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We construct gravitational dynamics for Finsler spacetimes in terms of an action integral on the unit

tangent bundle. These spacetimes are generalizations of Lorentzian metric manifolds which satisfy

necessary causality properties. A coupling procedure for matter fields to Finsler gravity completes our

new theory that consistently becomes equivalent to Einstein gravity in the limit of metric geometry. We

provide a precise geometric definition of observers and their measurements and show that the trans-

formations, by means of which different observers communicate, form a groupoid that generalizes the

usual Lorentz group. Moreover, we discuss the implementation of Finsler spacetime symmetries. We use

our results to analyze a particular spacetime model that leads to Finsler geometric refinements of the

linearized Schwarzschild solution.
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I. INTRODUCTION

The weak equivalence principle states that the trajecto-
ries of small test bodies, neither affected by gravitational
tidal forces nor by forces other than gravity, are indepen-
dent of their internal structure and composition [1].
Experimentally, this principle is confirmed with extremely
high precision [2]; in gravity theory, it has been imple-
mented already by Newton who postulated that gravita-
tional mass should equal inertial mass, and then by
Einstein who formulated the motion of test bodies in terms
of geodesics on Lorentzian spacetime. These trajectories
extremize the Lorentzian length integral which is inter-
preted physically as proper time. The fundamental geo-
metric object entering this construction is the Lorentzian
spacetime metric. This observation led Einstein to the
development of a gravity theory that determines the metric
and so provides a dynamical background geometry for
point particles, observers and physical fields.

The essential point in Einstein’s implementation of the
weak equivalence principle by a clock postulate is the use
of geometric concepts, not the particular choice of metric
geometry. Indeed, more general geometries can be used
which automatically realize this principle. Here, we con-
sider Finsler geometry [3,4] which generalizes metric
geometry by providing a very general length functional
for curves � � �ð�Þ on a manifold M,

S½�� ¼
Z

d�Fð�ð�Þ; _�ð�ÞÞ: (1)

The Finsler function Fmaps the points of the curve and the
attached four-velocities into real numbers and is homoge-
neous of degree 1 in its second argument to ensure the

reparametrization invariance of S½��. The usual length
measure associated to a Lorentzian metric g is obtained

for the special case Fð�; _�Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgabð�Þ _�a _�bjp
. Physically,

we interpret the integral above as a generalized clock
postulate and point particle action.
On this basis, wewill develop a consistent gravity theory

which determines the Finsler function dynamically. Our
construction builds on the precise definition of physical
Finsler spacetimes in Ref. [5], where we established a
minimal set of requirements on the function F so that it
can describe a geometric spacetime background suitable
for physics. In particular, Finsler spacetimes provide a
well-defined notion of causality and the possibility to for-
mulate field-theory actions. A generalization of gravity
based on Finsler geometry has the potential to explain
various issues that are not naturally explained by Einstein
gravity. Indeed, it has been argued that Finsler geometry in
principle can address the rotational curves of galaxies and
the acceleration of the Universe without introducing dark
matter [6] or dark energy [7] and that it admits sufficiently
complex causal structures which allow a consistent geo-
metric explanation of superluminal neutrino propagation
[8]. Here, we will find that Finsler gravity may also explain
the fly-by anomaly [9] in the Solar System.
Our presentation is structured as follows. We will begin

in Sec. II with a brief review of our definition of Finsler
spacetimes and of the mathematical tools and geometric
objects needed. Moreover, we will define field theory
action integrals on Finsler spacetimes. Equipped with these
concepts, we will show in Sec. III how to model observers
on Finsler spacetimes and discuss how they perform mea-
surements. We will prove that two different observers are
related by a transformation composed out of a certain
parallel transport and a Lorentz transformation. The set
of these transformations has the algebraic structure of a
groupoid that reduces to the usual Lorentz group in the
metric geometry limit. In Sec. IV, we will present our
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new theory of Finsler gravity, including a matter coupling
principle, which geometrically extends Einstein gravity
without introducing new fundamental scales. We will de-
rive the Finsler gravity field equation by variation and
prove that it reduces consistently to the Einstein field
equations in the metric limit. Symmetries of Finsler space-
times will be introduced in Sec. V. The maximally sym-
metric solution of vacuum Finsler gravity turns out to be
standard Minkowski spacetime. Section VI considers a
spherically symmetric perturbation around this vacuum
which is found to be a refinement of the Schwarzschild
solution which shows how Finsler gravity could resolve the
fly-by anomaly. We conclude in Sec. VII. Appendix A
presents technical details of our derivations.

II. FINSLER SPACETIME GEOMETRY

The central idea behind the generalization of Einstein
gravity presented in this article is the description of space-
time and its dynamics by Finsler geometry instead of
metric geometry. In this section, we will review the basic
geometric concepts available on Finsler spacetimes [5].
These were introduced as a generalization of Lorentzian
metric spacetimes; they allow full control of the null
geometry and a clean definition of causality, which is
essential for the description of light and observers. In
particular, we will describe nonlinear connections and
curvature; moreover, we will explain how to obtain well-
defined field theory actions.

A. Basic concepts

The definition of Finsler spacetimes involves the eight-
dimensional tangent bundle TM which is the union of all
tangent spaces to the underlying four-dimensional event
manifoldM. Thus, any point P 2 TM is a tangent vector to
M at some point p 2 M; there is a natural projection
�: TM ! M, P � p. It is convenient to use the so-called
induced coordinates on the tangent bundle which are con-
structed as follows. Let ðxÞ be coordinates on some open
neighborhood U � M of p ¼ �ðPÞ. With respect to these,
we can express P ¼ ya @

@xa jxðpÞ; the induced coordinates of

P are then ðxðpÞ; yÞ. The corresponding induced coordinate
basis of TTM will be denoted by f@a ¼ @

@xa ;
�@a ¼ @

@yag, and
that of its dual T�TM by fdxa; dyag.

Definition 1. A Finsler spacetime ðM;L; FÞ is a four-
dimensional, connected, Hausdorff, paracompact, smooth
manifold M equipped with a continuous function
L: TM ! R on the tangent bundle, which has the follow-
ing properties:

(i) L is smooth on the tangent bundle without the zero
section TM n f0g;

(ii) L is positively homogeneous of real degree n � 2
with respect to the fiber coordinates of TM,

Lðx; �yÞ ¼ �nLðx; yÞ 8 � > 0; (2)

(iii) L is reversible in the sense

jLðx;�yÞj ¼ jLðx; yÞj; (3)

(iv) the Hessian gLab of L with respect to the fiber

coordinates is nondegenerate on TM n A, where A
has measure zero and does not contain the null set
fðx; yÞ 2 TMjLðx; yÞ ¼ 0g,

gLabðx; yÞ ¼ 1
2
�@a �@bL; (4)

(v) the unit timelike condition holds, i.e., for all x 2 M,
the set

�x ¼
�
y 2 TxMjjLðx; yÞj ¼ 1;

gLabðx; yÞ has signature ð�;��;��;��Þ;

� ¼ jLðx; yÞj
Lðx; yÞ

�
(5)

contains a nonempty closed connected component
Sx � �x � TxM.

The Finsler function associated to L is Fðx; yÞ ¼
jLðx; yÞj1=n and the Finsler metric gFab ¼ 1

2
�@a �@bF

2.

Lorentzian metric spacetimes ðM;gÞ arise from defini-
tion 1 in case Lðx; yÞ ¼ gabðxÞyayb; then gL ¼ �gF ¼ g,
and Sx is the set of unit g-timelike vectors. For general
function L, the relation between the inverse Finsler metric
gF and the inverse Lagrange metric gL is given by

gFab ¼ nL

2jLj2=n
�
gLab þ 2ðn� 2Þ

nðn� 1ÞLyayb
�
: (6)

The definition of Finsler spacetimes guarantees a well-
defined causal structure by the existence of timelike vec-
tors that form an open convex cone with null boundary in
every local tangent space, see Fig. 1. It provides full
control of the geometry along the null directions where
Lðx; yÞ ¼ 0: we could show that the geometric concepts of
connections and curvature that will be discussed below can
be extended to this set, which is not possible in standard
textbook formulations of Finsler spaces. Furthermore, by
constructing a theory of electrodynamics on Finsler space-
times, we proved that light propagates along null direc-
tions. For further details, see Ref. [5].
The geometry of Finsler spacetimes is formulated by

extending the standard language of Finsler geometry, see
e.g. Refs. [3,4]; this is a special geometry on the tangent
bundle based on the Finsler function F that appears in the
clock postulate. The basic geometric object deduced from
the Finsler function is the Cartan nonlinear connection.
Any nonlinear connection on TM is equivalent to a unique
decomposition of all tangent spaces to TM as TPTM ¼
HPTM � VPTM, see Fig. 2. While the vertical bundle
VTM is canonically spanned by f �@ag, the horizontal bundle
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HTM is spanned by f�a ¼ @a � Nb
a
�@bg, where the

Na
bðx; yÞ are the coefficients of the nonlinear connection.

Then, the dual bundle ðVTMÞ� is spanned by f�ya ¼
dya þ Na

bdx
bg, and ðHTMÞ� by fdxag. For the Cartan

nonlinear connection, the connection coefficients are de-
termined by the fundamental functions F or L as

Na
b ¼ 1

4
�@b½gFaqðyp@p �@qF2 � @qF

2Þ�
¼ 1

4
�@b½gLaqðyp@p �@qL� @qLÞ�: (7)

The equality of the two expressions for Na
b follows from

the proof of theorem 2 in Ref. [5], which makes particular
use of the Euler theorem ya �@afðx; yÞ ¼ mfðx; yÞ for
m-homogeneous functions. Note that the right-hand side
is also valid on the null structure where F is not even
differentiable.

Under tangent bundle changes of coordinates induced
from coordinate transformations ðxÞ ! ð~xðxÞÞ of the mani-
fold, the nonlinear connection coefficients Na

b transform

in such a way that the horizontal/vertical basis f�a; �@ag of
TTM and the dual basis fdxa; �yag transform as vectors or
one-forms over the manifold,

ð�a; �@aÞ !
�
@~xb

@xa
~�b;

@~xb

@xa
~�@b

�
;

ðdxa; �yaÞ !
�
@xa

@~xb
d~xb;

@xa

@~xb
�~yb

�
:

(8)

Tensors on TM that obey the standard tensor transforma-
tion law under manifold-induced coordinate changes are
called distinguished, or, in short, ‘‘d-tensors.’’ An example
for a d-vector is the horizontal lift XH of a vector X in TxM
to Hðx;yÞTM,

X ¼ Xa@ajx � XH ¼ Xa�ajðx;yÞ: (9)

The inverse map is given by the push forward along the
projection, ��XH ¼ X. The horizontal tangent spaces to
TM can thus be identified with the tangent spaces to the
manifoldM; this will be important for the identification of
field components of tensors over the tangent bundle with
field components measured over the spacetime manifold.
A d-tensor of particular importance for our construction

of gravitational dynamics for Finsler spacetimes is the
curvature of the Cartan nonlinear connection which mea-
sures the integrability of the horizontal bundle HTM. It is
defined as

Ra
bc ¼ ½�b; �c�a

¼ �yqð�b�
�a

qc � �c�
�a

qb þ ��a
pb�

�p
qc

� ��a
pc�

�p
qbÞ; (10)

using as a short-hand notation the generalized Christoffel
symbols

��a
bc ¼ 1

2g
Faqð�bg

F
qc þ �cg

F
qb � �qg

F
bcÞ

¼ 1
2g

Laqð�bg
L
qc þ �cg

L
qb � �qg

L
bcÞ; (11)

which are related to the nonlinear connection coefficients
via Na

b ¼ ��a
bcy

c. The proof of the above equality is

given in theorem 2 of Ref. [5].
In order to formulate covariant differential equations in

the language of Finsler geometry, a linear covariant de-
rivativer that acts on tensor fields over TM is needed. This
must be compatible with the horizontal/vertical structure
so that the identification of horizontal tangent spaces with
tangent spaces to the manifold stays intact under trans-
ports. In the literature exist four such covariant derivatives
with slightly different properties. We will employ the
Cartan linear covariant derivative defined by

r�a
�b ¼ ��q

ab�q; r�a
�@b ¼ ��q

ab
�@q;

r �@a
�b ¼ 1

2
gFpq �@pg

F
ab�q; r �@a

�@b ¼ 1
2g

Fpq �@pg
F
ab

�@q:

(12)

In later sections, we will often need the Cartan linear
covariant derivative with respect to horizontal directions;

(x,y)

M

T M

y

x

x

H    TM

V    TM

(x,y)

FIG. 2 (color online). Tangent bundle geometry: decomposi-
tion of Tðx;yÞTM into horizontal and vertical parts.

