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The collision-free Boltzmann equation is used in the context of brane-fðRÞ gravity to derive the virial

theorem. It is shown that the virial mass is proportional to certain geometrical terms appearing in the

Einstein field equations and contributes to gravitational energy and that such a geometric mass can be

attributed to the virial mass discrepancy in a cluster of galaxies. In addition, the galaxy rotation curves are

studied by utilizing the concept of conformal symmetry and notion of conformal Killing symmetry. The

field equations may then be obtained in an exact parametric form in terms of the parameter representing

the conformal factor. This provides the possibility of studying the behavior of the angular velocity of a test

particle moving in a stable circular orbit. The tangential velocity can be derived as a function of the

conformal factor and integration constants, resulting in a constant value at large radial distances. Relevant

phenomena such as the deflection of light passing through a region where the rotation curves are flat and

the radar echo delay are also studied.

DOI: 10.1103/PhysRevD.85.064012 PACS numbers: 04.50.Kd, 95.35.+d

I. INTRODUCTION

The question of dark matter is presently one of the most
pressing open problems in cosmology. The galaxy rotation
curves and mass discrepancy in a cluster of galaxies are
two prominent observational pieces of evidence for the
existence of dark matter. According to Newtonian gravity,
galaxy rotation curves give the velocity of matter rotating
in a spiral disk as a function of the distance from the center
of a galaxy; it increases linearly within the galaxy and
drops off as the square root of 1=r outside the galaxy.
However, observations show that this is not the case
and the velocity remains approximately constant. This
provides for the possible existence of a new invisible
matter distributed around galaxies which is known as
dark matter [1,2].

The mass discrepancy of clusters as another piece of
evidence for the existence of dark matter can be understood
when estimating the total mass of a cluster in two different
ways; summing the individual member masses within the
cluster leads to a total mass which we shall call M.
Alternatively, the virial theorem applied to a cluster would
yield an estimate of the cluster mass which we callMV . As
it turns out, MV is nearly 20–30 times greater than M and
this difference is known as the virial mass discrepancy
[1,2]. The best way to deal with the above discrepancy, it
seems, is to postulate dark matter. There are several can-
didates for dark matter which can be categorized as bar-
yonic or nonbaryonic, or as hot or cold, according to their
velocity at the time when galaxies were just starting to
form.

In spite of many efforts to postulate various forms of
matter as dark matter, there is as yet no nongravitational
evidence for it. Moreover, accelerator and reactor experi-
ments do not support the scenarios in which dark matter
emerges. Therefore, one may conclude that Einstein’s
gravity may break down at the scale of galaxies [3].
Thus, to deal with the question of dark matter, modifi-
cations to Einstein field equations [3–5] have become a
flourishing method in recent years. One such modifica-
tion is the brane-fðRÞ gravity. The idea that our four-
dimensional Universe might be a 3-brane embedded in a
higher dimensional bulk has its roots in string theory [6].
One of the most successful of such higher dimensional
models is the Randall-Sundrum (RS) scenario. In the RS
scenario, our four-dimensional Universe is considered as
a brane in a five-dimensional bulk with an anti–de Sitter
geometry [7,8]. The RS model has had great success in
explaining the hierarchy problem. Another noticeable
effort in this direction is the model proposed by Dvali-
Gabadadze-Porrati [9]. In this model the bulk space is
assumed to be flat but there is an additional four-dimen-
sional-induced gravity term appearing in the action. A
self-accelerating phase at late times is predicted for the
Universe in this model. However, the solutions corre-
sponding to the self-accelerating branch suffer
from ghost instabilities while the normal branch admits
solutions which are ghost-free [10–12]. The Dvali-
Gabadadze-Porrati model predicts modifications to grav-
ity at large distances while the RS-type models modify
gravity at small scales. Brane-world scenarios have
paved the way for a new understanding of dark matter
[13]. In a similar vein, theories of gravity in which the
Einstein-Hilbert action is replaced with a generic func-
tion of R, the Ricci scalar, have been quite useful in
dealing with the question of dark matter [14,15]. It
would therefore be of interest to consider a brane-fðRÞ
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gravity scenario incorporating both the above ideas to
deal with the open questions in gravity.

In addition, there are a number of other motivations for
such studies. For example, since brane-world scenarios
with a generic fðRÞ in a bulk with a single extra dimension
can be described by a real scalar field, brane-fðRÞ models
have been studied within the framework of scalar-tensor
type theories. Such theories have been used to investigate
the stabilization of the distance between the branes in the
context of the Randall Sundrum type I model [16] and the
problem of the cosmological constant [17]. On the other
hand, brane-fðRÞ type theories have been used to answer
questions such as dark energy and the present accelerating
phase of the Universe [18]. The present study could be
considered as an attempt to narrow the gap in our under-
standing of one of the problems facing us in the ever
increasing complexities of the inner workings of our
Universe.

