is the following. For 0 < D <% the
barotropic index w(f) approaches we; = 0 from above,
and passing this value at ¢4, then later at 7, the quantity
Wer(#) starts to increase again, and will asymptotically
converge to the vanishing value. For % < D <1 the solu-
tions exhibit a monotonic growth for w; which closes in to
the w. = O dust matter regime from below. The generic
D > 1 solutions start with decreasing wg, which reaches
its lowest (and positive) value at 7, but after that w,g starts
to increase again. The D > 1, M, = 0 solution is an ex-
ception, here w starts from 0 and keeps increasing in
time.

B. Logarithmic solutions

In the case D=0 (A, ¥V,
Egs. (18)—(20) read

—3) the solutions of

+ x(t) = %(M1 Int — M,)?, (36)
M, - .
= hio) = [— (o) + (B, — N,)Int + K],
(37)
* W) = — er(Ml Int + M, — M,). (38)

Here M,, M, as well as K are constants of integration,
fixed by the initial data x, = x,(f,), %, = x.(f,) at some
arbitrary time 7, as

(39)

(47, + x.) In7,
2/ x,

Unless M; = 0 the solutions exhibit the same generic
behavior. They start by approaching x = 0, at

3 ~2x.
M, = iyl (40)

P, = e/, (41)
reach
+x(7,) =0,  =i({) =0,
. . (42)
+i(f,) = 2M37,° >0

and bounce back; later at

7, = elM+M)/My >, (43)
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the solutions pass through
* x(7,) = 4M?7.!, *x(7.) =0,
. .. (44)
= ¥(f.) = —2M37.3,

and return flowing towards x = 0 reaching it asymptoti-
cally in time. The effective barotropic index starts by
decreasing from a positive value, experiences

7, = e WL—M)/M, weii(F) = 0
72 (45)

2V,

Wepr(Ty) = —

but then starts to increase again at
17
il
2w, ¢

Weff(fe) ==

e (46)
i3

pA\ N e

reaching w.s = 0 from below asymptotically in time. In

the M, = 0 case the solutions approach x = 0 monotoni-

cally while w is always zero.

Werr(Z,) = 0 Wepr(7,) =

C. Oscillating solutions
In the case D < 0 solutions of Eq. (18) read

+x(r) = lt[Nl sin(%\/ﬁlnt) - N, cos(%\/ﬁlnt)]z,
(47)

where the constants of integration N; and N, are deter-
mined by the initial conditions x, = x(t.), %. = x(z,) at
some arbitrary time . as

T |
Nl = m[(x*t* + .X*) COS(E‘\/WIHI*)

+ x*\/_mn( \/_lnt*)] (48)
N, = \/___L\/XHI:(X*I* + x.) sin(%mmt*)
— x./ID| cos< VDl 1m*):| (49)

The corresponding solution of Eq. (19) is

aJ_

* h(r) = 322 [<(N2 ND) - N1N2b)
X sin(/|D|In?) + ((N% - N%)g
+ N1N20m> COS(\/ﬁlnt) + K], (50)

where K is another constant of integration and a, b are
given by Eq. (26). The full Hubble parameter now consists
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of small oscillations around the GR FLRW dust cosmo-
logical model

aIDI

2

H() = %{1 + %[((N% - N?) - N1N2b)

b
% sin(/]D] Int) + ((Ng - N+ NlNza\/|D|>

X cos(VID|Inz) + K]} (51)
The effective barotropic index reads
+Wegr (1) = —g[ —((N% - N%)g + NlNzaJﬁ)
X sin(/]D[1n) + ((Ng —N?) a\/zlfl - Nlsz)
X cos(W/|D| 1m)]. (52)

The behavior of all these solutions is fairly simple as
they approach the general relativistic dust matter cosmol-
ogy in the manner of damped oscillations. At the moments

2 N 2
t, = exp(— arctan<—2> + nw) (53)
VID] N/ D

the deviation x(z) of the scalar field passes through
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* X(tb) = O, ix(tb) = 0,
-D (54)
*+x(1,) = T(Nf + N1, >0,
1.e., bounces back from x = 0, while at the moments
2 N, + N{+/|D 2
t, = exp( arctan( 2 vl l) + nw) (55)
VID| Ny — Noy/ID| |D|
it passes through
-D 2 2y 1 .
= x(tc) = m(Nl + Nz)tc , ix(tc) = 0,
(56)

