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A theory of position of massive bodies is proposed that results in an observable quantum behavior of

geometry at the Planck scale, tP. Departures from classical world lines in flat spacetime are described by

Planckian noncommuting operators for position in different directions, as defined by interactions with null

waves. The resulting evolution of position wave functions in two dimensions displays a new kind of

directionally coherent quantum noise of transverse position. The amplitude of the effect in physical units

is predicted with no parameters, by equating the number of degrees of freedom of position wave functions

on a 2D space-like surface with the entropy density of a black hole event horizon of the same area. In a

region of size L, the effect resembles spatially and directionally coherent random transverse shear

deformations on time scale � L=c with typical amplitude � ffiffiffiffiffiffiffiffiffiffi
ctPL

p
. This quantum-geometrical ‘‘holo-

graphic noise’’ in position is not describable as fluctuations of a quantized metric, or as any kind of

fluctuation, dispersion or propagation effect in quantum fields. In a Michelson interferometer the effect

appears as noise that resembles a random Planckian walk of the beam splitter for durations up to the light-

crossing time. Signal spectra and correlation functions in interferometers are derived, and predicted to be

comparable with the sensitivities of current and planned experiments. It is proposed that nearly colocated

Michelson interferometers of laboratory scale, cross-correlated at high frequency, can test the Planckian

noise prediction with current technology.
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I. INTRODUCTION

In all experimentally tested models of systems that dis-
play quantum behavior, spacetime is described using clas-
sical geometry. Worldlines of particles are quantized paths
on a classical spacetime manifold, and quantum fields are
functions of classical spacetime coordinates. Although this
theoretical approach agrees with experiments even at the
highest energies, effects of gravity render it theoretically

inconsistent beyond the Planck scale, tP �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏGN=c

5
q

¼
5:39� 10�44 seconds. So far, this scale has been out of
reach of experiments. This paper presents theoretical argu-
ments for a new Planckian quantum behavior of geometry,
and proposes an experimental program to test it.

The features that define classical spacetime—point-like
events on a continuous manifold, with positions described
by a continuous mapping of those points onto real num-
bers—are not easily reconciled with the quantum nature of
matter and energy. ‘‘Position’’ in quantummechanics is not
a coordinate of an event, but a property of an interaction
between bodies or particles, represented mathematically
by a self-adjoint operator. That is, some quantum operators
represent the positions of interactions, and in the classical
limit, these observable operators (apparently) behave like
event positions related by a classical metric. The position
of an event cannot itself be a quantum observable, since
events do not interact. Thus, even such a seemingly simple
and intuitive concept as position requires a theory to con-
nect quantum mechanics with spacetime. In this sense, no
fundamental quantum theory of position is known, and

well-tested hybrid approaches, such as quantum field the-
ory, become inconsistent at the Planck scale.
It has been suggested that in a fully quantum description

of the world, classical spacetime itself somehow emerges
as a limiting behavior of a quantum system that includes
both spacetime and matter. A description of nonclassical
behavior of position observables in this system can be
called a ‘‘quantum geometry.’’ It has also been suggested
that in such a theory (e.g., [1,2]), the metric itself should
not be quantized, since it is itself an emergent classical
entity. That idea is also the starting point here. The metric
is treated classically, causal structure is preserved, and
light obeys standard physics, but we posit a noncommuta-
tive quantum geometry for position operators and wave
functions of massive bodies, and evaluate some observable
consequences. It is posited that positions and rest frames in
spacetime emerge from quantum physics in a particular
way: interactions of null fields with matter define space-
time position in each direction, position operators in differ-
ent directions do not commute at the Planck scale, and time
evolution corresponds to an iteration of Planckian opera-
tors. It is shown that an experiment using correlated inter-
ferometers can provide experimental clues about this kind
of quantum geometry—either a detection of effects caused
by new Planck-scale quantum degrees of freedom, or a
Planckian upper bound that constrains theory.

A. Motivation

It has long been established that the quantum mechanics
of physically realizable measurement systems, such as

PHYSICAL REVIEW D 85, 064007 (2012)

1550-7998=2012=85(6)=064007(17) 064007-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.85.064007


clocks, limits the precision with which classical observ-
ables, such as the interval between events described by the
classical metric, can be defined [3–8]. For some measure-
ments, a complete account of the quantum system should
include trajectories over an extended region of spacetime.
Well established measurement theory does not however
account for the quantum mechanics of spacetime itself,
and how it might be entangled with real-world observables.

It is well known that when gravity is included, spacetime
dynamics itself poses limitations on any physically realiz-
able clock. At the Planck scale, even the separation of
quantum and spacetime concepts becomes inconsistent:
matter confined to a box smaller than the Planck scale in
all three dimensions lies within the Schwarzschild radius
for its quantum-mechanically expected mass, causing a
singularity in the spacetime; on the other hand, a black
hole smaller than the Planck length does not even have
enough mass to make up a single quantum at its
Schwarzschild frequency. Because of this inconsistency,
some kind of new physics must enter that effectively
imposes a maximum frequency at the Planck scale. A
universal Planck frequency bound imposes a new kind of
uncertainty on the definition of spacetime position that
applies to any physically realizable measurement appara-
tus [9]. Although it is acknowledged that fundamentally
new, quantum spacetime physics occurs at the Planck
scale, the physical character of Planckian position uncer-
tainty is not known and has been inaccessible to experi-
mental tests.

Some features of quantum geometry have been under-
stood precisely and consistently from a blend of relativity,
thermodynamics, and field theory. The Bekenstein-
Hawking entropy of a black hole, which maps into degrees
of freedom of emitted particles during evaporation, is given
by one-quarter of the area of the event horizon in Planck
units. It has been proposed that this result generalizes to a
2D Planckian holographic encoding of quantum degrees of
freedom in any spacetime. According to this ‘‘Holographic
Principle’’, spacetime quantum degrees of freedom can be
covariantly described in terms of a boundary theory, with a
Planckian information density on surfaces defined by the
boundaries of causal diamonds [10–15]. A holographic
theory must depart substantially from a straightforward
extrapolation of conventional quantum field theory, both
in the number of degrees of freedom and in the notion of
locality. However, there is no agreement on the character of
those degrees of freedom—their physical interpretation,
phenomenological consequences, or experimental tests.