Generally speaking, one may start with a generic action
involving fðRÞ without a cosmological constant in a RS
scenario [19] in conjunction with the virial theorem in an
attempt to account for dark matter. In doing so, the virial
theorem together with observational data relating to the
velocity of each member of a cluster provides an estimate
of the mean density and leads to a prediction of the total
possible mass. The virial theorem has also been used in
model fðRÞ theories with a cosmological constant [20,21],
within the context of brane-world scenarios [22,23], using
both the metric [15] and Palatini formalisms [14]. In this
paper we generalize the virial theorem in a brane-fðRÞ
scenario using the collisionless Boltzmann equation. In
this process, extra terms will appear in the generalized
virial theorem originating from the modified action in the
bulk. The extra terms can be interpreted as a geometric
mass and attributed to the mass discrepancy in clusters.

According to recent observations, the tangential velocity
of matter moving around the center of a galaxy tends to a
constant value as one moves away from the center of the
galaxy. Such rotation curves have been studied in the
context of brane-world scenarios by using the concept of
conformal symmetry [3]. We present similar conclusions in
a brane-fðRÞ model by using the idea of conformal Killing
symmetry. In this regard, the spacetime is assumed to have,
in addition to being static and spherically symmetric, a
conformal symmetry. If the vector field � is the generator
of such conformal symmetry, then the spacetime metric h
is mapped conformally onto itself along the trajectories
of �,

L �h�� ¼ c h��; (1)

with L being the Lie derivative and c the conformal
factor. There is a systematic method of searching for exact
solutions, initiated by Herrera and coworkers [24–26],
where the field equations can be obtained in an exact
parametric form, with the conformal factor taken as a

parameter. This would provide the possibility of studying
the behavior of the angular velocity of a test particle
moving in a stable circular orbit. The tangential velocity
can be derived as a function of the conformal factor and
some integration constants. At large radial distances, we
obtain a constant value for the tangential velocity by taking
suitable integration constants. The bending of light is
another issue worth studying in this region [5,27]. The
computation of the deflection of photons passing through
a region of flat rotation curves and their time delay are
useful tools for testing the alternative theories of gravity, an
example of which is presented in this work.

II. GENERALIZED VIRIAL THEOREM IN
BRANE-fðRÞ GRAVITY

In order to derive the virial theorem for galaxy clusters,
it is necessary to introduce the brane-fðRÞ model we are
interested in. We also need to know the Boltzmann equa-
tion governing the evolution of the distribution function in
a cluster of galaxies. By taking the cluster of galaxies as a
system of identical and collisionless point particles, we
utilize the relativistic Boltzmann equation together with
the field equations to find the generalized virial theorem.

A. The brane-fðRÞ gravity
In a brane-fðRÞ model, the five-dimensional bulk action

is taken as

S ¼
Z

d5x
ffiffiffiffiffiffiffi�g

p ½fðRÞ þLm�; (2)

where Lm is the matter Lagrangian, g is the bulk metric,
and R is the bulk Ricci scalar [19]. Variation of S with
respect to the bulk metric gAB yields

FðRÞRAB � 1
2gABfðRÞ þ gABhFðRÞ � rArBFðRÞ

¼ �2
5TAB; (3)

where FðRÞ ¼ dfðRÞ
dR . The effective Einstein field equations

in the bulk can be written as

GAB � RAB � 1
2RgAB ¼ Ttot

AB; (4)

where

Ttot
AB ¼ 1

FðRÞ
�
�2
5TAB �

�
1

2
RFðRÞ � 1

2
fðRÞ þhFðRÞ

�
gAB

þrArBFðRÞ
�
: (5)

Using the Shiromizu-Maeda-Sasaki procedure [28], the
field equations on the brane are given by

G�� ¼ 8�GN��� þ �4
5��� þQ�� � E��: (6)

We note that
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GN ¼ �4
5�

48�
; (7)

where � is the brane tension, ��� is the energy momentum

tensor on the brane, and ��� is defined in terms of ��� as

��� ¼ � 1

4
����

�
� þ 1

12
���� þ 1

8
h����	�

�	

� 1

24
h���

2: (8)

The electric part of the Weyl tensor is given by

E�� ¼ CABCDnAn
ChB�h

D
� ; (9)

where nA is the unit vector normal to the four-dimensional
brane and hAB ¼ gAB � nAnB is the induced metric on the
brane. Furthermore, we have

Q�� ¼
�
�ðRÞh��þ2

3

rArBFðRÞ
FðRÞ ðhA�hB� þnAnBh��Þ

�
y¼0

;

(10)

and

�ðRÞ � � 4

15

hFðRÞ
FðRÞ � 1

10
R

�
3

2
þ FðRÞ

�

þ 1

4
fðRÞ � 2

5
hFðRÞ; (11)

where y is the extra dimension and the brane is located at
y ¼ 0. Now, if we define Q�� � E�� as

Q�� � E�� ¼ 8�GNT ��; (12)

we obtain the field equations

G�� ¼ 8�GNð��� þT ��Þ þ �4
5���; (13)

where T �� may act as a new matter source on the brane

induced by the fðRÞ action in the bulk. It is convenient to
represent this new matter by

T �
� ¼ ð�
X; P

r
X; P

?
X ; P

?
X Þ: (14)

Let us now consider an isolated and spherically symmetric
cluster described by the metric

ds2 ¼ �e�ðrÞdt2 þ e�ðrÞdr2 þ r2d�2 þ r2sin2�d’2; (15)

living on the brane. Suppose that the clusters are con-
structed from galaxies which are acting as identical and
collisionless particles and described by the distribution
function fB. The energy momentum tensor may be written
in terms of fB as [29]

��� ¼
Z

fBmu�u�du; (16)

where m is the cluster’s member mass, u is the four

velocity of the galaxy, and du ¼ durdu�du’
ut

is the invariant

volume element of the velocity space. The energy
momentum tensor of the matter in a cluster is given by

an effective density 
eff and an effective anisotropic pres-
sure, with radial pr

eff and tangential p?
eff components [20].