D
+ i(t,) = E(Nf + N33 <0,

i.e., turns around and evolves towards x = 0 again. The
amplitude of the deviations monotonically decreases while
the period monotonically increases. The behavior of wg(7)
is analogous, but not synchronous with x(z). It is charac-
terized by

( 1 ((N%—N%)a\/|D|—2N1N2b) n )
t;=exp arctan + )
\/|D| (N%—le)b+2N1Nza\/|D| \/|D|

Werr(t1) =0, Wege(7,) #0 (57)
and

1 N2 — N2)(b + a)D + 2N N,(b + aD)\|D
te = exp< arctan(—( : = N)(b +a) Na(b + aD)y| l) + nwl)’ * Werr ()
D

(N2 = N2)(b + Da)y/ID] — 2N\N,(b + a)D

—D(N3 + N)VB? — D
g e
2JT-D

where

s=(—1)"sign((N? — N?)(b + Da)\/|D| — 2N, N,(b + a)D),
(59)

meaning oscillations around we; = 0 with exponentially
decreasing amplitudes and exponentially increasing
period.

V. DISCUSSION

A. Comparison with earlier results

STG dust cosmology equations near the GR limit were
investigated several years ago in the Einstein frame by
Damour and Nordtvedt [4]. By invoking an analogy with
a mechanical particle with time-dependent mass, they
demonstrated that in the case of coupling function
Qw(¥) +3)712 = a(p) = ke, k = const. the type of a
solution for the Einstein frame scalar field ¢(p) with
the evolution parameter p = (2/3)Int depends on the

|D

;! Wegr(t,) = 0, (58)

numerical value of the model-dependent constant k: the
solution is exponential in time parameter p, i.e. polynomial
in cosmological time 7 if 0 < k < 3/8, linear-exponential if
k = 3/8 and oscillating if k > 3/8.

In our earlier papers [9] we investigated the Jordan
frame scalar field equation close to the GR limit in the
linearized approximation, found the fixed points and
calculated the eigenvalues which determine the type of
solutions around these fixed points. Our results were quali-
tatively similar to those of Damour and Nordtvedt [4], but
the critical value of the model-dependent parameter turned
out to be 3/16 instead of 3/8.

In the present paper we refined the analysis and found
solutions in the nonlinear approximation for the Jordan
frame scalar field W(¢) in the cosmological time ¢ and
obtained the critical value of the model-dependent parame-
ter to be given by A, W, = —3/8. It is in exact agreement
with the results of Damour and Nordtvedt, as the trans-
formation between the Einstein and the Jordan frame
quantities
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20(W¥) + 3
(g =220 53 (qwy: (60)
gives
da 2V dw
=20 = 2T = A, 1
k do |« [(Zw + 3)2 d‘lf]* o 61

It follows that the approximation used by Damour and
Nordtvedt [4] in the Einstein frame is congruent with our
nonlinear approximation in the Jordan frame and thus can
be considered as an additional justification for our expan-
sions (12) and (13).

B. Combining the dust and potential dominated eras

In the present paper we focussed upon the dust domi-
nated cosmological epoch in the framework of STG with
negligible scalar potential. In principle, this epoch could be
followed by a scalar potential dominated epoch with insig-
nificant matter density that we investigated by similar
methods in our earlier papers [10,11]. In both cases we
assumed that the cosmological model has evolved towards
the GR point W, (11) since this is strongly indicated by
different contemporary observations, and we solved field
equations in a nonlinear approximation in the neighbor-
hood of this point. Let us now combine the conditions on
the parameters of the models with the aim to view different
epochs as parts of a single cosmological scenario.