There are other rigorous mathematical approaches to
nonclassical spacetime physics, such as noncommutative
geometry[16–18]. Quantum conditions imposed on space-
time coordinates change the algebra of functions of space
and time, including quantum fields and position wave
functions. Instead of quantizing the metric or fields di-
rectly, position operators are quantized. For some classes

of commutators, and some physical interpretations in terms
of quantum fields, these geometries have been constrained
by experiments [19]. Once again however, at present there
is no experimental evidence for departures from classical
geometry that could guide the physical interpretation of the
theory.
In this situation it makes sense to conduct experiments

that explore outcomes outside the predictive scope of cur-
rentlywell-tested physical theory, whose results will help to
guide the creation of a quantum theory of geometry. This
paper presents a simple wave theory of position of massive
bodies in flat spacetime to define a macroscopic limit of
quantum geometry. The wave theory incorporates features
of emergence, holography, and noncommutative geometry,
and predicts specific new observable behaviors in the mac-
roscopic limit. In particular the theory is used to predict
a new kind of uncertainty in relative transverse position
hat leads to noise in interferometers, corresponding to a
Planck amplitude spectral density of fluctuations in trans-
verse position. The predictions can be tested with current
technology.

B. Description

In many widely considered theories, new Planckian
physics does not create any detectable effect on
laboratory-scale positions of bodies. For example, in a
straightforward application of field theory to spacetime
modes, quantum fluctuations on very small scales average
to unobservable amplitude in measurements of position in
much larger systems. However, this approach may not be
the correct low-energy, large-scale effective theory to de-
scribe new Planckian physics. The effective theory de-
scribed here posits quantum conditions that preserve
classical coherence and Lorentz invariance in each direc-
tion, but departs from the standard commutative behavior
of positions in different directions. In this framework,
Planckian effects become detectable.
The main hypotheses here are that interactions of null

fields with matter define spacetime position in each direc-
tion; that position operators in different directions do not
commute at the Planck scale; and that time evolution
corresponds to an iteration of Planckian operators. As a
result, transverse uncertainty in spacetime position mea-
surements accumulates over macroscopic distances, in-
stead of averaging rapidly to zero. Although the classical
limit is well defined and is not changed, the new behavior
changes the approach to the classical limit and produces a
larger position uncertainty on macroscopic scales than field
theory predicts on its own. This new kind of spacetime
position indeterminacy has precisely calculable statistical
properties, and leads to a new kind of noise in nonlocal
comparative measurements of transverse relative positions
on macroscopic scales, for example, in interferometers.
The rough overall magnitude in a laboratory-scale experi-
ment is an attometer-scale jitter on time scales of tenths of
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microseconds—very small, but likely detectable. The main
new feature required to detect it is that the interferometer
signals should be recorded and correlated at a rate compa-
rable with the inverse light travel time for the apparatus.
This requires an unusual experimental setup, but no fun-
damental breakthrough in technology.

The new macroscopic behavior can be roughly charac-
terized in several equivalent ways. Transverse positions of
trajectories separated by distance L appear to fluctuate by
amount �x � ffiffiffiffiffiffiffiffiffiffi

ctPL
p

on a time scale � L=c. Regions of
size L appear to undergo coherent random shear deforma-
tions in rest-frame velocity on the same time scale, with

typical amplitude �v � c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ctP=L

p
. On longer time scales

� > L=c, the relative angular positions � of matter trajec-

tories fluctuate coherently by about ��=� � ffiffiffiffiffiffiffiffiffiffi
tP=�

p
. These

phenomenological descriptions refer to nonlocal optical
measurements of position in a macroscopic system, ex-
tended in time and two dimensions of space. However, they
derive from Planck-scale physics and have the character of
quantum noise. Precise statistical predictions of its behav-
ior are derived below, specifically for cross-correlated
signals of nearly colocated Michelson interferometers.

C. Relation to previous theories and experiments

This macroscopic behavior has a distinctive phenome-
nology, qualitatively different from several other proposed
Planckian or Lorentz-invariance-violating effects that have
been analyzed using tools of effective field theory[19]. The
new uncertainty and noise are associated purely with mean
macroscopic spacetime position and velocity, independent
of any parameters of effective field theory, or indeed any
parameters apart from the Planck scale. For example, this
effect adds no dispersion to particle propagation, and is
invisible to such tests proposed for cold-atom interferome-
ters [20]. It would also have no dispersive effect on cosmic
photon propagation: null particles of all energies in any one
direction are predicted to propagate in the usual way at
exactly the same velocity, in agreement with current cosmic
limits, from Fermi/GLAST satellite observations of
gamma-ray bursts, on the difference of propagation speeds
at different photon energies [21]. Similarly, no new effect is
predicted for energy dependence of polarization position
angle, consistent with INTEGRAL/IBIS satellite bounds
[22].