In other words, we have


eff ¼ 
hu2t i; Pr
eff ¼ 
hu2ri;

P?
eff ¼ 
hu2�i ¼ 
hu2’i:

(17)

Using ��� ¼ diagð�
eff ; P
r
eff ; P

?
eff ; P

?
effÞ and u�u� ¼ �1,

the field equations become

e��

�
��0

r
þ 1

r2

�
� 1

r2
¼�8�GN
effþ�4

5

12
½�ð
effÞ2þðPr

effÞ2

�2ðPr
effÞðP?

effÞþðP?
effÞ2��8�GN
X;

(18)

e��

�
�0

r
þ 1

r2

�
� 1

r2
¼8�GNP

r
effþ

�4
5

12
½ð
effÞ2þ2ðP?

effÞð
effÞ
�ðPr

effÞ2þðP?
effÞ2�þ8�GNP

r
X;

(19)

and

e��

�
�0

2r
� �0

2r
� �0�0

4
þ �00

2
þ �02

4

�

¼ 8�GNP
?
eff þ

�4
5

12
½ð
effÞ2 þ ð
effÞðPr

effÞ þ ðPr
effÞ2

þ ð
effÞðP?
effÞ � ðPr

effÞðP?
effÞ� þ 8�GNP

?
X : (20)

We note that the (��) and (’’) components of the field
equations are similar.

B. The generalized virial theorem

To derive the virial theorem, we need the Boltzmann
equation which governs the evolution of the distribution
function. By integrating this equation on the velocity space
and using the gravitational field equations, the virial theo-
rem can be obtained. We consider the cluster as an isolated
spherically symmetric system described by Eq. (15).
Furthermore, we assume that the galaxies in the cluster
behave like identical, collisionless point particles. The
distribution function is denoted by fB which obeys the
general relativistic Boltzmann equation.
In many applications, it is convenient to work in an

appropriate orthonormal frame or tetrad ea�ðxÞ, where

g��ea�e
b
� ¼ �ab. In the case of the spherically symmetric

line element given by Eq. (15), we introduce the frame of
orthonormal vectors as [15,29]

e0� ¼ e�=2
0
�; e1� ¼ e�=2
1

�;

e2� ¼ r
2
�; e3� ¼ r sin�
3

�:

(21)

We also note that the tetrad components of u� can
be written as ua ¼ u�ea�. In tetrad components, the

relativistic Boltzmann equation can be written as
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uae�a
@fB
@x�

þ �i
bcu

buc
@fB
@ui

¼ 0; (22)

where fB ¼ fBðx�; uaÞ is the distribution function and
�a
bc ¼ ea�;�e

�
b e

�
c are the Ricci rotation coefficients

[15,20,29]. We may assume that fB depends only on the
radial coordinate r. Thus, the relativistic Boltzmann equa-
tion becomes

u1
@fB
@r

�
�
1

2
u20

@�

@r
�u22þu23

r

�
@fB
@u1

�1

r
u1

�
u2

@fB
@u2

þu3
@fB
@u3

�

�1

r
u3e

�=2 cot�

�
u2

@fB
@u3

�u3
@fB
@u2

�
¼0: (23)

The term proportional to cot� must be zero since we have
assumed the system to be spherically symmetric. Let us
take

u0 ¼ ut; u1 ¼ ur; u2 ¼ u�; u3 ¼ u’: (24)

Multiplying Eq. (23) by murdu, integrating over the ve-
locity space, and assuming that fB vanishes sufficiently
rapidly as the velocities tend to �1, we find

@

@r
½
hu2ri� þ 1

2

@�

@r

½hu2t i þ hu2ri� � 1

r

½hu2�i þ hu2’i�

þ 2

r

hu2ri ¼ 0: (25)

Now, it is helpful to multiply Eq. (25) by 4�r2 and inte-
grate over the cluster volume to obtainZ R

0

½hu2ri þ hu2�i þ hu2’i�4�r2dr

� 1

2

Z R

0

½hu2t i þ hu2ri�@�@r 4�r

3dr ¼ 0; (26)

where R is the radius of the cluster. A useful equation is
obtained by summing all nonzero components of the field
equations (18)–(20):

e��

�
2�0

r
� �0�0

2
þ �00 þ �02

2

�

¼ 8�GN
½hu2t i þ hu2ri þ hu2�i þ hu2’i� þ 
2 �
4
5

6

� ½2hu2t i2 þ 2hu2t ihu2�i þ hu2t ihu2ri�
þ 8�GN½
X þ Pr

X þ 2P?
X �; (27)

where we have used Eq. (17). Using hu2i ¼ hu2t i þ hu2ri þ
hu2�i þ hu2’i and assuming that the galaxies in the cluster

have velocities much smaller than the velocity of light
[15,22], that is, hu2ri � hu2�i � hu2’i � hu2t i � 1, we obtain

e��

�
2�0

r
� �0�0

2
þ �00 þ �02

2

�

¼ 8�GN
þ 1

3
�4
5


2 þ 8�GNð
X þ Pr
X þ 2P?