L=0

|L|=1

FIG. 1 (color online). Geometric structures implemented in
every tangent space TxM by definition 1 of Finsler spacetimes.
The solid lines show the guaranteed cone of timelike vectors
with the shells of unit timelike vectors and null boundary. The
dotted lines indicate a potentially more complex null structure.
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we will then use the abbreviation ra � r�a
. The action of

r on the following Sasaki-type metric on TM,

G ¼ �gFabdx
a � dxb � 1

F2
gFab�y

a � �yb; (13)

gives zero. Hence, this metric is covariantly constant with
respect to the Cartan linear connection; it will play a
crucial role as an integration measure on TM.

This completes our quick review of geometric objects
needed in this article. For later use, observe that all the
objects definable from F, i.e., the Finsler metric gF, the
Cartan nonlinear connection Na

b, its curvature, and the

Cartan linear connection, are invariant under the trans-
formation L ! Lk. In the metric limit Lðx; yÞ ¼
gabðxÞyayb, they reduce to known constructions from met-
ric geometry: the curvature essentially becomes the
Riemann curvature tensor, Ra

bcðx; yÞ ¼ �Ra
dbcðxÞyd; the

generalized Christoffel symbols become the usual
Christoffel symbols, ��a

bcðx; yÞ ¼ �a
bcðxÞ; the nonlinear

connection now is a linear connection, Na
bðx; yÞ ¼

�a
bcðxÞyc; the Cartan linear covariant derivative in hori-

zontal directions becomes the Levi-Civita covariant deriva-
tive while it becomes trivial in vertical directions.

B. Action integrals

We saw that all geometric objects on Finsler spacetimes
are homogeneous tensor fields on the tangent bundle. The
same will be true for physical fields in our construction.

The formulation of field theory actions needs the well-
defined integration procedure developed in Ref. [5].
Since integrals over the tangent bundle over homogeneous
functions diverge, we must consider integrals over the unit
tangent bundle

� ¼ fðx; yÞ 2 TMjFðx; yÞ ¼ 1g: (14)

On this domain, we have a natural volume element con-
structed from the pullback of the Sasaki-type metric (13).
Thus, actions arise as integrals of scalar functions f on TM
restricted to � as fj�.
To perform such integrals explicitly, we change coordi-

nates on TM from the induced ZA ¼ ðxa; yaÞ to the more

convenient coordinates ẐA ¼ ðx̂aðxÞ; u�ðx; yÞ; Rðx; yÞÞ,
where � ¼ 1 . . . 3, the u� are zero-homogeneous, and R ¼
Fðx; yÞ. Now, � is defined by R ¼ 1 and described by
coordinates ðx̂; uÞ. The coordinate transformation matrices
on TM are

@ẐA

@ZB ¼
�a
b 0

@bu
�

@bjLj1=r
�@bu

�

�@bjLj1=r

2664
3775;

@ZA

@ẐB
¼ �a

b 0 0

@̂by
a @u�y

a ya

R

" # (15)

and satisfy the invertibility properties

@ẐA

@ZC

@ZC

@ẐB
¼

�a
b 0

@bu
� þ �@cu

�@̂by
c

@bjLj1=r þ �@cjLj1=r@̂byc
�@cu

�@u�y
c �@cu

� yc

R

�@cjLj1=r@u�yc 1

2664
3775 ¼

�a
b 0

0

0

��
� 0

0 1

2664
3775; (16a)

@ZA

@ẐC

@ẐC

@ZB ¼ �a
b 0

@̂by
a þ @bu

�@u�y
a þ ya

R @bjLj1=r @u�y
a �@bu

� þ ya

R
�@bjLj1=r

" #
¼ �a

b 0

0 �a
b

" #
: (16b)

We now calculate the pullback of the Sasaki-type metric
to � in order to determine the relevant volume form. First,
we transform Eq. (13) to the new coordinates ðx̂; u; RÞ,
which yields

G ¼ �gFabdx̂
a � dx̂b � 1

R2
hF���u

� � �u� � 1

R2
dR � dR

(17)

in terms of hF�� ¼ gFab@�y
a@�y

b and �u� ¼ du� þ
ð �@bu�Nb

a � @au
�Þdx̂a. Then the pullback to � with R ¼

1 becomes

G� ¼ �gF
abj�dx̂

a � dx̂b � hF
��j��u

� � �u�: (18)

Using the short-hand notation gF ¼ j detgFabj and hF ¼
j dethF��j, a well-defined integral over � of a homogeneous

tangent bundle function f now reads

Z
�
d4x̂d3u

ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q
j�fðx; yÞj�: (19)

For tangent bundle functions Aaðx; yÞ that are homogene-
ous of degree m, the following formulae for integration by
parts holdZ

�
d4x̂d3u

ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q
j�ð�aA

aÞj�

¼ �
Z
�
d4x̂d3u

ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q
j�½ð��p

pa þ SaÞAa�j�; (20a)

Z
�
d4x̂d3u

ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q
j�ð �@aAaÞj�

¼ �
Z
�
d4x̂d3u

ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q
j�½ðgFpq �@agFpq

� ðmþ 3ÞypgFpaÞAa�j�; (20b)
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where Sabc ¼ ��a
bc � �@bN

a
b and Sa ¼ Sppa. These for-

mulae can be proven with the help of the coordinate trans-
formation relations (16).

The definitions and mathematical techniques presented
in this section are the foundation of the following new
developments. In the next section, we present how observ-
ers are modeled and perform measurements before we turn
to the construction of a gravity theory for Finsler
spacetimes.

III. OBSERVERS AND MEASUREMENTS

In order to study physics on general Finsler spacetimes,
it is necessary to define a mathematical model of physical
observers and to determine how they measure time, spatial
distances, and physical fields. Guided by general relativity,
freely falling observers move on trajectories that extremize
the proper time integral; the variation of Eq. (1) here leads
to Finsler geodesics. Moreover, a model of observers re-
quires four tangent vectors that build an orthonormal
frame; then measurable quantities are the components of
physical fields with respect to this frame, evaluated at the
observer’s position. We explicitly calculate the illustrative
example of an observer’s measurement of the speed of light
on which the results of Ref. [8] are based. To compare
measurements of different observers, it is necessary to
communicate the results obtained by one observer to an-
other. This communication is realized by a certain class of
transformations between different observers; we will show
that these transformations have the algebraic structure of a
groupoid that generalizes the usual Lorentz group in metric
geometry.

A. Orthonormal observer frames

An observer moves along a spacetime curve � � �ð�Þ in
M with timelike tangents. The parametrization can be
chosen so that _� 2 S� is unit timelike; according to defi-

nition 1, we now have jLð�; _�Þj ¼ 1, and the signature of
gLabð�; _�Þ is Lorentzian.1 Then the clock postulate (1) tells

us that _�must be interpreted as the local unit time direction
of the observer. We may write the normalization condition
in the form gFð�; _�Þðe0; e0Þ ¼ 1 using the horizontal lift e0 ¼
_�H of _�, see Eq. (9).
To identify the three-space seen by an observer, we will

complete e0 to a four-dimensional basis e	 ofHð�; _�ÞTM; as

explained before, the projections of the e� for � ¼ 1 . . . 3
by �� into T�M then are identified as the spatial tangent

directions to the manifold. We determine the three hori-
zontal vectors e� by the condition gFð�; _�Þðe0; e�Þ ¼ 0. This

construction is justified by the observation that a horizontal
three-space is defined by a conormal horizontal one-form.

The only linearly independent one-form available in terms
of geometric data is the vertical form dL ¼ �@aL�y

a. This

can be mapped globally to the horizontal one-form fdL ¼
�@aLdx

a, which is proportional to the Cartan one-form
known from Finsler geometry and is a Lagrangian ana-
logue of the Poincaré one-form in Hamiltonian mechanics.

The condition fdLð�; _�Þðe�Þ ¼ 0 on e� is equivalent to that

stated above in terms of the Finsler metric. We remark that
the e� may depend less trivially on _� ¼ ��e0 than in
Lorentzian geometry because of their defining equation
gFð�; _�Þðe0; e�Þ ¼ 0.

The definition of unique unit directions in the three-
dimensional span he�i requires orthonormalization. For
this purpose, we use the Finsler metric to set
gFð�; _�Þðe�; e�Þ 	 ���, assuming definite signature. The

choice of the metric gF for orthonormalization is preferred
over that of gL, since only gF is invariant under L ! Lk as
are the geometrical objects on Finsler spacetimes, see
Sec. II A. We will now prove a useful theorem on the
relation between the signatures of the metrics gL and gF

where both are defined; a corollary will then confirm our
assumption of a definite signature of the Finsler metric on
he�i.
Theorem 1— On the set TM n ðA [ fL ¼ 0gÞ, the metric

gL is nondegenerate of signature ð�1m; 1pÞ for natural

numbers m, p with mþ p ¼ 4. Then, the Finsler metric
has the same signature, where Lðx; yÞ> 0, and reversed
signature ð�1p; 1mÞ, where Lðx; yÞ< 0.

The observer’s time direction e0 is in S� which is con-

tained in TM n ðA [ fL ¼ 0gÞ. This tells us that the metric
gLð�; _�Þ has signature ð�13; 11Þ for Lð�; _�Þ> 0 and ð�11; 13Þ
for Lð�; _�Þ< 0. We also know that gFð�; _�Þðe0; e0Þ ¼ 1.

Hence, we conclude from theorem 1:
Corollary— The Finsler metric gFð�; _�Þ evaluated at the

tangent bundle position of an observer has Lorentzian
signature ð�13; 11Þ, and the unit spatial directions satisfy
gFð�; _�Þðe�; e�Þ ¼ ����.

Proof of Theorem 1— By the definition of Finsler space-
times, the metric gL is nondegenerate on TM n A, hence
also on the smaller set excluding the null structure on
which gF is defined. Now, observe that if an inner product
is given by a matrix Cab ¼ Aab þ BaBb and Aab has in-
definite signature ð�1m; 1pÞ, then the signature of Cab is

found to be ð�1mþ1; 1p�1Þ for A�1abBaBb <�1 and

ð�1m; 1pÞ for A�1abBaBb >�1; for A�1abBaBb ¼ �1,

the result is the once-degenerate signature ð�1m�1;
1p; 01Þ. This can be seen in a Sylvester normal form basis

for A by using the remaining SOðm;pÞ freedom. We can
apply this result to our situation by identifying

A ¼ nL

2jLj2=n ðg
LÞ�1; B ¼

�
n� 2

ðn� 1ÞjLj2=n
�
1=2

y (21)

1In the following, we often use the very intuitive notation
ð�; _�Þ for points of the tangent bundle _� 2 T�M � TM, which
is analogous to the coordinate representation ðxð�Þ; yð _�ÞÞ.
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from Eq. (6). It follows that A�1ðB; BÞ ¼ n� 2>�1;
then, the signature of gF is the signature of A, i.e., that of
gL up to the sign of L.

We summarize our construction of observers’ frames
and measurements into a precise definition.

Definition 2— Let ðM;L; FÞ be a Finsler spacetime.
Physical observers along worldlines � � �ð�Þ in M are
described by a frame basis fe	g of Hð�; _�ÞTM which

(i) has a timelike vector e0 in the sense��e0 ¼ _� 2 S�;

and
(ii) is gF-orthogonal, gFð�; _�Þðe	; e
Þ ¼ ��	
.