The noise in interferometers predicted here also behaves
differently from Planckian noise previously predicted from
quantum-gravitational or metric fluctuations, quantization
of very small scale spatial field modes, or spacetime foam
[23–30]. Indeed, many of these ideas are either now ruled
out by data, or remain far out of reach of experiments. By
contrast, the effect discussed here would heretofore have
escaped detection, yet is measurable with current technol-
ogy. To avoid confusion with the earlier ideas, it is some-
times useful to adopt the term ‘‘holographic noise’’ to refer
to the effect described here, which depends on a new

Planckian uncertainty in position of matter in a fixed
classical metric. The most conspicuous difference in physi-
cal behavior is that no holographic noise appears in mea-
surements of position in a single direction, unlike noise
from a fluctuating metric. Measurements of holographic
noise display coherent quantum correlations associated
with entanglement of position states in overlapping regions
of spacetime that cannot be described as a fluctuating
metric, because they derive from a definition of position
based on noncommuting operators. As discussed below,
these features lead to effects in interferometers that differ
from metric fluctuations, and depend on the details of the
experiment design.
The new physics proposed here violates Lorentz invari-

ance, but in a specific way that has not been previously
tested. There is no causality violation, although there is a
new kind of quantum-mechanical entanglement of systems
that share a common spacetime volume, even if there is no
other physical connection between them. There is also no
preferred frame or direction, except that which is set by the
measurement apparatus. Indeed, the effective theory here
defines a particular way that a classical rest frame could
emerge from a quantum theory. The effect can only be
detected in an experiment that coherently compares trans-
verse positions over an extended spacetime volume to ex-
tremely high precision, and with high time resolution or
bandwidth. One reason that the effect of the fluctuations is
strongly suppressed inmost laboratory tests is that over time,
average positions approach their usual classical values; as
noted above, the apparent fractional distortion fromclassical
geometry in a system of size L is predicted to be of orderffiffiffiffiffiffiffiffiffiffi
tP=�

p
for measurements averaged over time � > L=c.

Of course, interferometers also have a well-understood
standard quantum noise limit that follows directly from the
Heisenberg uncertainty principle, or equivalently, from
quantization of electromagnetic field modes [31]. A mea-
surement of arm-length difference X for duration �, with a
minimum mirror mass m, is uncertain by

�X2 ¼ 2ℏ�=m; (1)

independent of the wavelength of the light. This limit is
based on standard physics: classical spacetime, with mas-
sive bodies described by quantum mechanics and photons
described by quantum fields. (The intensity of the light
does not enter explicitly in this formulation, but is ac-
counted for in this bound: a larger mirror mass reacts less
to a fluctuating photon momentum and therefore allows a
lower photon shot noise).
The conjecture here is roughly that new physics of quan-

tum geometry imposes a new fundamental limit, corre-
sponding to a Planck mass for m in Eq. (1), that applies to
the precision of measurements of transverse position. That
is, the quantum physics of position in emergent spacetime
somehow imposes a Planckian frequency limit on the space-
time wave functions of massive bodies when measured by
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comparing interactions with null fields in different direc-
tions. This new collective behavior represents a departure
from standard physics, where a massive body in general has
a position state described by a wave packet that includes
super-Planckian frequencies.

Such an effect would not have been previously detected.
The standard quantum noise of interferometer signals can
be viewed [31] as interference of zero-point fluctuations of
electromagnetic vacuum state modes (entering from the
dark port) with incoming light. Planckian noise in the
signal would signify an entanglement of those modes
with a new Planckian indeterminacy of the apparatusþ
spacetime configuration state. The effective wave theory
below suggests a quantitative model of how this might
work.

Some properties of holographic noise were previously
estimated [32–35], using a different theory also based on
position wave functions and wave packets. States were
represented as modulations of a fundamental carrier with
Planck frequency, evolved with a paraxial wave equation,
and the position uncertainty appeared as a diffraction-like
effect of Planck carrier waves of the position wave func-
tion. The new effective wave theory derived here results in
a different effective wave equation, based on noncommu-
tative deformations on a 2D space-like surface in a labo-
ratory rest frame where positions are measured. The new
theory addresses position uncertainty on 2D space-like
surfaces at rest, as opposed to the 2D space-like null
wave fronts in the earlier description. In this view, the
uncertainty arises from complementarity of transverse po-
sition and rest-frame velocity. This rest-frame perspective
appears likely to be more useful for calculations of re-
sponse in general interferometer configurations. The two
descriptions encode a similar holographic information con-
tent and display holographic uncertainty of a similar am-
plitude. In both descriptions, positions in spacetime are
encoded with a Planck bandwidth limit, � 1044 bits per
second, and the noise can be viewed as the corresponding
Shannon sampling noise of position— a consequence of a
fundamental bandwidth limit on spacetime position
observables.

D. Relation to quantum gravity theories

The rest of this paper entirely neglects effects of gravity
or of spacetime curvature. Nevertheless, it is important to
comment on possible connections with quantum gravity
and emergent spacetime.

Jacobson [12], Verlinde [15], and others have advanced
arguments for a theory of gravity and inertia based on
general thermodynamic and holographic principles.
Spacetime is emergent, and positions are encoded on
two-dimensional surfaces; gravity is identified as an en-
tropic force, and acceleration is identified with the tem-
perature of a quantum system that ultimately emerges as
matter in spacetime. The theory here does not address

gravity or acceleration directly, since it deals with flat
spacetime, corresponding to zero temperature. However,
it does present an effective theory that describes the char-
acter of the holographic degrees of freedom of position of
matter in emergent holographic spacetime, and a specific
kind of coarse graining that relates positions with macro-
scopic separation. The fluctuations predicted here could
then be a direct experimental signature of the degrees of
freedom whose statistical behavior gives rise to classical
gravity.
Banks [1,2] has proposed a quantum theory of emergent

holographic spacetime based on the following construc-
tion: ‘‘A time-like trajectory gives rise to a nested sequence
of causal diamonds, corresponding to larger and larger
intervals along the trajectory. The holographic principle
and causality postulates say that the quantum-mechanical
counterpart of this sequence is a sequence of Hilbert
spaces, each nested in the next as a tensor factor.’’ Banks
proposes a matrix theory to describe this quantum system,
which is general enough to include gravity and particle
states. In that holographic spacetime, as here, ‘‘the metric
of space-time is encoded in the relations between various
quantum Hilbert spaces and is not itself a fluctuating
quantum variable.’’
The effective theory here addresses only part of this