X Þ:
(28)

Since for clusters of galaxies the ratio of the matter density
to the brane tension is much smaller than unity, 
� � 1, we

can neglect the quadratic term in the matter density in
Eq. (28). We may also define �
X ¼ ð
X þ Pr

X þ 2P?
X Þ,

where �
X is a pure geometric term acting as a new matter
source on the brane. It carries all the effects induced on the
brane by the fðRÞ action in the bulk. We therefore have

e��

�
2�0

r
� �0�0

2
þ �00 þ �02

2

�
¼ 8�GN
þ 8�GN �
X:

(29)

To move on, we assume that �0 and �0 are slowly varying;
i.e., �0 and �0 are small and their product can be neglected,
and e�� � 1 inside the cluster. We then have

1

2r2
@

@r

�
r2

@�

@r

�
¼ 4�GN
þ 4�GN �
X: (30)

On the other hand, using the above assumptions, one may
write Eq. (26) as

2K � 1

2

Z R

0
4�r3


@�

@r
dr ¼ 0; (31)

where

K ¼
Z R

0
2�
½hu2ri þ hu2�i þ hu2’i�r2dr (32)

is the total kinetic energy of the galaxies. Multiplying
Eq. (30) by r2 and integrating yields

GNMðrÞ ¼ 1

2
r2
@�

@r
�GNMXðrÞ; (33)

where we have used M ¼ R
R
0 dMðrÞ ¼ R

R
0 4�
r

2dr as the
baryonic mass. We have also defined MX ¼ R

R
0 4� �
Xr

2dr
as the geometric mass of the system. Now consider the
following definitions:

� ¼ �
Z R

0

GNMðrÞ
r

dMðrÞ; (34)

and

�X ¼
Z R

0

GNMXðrÞ
r

dMðrÞ: (35)

Multiplying Eq. (33) by dMðrÞ
r which is equal to 4�
r2dr

r and

integrating gives

� ¼ �X � 1

2

Z R

0
4�r3


@�

@r
dr; (36)

where� is the gravitational potential energy of the system.
Finally, using Eq. (31) leads to the generalized virial
theorem

2K þ���X ¼ 0: (37)

Alternatively, the above equation can be written in the form
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2K �GN

Z R

0

MðrÞdM
r

�GN

Z R

0
MXðrÞ dMr ¼ 0: (38)

For convenience we introduce the radii RV and RX:

RV ¼ M2R
R
0
MðrÞ
r dMðrÞ ; (39)

and

RX ¼ M2
XR

R
0
MXðrÞ

r dMðrÞ : (40)

Furthermore, the virial mass MV is defined as [15]

2K ¼ GNMMV

RV

: (41)

Substitution of these definitions in Eq. (38) leads to

MV

M
¼ 1þM2

XRV

M2RX

: (42)

From observation, the relation MV=M > 3 holds true for
most of the galactic clusters. Therefore one can easily
approximate the last equation:

MV

M
� M2

XRV

M2RX

: (43)

Now one may note that some geometric terms appearing in
the Einstein field equations above could effectively play a
role in the gravitational energy. These geometric terms
may be attributed to a geometric mass at the galactic or
extra-galactic levels and may be interpreted as dark matter.
On the other hand, dark matter is the main contribution of
mass in clusters. It means that the contribution of the
baryonic mass is negligible in comparison with dark mat-
ter. The total mass of the cluster can then be estimated as
Mtot � MX. We also know that the virial mass is mainly
determined by the geometric mass. It means that the geo-
metric mass could be a potential candidate for the virial
mass discrepancy in clusters. As a result, we conclude that

MX � MV � Mtot: (44)

Therefore, Eq. (43) can be written as

MV � M
RX

RV

: (45)

This shows that the virial mass is proportional to the
normal baryonic mass in a cluster and the proportionality
constant has geometrical origins.

III. VACUUM SOLUTION

In this section, we consider the vacuum solution of the
theory. Assuming ��� ¼ 0, the field equations (18)–(20)

reduce to

e��

�
�0

r
þ e�

r2
� 1

r2

�
¼ 8�GN
X; (46)

e��

�
�0

r
� e�

r2
þ 1

r2

�
¼ 8�GNP

r
X; (47)

and

e��

�
�0

2r
� �0

2r
� �0�0

4
þ �00

2
þ �02

4

�
¼ 8�GNP

?
X : (48)

Since the above system of equations contains five unknown
quantities, it is underdetermined. To obtain the unknown
quantities we require two extra relations. Therefore, it is
convenient to consider


X ¼ Pr
X (49)

as an equation of state. We also assume that the spacetime
admits a conformal group of symmetries [3]. In other
words, if the vector field � is the generator of such a
conformal symmetry, then the spacetime metric h is
mapped conformally onto itself along the trajectories of �:

L �h�� ¼ c h��; (50)

where L is the Lie derivative operator and c is the
conformal factor [24–26]. It should be noted that such
extra relations affect the form of fðRÞ through relation
(49). Let us consider a general form for the vector field �:

� ¼ �0ðt; rÞ @
@t

þ �1ðt; rÞ @
@r

þ �2ð�; ’Þ @

@�
þ �3ð�;’Þ @

@’
:

(51)

Substituting this conformal vector in Eq. (50) and assum-
ing c ¼ c ðrÞ, one obtains

� ¼ k

2
t
@

@t
þ rc

2

@

@r
þ dFð’Þ

d’

@

@�

� ½cotð�ÞFð’Þ �Gð�Þ� @

@’
; (52)

where Fð’Þ and Gð�Þ are arbitrary functions and k is an
integration constant [30]. This procedure also leads to the
metric components in terms of the conformal factor

e�ðrÞ ¼ C2r2 exp

�
�2k

Z dr

rc

�
; (53)

and

e�ðrÞ ¼ B2

c 2
; (54)
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where B and C are integration constants [30]. Substitution
of Eqs. (53) and (54) into field equations (46)–(49) leads to

c 2

B2

�
2c 0

rc
þ 1

r2

�
� 1

r2
¼ �8�GN
X; (55)

c 2

B2

�
3

r2
� 2k

r2c

�
� 1

r2
¼ 8�GNP

r
X; (56)

and

c 2

B2

�
1

r2
þ k2

r2c 2
� 2k

r2c
þ 2c 0

rc

�
¼ 8�GNP

?
X : (57)

Using the equation of state (49) and equating Eqs. (55) and
(56) we obtain

rc c 0 þ 2c 2 � kc � B2 ¼ 0: (58)

This equation can be solved to give r in terms of c :

r4 ¼ R4
0

Gðc Þ
j2c 2 � kc � B2j ; (59)

where R0 is an integration constant and

Gðc Þ ¼ exp

� �2kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 8B2

p tanh�1

��4c þ kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 8B2

p
��
: (60)

Now, by substituting all quantities in terms of c , the
energy density and pressure of what may now be
called the Xmatter can be written in terms of the conformal
factor as

8�GN
X ¼ 8�GNP
r
X

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2c 2 þ kc þ B2

p
B2R2

0

ffiffiffiffiffiffiffiffiffiffiffiffi
Gðc Þp ð3c 2 � 2kc � B2Þ;

(61)

and

8�GNP
?
X ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2c 2 þ kc þ B2
p

B2R2
0

ffiffiffiffiffiffiffiffiffiffiffiffi
Gðc Þp ð3c 2 � 2B2 � k2Þ:

(62)

The sum of Eqs. (61) and (62) is another useful relation,

8�GNð
X þ P?
X Þ ¼

1

B2r2
ðk2 � 2kc þ B2Þ; (63)

which can be used to define the equation of state at large
distances. It is clear that in the limit r ! 1, the X matter
has an equation of state 
X ¼ Pr

X ¼ �P?
X .

It should be emphasized that to find the vacuum solution
we only ignored ordinary matter on the brane. The pres-
ence of fðRÞ in the bulk action results in modifications

which can be traced to fðRÞ-nonlinearity effects emanating
from Q�� and E��. Such effects constitute what is known

as the X matter. The vacuum solutions obtained here may
thus be usefully utilized to account for the flat rotation
curves in a region where the contribution of X matter is
dominant.

IV. GALAXY ROTATION CURVES IN A
CONFORMALLY SYMMETRIC SPACETIME

The observational data show that the rotational velocity
increases linearly within the galaxy and approaches a
constant value of about 200 km=s as one moves away
from the center [2]. In this section, we shall consider a
test particle which moves in a circular timelike geodesic
orbit and study its tangential velocity. The Lagrangian of
the system is given by

2L ¼
�
ds

d�

�
2 ¼ �e�ðrÞ

�
dt

d�

�
2 þ e�ðrÞ

�
dr

d�

�
2 þ r2

�
d�

d�

�
2
;

(64)

where � is the affine parameter along the geodesic and
d�2 ¼ d�2 þ sin2�d’2. From the above Lagrangian one
obtains

E ¼ e� _t ¼ const: and l� ¼ r2sin2� _� ¼ const:; (65)

where E and l� are the energy and � component of the

angular momentum of the test particle, respectively, which
are conserved quantities, and an overdot represents differ-
entiation with respect to t. Although the � component of
the angular momentum is not a constant of motion, the
total angular momentum, l2 ¼ l2� þ ðl�= sin�Þ2, is a con-

served quantity which can be written as l2 ¼ r4 _�2 [31].
The equation of the geodesic orbit is given by

_r 2 þ VðrÞ ¼ 0; (66)

where VðrÞ is the potential

VðrÞ ¼ �e��

�
E2e�� � l2

r2
� 1

�
: (67)

Let us now study the motion associated with stable circular
orbits. This kind of motion can be obtained by the
conditions

_r ¼ 0 and
@V

@r
¼ 0: (68)

The potential obtained subject to the above conditions
describes an extremum of the motion. To have a minimum,
the condition

@2V

@r2
> 0 (69)

is also required. Using these conditions, one obtains the
energy and total angular momentum [31,32]
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E2 ¼ 2e�

2� r�0 and l2 ¼ r3�0

2� r�0 : (70)