In both cases there are general conditions for solutions to
converge towards the GR value W, asymptotically in time:
in the dust dominated model it reads (see Sec. IV)

d 1
AV, =|—(—o
o [dqf<2w(qf)+3

and in the potential dominated model [10]

v qv
Ea e e
The converging solutions can be classified according to the
numerical value of a model-dependent parameter as sum-
marized in Table I. As discussed in Sec. IV, in the dust
dominated epoch the behavior of the scalar field is deter-
mined by the quantity D (21) characterizing the STG
model: the solutions are oscillating if D <0 (A, V¥, <
—3/8), logarithmic if D = 0 (A, V¥, = —3/8) and poly-
nomial if 0 <D <1 (—3/8 <A, V¥, <0). In the scalar
potential dominated models the corresponding classifica-
tion can be given in terms of a model-dependent quantity

)‘I’]* <0 (62)

V() >0,

TABLE 1.

PHYSICAL REVIEW D 85, 064013 (2012)

3 v dv

B = (A*\I’* + 8) A*\If*[zv d\I’:I* (64)
as follows: the solutions are oscillating in cosmological
time if B < 0, linear-exponential if B = 0 and exponential
if B> 0 [11]. The same behavior carries over to the
cosmological expansion as encoded in the Hubble parame-
ter H or barotropic index wg, i.e. polynomial, oscillating
etc. convergence towards the dust FLRW values in the
matter dominated epoch or de Sitter values in the potential
dominated epoch, correspondingly.

A realistic STG cosmological scenario compatible with
observations would better need to have GR as an attractor
in both dust-dominated and matter-dominated regimes.
Therefore, for a credible STG both conditions (62) and
(63) must be satisfied, thus constraining the set of functions
(W) and V(W) one can consider for constructing a viable
model. The next filter is provided by qualitatively different
behaviors among this converging class of models, e.g.
depending on (W) and V(W) the evolution may be oscil-
lating in the dust-dominated and exponential in the
potential-dominated epoch, etc., which might be possible
to detect in future observations.

VI. SUMMARY AND OUTLOOK

In this paper we have considered generic Jordan
frame STG flat FLRW cosmological models in the dust-
dominated era with negligible scalar potential near the
limit of general relativity as favored by various observa-
tional constraints. We derived and solved nonlinear ap-
proximate equations for small deviations of the scalar
field and cosmological expansion from their GR limit
values. Depending on the scalar field coupling function
(V) the models fall into two classes where either all
solutions approach GR asymptotically in time or only a
single fine-tuned solution does. The models with univer-
sally converging solutions come in three characteristic
types: polynomial convergence, logarithmic convergence,
and damped oscillations around general relativity.

The approximation scheme assumes that the first deriva-
tive of W w.rt. ¥ evaluated at the GR limit (11) is

nonvanishing and finite, while the higher derivatives do not
diverge. Then the only parameter characterizing the under-
lying distinct STG which enters the approximation equa-
tions and the analytic solutions is the value of the first
derivative. Thus in principle the present study encompasses

Classification of the qualitative behavior of solutions of the scalar field and cosmological expansion while converging to

the GR limit in the dust -matter (p) dominated and potential- (V) dominated epochs, determined by the parameters D (21) and B (64),

which characterize the underlying STG.

Epoch

Solutions

p dominates
V dominates

oscillating D <0
oscillating B <0

linear-exponential B = 0

logarithmic D = 0 polynomial 0 < D < 1

exponential 0 < B

064013-7
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a very large generic family of STG models and in this sense
has wider applicability than considering example models,
equivalent to a particular form of w(W) chosen.

The class of STGs where the GR limit is an attractor for
the nearby solutions is of interest because there is a dy-
namical mechanism naturally driving the solutions to sat-
isfy observational constraints. So, combining the results of
the present work on the dust dominated epoch with earlier
results on the potential dominated regime, provides a rea-
sonable viability filter for STG models in terms of the
conditions (62) and (63).

On the other hand the converging solutions still have
their characteristic small deviations from the ruling
ACDM scenario. Given the generic analytic solution for
the cosmological expansion and the corresponding
effective barotropic index near the GR limit, it remains

PHYSICAL REVIEW D 85, 064013 (2012)

as a future work to face it with actual data and to draw
observational constraints on the STG models. Similarly,
the expansion history enters as background evolution in the
equations for the growth of perturbations, which leads to
another line of investigation. Finally, the dust and late-time
potential-dominated epochs must be patched together with
an account of the early universe.
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