physics, corresponding roughly to the behavior of averages
over traces of the matrices [34]. It describes the quantum
kinematics of averages over many particles, the mean
position of massive bodies in emergent holographic flat
spacetime, and includes none of the rich dynamics of
particles or gravity. It does however capture a similar
‘‘angular delocalization’’ of particle states [2]. The ‘‘nested
system of causal diamonds’’ is also closely related to the
wave theory developed here and helps to explain its pre-
dicted correlations, in particular, its spatial coherence. In
our case, the Hilbert space is defined by spatial position
wave functions in two dimensions, with a Planck frequency
limit.
To illustrate this correspondence, suppose an observer

on a time-like trajectory sends out a Planckian series of
sonar-like pulses. The trajectory is defined quantum-
mechanically by the set of causal diamonds traced by these
null waves and their received counterparts. The new un-
certainty described here appears in the mutual quantum
relationship of the position of two different observers, on
different trajectories. In particular, their relative transverse
positions, as measured by Planckian waves (or Planckian
pulses) display a diffractive uncertainty that is much larger
than the Planck scale (see Fig. 1). The Michelson interfer-
ometer system performs a similar measurement that com-
pares a single beam splitter trajectory at two times in two
different directions (see Fig. 2). In this case the position is
continuously measured, so the uncertainty shows up as
noise in a signal stream. The coherence of holographic
noise in two nearby interferometers can be understood

CRAIG J. HOGAN PHYSICAL REVIEW D 85, 064007 (2012)

064007-4



because of the overlap of their causal diamonds entangles
their quantum-geometrical states (illustrated in Fig. 3);
measurements of position collapse the corresponding
wave functions into the same state.

Noncommutative geometries [16–18] and some of their
observational consequences [19] have been extensively
discussed in the literature. The new features added in
the discussion below are a particular physical interpreta-
tion of position operators, a particular choice of commu-
tator, and a particular hypothesis for the time evolution of
the system. The physics of nonclassical geometry as
interpreted here differs significantly from the more famil-
iar context of field theory deformed by a Moyal algebra.
Quantum conditions here are imposed on the 2D position
of massive bodies as measured by interactions with null
fields in their rest frame, which leads to different physical
results from usual quantization of field configuration
states. Moyal deformations are applied here not to 3D
fields, but to two-dimensional position wave functions.
Repeated deformations are assumed to generate time
evolution. In this way the evolution of a quantum geome-
try and its macroscopic effects can be described using an
effective wave theory. Of course, we do not know what
effective equations describe real quantum geometry, but
the point here is to present a precisely formulated
effective theory that can be quantitatively tested with
realizable experiments.

II. POSITION IN QUANTUM GEOMETRY

Quantum position operators should automatically obey
the causal structure defined by the classical metric. One
way to guarantee this causality is to posit a quantum
definition of a position measurement in terms of null fields,
such as light. For example, a position in a particular
direction can be defined by a directional eigenstate of a
null field, a plane wave completely delocalized in the
transverse directions.
Consider an idealized world consisting of matter and

radiation in an unperturbed, 3þ 1-dimensional spacetime.
We wish to establish an operational definition of position

FIG. 2 (color online). Spacetime diagram showing a causal
diamond associated with a Michelson interferometer. The spatial
dimension out of the interferometer plane is suppressed. The
central worldline represents the beam splitter, the other two
represent end mirrors. The two arms are shown on one space-
like surface, a particular time in the lab frame. The measured
signal compares light reflected from the two end mirrors, in
different directions, as a function of time. The interactions with
the beam splitter in the two directions occur at two times
separated by 2L=c, where L denotes the arm length. The solid
dots represent reflection events that contribute to the signal at the
time represented by the uppermost dot. The measurement com-
pares positions nonlocally, and in different directions. The wave
packet description of uncertainty in an interferometer refers to
wave functions in the positions of a single beam splitter mirror
trajectory at two different times, relative to end mirrors in two
different directions.

FIG. 1 (color online). Spacetime diagram of the nested-causal-
diamond construction associated with collective quantum
states of matter position and rest frame in flat classical space-
time. One spatial dimension is suppressed. The two vertical
wavy lines represent timelike trajectories or world lines of
bodies. A causal diamond is the intersection of the future light
cone of one point on a world line with the past light cone of some
future point. Two nested causal diamonds associated with the
left-hand trajectory are shown. It is conjectured that relative
positions of two world lines in spacetime are encoded by Planck-
limited wave functions on 2D boundaries of the diamonds
tangent to the world lines; one of these 2D surfaces is shown
as a space-like circle intersecting the right-hand world line at the
position of the solid dot. Their rest-frame separation L deter-
mines the amplitude of coherent random transverse fluctuations
in measured position of amplitude �x � ffiffiffiffiffiffiffiffiffiffi

ctPL
p

on a timescale
� L=c.
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for matter. For definiteness, consider a reflecting surface. It
forms a space-like boundary condition for an electromag-
netic field. Its position is defined by its effect on the field,
which is how the position is measured: the field solution
depends on the position of the surface. This system is
classical: neither the surface, nor the field, nor the metric
are quantized. Since the position measurement can include
a large area that averages over many atoms, we can take the
surface to be perfectly smooth. The field in vacuum obeys
the standard classical relativistic wave equation, and prop-
agates in a flat classical metric. The vacuum solutions of
the field can be decomposed in the usual way into plane-
wave modes. These modes are not quantized, so we are not
here considering quantization or photon noise in position
measurement.

Position in each direction is measured by a normally
reflected mode traveling in that direction. The position of a
body is defined by measurements based on configurations
of reflected radiation. The quantum geometry we seek to
study is introduced by imposing quantum conditions con-
necting the position operators in different directions.