For an inertial observer far from the source who measures
the spatial components of the velocity, normalized to the
speed of light, the line element can be rewritten as ds2 ¼
�dt2ð1� v2Þ [31], where

v2 ¼ e��

�
e�
�
dr

dt

�
2 þ r2

�
d�

dt

�
2
�
: (71)

Using the condition for circular orbits, the tangential ve-
locity can be expressed as

v2
tg ¼ r2e��

�
d�

dt

�
2
: (72)

The tangential velocity can be rewritten in terms of the
conserved quantities

v2
tg ¼ e�

r2
l2

E2
; (73)

or in the following alternative form,

v2
tg ¼ r�0

2
; (74)

where Eq. (70) is used. This relation shows explicitly that
the tangential velocity depends on the time-time compo-
nent of the metric only. Previously, we obtained the metric
components in terms of the conformal factor in Eqs. (53)
and (54). Therefore, using the relation between � and c ,
the angular velocity in terms of c is given by

v2
tg ¼ 1� k

c
: (75)

Using Eqs. (75) and (54), the metric coefficient expð�Þ can
also be expressed in terms of the angular velocity

expð�Þ ¼ B2

k2
ð1� v2

tgÞ2: (76)

Although we cannot write vtg as a function of r explicitly,

it is possible to find vtg in some regions. For example, we

can derive the value of tangential velocity at infinity. It is
clear from Eq. (59) that we have r ! 1 for c ¼ c 1;2,

where

c 1;2 ¼ k

4
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

16
þ B2

2

s
: (77)

Therefore one may obtain the tangential velocity at infinity
from Eq. (75) as follows:

vtg1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k

k
4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

16 þ B2

2

q
vuuut : (78)

Knowing the value of the tangential velocity at infinity
from observations one can derive the relation between k

and B. The variation of vtg as a function of r, using

Eqs. (75) and (58), for vtg1 ¼ 200 km=s is shown in

Fig. 1. It should be noted that parameter R0 is an integra-
tion constant from Eq. (59) and helps to rescale the curve
only. Furthermore, B should not be looked upon as a fine-
tuning parameter as it can take values not necessarily close
to 1. The particular choices for B in Fig. 1 are only made so
that the curves are better distinguished.
Now, it is convenient to obtain geometric mass of the

galaxy and its dependence on r. If we integrate Eq. (46), we
will find

e�� ¼ 1� 8�GN

r

Z

Xr

2dr: (79)

Using definition MX ¼ 4�
R
r
0 
Xðr0Þr02dr0, we also obtain

e�� ¼ 1� 2GNMX

r
: (80)

One may now introduce the radius r ¼ R for the vacuum
boundary where the contribution of the baryonic mass
vanishes, 
b � 0. Of course, the continuity of the metric
coefficients e� and e� across the vacuum boundary of the
galaxy should be preserved. For simplicity we assume that
inside the baryonic matter with density 
b the nonlocal
effects of the bulk can be neglected. Therefore at the
vacuum boundary the metric coefficients can be written as

e� ¼ e�� ¼ 1� 2GNMb

R
; (81)

where Mb ¼ 4�
R
R
0 
bðr0Þr02dr0 is the total baryonic mass

of the galaxy. By equating Eqs. (76) and (81) at r ¼ R, one
has

k2

B2
¼

�
1� 2GNMb

R

�
ð1� v2

tgÞ2: (82)

Using the above formula, it is possible to find a relation
between MX and Mb from Eqs. (76) and (80) as follows,

1 2 3 4
r R0

140

150

160

170

180

190

200

vtg km s

FIG. 1 (color online). Variation of the tangential velocity as a
function of r=R0, where the dotted line represents B ¼
1:100 000 7, the dashed line B ¼ 1:1, and the solid line B ¼
1:099 999 8.
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MX ¼ Mb

R
r; (83)

showing that MX varies linearly with r, consistent with
observations.

V. THE LAGRANGIAN

To find the form of the Lagrangian fðRÞ of the theory on
the brane, we need the metric. Here, we concentrate on the
flat rotation curve region for which vtg is constant.

According to Eq. (75), we have c ¼ k=ð1� v2
tgÞ.

Therefore, the constancy of vtg in the region of flat rotation

curves leads to the constancy of c . As a result we may
write

e� ¼ C2r2v
2
tg ; (84)

and

e� ¼ B2

k2
ð1� v2

tgÞ2; (85)

obtained from Eqs. (53) and (54). Therefore the form of the
line element can be written as

ds2 ¼ �C2r2v
2
tgdt2 þ B2

k2
ð1� v2

tgÞ2dr2 þ r2d�2; (86)

where the relation between k and B is known according to
Eq. (82) and C can be defined according to the continuity
of the metric coefficient e� across the vacuum boundary of
the galaxy. Using Eqs. (81) and (84) we have

C2 ¼ R�2v2
tg

�
1� 2GNMb

R

�
: (87)

So far we have found the metric in the region of flat
rotation curve as given by (86). In this region we use the
field equation (6) on the brane to determine the form of the
Lagrangian. By neglecting the contribution of the baryonic
matter, the field equations reduce to