They measure the components of horizontal tensor fields
over TM with respect to their frame at their tangent bundle
position ð�; _�Þ.

The Minkowski metric �	
 in this definition has signa-

ture ð�11; 13Þ. We emphasize again that the frame fe	g in
Hð�; _�ÞTM can be identified one-to-one with a frame f��e	g
in T�M, or reversely by the horizontal lift. From Eq. (6),

one can show that the observer frame has the nice property
to diagonalize gF and gL simultaneously. We will now
discuss the measurement procedure in more detail and
present the example of how an observer measures the speed
of light.

B. Measuring the speed of light

Definition 2 of the observer frame includes the statement
that a physical observable is given by the components of a
horizontal tensor field with respect to the observer’s frame,
evaluated at her position on the tangent bundle, i.e., at her
position on the manifold and her four-velocity. The moti-
vation for this is as follows. The geometry of Finsler
spacetimes is formulated on the tangent bundle TM, and
hence matter tensor fields coupling to this gravitational
background must also be defined over TM. Not all such
tensor fields can be interpreted as tensor fields from the
perspective of the spacetime manifold M. This interpreta-
tion requires that the tensor fields be horizontal; then, they
are multilinear maps built on the horizontal space HPTM
and its dual which are identified with the tangent space
T�ðPÞM and its dual. Consider the example of a 2-form field

� over TM; in the horizontal/vertical basis, this expands as

� ¼ �1abðx; yÞdxa ^ dxb þ 2�2abðx; yÞdxa ^ �yb

þ�3abðx; yÞ�ya ^ �yb: (22)

Only the purely horizontal part �1abðx; yÞdxa ^ dxb has a
clear interpretation. Note that such horizontal tensor fields
are automatically d-tensor fields and have the same number
of components as a tensor field of same rank on M. The
difference is that the components depend on the tangent
bundle position. The measurement of a horizontal tensor
field by an observer at the tangent bundle position ð�; _�Þ
clearly requires an observer frame of Hð�; _�ÞTM in order to

read out the components.

We emphasize that the dependence of observables on the
four-velocity of the observer is not surprising. Neither is it
problematic as long as observers can communicate their
results. In general relativity, observables are the compo-
nents of tensor fields overM with respect to the observer’s
frame in T�M; they clearly depend on _� which induces the

splitting of T�M into time and space directions. On Finsler

spacetimes, the dependence of observables on the observ-
er’s four-velocity is not only present in the time/space split
of Hð�; _�ÞTM, but also in the argument of the tensor field

components.
As a simple example, we discuss the measurement of the

spatial velocity of a point particle that moves on a world-
line � with horizontal tangent _�. This can be expanded in

the orthonormal frame of an observer as _� ¼ _�0e0 þ _~� ¼
_�0e0 þ _��e�, where we recall that e0 ¼ _� is the observer’s
four-velocity. The time _�0 passes while the particle moves
in spatial direction _��, so the spatial velocity ~v and its
square v2 are

~v ¼
_~�

_�0
; v2 ¼ ��� _�� _��

ð _�0Þ2 ¼ � gFð�; _�Þð _~�; _~�Þ
gFð�; _�Þð _�; _�Þ2

: (23)

As a consequence of this formula, we may derive the
speed of light seen by a given observer. As discussed in
Ref. [5], light propagates on null worldlines � with
Lð�; _�Þ ¼ 0, which is equivalent to Fð�; _�Þ2 ¼ 0. We
can use this fact to replace the Finsler metric in the formula

for the velocity above. Taylor-expanding Fð�; _�0e0 þ
_~�Þ2 ¼ 0 around _~� ¼ 0 yields

0 ¼ ð _�0Þ2 þ gFð�; _�Þð _~�; _~�Þ

þ X1
k¼3

ð _�0Þ2�k

k!
�@c1 . . .

�@ckFð�; _�Þ2 _~�c1 . . . _~�ck : (24)

Evaluating this formula at the position of the observer � ¼
� and dividing by ð _�0Þ2, we immediately obtain an ex-

pression for the speed of light c2ð�; _�Þð _~�Þ, i.e., the speed of

light traveling in spatial direction _~� and measured by the
observer ð�; _�Þ:

c2ð�; _�Þð _~�Þ ¼ 1þ X1
k¼3

ð _�0Þ�k

k!
�@c1 . . .

�@ckFð�; _�Þ2 _~�c1 . . . _~�ck :

(25)

The _�0 are determined by solving the null condition

Lð�; _�0 _�þ _~�Þ ¼ 0; on a generic Finsler spacetime, there
can be more than one solution since the null structure can
be very complicated. From Eq. (25), we see that the
measured speed of light depends on the higher-than-
second-order derivatives of the squared Finsler function;
these vanish in the metric limit where we thus reobtain

c2ð�; _�Þð _~�Þ ¼ 1 independent of the observer and the spatial

direction of the light ray. The formulae (23) and (24)
enable us to compare experimental results on particle and
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light velocities with predictions on specific Finsler space-
time models. In Ref. [8], we used this to study the possi-
bility of superluminal particle propagation.

C. Generalized Lorentz transformations

We already stressed the importance that observers
should be able to communicate their measurements.
Consider two observers whose worldlines meet at a point
x 2 M. Since observers by definition 2 measure the com-
ponents of horizontal tensor fields in their frame and at
their tangent bundle position, we need to determine which
transformation uniquely maps an observer frame fe	g in
Hðx;yÞTM to a second observer frame ff	g in Hðx;zÞTM.

Their respective four-velocities, or time directions, y ¼
��e0 and z ¼ ��f0 generically are different, so that the
two observer frames are objects in tangent spaces to TM at
different points. As a consequence, we will now demon-
strate that the transformations between observers consist of
two parts: the first is a transport of the frame fe	g from
ðx; yÞ to ðx; zÞ, and the second will turn out to be a Lorentz
transformation.

Theorem 2— Consider two observer frames fe	g in

Hðx;yÞTM and ff	g in Hðx;zÞTM on a Finsler spacetime

ðM;L; FÞ. If z is in a sufficiently small neighborhood
around y 2 TxM, then the following procedure defines a
unique map fe	g � ff	g:

(i) Let t � vðtÞ be a vertical autoparallel of the Cartan
linear connection that connects vð0Þ ¼ ðx; yÞ to
vð1Þ ¼ ðx; zÞ; this satisfies �� _v ¼ 0 and r _v _v ¼ 0.
Determine a frame fê	ðvðtÞÞg along vðtÞ by parallel

transport r _vê	 ¼ 0 with the initial condition

ê	ðvð0ÞÞ ¼ e	.

(ii) Find the unique Lorentz transformation � so that
f	 ¼ �


	ê
ðvð1ÞÞ.
Proof— We first show that the curve v required in (i)

exists. The verticality condition �� _v ¼ 0 implies _v ¼
_va �@a; the definition of the Cartan linear connection (12)
then tells us that r _v _v ¼ 0 is equivalent to solving €va þ
1
2 g

Fap �@pg
F
bc _v

b _vc ¼ 0. This has a unique solution connect-

ing ðx; yÞ to any point ðx; zÞ in a sufficiently small neigh-
borhood in TxM. Now let fê	ðvðtÞÞg be the parallelly

transported vector fields r _vê	 ¼ 0 with ê	ðvð0ÞÞ ¼ e	.

The properties of the Cartan linear connection ensure that
the ê	 are horizontal fields. Observe also that

r _vðgFv ðê	; ê
ÞÞ ¼ 0 along the curve v since gF is cova-

riantly constant under r. It follows that
gFvðtÞðê	ðvðtÞÞ; ê
ðvðtÞÞÞ ¼ ��	
 (26)

is independent of t and holds, in particular, at the final point
of the transport vð1Þ ¼ ðx; zÞ. Now fê	ðvð1ÞÞg and ff	g are
orthonormal frames with respect to gF in Hðx;zÞTM; hence,

they are related by a unique Lorentz transformation as
stated in point (ii) of the theorem. h

The procedure described in theorem 2 provides a map
between the frames of two observers at the same point of
the manifold x 2 M, but with different four-velocities
y; z 2 Sx � TxM; we display the two parts of this proce-
dure as � 
 Py!z, i.e., as parallel transport followed by

Lorentz transformation, which is illustrated in Fig. 3. The
combined maps transform observers uniquely into one
another as long as the autoparallel v connecting the verti-
cally different points in TM exists and is unique. This is
certainly the case if ðx; yÞ and ðx; zÞ are sufficiently close to
each other. Whether the geometric structure of a specific,
or maybe all, Finsler spacetimes is such that unique trans-
formations between all observers exist requires further
investigation.
In the observer transformations on generic Finsler

spacetimes, there appears an additional ingredient that is
not present on metric spacetimes. Before applying the
Lorentz transformation to the frame, one has to perform
a parallel transport in the vertical tangent space. In the
metric limit, the vertical covariant derivative becomes
trivial so that the parallelly transported frame does not
change at all along the curve v. In this special case, the
transformation of an observer thus reduces to � 
 idy!z,

which is fully determined by a Lorentz transformation.
The observer transformations on Finsler spacetimes es-

sentially have the algebraic structure of a groupoid that
reduces to the Lorentz group in the metric limit. We first
review the general definition of a groupoid and then show
how this applies to our case.
Definition 3— A groupoid G consists of a set of objects

G0 and a set of arrows G1. Every arrow A is assigned a
source e ¼ sðAÞ and a target f ¼ tðAÞ by the maps
s: G1 ! G0 and t: G1 ! G0; one writes this as A: e !
f. For arrows A and B whose source and target match as
tðAÞ ¼ sðBÞ there exists an associative multiplicationG1 �
G1 ! G1, ðA; BÞ � BA with

x

H   TM

v(t)

M

H   TM(x,z)

(x,y)

(x,y)

(x,z)

TxM

f
ê

e

FIG. 3 (color online). Transformation between two observer
frames: the frame fe	g in Hðx;yÞTM is first parallely transported

to fê	g in Hðx;zÞTM and second, Lorentz transformed into the

final frame ff	g.
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sðBAÞ ¼ sðAÞ; tðBAÞ ¼ tðBÞ; CðBAÞ ¼ ðCBÞA:
(27)

A unit map G0 ! G1, e � 1e where 1e: e ! e exists so
that

1 tðAÞA ¼ A ¼ A1sðAÞ: (28)

For every arrow A exists an inverse arrow A�1 that satisfies

sðA�1Þ ¼ tðAÞ; tðA�1Þ ¼ sðAÞ;
A�1A ¼ 1sðAÞ; AA�1 ¼ 1tðAÞ:

(29)

Groupoids are generalizations of groups. These can be
expressed as groupoids with a single object in G0; then,
the arrows correspond to group elements, all of which can
be multiplied since sources and targets always match. The
multiplication is associative, and the identity element and
inverse elements exist.

Consider G0 ¼ Sx � TxM as the set of unit timelike
vectors which contains the different four-velocities of ob-
servers at the point x 2 M. Let the arrows in G1 be the set
of all maps between two observer frames at x, which are
defined by the procedure stated in theorem 2. In case the
involved vertical autoparallels connect the four-velocities
uniquely, the sets G0 and G1 define a groupoid: source and
target of a map A ¼ � 
 Py!z between two frames fe	 2
Hðx;yÞTMg and ff	 2 Hðx;zÞTMg are simply given by

sðAÞ ¼ y 2 Sx and tðAÞ ¼ z 2 Sx; the multiplication BA
is defined by applying the procedure of theorem 2 to
construct the map between sðAÞ and tðBÞ, which gives the
properties (27); we choose the unit map 1y that provides

(28) as 1y ¼ 1 
 idy!y, i.e., as trivial parallel transport of

the frame fe	 2 Hðx;yÞTMg with respect to the Cartan

linear connection along the vertical autoparallel that stays
at ðx; yÞ followed by the identity Lorentz transformation.
Finally, we define the inverse A�1 ¼ ��1 
 Pz!y, where

Pz!y denotes parallel transport backwards along the

unique vertical autoparallel connecting ðx; yÞ and ðx; zÞ,
which is also used for Py!z; to check the properties (29),

one simply shows that parallel transport of the frames and
Lorentz transformation commute. Thus, we have shown
the following result:

Theorem 3— On Finsler spacetimes ðM;L; FÞ, the trans-
formations between observer frames fe	 2 Hðx;yÞTMg at
x 2 M that are attached to points ðx; yÞ 2 Ux � Sx define
a groupoid G under the condition that any pair of points in
Ux can be connected by a unique vertical autoparallel of
the Cartan linear connection.