This definition of position manifestly agrees with stan-
dard spacetime in the classical limit. By construction,
measurements in any single direction rigorously respect
causality, and exactly agree with classical behavior.
However, transverse positions no longer share a single
classical space. Comparisons of position in different direc-
tions have a quantum relationship that departs from clas-
sical behavior by a small amount, depending on the value
of the commutator. As shown below, this particular way of
implementing a quantum geometry of transverse position
results in a surprisingly large departure from classical
behavior on macroscopic scales.

Position operators

In the rest frame of any body, choose any direction in
space. This direction defines a plane,whichwe identify as an
observer’s choice of holographic projection. In this plane,
let xiðtÞ denote the classical position of the body in
two-dimensional Cartesian coordinates (i ¼ 1, 2). The cor-
respondence between classical and quantum positions is
posited to obey the following quantum commutation
relation:

½x̂i; x̂j� ¼ iðCctPÞ2�ij; (2)

where �ij is the unit 2� 2 antisymmetric matrix, �ij ¼
��ji ¼ 1. The scale is set by the Planck time tP, with a

coefficient C of the order of unity that can in principle be
normalized from gravitational entropy arguments.

This choice of rectilinear basis vectors is convenient for
the calculations that follow. However, from linear projec-
tion of the position operators and basic trigonometry, one
can show that the same physical prescription can be stated
in a way that is manifestly independent of the choice of
coordinates. The position operator for a direction inclined
by angle �0 relative to axis 1 is

x̂ð�0Þ ¼ x̂1 cosð�0Þ þ x̂2 sinð�0Þ: (3)

For any two directions, the commutator is then

½x̂ð�0Þ; x̂ð�00Þ� ¼ fcosð�0Þ sinð�00Þ � sinð�0Þ cosð�00Þg½x̂1; x̂2�
¼ sinð�0 � �00Þ½x̂1; x̂2�
¼ i sinð�0 � �00ÞðCctPÞ2: (4)

Therefore, the quantum condition (2) can be stated inde-
pendently of coordinates: In the rest frame of a body, the
commutator of position operators in any two directions is
proportional to the sine of the angle between them, with a
Planck scale coefficient. This construction makes it clear
that the operators defining the new noncommuting geome-
try do not actually define any preferred frame or direction
in 3þ 1D space, except for those necessarily determined
by a particular measurement, as is usual in quantum me-
chanics. That is, the new physics itself does not single out a
frame or direction, so it preserves Lorentz invariance in
this sense.
Thus, any measured component of a body’s position is a

quantum operator that does not commute with measure-
ment of orthogonal position components. Because angle is
itself frame dependent, the commutator of position opera-
tors in two fixed directions does depend on the rest frame
of the massive body whose position is being measured, but
this is to be expected, since the new physics is connected
with measurement of a rest frame, together with spacetime,
as an emergent structure. In the emerged 3D space, Eq. (2)
can be written ½x̂i; x̂j� ¼ iðCctPÞ2�ij3, where �ijk is the

completely antisymmetric tensor, and the axis 3 is defined
as the normal to the plane defined by the two measurement
directions in the rest frame of the body. This formulation
does violate parity symmetry; the sign of the commutator
changes on reflection in the holographic plane.
It is important that the new Planckian behavior is asso-

ciated with directions in which positions are measured. A
plane wave exactly aligned with a planar reflecting surface
reflects in an exactly classical way; no new physics is
detectable. Thus, a one-dimensional optical cavity that
compares phases of waves reflecting between parallel sur-
faces detects no new nonclassical effect, to first order. On
the other hand, the phase of a reflected plane wave with
orientation inclined to the surface depends on position
components in different (incoming and outgoing) direc-
tions, and these do not commute. The state of the (other-
wise classical) radiation field is affected by the (quantum,
and Planck bandwidth limited) state of the boundary
condition.
Indeed, nothing about photon propagation in vacuum is

changed by adding the commutator, Eq. (2). The electro-
magnetic field still behaves as in a perfect classical space-
time with no new Planckian physics. The metric is not
perturbed; the new effect is thus not the same as gravita-
tional waves, or any quantization of a field mode. However,
this classical spacetime on its own is not directly accessible
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to an actual position measurement. That requires interac-
tion with matter at some position, and also a particular
choice of frame and measurement direction. The position
of the boundary condition with matter is where the new
Planckian quantum behavior enters: it applies to the posi-
tion of matter in the spacetime, as opposed to the unaltered
metric. The boundary condition affects the radiation field
in the usual way, so the configuration of the radiation field
depends on the matter position state (and depends on the
quantum position operator) even though its equation of
motion in vacuum and the metric itself are not changed.

Even though this formulation is based on classical
spacetime, radiation and matter, we have added a new
quantum condition on the spacetime positions of matter,
which affects the radiation via interactions. The system can
be placed by interaction into different states. We can thus
speak of a measurement in a particular direction placing a
whole system of matter and radiation into an eigenstate of
that direction. A measurement of a definite, measurable
macroscopic configuration state of the field ‘‘collapses the
wave function’’ in the usual way. In this situation, the
relative transverse position is not fixed classically until
the radiation is detected, which may occur a macroscopic
interval away. This holographic nonlocality does not vio-
late causality, but it does correspond to a new kind of
uncertainty in position that is shared coherently by other-
wise unconnected bodies.

As noted previously, the usual one-dimensional wave
equation is obeyed in each direction, and vacuum field
modes propagate in the usual way. However, quantum
operators that measure spacetime intervals, say by compar-
ing ticks of a physical clock with the phase of a wave
travelling between events, have an orientation in space. If
the operators in different directions do not commute, a
fundamental limit follows on the accuracy of position
measurements compared in different spatial directions
over macroscopic intervals. A new source of noise appears
in devices that compare phases of null fields that propagate
in different directions, at high frequencies (comparable to
the inverse light travel time), across a macroscopic system
extending in two space-like dimensions. The noise resem-
bles an accumulation of transverse Planck scale position
errors over a light-crossing time. The new behavior appears
as a new kind of transverse jitter or displacement from a
classical position.