G�� ¼ Q�� � E��; (88)

where E�� and Q�� are given by Eqs. (9) and (10) respec-

tively. To solve the field equations, we start with the bulk
metric and write it as

ds2 ¼ �NðyÞr�dt2 þ NðyÞAdr2 þ r2d�2 þ dy2; (89)

where A is a constant and NðyÞ is a function of the extra
dimension. To obtain a consistent line element on the brane

as in (86), we assume � ¼ 2v2
tg, A ¼ B2

C2k2
ð1� v2

tgÞ2, and
Nð0Þ ¼ C2. With these assumptions, the metric becomes

ds2 ¼ �C2r�dt2 þ 	dr2 þ r2d�2; (90)

where 	 ¼ C2A. To continue, we can find fðRÞ from the
trace of Eq. (4) and substitute it in the brane field equations.
The nonzero components of the field equations become

2

15	r2
ð�4	þ 4� �2 � �Þ þ 1

5C2

�
N̂2

C2
� 7 ^̂N

3

�

þ 2

5	r

F;r

F

�
4

3
� �

�
þ 4

15	

F;rr

F
� 1

5F

�
2 ^̂Fþ N̂ F̂

3C2

�
¼ 0;

(91)

2

15	r2
ð�4	þ 4þ 9�� �2Þ þ 1

5C2

�
N̂2

C2
� 7 ^̂N

3

�

þ 4

15	r

F;r

F
ð�þ 2Þ � 2

5	

F;rr

F
� 1

5F

�
2 ^̂Fþ N̂ F̂

3C2

�
¼ 0;

(92)

2

15	r2
ð	þ4�2���1Þ� 1

5C2

�
N̂2

4C2
þ2 ^̂N

3

�

þ 2

15	r

F;r

F
ð2��1Þþ 4

15	

F;rr

F
� 1

5F

�
2 ^̂F�4N̂ F̂

3C2

�
¼0;

(93)

where F ¼ Fðr; yÞ, F;r ¼ @F
@r jy¼0, and F;rr ¼ @2F

@r2
jy¼0. In

addition, we have defined F̂ ¼ @F
@y jy¼0 and ^̂F ¼ @2F

@y2
jy¼0,

with the same notation forN ¼ NðyÞ. We emphasize thatN
and its derivatives are constant on the brane. From
Eqs. (91) and (92) we find

� r2F;rr þ �rF;r þ 2�F ¼ 0; (94)

with general solution

FðrÞ ¼ C1r
n1 þ C2r

n2 ; (95)

where C1 and C2 are arbitrary integration constants and

n1;2 ¼ ð�þ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 10�þ 1

p Þ=2. We limit ourselves

to the monotonically decreasing solution so that FðrÞ ¼
C2r

n where n ¼ n2 < 0 [15]. Now, we can derive F̂ and ^̂F
from Eqs. (91) and (93) with the result

F̂ðrÞ ¼ C2r
n

�
f1
r2

þ 3N̂

4C2
�

^̂N

N̂

�
; (96)

where f1 ¼ C4

	N̂
½�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 10�þ 1

p
ð1� �Þ þ 3� 3�2 �

2	� and

^̂FðrÞ ¼ C2r
n

�
f2
r2

þ 3N̂2

8C4
�

^̂N

C2

�
; (97)

with f2 ¼ 1
2	 ½�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 10�þ 1

p
þ 3�� 2	þ 3�. Using

the above formulas and the trace of Eq. (4) one finds

fðRðr; y ¼ 0ÞÞ ¼ C2r
n

�
f3
r2

þ 2N̂2

C4
� 4 ^̂N

C2

�
; (98)

where f3 ¼ 4
	 ½�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 10�þ 1

p � 	� �2 þ 2�þ 2�.
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At y ¼ 0, one may use the bulk metric to find the Ricci
scalar as

R ¼ 1

C2

�
N̂2

2C2
� 2 ^̂N

�
þ 2

	r2
ð	� �2 � �� 1Þ: (99)

It is clear that one may substitute r in terms of R in Eq. (98)
to derive the action on the brane. However, the same is not
possible for the bulk action. This is due to the fact that we
have derived all equations on the brane by setting y ¼ 0
and therefore there remains no information on the extra-
dimensional dependency. As a result, starting from a given
metric and using the observed physical properties of a
particular galaxy such as vtg, we may derive the form of

fðRÞ on the brane for the region of flat rotation curves of
the given galaxy. Such a fðRÞ function may now be used
for the flat rotation curves of any other galaxy to find the
physical parameters and hence the metric.

VI. LIGHT DEFLECTION ANGLE

To calculate the light deflection angle we use the metric
found in the region of flat rotation curves, in the form given
by (86). The bending of light results in a deflection angle
�� given by

�� ¼ 2 j �ðrcÞ ��1 j ��; (100)

where �1 is the incident direction and rc is the coordinate
radius of the closest approach to the center of the galaxy
[33]. Using the geodesic equations, deflection of light can
be written as

�ðrcÞ ��1 ¼
Z 1

rc

e�ðrÞ=2
�
e�ðrcÞ��ðrÞ

�
r

rc

�
2 � 1

��ð1=2Þ dr
r
:

(101)

We consider the case where rc is in the region of flat
rotation curves. Therefore, the integral is split into two
parts:

�ðrcÞ��1¼
Z r0

rc

B

k
ð1�v2

tgÞ
��

rc
r

�ð2v2
tg�2Þ�1

��1=2dr

r

þ
Z 1

r0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2GNM

r

q �1�2GNM
rc

1�2GNM
r

�
r

rc

�
2�1

��1=2dr

r
;