We already discussed that the transformations of ob-
server frames reduce to the form A ¼ � 
 idy!z in the

limit of metric geometry. Hence, the only information

contained in the reduced groupoid ~G with ~G0 ¼ Sx and
~G1 ¼ f� 
 idy!zg is given by the Lorentz transformations.

In mathematically precise language, this can be expressed

as the equivalence of ~G to the Lorentz group seen as a

groupoid H with a single object H0 ¼ fxg and arrows

H1 ¼ f�g. The functor ’: ~G ! H establishing the

equivalence can be defined by the projection ’0 ¼
�: ~G0 ! H0 and by ’1: ~G1 ! H1, � 
 idy!z�. Indeed,

’ can be checked to be injective, full, and essentially

surjective, and so it makes ~G and H equivalent. See
Ref. [10] for details on the required mathematical
definitions.

IV. GRAVITATIONAL DYNAMICS

We have now reviewed the basic concept of Finsler
spacetime geometry and laid the foundations for the inter-
pretation of physics on these backgrounds. We have seen
that well-defined observers exist which communicate with
each other by means of groupoid transformations that
generalize the Lorentz group in metric geometry. As em-
phasized in previous work [5,8], physical predictions in our
generalized geometric framework require gravitational dy-
namics for the fundamental geometry function L to deter-
mine specific spacetime solutions. In this section, we for
the first time present a Finsler gravity action along with a
consistent minimal coupling principle between gravity and
matter. We begin our presentation with the variation of the
pure gravity action, before the coupling of Finsler gravity
to matter is discussed in Sec. IVB; the full field equation is
derived in Sec. IVC. Moreover, we prove that the Finsler
gravity field equation becomes equivalent to the Einstein
equations in the metric limit.

A. Action and vacuum equations

On Finsler spacetime, the simplest curvature scalar built
from the nonlinear curvature tensor Ra

bc, which is relevant

for the tidal acceleration of Finsler geodesics, is R ¼
Ra

aby
b. This contains the lowest number of derivatives

on the fundamental function L without involving addi-
tional d-tensors besides the curvature, like Sabc or �@ag

F
bc.

Recall that integrals are well-defined over the seven-
dimensional unit tangent bundle � with coordinates
ðx̂; uÞ, as discussed in Sec. II B. These two facts directly
lead to our Finsler gravity action

SG½L� ¼
Z

d4x̂d3u½
ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q
R�j�: (30)

The gravitational field equation in vacuum now is ob-
tained by variation with respect to L. To perform this
variation for an m-homogeneous function fðx; yÞ on TM
restricted to �, it is useful to realize that

�ðfj�Þ ¼ ð�fÞj� �m

n
fj�

�L

L
; (31)

where n is the homogeneity of L. With the help of this
formula and the results for integration by parts in Eq. (20),
we can derive the vacuum field equations in three
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steps. The first uses the variation formula above with

fðx; yÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi
gFhF

p
Ra

aby
b and m ¼ 5, which yields

�SG½L� ¼
Z

d4x̂d3u

�
�ð

ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q
RÞ � 5

n

ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q
R

�L

L

�
j�
:

(32)

The second step is the variation of the volume element
which leads to

�SG½L� ¼
Z

d4x̂d3u
ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q
j�
��

gFpq�gFpq � 6

n

�L

L

�
R

þ yb�Ra
ab

�
j�
; (33)

while in the third step, we use the following identities:

Z
d4x̂d3u½

ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q
gFpq�gFpqR�j�

¼
Z

d4x̂d3u

� ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q
gFab �@a �@bR

�L

nL

�
j�
; (34a)

Z
d4x̂d3u½

ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q
yb�Ra

ab�j�

¼
Z

d4x̂d3u

� ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q
2gFabðraSb þ SaSb

þ �@arSbÞ�LnL
�
j�
; (34b)

to arrive at the final form of the variation of the Finsler
gravity action (30):

�SG½L� ¼
Z

d4x̂d3u
ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q
j�½gFab �@a �@bR� 6R

þ 2gFabðraSb þ SaSb þ �@arSbÞ�j� �L

nL
:

(35)

For further details of this variation, we refer the reader to
Appendix A 1. Now, we can read off the vacuum field
equation on � as

½gFab �@a �@bR�6Rþ2gFabðraSbþSaSb

þ �@arSbÞ�j�¼0: (36)

Observe that all terms in the bracket are zero-
homogeneous on TM, except the second term R that has
homogeneity two. Since ðRÞj� ¼ ðR=F2Þj�, we can re-

place the second term by R=F2, which is now also zero-
homogeneous. Hence, the equation can be lifted to TM in
the form

gFab �@a �@bR� 6

F2
Rþ2gFabðraSbþSaSbþ �@arSbÞ¼0:

(37)

It seems as if this equation could be invalid on fL ¼ 0g ¼
fF ¼ 0g, where F is not differentiable so that the Finsler
metric gF does not exist. However, this is not the case: the
equation is valid also on the null structure. To see this, one
expresses gF through gL with the help of formula (6) and
multiplies by F2. The resulting equation is well-defined
wherever gL is nondegenerate and, in particular, on the null
structure. Note that Eq. (37) is invariant under the trans-
formation L ! Lk, which will be a guiding principle for
matter coupling below.
In the metric limit L ¼ gabðxÞyayb, the tensors in the

Finsler gravity equation reduce as R ¼ �yaybRab and
Sa ¼ 0, where Rab is the Ricci tensor of the metric g.
Accordingly, the field equation becomes

2Rþ 6

F2
Raby

ayb ¼ 0; (38)

which is equivalent to the Einstein vacuum equations
Rab ¼ 0 by differentiating twice with respect to y. We
conclude that a family of solutions of the Finsler gravity
vacuum equation (37) is induced by solutions gabðxÞ of the
vacuum Einstein equations via the fundamental functions
Lk ¼ ðgabðxÞyaybÞk. In Sec. VI, we will present a solution
of the Finsler gravity vacuum equation beyond metric
geometry.

B. Consistent matter coupling

Above, we have achieved a consistent generalization of
vacuum Einstein gravity from metric spacetimes to Finsler
spacetimes. Next, we will show that this generalization can
be completed by the coupling of matter fields. For this
purpose, we will discuss a minimal coupling principle that
generates consistent matter field actions on Finsler space-
times from their well-known counterparts on metric space-
times. In the discussion, we restrict our attention to p-form
fields; spinor fields have to be investigated further. In
Sec. IVC, we will deduce the complete gravity equations
with energy-momentum source term.
Consider an action Sm½g;� for a physical p-form field

 on a Lorentzian spacetime ðM;gÞ,
~S m½g;� ¼

Z
M
d4x

ffiffiffi
g

p
Lðg;; dÞ: (39)

The corresponding matter action on Finsler spacetime is

obtained by lifting ~Sm to the tangent bundle TM equipped
with the Sasaki-type metric Gðx; yÞ defined in Eq. (13) in
the following way:
(i) consider the Lagrangian density Lð. . .Þ of the stan-

dard theory on M as a contraction prescription that
forms a scalar function from various tensorial
objects;
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(ii) replace the Lorentzian metric gðxÞ in Lð. . .Þ by the
Sasaki-type metric Gðx; yÞ;

(iii) replace the p-form field ðxÞ on M by a zero-
homogeneous p-form field2 �ðx; yÞ on TM;

(iv) introduce Lagrange multipliers � for all not purely
horizontal components of �;

(v) finally, integrate over the unit tangent bundle �with
the volume form given by the pullback G� of the
Sasaki-type metric.

The result of this procedure is the Finsler spacetime field
theory action

Sm½L;�; �� ¼
Z
�
d4x̂d3u½

ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q
ðLðG;�; d�Þ

þ �ð1� PHÞ�Þ�j�: (40)

The projection PH projects to the purely horizontal part
of the p-form�; in the example of the general two-form on
TM displayed in Eq. (22), we have

PH� ¼ �1abdx
a ^ dxb: (41)

The Lagrange multiplier guarantees that the on-shell de-
grees of freedom of � are precisely those with a clear
physical interpretation as fields along the manifold M, as
discussed in Sec. III B. The minimal coupling principle for
matter to Finsler spacetime presented above is a slightly
refined version of that in Ref. [5], where we discussed
electrodynamics on Finsler spacetime. The only modifica-
tion here is in the definition of the Sasaki-type metric
Gðx; yÞ which is now defined in terms of the Finsler metric
gF instead of gL. This change ensures that the resulting
matter action Sm½L;�; �� is invariant under L ! Lk in the
same way as the pure gravity action. Nevertheless, the
results obtained for electrodynamics on Finsler spacetime
in Ref. [5] are unchanged by the refined coupling principle
presented here.

The matter field equations obtained by extremizing the
action with respect to the p-form field� and the Lagrange
multiplier � can be studied most easily if expressed in
components with respect to the horizontal/vertical basis.
The calculation is performed in detail in Appendix A 2. We
display the results with the convention that barred indices
denote vertical components, unbarred indices now denote
horizontal components, and capital indices both horizontal
and vertical components. Variation with respect to the
Lagrange multiplier yields the constraints

��a1... �aiaiþ1...ap ¼ 0; 8 i ¼ 1 . . .p: (42)

Variation for the purely horizontal components of � gives

@L
@�a1...ap

� ðpþ 1Þðrq þ SqÞ @L
@ðd�qa1...apÞ

� ð �@ �q þ gFmn �@ �qg
F
mn � 4gF�qqy

qÞ @L
@ðd��qa1...apÞ

¼ 0;

(43)

which determines the evolution of the physical field com-
ponents, while variation with respect to the remaining
components produces

� �a1A2...Ap ¼� @L
@��a1A2...Ap

þðpþ1ÞðrqþSqÞ @L
@ðd�q �a1A2...Ap

Þ

þpðpþ1Þ
2

@L
@ðd�PQA2...Ap

Þ�
�a1
PQ

þð �@ �qþgFmn �@ �qg
F
mn�4gF�qqy

qÞ @L
@ðd��q �a1A2...Ap

Þ ;

(44)

which fixes the components of the Lagrange multiplier.
The � �a

PQ are the commutator coefficients of the horizontal/

vertical basis.
Our coupling principle is consistent with the metric

limit, i.e., the equations of motion obtained from the
Finsler spacetime action, reduce to the equations of motion
on Lorentzian spacetime in the case L ¼ gabðxÞyayb and
�A1...Ap

ðx; yÞ ¼ A1...Ap
ðxÞ. Then, we have the geometric

identity Sa ¼ 0; moreover

d�a1...apþ1
¼ ðpþ 1Þ@½a1a2...apþ1�; (45)

using the constraints (42) and the fact that the horizontal
derivative acts as a partial derivative on the y-independent
p-form components. Finally,

@L
@ðd��qa1...apÞ

¼ 0 (46)

because, as a consequence of our coupling principle where
the Sasaki-type metric is block-diagonal in the horizontal/
vertical basis, the vertical index of d��qa1...ap must appear in

LðG;�; d�Þ contracted via gF into either a vertical de-
rivative or into components of � with at least one vertical
index. In the metric limit, vertical derivatives give zero,
while the constraints (42) guarantee that all components of
� with at least one vertical index vanish. Combining these
observations shows that Eq. (43) reduces to

@L
@�a1...ap

� ðpþ 1Þrq

@L
@ðd�qa1...apÞ

¼ 0; (47)

where r now operates in the same way as the Levi-Civita
connection of the metric g. Again, as a consequence of our
minimal coupling principle with the block-diagonal form

2A two-form field � as in Eq. (22), for example, is zero-
homogeneous if and only if its components �1, �2 and �3 have
the homogeneities 0, �1, and �2, respectively; these are can-
celled by the homogeneity of �y.
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of the Sasaki-type metric in the horizontal/vertical basis,
we can conclude in the metric limit that

@LðG;�; d�Þ
@�a1...ap

¼ @Lðg;; dÞ
@a1...ap

;

@LðG;�; d�Þ
@ðd�qa1...apÞ

¼ @Lðg;; dÞ
@ðdqa1...apÞ

(48)

so that Eq. (47) becomes equivalent to the standard p-form
field equation of motion on metric spacetime.