B. Effect on interferometers

The optical elements and detectors of an interferometer
create particular boundary conditions for the radiation field
that make this effect detectable, if it exists. In a simple
Michelson interferometer, light propagates along two or-
thogonal directions, say, x1 and x2, along arms of length L.
A single incoming wave front is split into two noncommut-
ing directions for a time 2L. Light enters the apparatus
prepared with a particular phase and orientation; the final

signal depends on the position of the beam splitter in two
directions, at two different times separated by 2L. When
recombined the relative phases of the wave fronts have
wandered apart from each other by X � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2CLctP
p

, just as
if the beam splitter had moved by this amount. The appar-
ent motion is due to Planckian uncertainty in the position
and velocity of the beamsplitter.
In a simple Michelson interferometer, the signal at the

dark port represents a measurement of the arm-length
difference, measured by reflections off the beam splitter
that occur at two different times, in the two directions,
separated by an interval 2L=c. In terms of the position
operators introduced above, if we ignore any motion of the
end mirrors, the interferometer continuously measures a
quantity represented by the operator

X̂ðtÞ ¼ x̂2ðtÞ � x̂1ðt� 2L=cÞ: (5)

An ongoing measurement thus combines two noncommut-
ing operators at two macroscopically separated times.
Moreover, note that Eq. (5) holds only in the rest frame
of the beam splitter. In a measurement that is distributed in
time, an uncertainty in transverse position can be reinter-
preted as an uncertainty in transverse velocity and there-
fore, in the definition of rest frame. The phase of the
detected light depends on the relative velocity at the time
of the two reflections. The reflection events are shown in
Fig. 2: the two arms determine the directions 1 and 2, the
end mirrors fix the directions in which positions are mea-
sured, and the signal records the difference of the beam
splitter position at the two times.
A consistent description of the uncertainty including the

position and transverse-velocity uncertainty is given be-
low, in terms of wave packets. The result is that for time
differences � much smaller than 2L=c, there is noise in the
phase comparison of the light from the two arms, equiva-
lent to a variance in beam splitter position�2

Xð�Þ ¼ Cc2tP�
at time lag �. For larger time differences � > 2L=c, the
phase does not continue to drift apart, since the wave fronts
from the two directions are not prepared in the sameway as
plane wave fronts from infinity. They are not actually
independent, but constrained by the finite apparatus size.
The beam splitter has a definite position at every time that
fixes the relative x1 and x2 phases at a time interval � ¼
2L=c. Phase differences at intervals � > 2L=c thus repre-
sent independent samplings of a distribution about the
classical position. The distribution has a variance �2 ¼
2CLctP, with a mean that approaches the classical expec-
tation value of arm-length difference. It is important to note
that the noise is in nonlocal comparison of relative space-
time position and rest frame averaged over many particles,
rather than the position of individual quantum particles.
The construction using directional position operators

suggests that the effect is spatially and directionally coher-
ent. It seems quite strange that the positions of bodies in a
given rest frame and a given direction share the same
holographic ‘‘displacement,’’ even if there is no physical
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connection between them. This feature can be traced to the
idea that the commutator is introduced in terms of direc-
tional operators that are independent of transverse position.
In the classical situation, with zero commutator, positional
coherence is of course taken for granted; everything has
zero holographic displacement. That classical coherence is
preserved for nearby paths sharing the same direction. The
holographic displacements depart from the classical be-
havior by adding a new transverse jitter that only becomes
apparent between paths with a significant transverse sepa-
ration. If two parallel paths are much longer than the
transverse separation between them, they will measure
almost the same total transverse displacement when com-
pared with a much longer transverse path (as in Fig. 3(b)).
The mean square displacement difference grows linearly
with transverse separation. This is a consequence of the
displacement occurring transversely relative to light
sheets, rather than in three dimensions relative to a fixed
laboratory rest frame.

The coherence can also be traced to the scaling property
that the amplitude of the holographic jitter grows with
scale (see Fig. 4). Once again, the effect is different from
microscopic quantum fluctuations, which average out in a
macroscopic system. Indeed, this averaging is the key to
reducing ordinary quantum shot noise enough to allow
macroscopic phase measurements in an interferometer
with such precision. The coherence is needed for holo-
graphic jitter to be detectable at all; entire macroscopic
optical elements of the interferometers ‘‘move’’ almost
coherently, so the effect is not reduced by averaging over
a macroscopic patch of a mirror surface. It is also the
reason that holographic noise has escaped detection up to
now; it has a smaller amplitude on small scales, yet in a
fixed spatial region, averages to zero over long measure-
ment times.

III. WAVE FUNCTIONS IN QUANTUMGEOMETRY

The new behavior can be described using quantum wave
mechanics. A trajectory in a classical spacetime may re-
semble a ray approximation to a deeper theory based on
waves. We seek a theory for the waves that captures the
same holographic uncertainty just described using opera-
tors. This quantum wave theory of position is still only a
theory of departures from classical behavior; it is far from
being a fundamental theory of emergent spacetime.
However, it suffices to make new experimental predictions.
In classical geometry, quantum wave functions of posi-

tion in each direction are independent. A noncommutative

FIG. 3 (color online). (a) Projection of the causal diamond in
Fig. 2 onto the plane of an interferometer. The time axis is not
shown. The causal spheres around the two end mirrors are also
shown, as solid circles. Beam splitter position (center of dashed
circle) ‘‘jitters’’ in the directions transverse to laser wave fronts
coming from the two end mirrors, along the tangent directions of
each of their causal spheres. Holographic noise appears in the
dark-port signal that measures the position difference of the
beam splitter in the two directions. (b) Projection showing two
interferometers slightly displaced from each other. Most of the
spacetime volume overlaps. The Hilbert spaces of the their
diamonds are highly entangled, leading to highly correlated
holographic noise signals, as in Eq. (35). (c) Projection showing
two interferometers with one nearly-collocated arm, with other
arms extending in opposite directions. The causal diamonds
from the left and right end mirrors do not overlap at all, so the
holographic-noise part of their signals display zero correlation.
This null configuration is a useful control for experiments.