(102)

where r0 is the radius for which the contribution of dark
matter vanishes. The first integral is attributed to the region
of flat rotation curves with the metric given by Eq. (86)
where dark matter is dominant. The second integral relates
to the exterior region with the Schwarzschild metric [33].
As a result we obtain

��¼
�������� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2GNMb

R

q
ðv2

tg�1Þ

�
arctan

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrcr0Þð2v

2
tg�2Þ �1

q ��

2

�

þ2arcsin

�
rc
r0

�
�2GNM

rc

�
�2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
rc
r0

�
2

s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0�rc
r0þrc

s �����������; (103)

as the total light deflection angle. It is clear that in the case
R ¼ r0 ¼ rc the deflection angle only originates from
baryonic matter. In this particular case, we have �� ¼
4GNMb=R ¼ 4� 10�6 which is consistent with the gen-
eral relativity prediction. The effects of dark matter on the
deflection angle are shown in Fig. 2 where variation of ��
as a function of rc=r0 is plotted. It is necessary to point out
that this result is valid for the region R< rc < r0. In
general, the point of the closest approach, rc, can be
anywhere.

VII. RADAR ECHO DELAY

The time needed for light to travel by a massive celestial
body is longer than the same time calculated by Newtonian
gravity. This effect originates from the existence of the
gravitational field in the vicinity of these massive objects
and can be detected using a radar echo delay. Such a delay
was measured by a method suggested by Shapiro [34]. The
time needed for a photon to propagate from one point with
r ¼ r1, � ¼ �1, � ¼ �

2 to another point with r ¼ r2,

� ¼ �2, � ¼ �
2 can be obtained by use of geodesic equa-

tions [33]. The elapsed time for a photon traveling between
rc and r is given by

tðr; rcÞ ¼
Z r

rc

e�ðrÞ=2

e�ðrÞ=2

�
1� e�ðrÞ

e�ðrcÞ

�
rc
r

�
2
��1=2

dr; (104)

where rc is the closest approach to the celestial body.
To find the time delay we suppose that r is outside the

region formed by the galaxy and rc is in the region of flat

FIG. 2 (color online). Variation of the light deflection angle as
a function of rc=r0 for vtg ¼ 300 km=s.
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rotation curves. Thus, we split the integral (104) into two
parts according to

tðr; rcÞ ¼
Z r0

rc

B

Ck
ð1� v2

tgÞ
�
r2v

2
tg

�
1�

�
r

rc

�ð2v2
tg�2Þ���1=2

dr

þ
Z r

r0

1

1� 2GNM
r

�
1� 1� 2GNM

r

1� 2GNM
rc

�
rc
r

�
2
��1=2 dr

r
;

(105)

where we can integrate the first term exactly and the second
term by using the Robertson expansion [33] to find

tðr; rcÞ � B

Ckr
v2
tg�1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
r0
rc

�
2v2

tg�2
s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r20

q

þ 2GNM ln

�rþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r20

q
r0

�
þGNM

�
r� r0
rþ r0

�
1=2

:

(106)

The term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r20

q
is what we would expect if light trav-

eled in a straight line with unit velocity. The first term in
the above expression is the effect of the flat rotation curves
region and the other terms represent the effect of general
relativity. It is clear that in the absence of the region
containing the flat rotation curves, rc ¼ r0, one gets the
time delay for general relativity only.

VIII. CONCLUSIONS

In this work we have considered a brane-fðRÞmodel as a
possible candidate to explain the question of dark matter.
This was achieved by considering the field equations on the
brane obtained through the projection of the field equations
in the bulk together with the assumption that our spacetime

admits a family of conformal symmetries. The additional
terms thus appearing in this process in the field equations
can be considered as a source for dark matter. We used this
procedure to explain the problem of what is known as the
flat rotation curves and obtained an expression for the
tangential velocity of a test particle moving in such a
region, consistent with present observational data. In addi-
tion, the angle representing the deflection of light and the
time representing the radar echo delay of photons passing
through such a region were calculated.
To look further afield, one may be interested to inves-

tigate the stability of the model and its consistency
with parametrized post-Newtonian parameters. Four-
dimensional fðRÞ gravity models have been considered
before in order to study their stability [35,36] and parame-
trized post-Newtonian parameters [37,38]. This is basically
done by investigating the weak field limit of the theory
involved. The same route can be taken here, leading to the
possibility of direct comparison of predictions of the model
with observational data. The weak field limit would also
afford the possibility of obtaining the potential energy
which is needed to find the Tully-Fisher relation [39,40].
This important relation establishes a connection between
the rotational velocity of a spiral galaxy and its luminosity.
Since the luminosity is proportional to the mass of the
galaxy, the Tully-Fisher relation connects the rotational
velocity of a galaxy with its mass. In addition, the virial
theorem provides a relation between the kinetic energy
(velocity) and potential energy (relating to mass or lumi-
nosity) in self-gravitating systems in equilibrium [41]. As a
result, the potential energy found from the weak field limit
equations accompanied by the Newtonian virial theorem
[39] points to a possible derivation of the Tully-Fisher
relation in the present context which furnishes another
possibility for investigating the validity of the model.
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