Our minimal coupling procedure for matter fields to
Finsler spacetime can be applied immediately for instance
to the scalar field, as done in Ref. [8]. Note that it can be
easily extended to the case of interacting form fields of any
degree with metric spacetime action

~Sm½g;1;2; . . .�¼
Z
M
d4x

ffiffiffi
g

p
Lðg;1;d1;2;d2; . . .Þ:

(49)

The minimal coupling procedure then leads to the action

Sm½L;�1; �1;�2; �2; . . .�
¼

Z
�
d4x̂d3u

� ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q
ðLðG;�1; d�1;�2; d�2; . . .Þ

þX
I

�Ið1� PHÞ�IÞ
�
j�
: (50)

The equations of motion for each field I have the same
form as in the single field case, and the metric limit leads to
the standard field equations by arguments that proceed in a
completely analogous way as before.

In the standard formulation of electrodynamics, the

action is a functional ~Sm½g; A; dA� of a one-form potential
A, but the classical physical field is F ¼ dA. Our minimal
coupling principle to obtain an action on Finsler space-
times cannot be applied immediately to this situation: the
problem is that the Lagrange multiplier then only kills the
vertical components of the lift of A, but does not guarantee
that the lift of F is purely horizontal. This problem is
solved in Ref. [5] by starting from an equivalent interacting

action of the form ~Sm½g; A; dA; F; dF�, which provides
the complete set of Maxwell equations F ¼ dA and d ?g

F ¼ 0 by variation. Now, the minimal coupling principle
entails that both the lifted fields A and F are purely
horizontal and can be interpreted physically.

C. Gravity field equations and metric limit

We are now in the position to study the interplay be-
tween the matter actions Sm introduced in Eq. (40) and the
pure Finsler gravity action SG in Eq. (30). Their sum
provides a complete description of gravity and classical
matter fields on Finsler spacetimes:

S½L;�; �� ¼ ��1SG½L� þ Sm½L;�; ��

¼ ��1
Z

d4x̂d3u½
ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q
R�j�

þ
Z

d4x̂d3u½
ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q
LðG;�; d�Þ�j�

þ
Z

d4xd3u½
ffiffiffiffiffiffiffiffiffiffiffi
gFhf

q
�ð1� PHÞ��j�: (51)

As usual, the matter field equations following from this are
the same as for the pure matter action. The gravitational
field equations are obtained by variation with respect to the
fundamental geometry function L. The variation of Sm
with respect to L is

�Sm ¼
Z

d4x̂d3u

�
�Sm
�L

�L

�
j�

¼
Z

d4x̂d3u

� ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q nLffiffiffiffiffiffiffiffiffiffiffi
gFhF

p �Sm
�L

�
j�
�L

nL
(52)

and leads us to the definition of the energy-momentum
scalar Tj� on the unit tangent bundle as

Tj� ¼
�

nLffiffiffiffiffiffiffiffiffiffiffi
gFhF

p �Sm
�L

�
j�
: (53)

With this definition, the complete gravitational field equa-
tions on Finsler spacetime including energy-momentum
sources formally become

½gFab �@a �@bR� 6

F2
Rþ 2gFabðraSb þ SaSb þ �@arSbÞ�j�

¼ ��Tj�: (54)

As in the vacuum case with Tj� ¼ 0, these equations can be
lifted to TM. The terms in the bracket on the left-hand side
are all zero-homogeneous and can be lifted trivially. The
terms in T without the restriction on the right-hand side in
principle can result from variation with different homoge-
neities; to lift these, one simply multiplies each term by the
appropriate power of F in order to make it zero-
homogeneous. This is the same procedure applied in
Sec. IVA to the gravity side.
The gravitational constant � will now be determined so

that the gravitational field equation on Finsler spacetimes
becomes equivalent to the Einstein equations in the metric
limit. Variation with respect to L of the concrete form of
the matter action in Eq. (51) and performing the metric
limit, i.e., gFabðx; yÞ ¼ �gabðxÞ for observers and

�A1...Ap
ðx; yÞ ¼ A1...Ap

ðxÞ, the gravity equation (54) be-

comes

2gabRab þ 6
Raby

ayb

jgpqypyqj

¼ ��

�
4L� 4gab

@L
@gab

� 24
yayb

jgpqypyqj
@L
@gab

�
: (55)
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The detailed calculation of this result is involved and can
be found in Appendix A 2. Introducing the standard
energy-momentum tensor of p-form fields on Lorentzian

metric spacetimes ~Tab ¼ gabLþ 2 @L
@gab

and its trace ~T ¼
~Tabgab ¼ 4Lþ 2gab

@L
@gab

, we can rewrite the equation

above as

2R� 6
Raby

ayb

gpqy
pyq

¼ ��

�
�2 ~T þ 12

~Tabyayb
gpqy

pyq

�
; (56)

if evaluated at g-timelike observer four-velocities y. Now,
we take a second derivative with respect to y, contract with
g�1, reinsert the result, and conclude�

Rab � 1
2gabR

�
yayb ¼ 2� ~Taby

ayb: (57)

Since there is no y-dependence beyond the explicit one, a
second derivative with respect to y yields the Einstein
equations, if we choose the gravitational constant � ¼ 4�G

c4
.

The gravity equation on Finsler spacetime including the
coupling to matter therefore is

� gFab �@a �@bRþ 6

F2
R� 2gFabðraSb þ SaSb þ �@arSbÞ

¼ 4�G

c4
T; (58)

with zero-homogeneous source function T on TM.
Observe that this field equation including the matter part
is invariant under L ! Lk by construction of the coupling
principle, as the vacuum equation is. This leads to the
interesting conclusion that every solution gabðxÞ of the
Einstein equations induces a family Lk of solutions
of the Finsler gravity solution with Lk ¼ ðgabðxÞyaybÞk.

In order to find further solutions of this highly compli-
cated partial-differential equation, we will study symme-
tries of Finsler spacetimes in the next section. Then, we
present a solution of the linearized Finsler gravity equation
in Sec. VI which turns out to be a geometric refinement of
the linearized Schwarzschild solution of general relativity.

V. FINSLER SPACETIME SYMMETRIES

In the previous section, we deduced the Finsler gravity
field equation including matter sources and showed that it
is consistent with the Einstein equations in the metric
geometry limit. Our new field equation is a highly complex
differential equation; in order to simplify the task of find-
ing analytic solutions, we wish to consider symmetric
spacetimes. We begin this section by defining symmetries
of Finsler spacetimes and show how this concept is a
generalization of the symmetries of Lorentzian spacetimes.
We explicitly present the general structure of the funda-
mental geometry function L for the spherically, cosmolog-
ically, and maximally symmetric case. In the next section,
we will then use our results about symmetric Finsler space-
times to solve the linearized Finsler gravity equation.

A. Definition

On a symmetric Lorentzianmanifold ðM;gÞ, themetric is
invariant under certain diffeomorphisms. Similarly, we
wish to define symmetries of a Finsler spacetime
ðM;L; FÞ as an invariance of the fundamental geometry
function L. Consider a diffeomorphism generated by the
vector field X ¼ �aðxÞ@a; this acts as a coordinate change
on local coordinates on M as ðxaÞ ! ðxa þ �aÞ and on the
induced coordinates on the tangent bundle TM as
ðxa; yaÞ ! ðxa þ �a; ya þ yq@q�

aÞ. Hence, the diffeomo-

phism on M induces a diffeomorphism on TM that is
generated by the vector fieldXC ¼ �a@a þ yq@�a �@a, called
the complete lift of X. The idea of implementing symme-
tries via complete lifts in a Finsler geometry setting appears
already in Ref. [11]. Here, we want to make this concept
precise for Finsler spacetimes:
Definition 4— A symmetry of a Finsler spacetime

ðM;L; FÞ is a diffeomorphism generated by a vector field
Y over the tangent bundle TM so that YðLÞ ¼ 0 and Y is the
complete lift XC of a vector field X over M. A Finsler
spacetime is called symmetric if it possesses at least one
symmetry.
The following theorem summarizes important properties

of Finsler spacetime symmetries. The symmetry generators
form a Lie algebra with the commutator of vector fields on
TM, and they are isomorphic to a Lie algebra of vector
fields on M which becomes the usual symmetry algebra of
Lorentzian manifolds in the metric geometry limit. This
not only shows that definition 4 of symmetry is consistent
with that of Lorentzian spacetimes, but also that the usual
Killing vectors, e.g., those for spherical symmetry, can be
used to study symmetries of Finsler spacetimes.
Theorem 4— Let S be the set of symmetry-generating

vector fields of a Finsler spacetime.
(i) ðS; ½�; ��Þ is a Lie subalgebra of the set of vector fields

over TM;
(ii) ðS; ½�; ��Þ is isomorphic to the Lie subalgebra

ð��ðSÞ; ½�; ��Þ of the set of vector fields over M;
(iii) in the metric geometry limit, ð��ðSÞ; ½�; ��Þ be-

comes the symmetry algebra of the emerging
Lorentzian spacetime.

Proof—
(i) Let Y 2 S; then YðLÞ ¼ 0 and ð��YÞC � Y ¼ 0.

Both properties are linear, so that S is a vector sub-
space of the Lie algebra of all vector fields on TM. It
remains to be proven that the commutator of two
elements Y1; Y2 2 S closes in S. It is clear that
½Y1; Y2�ðLÞ ¼ 0; to show that ð��½Y1; Y2�ÞC ¼
½Y1; Y2�, one uses that Yi ¼ XC

i for some vector fields

Xi onM and that ½XC
1 ; X

C
2 � ¼ ½X1; X2�C (seeRef. [12]).

(ii) The inverse for �� on ��ðSÞ is given by the com-
plete lift; hence, S and ��ðSÞ are isomorphic as
vector spaces. The Lie algebra structure is preserved
in both directions because of ½XC

1 ; X
C
2 � ¼ ½X1; X2�C,

and hence also ��½Y1; Y2� ¼ ½��Y1; ��Y2�.
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(iii) For Y ¼ XC 2 S, we have �a@aLþ yq@q�
a �@aL ¼

0. In the metric geometry limit Lðx; yÞ ¼
gabðxÞyayb, and, hence, ypyqð�a@agpq þ
gap@q�

a þ gaq@p�
aÞ ¼ ypyqLXgpqðxÞ ¼ 0. Since

the Lie-derivative of the metric g does not depend
on the fiber coordinates of the tangent bundle, we
conclude LXgpqðxÞ ¼ 0. This is the condition that

defines X as the symmetry generator of a metric
spacetime. h

We now wish to study the implications of spherical,
cosmological, and maximal symmetry for the fundamental
function L of a Finsler spacetime.

B. Spherical symmetry

Consider a Finsler spacetime ðM;L; FÞ and coordinates
ðt; r; �; ; yt; yr; y�; yÞ on its tangent bundle. Spherical
symmetry is defined by the following three vector fields,
which generate spatial rotations and form the algebra
soð3Þ,

X4 ¼ sin@� þ cot� cos@;

X5 ¼ � cos@� þ cot� sin@; X6 ¼ @:
(59)

Their complete lifts are obtained via the procedure de-
scribed in the previous section:

XC
4 ¼ sin@� þ cot� cos@ þ y cos �@� �

�
y�

cos

sin2�
þ y cot� sin

�
�@; (60a)

XC
5 ¼ � cos@� þ cot� sin@ þ y sin �@� �

�
y�

sin

sin2�
� y cot� cos

�
�@; (60b)

XC
6 ¼ @: (60c)

Applying the symmetry condition XC
6 ðLÞ ¼ 0 implies @L ¼ 0, while using XC

4 ðLÞ ¼ 0 and XC
5 ðLÞ ¼ 0 to deduce

ðsinXC
4 � cosXC

5 ÞðLÞ ¼ 0 and ðcosXC
4 þ sinXC

5 ÞðLÞ ¼ 0 yields

@�L ¼ y cot� �@L; ysin2� �@�L ¼ y� �@L: (61)

In order to analyze the implications of these equations on L, we introduce new coordinates

uð�Þ ¼ �; vðy�Þ ¼ y�; wð�; y�; yÞ2 ¼ ðy�Þ2 þ sin2�ðyÞ2; (62)

while keeping ðt; yt; r; yr; Þ. The associated transformation of the derivatives

@t ¼ @t; @r ¼ @r; @� ¼ w2 � v2

w
cotu@w þ @u; @ ¼ @; (63a)

�@t ¼ �@t; �@r ¼ �@r; �@� ¼ v

w
@w þ @v; �@ ¼ sinu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðw2 � v2Þp
w

@w; (63b)

makes the equations (61) equivalent to the simple constraints @uL ¼ 0 and @vL ¼ 0.
Hence, we conclude from the analysis of the symmetry conditions XC

i ðLÞ ¼ 0 that the most general spherically
symmetric Finsler spacetime is described by a fundamental function which is n-homogeneous in ðyt; yr; wÞ and of the form

Lðt; r; �; ; yt; yr; y�; yÞ ¼ Lðt; r; yt; yr; wð�; y�; yÞÞ; (64)

where wð�; y�; yÞ is defined in Eq. (62).

C. Cosmological and maximal symmetry

After our discussion of the spherically symmetric case in full detail above, we will now present the results of a similar
analysis first for cosmologically and second for maximally symmetric Finsler spacetimes.

Cosmological symmetry describes an isotropic and homogeneous spacetime. This is a much more symmetric situation
than in the spherically symmetric scenario and is implemented by requiring the following six vector fields to be symmetry
generators, see Ref. [13]:

X1 ¼ � sin� cos@r þ �

r
cos� cos@� � �

r

sin

sin�
@; (65a)

X2 ¼ � sin� sin@r þ �

r
cos� sin@� þ �

r

cos

sin�
@; (65b)

X3 ¼ � cos�@r � �

r
sin�@�; (65c)

X4 ¼ sin@� þ cot� cos@; X5 ¼ � cos@� þ cot� sin@; X6 ¼ @; (65d)
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where we write � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2

p
and k is constant. The

complete lifts of these vector fields are listed in
Appendix A 3. Applying the symmetry conditions
XC
i ðLÞ ¼ 0 to the fundamental function L and introducing

the new coordinates

qðrÞ¼ r; sðyrÞ¼yr; uð�Þ¼�; vðy�Þ¼y�;

(66a)

wCðr;�;yr;y�;yÞ2¼ ðyrÞ2
1�kr2

þr2ððy�Þ2þsin2�ðyÞ2Þ;
(66b)

while keeping ðt; ytÞ, yields the following result: the cos-
mological fundamental function L is n-homogeneous in
ðyt; wCÞ and has the form

Lðt; r; �; ; yt; yr; y�; yÞ ¼ Lðt; yt; wCðr; �; yr; y�; yÞÞ:
(67)

The constant k only appears in the expression for the
coordinate wC. The value of wC can be understood as the
metric length measure on a three-dimensional manifold of
constant curvature k. The same metric appears in the
spatial part of the standard Robertson-Walker metric.

For the study of maximally symmetric Finsler space-
times, we use some notation from Ref. [14], where such
spacetimes are constructed from embeddings into a five-
dimensional manifold. Symmetry vectors generating maxi-
mal symmetry are given by

X� ¼ CðxÞ�c@c; X� ¼ �a
bx

b@a; (68)

with CðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� KCpqx

pxq
p

, constant K, and constant

4� 4 matrices Cab and �a
b. There are four linearly inde-

pendent vector fields X� and six X� by requiring the
condition �q

bCqa ¼ ��q
aCqb; their complete lifts are

XC
� ¼ CðxÞ�c@c � yb

KCbmx
m

CðxÞ �c �@c;

XC
� ¼ �a

bx
b@a þ yb�a

b
�@a:

(69)

Evaluating the symmetry conditions XC
�ðLÞ ¼ 0 and

XC
�ðLÞ ¼ 0 on the fundamental function and introducing

new coordinates

uaðxÞ ¼ xa;

v�ðyÞ ¼ y�;

wMðx; yÞ2 ¼ Caby
ayb þ K

CðxÞ2 Capx
pyaCbqx

qyb

¼ gabðxÞyayb; (70)

where � runs over any three indices in f0; 1; 2; 3g, yields the
following result: the maximally symmetric fundamental
function L is n-homogeneous in wM and of the form

Lðx; yÞ ¼ LðwMðx; yÞÞ ¼ AwMðx; yÞn: (71)

The final equality is obtained from Euler’s theorem for
homogeneous functions.
Observe that the maximally symmetric fundamental

function always describes a metric geometry, see
Eq. (70). Hence, all maximally symmetric Finsler space-
times are Lorentzian spacetimes, and the gravity equation
(58) is equivalent to Einstein’s equations. Thus, we can
immediately conclude that the only maximally symmetric,
source-free vacuum solution of our Finsler gravity equa-
tion is the Minkowski-metric-induced fundamental func-
tion L ¼ �aby

ayb and its powers. In the expression for wM

above, this corresponds to Cab ¼ �ab and K ¼ 0.
Maximally symmetric spacetimes with K � 0 can only
be obtained as solutions of the Finsler gravity equation
by adding a cosmological constant term, similarly as in
general relativity.

VI. LOWEST-ORDER EFFECTS IN THE
SOLAR SYSTEM

In this section, we will study Finsler spacetimes that
describe mild deviations from Lorentzian geometry. In this
situation, the complicated Finsler gravity field equation
allows a simplified treatment. After a general discussion
of the linearized field equation, we will employ what we
learned about spacetime symmetries to present a spheri-
cally symmetric solution. This particular model turns out to
be a refinement of the linearized Schwarzschild solution of
general relativity, and we will argue that it should be
capable of modelling unexplained effects in the Solar
System like the fly-by anomaly.

A. Finsler modifications of Lorentzian geometry

Recall that the fundamental functions L ¼ L0 and L ¼
ðL0Þk define the same geometry, and that this is respected
by the Finsler gravity field equation. Hence, the following
class of fundamental functions gives us good control over
deviations from Lorentzian metric geometry:

L ¼ ðgabðxÞyaybÞk þ hðx; yÞ ¼ Gðx; yÞk þ hðx; yÞ: (72)

Here, hðx; yÞ is a 2k-homogeneous function that causes the
Finsler modifications of the Lorentzian metric spacetime
ðM;gÞ. The abbreviation Gðx; yÞ should not be confused
with the Sasaki-type metric on TM.
Recall the Finsler gravity vacuum field equation from

Eq. (37):

gFab �@a �@bR� 6

F2
Rþ2gFabðraSbþSaSbþ �@arSbÞ¼0:

(73)

We will now expand this equation to linear order in the
modification hðx; yÞ, where Gðx; yÞ � 0. In the following
calculations, we suppress all higher-order terms. We
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introduce l ¼ G1�k

k h and lab ¼ 1
2
�@a �@bl to expand the

Finsler function and Finsler metric as

F2 ’ G

jGj ðGþ lÞ; gFab ’ G

jGj ðgab þ labÞ: (74)

The coefficients of the nonlinear connection are calculated
from Eq. (7):

Na
b ’ ym�a

bm � 1
2gcq�

c
mny

myn �@bl
aq � laqgcq�

c
bmy

m

þ 1
2g

aqð@blqm þ @mlqb � @qlbmÞym: (75)

Here, the �a
bc are the Christoffel symbols of the metric g,

and in the following, r acts as the Levi-Civita connection.
Note that the zeroth-order term, for l ! 0, is the metric
linear connection. The curvature and the tensor S can be
expressed with the help of the short-hand notation

Ta
bc ¼

1

2
gaqðrblqc þrclqb �rqlbcÞ (76)

as

R ¼ Ra
aby

b ’ �yaybRab½g� � raðybycTa
bcÞ

þ rðycTa
acÞ; (77a)

Sa ¼ ��p
pa � �@pN

p
a ’ �yq �@aT

p
pq: (77b)

The zeroth-order term in R is determined by the Ricci
tensor of g, while Sa ! 0. Collecting all terms in the
gravitational field, Eq. (73) finally yields

0 ’ �2
G

jGjR½g� þ
6

G
yaybRab½g� þ

�
2
G

jGj l
abRab½g�

þ 6G� 2l

G2
yaybRab½g� þ gab �@a �@bð�raðybycTa

bcÞ

þ rðycTa
acÞÞ � 6

G
ð�raðybycTa

bcÞ
þ rðycTa

acÞÞ � 2gabðray
q �@bT

p
pq

þ �@aryq �@bTp
pqÞ

�
: (78)

The zeroth-order contribution in the first line is equivalent
to the Einstein vacuum equations, as discussed in
Sec. IVA. The first-order terms in square brackets deter-
mine the Finsler modification of the unperturbed metric
background solution. The details of how to rewrite the
different terms of this equation in terms of the perturbation
h in the fundamental function L, see Eq. (72), instead of l,
can be found in Appendix A 4.

B. Refinements to the linearized Schwarzschild solution

We will now use our results on symmetries and on the
linearization of vacuum Finsler gravity around metric
spacetimes to derive a particular model that refines the

linearized Schwarzschild solution and can be used to study
Solar System physics.
Recall from Sec. VB that the dependence of the general

spherically symmetric fundamental function in tangent
bundle coordinates induced by ðt; r; �;Þ is restricted
to Lðt; r; yt; yr; wð�; y�; yÞÞ, where w2 ¼ ðy�Þ2 þ
sin2�ðyÞ2. We wish to study such a spherically symmetric
fundamental function that describes a Finsler modification
of Lorentzian geometry. For simplicity, we consider a
bimetric four-homogeneous Finsler spacetime that per-
turbs the maximally symmetric vacuum solution of
Finsler gravity which is given by Minkowski spacetime.
We assume L ¼ ð�aby

aybÞ2 þ �aby
aybhcdy

cyd ¼
ð�aby

aybÞð�cd þ hcdÞycyd with hab ¼ diagðaðrÞ; bðrÞ;
cðrÞr2; cðrÞr2sin2�Þ. This ansatz has the explicit form
Lðr; yt; yr; wÞ ¼ ð�yt

2 þ yr
2 þ r2w2Þð½�1þ aðrÞ�yt2

þ ½1þ bðrÞ�yr2 þ ½1þ cðrÞ�r2w2Þ: (79)

Observe that the function cðrÞ cannot be transformed
away by defining a new radial coordinate. Although this
could remove cðrÞ from the metric in the right-hand
bracket, such a coordinate change would generate extra
terms in the metric appearing in the left-hand bracket.
Therefore, the existence of the function cðrÞ as a physical
degree of freedom is a Finsler geometric effect that appears
as a consequence of the bimetric spacetime structure as-
sumed here.
We will now solve the linearized Finsler gravity equa-

tion (78) for aðrÞ, bðrÞ, and cðrÞ with the ansatz (79).
Sorting the equation with respect to powers in yt, yr, and
w gives rise to three equations that have to be satisfied:

�2a0 � ra00 ¼ 0;

ra00 þ 2b0 � 4c0 � 2rc00 ¼ 0;

ra0 þ 2bþ rb0 � 2c� 4rc0 � r2c00 ¼ 0:

(80)

The solution of these equations is

aðrÞ ¼ �A1

r
þ A2;

bðrÞ ¼ �A1

r
þ A3

r2
;

cðrÞ ¼ A4

r
� A3

r2
:

(81)

We will now study the properties of this specific first-
order Finsler spacetime solution and compare it to the
linearized Schwarzschild spacetime. We use the linearized
expression for the nonlinear connection coefficients in
Eq. (75) to analyze the Finsler geodesic equation that is
derived by extremizing the proper time integral (1). For a
curve with coordinates xð�Þ, this has the form €xa þ
Na

bðx; _xÞ _xb ¼ 0. As usual in spherical symmetry, setting

� ¼ �
2 solves one of the four component equations imme-

diately; the remaining equations are
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0 ¼ €t� 1

2

A1

r2
_t _r; (82a)

0 ¼ €r� 1

4

A1

r2
_t2 þ 1

4

�
A1

r2
� 2

A3

r3

�
_r2

þ
�
�r� A1

2
� A4

4
þ 1

2

A3

r

�
_2; (82b)

0 ¼ €þ 2

r

�
1� 1

4

A4

r
þ 1

2

A3

r2

�
_ _r : (82c)

From these equations, we find two constants of motion

E ¼ _t

�
1þ 1

2

A1

r

�
; ‘ ¼ r2

�
1þ 1

2

A4

r
� 1

2

A3

r2

�
_:

(83)

These can be used to deduce the orbit equation from the
affine normalization condition that Fðx; _xÞ ¼ 1 along the
Finsler geodesic; we employ (74) and write � for the sign

of �ab _x
a _xb ¼ � _t2 þ _r2 þ r2 _2 to obtain

1

2
_r2 ¼ E2

2

�
1� A2

2

�
þ 1

2
�

�
1þ A1

2r

�
� ‘2

2r2

�
1þ A1

2r
� A4

2r

�
þ A3

4r2
ð�� E2Þ: (84)

The geodesic equations, the constants of motion, and the
orbit equation are well-suited to compare the bimetric
linearized Finsler solution with the linearized
Schwarzschild solution. To see the differences to this
solution of Einstein gravity, we first note that A2 can be
absorbed into a redefinition of E, and hence can be as-
sumed to be zero. Second, we introduce the Schwarzschild
radius r0 to redefine A1 ¼ �2r0ð1þ a1Þ, A3 ¼
2‘2a3=ðE2 � �Þ and A4 ¼ 2r0a4 in terms of dimensionless
small constants a1, a3, and a4. Then, the orbit equation
becomes

1

2
_r2 ¼ E2

2
þ �

2
� �r0

2r
ð1þ a1Þ � ‘2

2r2
ð1þ a3Þ

þ r0‘
2

2r3
ð1þ a1 þ a4Þ: (85)

In the special case a1 ¼ a3 ¼ a4 ¼ 0, this is precisely the
orbit equation in the linearized Schwarzschild geometry,
see Ref. [15]; the same limit also applies to the geodesic
equations and the constants of motion.

The Finsler geometric refinements of the metric
Schwarzschild geometry are encoded in the constants a1,
a3, and a4. These can in principle be fitted to data from
Solar System experiments. Indeed, there are certain obser-
vations that cannot be fully explained by the Schwarzschild
solution [9], for instance, the fly-by anomaly: for several
spacecrafts, it has been reported that swing-by maneuvers
lead to a small unexplained velocity increase. This corre-
sponds to a change in the shape of the orbit of the space-
craft. Such a change can in principle be modeled by Finsler
refinements; the perturbations a1, a3, and a4 certainly

provide possibilities to alter the wideness of the swing-by
orbit as compared to that expected from Einstein gravity.
This can be confirmed by simple numerical calculations,
see Fig. 4.
We have seen that Finsler geometries exist that are

extremely close to metric geometries. Our specific ex-
ample of a spherically symmetric bimetric perturbation
around Minkowski spacetime could be reinterpreted as a
geometry close to the linearized Schwarzschild solution of
Einstein gravity. The more complex causal structure, how-
ever, leads to additional constants that modify the geodesic
equations and, in particular, the shape of test particle orbits.
This could be a means to explain the fly-by anomaly in the
Solar System. We emphasize that this consequence already
at first-order perturbation theory gives a glimpse on the
potential of Finsler gravity.

VII. DISCUSSION

Finsler geometry is fundamentally based on the repar-
amtrization invariant length integral (1). In physics, this
integral can be used as a very general clock postulate on the
one hand, and on the other as an action for massive point
particles which automatically guarantees the very precisely
tested weak equivalence principle. In previous work [5],
we formulated a set of minimal requirements for the ap-
plication of Finsler geometry to the description of space-
time. This led us to definition 1 of Finsler spacetimes
ðM;L; FÞ, which have sufficient structure to provide no-
tions of causality and are mathematically controlled gen-
eralizations of Lorentzian geometry.
In this article, we constructed an action for Finsler

gravity from first principles. Our theory of Finsler gravity
(51) fully includes the description of matter fields which

-4 -3 -2 -1

0.2

0.4

0.6

0.8

1

FIG. 4. Numerical fly-by solutions of the geodesic equations
for linearized Schwarzschild geometry (dashed line) and the
bimetric Finsler refinement (solid line) with a1 ¼ 0, a3 ’
0:156, and a4 ¼ 0:1. The mass is centered at the origin and
has Schwarzschild radius r0 ¼ 0:1. The initial conditions are
rð0Þ ¼ 0:5, _rð0Þ ¼ 0:02, ð0Þ ¼ 0, _ð0Þ ¼ 1:1, and tð0Þ ¼ 0 for
both curves, and _tð0Þ is calculated from the respective unit
normalization condition Fðx; _xÞ ¼ 1.
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are coupled to Finsler spacetime by a lifting principle that
generates the appropriate action from the standard
Lagrangian on Lorentzian spacetime. We derived the
gravitational field equation by variation with respect to
the fundamental geometry function L and could show
that it consistently becomes equivalent to the Einstein field
equations in the metric geometry limit. Hence, Einstein
gravity can be seen as special case of our gravity theory
based on Finsler geometry. We presented the geometric
definition 2 of observers on Finsler spacetimes along with a
clear interpretation of how they measure physical fields.
By theorem 2, we were able to characterize the class of
transformations that relates two different observers at the
same point of the spacetime manifold; these transforma-
tions have the algebraic structure of a groupoid as proven
in theorem 3. Any observer transformation can be under-
stood as the composition of a usual Lorentz transformation
and an identification of the two observers’ four-velocities
by a geometrically well-defined parallel transport. For the
limiting case of metric geometries, this parallel transport
trivializes so that the transformation groupoid becomes
equivalent to the standard Lorentz group. In this sense,
Finsler spacetimes generalize Lorentz invariance instead of
violating it.

As a further formal development, we presented defini-
tion 4 of symmetries of Finsler spacetimes and theorem 4
that shows some of their basic properties. We applied this
notion to determine the most general fundamental geome-
try functions consistent with spherical, cosmological, or
maximal symmetry. Maximally symmetric Finsler space-
times are, in fact, maximally symmetric metric spacetimes,
and the only maximally symmetric source-free vacuum
solution of Finsler gravity is Minkowski spacetime. As a
concrete application of the results of this article, we studied
a simple spherically symmetric bimetric perturbation
around this flat metric vacuum. We found a first-order
solution of the Finsler gravity equation, which is a refine-
ment of the linearized Schwarzschild solution of Einstein
gravity. With a special choice of the parameters in our
solution, the resulting geodesics are identical to those of
linearized Schwarzschild spacetime. This demonstrates
that weak-field gravitational experiments may not be suf-
ficient to distinguish Finsler spacetimes from Lorentzian
metric spacetimes. But we saw that the full set of parame-
ters in our model solution could be capable to resolve the
fly-by anomaly in the Solar System.

This is very promising and creates a strong motivation
for more intensive studies of our new theory of gravity. It is
natural to ask whether the additional degrees of freedom of
Finsler spacetime solutions as compared to metric space-
times may lead to new insights on the dark matter distri-
butions in galaxies or dark energy in the Universe. These
could be effects of a fundamentally more complex space-
time geometry instead of being particle physics phe-
nomena. It will be possible to study these questions once

solutions of Finsler gravity, especially for spherical sym-
metry and cosmology, become available. For cosmology, it
will also be necessary to study perfect fluid sources for
Finsler spacetimes.
We saw in Ref. [8] that Finsler spacetimes can provide a

geometric explanation of the OPERA measurements of
superluminal neutrinos [16]. The velocity difference be-
tween the neutrinos and the speed of light recognized as the
boundary velocity of observers depends not only on the
energy and mass of the neutrino, but also on the underlying
spacetime geometry. So also in this context, solutions for
spherical symmetry and cosmology are needed in order to
understand the size of the effect for the different observed
neutrino sources.
Further important topics for future research are the

coupling of spinor fields, the analysis of field theories on
the generalized causal structure of Finsler spacetimes, and
their quantization.
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APPENDIX A: TECHNICAL DETAILS

This appendix presents technical details for several deri-
vations in the main text. In particular, we show how to
perform the variation of the Finsler gravity and matter field
actions on the unit tangent bundle; for completeness, we
state the complete lifts of the cosmological symmetry
generators; and we display some additional material on
the linearized Finsler gravity equations.

1. Variation of the gravity action

The Finsler gravitational field equation presented in
Sec. IVA can be deduced from our new Finsler gravity
action as follows. Before we consider the variation of the
matter part with respect to the fundamental geometry
function L in the next section, we here take a look at the
pure gravity action (30):

SG½L� ¼
Z

d4x̂d3u½
ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q
Ra

aby
b�j�: (A1)

The integrand is homogeneous of degree five; to obtain
the first intermediate step (32) of the variation, we use the
facts that for fðx; yÞ homogeneous of degree k holds

fðx; yÞj� ¼ fðx;yÞ
Fðx;yÞk and that �Lðfðx; yÞj�Þ ¼ ð�Lfðx; yÞÞj� �

k
n fðx; yÞj� �L

L .

The second step (33) is obtained by using the coordinate
transformation formulae (16) and the fact that �ð@�yaÞ ¼
�ya@�ð�LnLÞ to calculate
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hF���hF�� ¼ ðgFab �@au� �@bu
�Þð@�yc@�yd�gFcd

þ 2@��y
c@�y

dgFcdÞ
¼ gFab�gFab �

2

n

�L

L
; (A2)

which in turn is used to deduce

�ð
ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q
Ra

aby
bÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q ��
gFab�gFab �

1

n

�L

L

�
� Ra

aby
b þ �Ra

aby
b

�
: (A3)

The formulae (34) used in the third step of the variation
are basically obtained bymeans of integration by parts (20).
For a function fðx; yÞ that is k-homogeneous in y, the
following holds:Z

d4x̂d3uð
ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q
gFab�gFabfÞj�

¼
Z

d4x̂d3u

� ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q
ðfðkþ 4Þð2� kÞ

þ F2gFab �@a �@bfÞ�LnL
�
j�
; (A4)

choosing f ¼ Ra
aby

b, which has k ¼ 2, proves formula

(34a). To show Eq. (34b), we first write Sabc ¼
�yq �@b�

�a
qc and use

�Ra
bc ¼ �2ydr½b���a

c�d þ 2ypSaq½b�
�q

c�p (A5)

to equate

�Ra
aby

b ¼ �2ybyqðr½a���a
b�q � 1

2Sc��
�c

bqÞ
¼ �raðybyq���a

bqÞ þ ybrbðyq���a
aqÞ

þ Sc��
�c

bqy
byq: (A6)

The integration by parts formulae (20) and

ybyq���a
bq ¼

1

2
gLapðybrb

�@p�L�rp�LÞ

¼ jLj2=n
nL

gFabðybrb
�@p�L�rp�LÞ

þ ð2� nÞ
nL

yaybrb�L (A7)

then yield the desired equationZ
d4x̂d3uð

ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q
�Ra

aby
bÞj�

¼
Z

d4x̂d3uð
ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q
2Sc��

�c
bqy

byqÞj�

¼
Z

d4x̂d3u

� ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q
2F2gFabðraSb þ SaSb

þ �@arSbÞ�LnL
�
j�
: (A8)

Combining these three steps as we did in Sec. IVA finally
produces the Finsler gravity vacuum field equation (37).

2. Variation of the matter action

In Sec. IVB, we presented a coupling principle of matter
fields to Finsler gravity. The crucial steps of the derivation
of the constraints (42), equations of motion (43) and (44),
and of the metric limit of the complete gravity equation
(54), including the matter source terms, shall be presented
here. Recall the matter action for a p-form field�ðx; yÞ on
Finsler spacetime arises from a lift of the standard p-form
action on Lorentzian spacetime as

Sm½L;�; �� ¼
Z
�
d4xd3u½

ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q
ðLðG;�; d�Þ

þ �ð1� PHÞ�Þ�j�: (A9)

In order to perform the variation, we consider all objects in
the horizontal/vertical basis of TTM where G is diagonal,
see Eq. (13). In the following, the M;N; . . . label both
horizontal and vertical indices, �a; �b; . . . label vertical in-
dices, and a; b . . . label horizontal indices. Then,

L ðG;�; d�Þ þ �ð1� PHÞ�
¼ LðGMN;�M1...Mp

; d�AM1...Mp
Þ þ � �a1M2...Mp��a1M2...Mp

;

(A10)

and the variation of this Lagrangian can now be written as
follows:

�ðLþ �ð1� PHÞ�Þ

¼ @L
@GMN

�GMN þ @L
@�M1...Mp

��M1Mp

þ @L
@ðd�NM1...Mp

Þ�ðd�NM1Mp
Þ

þ � �a1M2...Mp���a1M2...Mp
þ �� �a1M2...Mp��a1M2...Mp

:

(A11)

We can immediately read off the variation with respect
to the Lagrange multiplier components which produces
Eq. (42). Hence, the Lagrange multiplier � sets to zero
all components of�with at least one vertical index, so that
only purely horizontal components remain on-shell.
The expansion of d� in components with respect to the

horizontal/vertical basis yields

d�NM1...Mp
¼ ðpþ 1ÞD½N�M1...Mp�

� pðpþ 1Þ
2

�Q
½NM1

�jQjM2...Mp�; (A12)

where we write DM ¼ �a
M�a þ � �a

M
�@a, and �Q

MN denote
the commutator coefficients of the horizontal/vertical ba-
sis. Their only nonvanishing components are given by
� �a

bc ¼ ½�b; �c� �a ¼ R �a
bc and � �a

�bc
¼ ½ �@b; �c� �a ¼ �@bN

�a
c.
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One now uses the integration by parts formulae (20) to
obtain the variation of the matter action with respect to �;
this produces the equations of motion (43) and (44).

Finally, the source term for the gravity field equation is
obtained by variation of the matter action Sm in Eq. (A9)
with respect to the fundamental geometry function L. This
not only includes the variation (A11) but also that of the
volume element which can be read off from Eq. (A3). We
will now show that the metric limit of Finsler gravity plus
matter is consistent; this can be done on-shell where we
may use the Lagrange multiplier constraints to set all
explicitly appearing ��a1M2...Mk

to zero. Then the variation

of Sm with respect to L becomes

�Sm½L;�� ¼
Z
�
d4xd3u

ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q �
ðgFab �@a �@bLþ 4LÞ�L

nL

þ @L
@GMN

�GMN þ @L
@ðd�NM1...Mk

Þ
� �ðd�NM1Mk

Þ
�
j�

¼
Z
�
d4xd3u

ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q �
ðgFab �@a �@bLþ 4LÞ�L

nL

þ @L
@gFab

�gFab þ
@L
@gF

�a �b

�

�gF
�a �b

F2

�
þ @L

@ðd�ba1...akÞ
�ð�½b�a1...ak�Þ

�
j�
: (A13)

In order to determine the energy-momentum scalar Tj�
defined in (53) on a generic Finsler spacetime, one has to
calculate all terms in the expression above carefully.
However, in the metric geometry limit, the last two terms

vanish. Indeed, @L
@gF

�a �b

is always composed from terms with

vertical indices that must be either of the type �@� or
contain components of � with at least one vertical index;
the last term is proportional to �N �@�; in the metric limit
�@� vanishes; and the vertical index components of � are
zero on-shell. Therefore, the remaining terms that are
relevant in the metric limit are

�Sm½L;�� !
Z
�
d4xd3u

ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q
j�
�
ðgFab �@a �@bLþ 4LÞ

� �L

nL
þ @L

@gFab
�gFab

�
j�
: (A14)

The rewriting �gFab ¼ 1
2
�@a �@b�F

2 and subsequent integra-

tion by parts yieldsZ
�
d4xd3u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gFhFj�

q �
@L
@gFab

�gFab

�
j�

¼
Z
�
d4xd3u

ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q
j�½� �@cK

c

þ ð�gFij �@cg
F
ij þ 4gFicy

iÞKc�j� �L

nL
; (A15)

with

Kc ¼
�
�gFij �@dg

F
ij þ

4

F2
gFidy

i

�
@L
@gFcd

� �@d
@L
@gFcd

: (A16)

Applying the metric limit now means to consider Lðx; yÞ ¼
gabðxÞyayb with the consequence that gFabðx; yÞ ¼ �gabðxÞ
for timelike y. The expression for Kc reduces to Kc !
4
F2 gidy

i @L
@gcd

and �@cK
c ! ð 8

F4 gidy
igjcy

j þ 4
F2 gcdÞ @L

@gcd
.

Collecting all terms in the variation of the matter action
in the metric geometry limit finally yields

�Sm½L;�� !
Z
�
d4xd3u

ffiffiffiffiffiffiffiffiffiffiffi
gFhF

q
j�

�
�
4L� 4gcd

@L
@gcd

� 24ycyd
@L
@gcd

�
j�

� �L

nL
; (A17)

from which we can read off the expression for the source
term Tj�,

Tj� !
�
4L� 4gcd

@L
@gcd

� 24ycyd
@L
@gcd

�
j�
: (A18)

The lift of this expression to TM requires making all terms
zero-homogeneous by multiplication with the appropriate
powers of Fðx; yÞ, which here means multiplication of the
third term by Fðx; yÞ�2. The result confirms Eq. (55) that
was used to prove the consistency of Finsler gravity with
Einstein gravity in the metric geometry limit.

3. Complete lifts of cosmological symmetry generators

We deduced the most general fundamental geometry
function L for Finsler spacetimes with cosmological sym-
metries in Sec. V. The derivation requires the complete lifts
of the symmetry-generating vector fields (65) which we
display here explicitly:

XC
1 ¼ �

�
sin� cos@r þ �

r
cos� cos@� � �

r

sin

sin�
@

�
þ ðyr�0 sin� cosþ y�� cos� cos

� y� sin� sinÞ �@r þ
�
yr
�
�

r

�0
cos� cos

� y�
�

r
sin� cos� y

�

r
cos� sin

�
�@�

þ
�
�yr

�
�

r

�0 sin
sin�

þ y�
�

r

sin

sin2�
cos�

� y
�

r

cos

sin�

�
�@; (A19)
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XC
2 ¼ � sin� sin@r þ �

r
cos� sin@� þ �

r

cos

sin�
@ þ ðyr�0 sin� sinþ y�� cos� sinþ y� sin� cosÞ �@r

þ
�
yr
�
�

r

�0
cos� cos� y�

�

r
sin� sinþ y

�

r
cos� cos

�
�@� þ

�
yr
�
�

r

�0 cos
sin�

� y�
�

r

cos

sin2�
cos�� y

�

r

sin

sin�

�
�@; (A20)

XC
3 ¼ � cos�@r � �

r
sin�@� þ ðyr�0 cos�� y�� sin�Þ �@r �

�
yr
�
�

r

�0
sin�þ y�

�

r
cos�

�
�@�: (A21)

The complete lifts XC
4 , X

C
5 , and X

C
6 are stated in Eqs. (60). In the formulae above, we use the abbreviation � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2

p
,

and primes denote differentiation with respect to the coordinate r.

4. Linearization identities

In order to study the Finsler gravitational field equation perturbatively, we have considered a class of Finsler spacetimes
that are mild deviations from metric geometry in Sec. VIA. Here, we list for completeness how to rewrite the appearing
geometric objects in terms of the perturbation h instead of the variable l used in the main text.

First, we rewrite various derivatives acting on l in terms of derivatives acting on h:

rarbl ¼ G1�k

k
rarbh; (A22a)

�@al ¼ G1�k

k
�@ahþ ð1� kÞG�k

k
2gaiy

ih; (A22b)

rar �@ql ¼ G1�k

k
rar �@qhþ 2ð1� kÞG�k

k
gqiy

irarh; (A22c)

�@a �@bl ¼ G1�k

k
�@a �@bhþ 2ð1� kÞG�k

k

�
gbiy

i �@ahþ gaiy
i �@bhþ

�
gab � 2k

G
gaiy

igbjy
j

�
h

�
; (A22d)

rr �@a �@bl ¼ G1�k

k
rr �@a �@bhþ 2ð1� kÞG�k

k
rr

�
gbiy

i �@ahþ gaiy
i �@bhþ

�
gab � 2k

G
gaiy

igbjy
j

�
h

�
; (A22e)

gablab ¼ 1

2
gab �@a �@bl ¼ G1�k

2k
gab �@a �@bhþ 2ð1� kÞðkþ 2Þ

k
G�kh; (A22f)

rqg
ablab ¼ 1

2
gabrq

�@a �@bl ¼ G1�k

2k
rqg

ab �@a �@bhþ 2ð1� kÞðkþ 2Þ
k

G�krqh: (A22g)

These identities can now be employed to determine the curvature scalar R ¼ Ra
aby

b of the Cartan nonlinear

connection, which we use as the basic ingredient in our construction of Finsler gravity:

Ra
aby

b ¼ �yaybRab½gðxÞ� �G1�k

2k
gag

�
rar �@qh�rarqh� 1

2
rr �@a �@qh

�
� 2ð1� kÞG�k

2k
gaq

�
�
gqiy

irarh� 1

2
rr

�
gqiy

i �@ahþ gaiy
i �@qhþ

�
gaq � 2k

G
gaiy

igqjy
j

�
h

��
¼ �yaybRab½gðxÞ� �G1�k

2k
gagðrar �@qh�rarqh� 1

2
rr �@a �@qhÞ

þ ð1� kÞð1þ kÞG�k

k
rrh: (A23)

Finally, we display how to rewrite the d-tensor S and various derivatives acting on it; using the notation trh ¼ gab �@a �@bh,
we find:
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Sp ¼ �G1�k

4k
yq �@prqðtrhÞ � ð1� kÞðkþ 2Þ

k
G�kyq �@prqh� ð1� kÞG�k

2k
gpiy

irðtrhÞ
þ 2ð1� kÞðkþ 2ÞG�ð1þkÞgpiyirh; (A24a)

raSb ¼ �G1�k

4k
yqra

�@brqtrh� ð1� kÞðkþ 2Þ
k

G�kyqra
�@brqh

� ð1� kÞG�k

2k
gbiy

irarðtrhÞ þ 2ð1� kÞðkþ 2ÞG�ð1þkÞgbiyirarh; (A24b)

gabraSb ¼ �G1�k

4k
yqgabra

�@brqðtrhÞ � ð1� kÞðkþ 2Þ
k

G�kyqgabra
�@brqh� ð1� kÞG�k

2k
rrðtrhÞ

þ 2ð1� kÞðkþ 2ÞG�ð1þkÞrrh; (A24c)

gabyp �@arpSb ¼ �ð1� kÞð2þ kÞ
k

G�kðyqypgab �@arp
�@brqhþ gabr �@arbhÞ

�G1�k

4k
ðyqypgab �@arp

�@brqðtrhÞ þ gabr �@arbðtrhÞÞ

þ 2ð1� kÞð2þ kÞð2kþ 3ÞG�ðkþ1Þrrh� ð1� kÞð2kþ 1Þ
2k

G�krrðtrhÞ: (A24d)
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