FIG. 4 (color online). Sketch showing the scaling of Planckian
uncertainty and noise. The relative amplitude of position fluctu-
ations is shown from typical wave components on two scales.
Dots represent positions of bodies. Vertical displacement shows
the (greatly exaggerated) difference from classical position;
horizontal scale is time, or distance in the rest frame. The typical
excursion grows with duration like

ffiffiffi
�

p
, therefore, the total

displacement is dominated by the longest scale measured, even
though the angular fluctuations, here shown by the slopes of the
waves, are largest on small scales (ultimately reaching unity on
the holographic Planck scale). The longest wavelength measured
corresponds to the scale of a measured causal diamond, which
determines the overall excursion of measured amplitude fluctua-
tions. Spatially overlapping diamonds collapse into the same
modes on this scale, so nearby bodies share correlated, direc-
tionally coherent motion on scales much larger than their trans-
verse separation, as indicated by dashed lines. These spatially
and directionally coherent fluctuations from a classical geometry
are shared by collections of particles and bodies in the same
region of spacetime. Over timescales long compared with the
size of a region, the fluctuations average away to become
negligible.
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geometry changes their functional relationship so that they
are no longer independent. The effective theory here is
based on propagating the noncommutativity of the geome-
try to the algebra of wave functions. A joint wave function
that describes position in two directions at the same time is
a product of the wave functions in each direction. This
product inherits a new quantum algebra from the quantum
conditions of position operators, that describes the differ-
ence from the classical product. We posit a time evolution
for the joint wave function derived from this difference
equation. This conversion amounts to a hypothesis about
how the emergent quantum mechanics of spacetime works,
in particular, the emergence of position, time, and rest
frame in holographic theory. Along with the definition of
position in terms of directional null operators, it is the main
conceptual assumption being tested by the proposed ex-
perimental program.

A. Wave equation derived from Moyal deformation

We start with the functional deformation caused by
noncommutative geometry, described by a Moyal algebra
[16,17]. Geometry described by ½x̂i; x̂j� ¼ i�ij leads to a

deformation in the algebra of functions f and g, to leading
order,

ðf � gÞ � fg ¼ ði=2Þ�ij@if@jg: (6)

Such a deformation applied to fields in three dimensions
leads to effects at the scale set by �ij. In the case of a

Planckian commutator in 3D, such a small effect is not
detectable. In particular, if the functions f and g are
quantum fields, the geometric uncertainty is confined to
the scale of the commutator. This behavior is similar to the
effect of a Planckian UV cutoff in field modes.

The observable effect proposed here results from a
different, holographic physical interpretation of Moyal
deformation. The new Planckian physics gives rise to a
new, effective wave equation that describes the position of
matter in two space-like directions. Instead of applying the
Moyal deformation to the metric, or to quantum fields, as
usually done, we apply it at a more primitive level, to
describe the noncommutativity of position operators and
deformation of wave functions. The relevant functions to
use in Eq. (6) are now not quantum fields, but position
wave functions in two spatial dimensions.

Consider as above any two orthogonal directions 1 and 2
in the rest frame of the body being measured. Suppose that
the position of the body in each direction is a quantum-
mechanical amplitude represented by a wave function,
c 1ðx1Þ; c 2ðx2Þ. We again define positions physically in
terms of interactions with directional null modes, so the
undeformed wave functions in each direction have trans-
verse coherence associated with plane waves,

@2c 1ðx1Þ ¼ @1c 2ðx2Þ ¼ 0; (7)

to leading order in ctP=L, where L is the characteristic size
of the system.
We again adopt a Planckian commutator of positions in

the Cartesian x1, x2 plane given by Eq. (2),

½x̂1; x̂2� ¼ i2‘2P: (8)

This leads to a Moyal deformation

ðc 1 � c 2Þ � c 1c 2 ¼ i‘2P@1c 1@2c 2; (9)

where ‘P is of the order of ctP. This can be interpreted as
the change in quantum-mechanical amplitude for the posi-
tions x1, x2 from what they would have been in a non-
deformed (classical, commutative) geometry. In this
quantization, the normalization of the wave function is
held fixed, and not quantized. Hence there is no ‘‘second
quantization’’ in the theory, and no zero-point vacuum
oscillations. The new effect is a quantum-mechanical un-
certainty, not a vacuum fluctuation noise.
As in the 3D case, the 2D positions in Eq. (9) deform

from their classical values only by a distance of the order of
‘P. Suppose however that this deformation corresponds to
just one Planckian time interval, a single ‘‘clock tick’’ in
the frame defined by the 2D space-like sheet defined by the
directions 1 and 2. The idea is that time evolution is a series
of Planckian time displacements: time evolution corre-
sponds to repeated deformations of the form (9). To arrive
at the effective theory, we approximate the difference
Eq. (9) as a continuous differential equation for times
much larger than Planck.
These ideas motivate the following evolution equation

for the joint, 2þ 1-D position wave function over times
large compared with tP:

@tðc 1ðx1; tÞc 2ðx2; tÞÞ ¼ ic‘0P@1c 1@2c 2; (10)

where ‘0P � ‘2P!P=c is a spatial scale closely related to
observable noise, and !P denotes a Planckian frequency
for the evolution, corresponding to the inverse of the time
between steps as one goes from a discrete to a continuous
description. The numerical values of ‘0P and !P are dis-
cussed below.
Equation (10) can be viewed as an effective wave de-

scription of holographic modes of emergent spacetime
position relative to a particular frame, in the space-like
plane defined by the chosen directions x1 and x2. Note that
as usual in quantummechanics, time itself is not measured;
positions are measured only in the x1; x2 plane. Like the
Schrödinger equation, Eq. (10) respects linear unitary time
evolution required of quantum mechanics. Unlike the
Schrödinger equation, it includes a product of derivatives
in two space-like directions that are normally independent.
Clearly Eq. (10) has not been derived from fundamental

theory in a rigorous way. Here, we simply posit this equa-
tion, in the spirit of the Bohr atom model, as an effective
wave theory to describe the new physics, without present-
ing it as a fundamental theory. It describes a new, wave-like
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behavior of position and velocity of matter in spacetime,
caused by new Planckian physics, with some new, if very
small effects on larger scales. The behavior reflects a
particular implementation of quantum geometry. The
Planckian time sampling leading to Eq. (10) imposes a
bandwidth limit on the evolution of spatial wave functions
from one 2D space-like surface to the next—in effect,
imposing a Planckian fidelity limit on relative positions
in different directions, at different times. It is this effective
equation that can be tested in experiments.

The solutions of Eq. (10) can be written as a combina-
tion of modes in the two directions:

c 1ðx1; tÞ ¼
X
k

A1ð!; k1Þ exp½ið!t� k1x1Þ�; (11)

c 2ðx2; tÞ ¼
X
k

A2ð!; k2Þ exp½ið!t� k2x2Þ�; (12)

with a dispersion relation that relates the two sets of
coefficients,

2! ¼ �c‘0Pk1k2: (13)

The new noncommutative physics appears in the form of
the two-dimensional character of the modes described by
this dispersion relation. In the joint 2D wave function,
modes in the two directions are not independent.

Equation (13) creates a wide gap between the frequency
and wave number scales when wavelengths are much
larger than ‘0P. To describe a state with a macroscopic
extension in time of the order of �, the A1;2ð!; k1;2Þ’s in

the sums [Eqs. (11) and (12)] must extend to low frequen-
cies, of the order of ! � ��1 � t�1

P . The dispersion rela-
tion (13) then shows that typical states have spatial wave
functions with significant power in transverse spatial
modes on scales much larger than the Planck length.
That is, the joint wave function of position in the two
directions includes nonzero A’s where ðk1k2Þ�1 � c�‘0P �
ðctPÞ2. The time evolution of the emergent position opera-
tor thus leads to effects on a much larger scale than Planck.
The eigenstates have the character of waves with one
macroscopic longitudinal dimension (associated in this
case with the unmeasured time and space dimensions)
and two much smaller, but still not negligible, transverse
dimensions. For long durations � tP, the width is negli-
gible compared to the duration and typical position-state
wave packet trajectories approximate classical worldlines.

This description shows the departure from the decom-
position standard in field theory, into quantized 3þ 1-D
plane-wave modes. A plane-wave eigenmode in a particu-
lar direction, say k1, is now not an exact eigenmode. True
eigenmodes include both dimensions, so the plane-wave
states are entangled with each other. The wave solutions of
Eq. (10) in different directions are not independent of each
other, as they are in field theory.

B. Wave packet description of Planckian position
uncertainty in interferometers

The new uncertainty can be understood physically in
terms of the width of quantum-mechanical wave packets.
Normally, with a dispersive evolution equation wave pack-
ets spread with time. On the other hand, Eq. (10) is linear
when each direction is considered on its own. There is no
dispersive effect observable in a 1D measurement. But
once we choose a direction for the basis states of the
wave expansion (that is, with coefficients A1;2 both

expressed in terms of!, k1 or!, k2, with the wave number
in the other direction, k2 or k1, fixed by the dispersion
relation), the transverse direction wave packet has an
uncertain transverse velocity. For each k1 mode, the dis-
persion relation (13) associates it with a velocity in
direction x2:

v2 ¼ d!=dk2 ¼ �c‘0Pk1=2: (14)

An eigenmode of wave number in direction 1 maps onto a
transverse velocity in direction 2, so a measurement of
position in direction x1 (say) creates uncertainty in k1,
and hence in transverse velocity v2. The same statement
applies with 1, 2 reversed. Awave packet with a spread of
k1’s necessarily has a spread of v2’s (and vice versa). This
effect represents the essential element of the new physics
of the uncertainty: a state with a position wave packet in
one direction has a conjugate uncertainty in wave number,
and therefore also in transverse wave number and velocity,
and hence a phase uncertainty that accumulates with trans-
verse propagation.
The new uncertainty can be illustrated using a

Michelson interferometer as a concrete example. A
Michelson interferometer measurement combines two
terms [Eq. (5)] that correspond to position-space wave
packets at two times, in two directions (see Fig. 2).
Denote the wave functions at the two reflections by
c 1ðx1; tÞ and c 2ðx2; tþ 2L=cÞ, and their standard devia-
tions by�x1ðtÞ and�x2ðtþ 2L=cÞ. In wave number space,
the wave packet of the first reflection has a standard
deviation �k1 ¼ 1=�x1. The reflected light interacts with
matter that has an effective transverse velocity v2 ¼
c‘0Pk1, which is uncertain by

�v2 ¼ c‘0P�k1=2 ¼ c‘0P=2�x1: (15)

After a time 2L=c the velocity leads to a phase shift of the
reflected light, with a standard deviation in length units

�x2 ¼ 2�v2L=c ¼ L‘0P=�x1: (16)

The phase-difference observable X ¼ x1 � x2 has a wave
function whose variance is the sum of two terms that
depend oppositely on �x1:

�X2 ¼ �x21 þ �x22 ¼ �x21 þ ðL‘0P=�x1Þ2: (17)

The minimum uncertainty for the measurement of X occurs
when the two terms are equal, �x21 ¼ ðL‘0P=�x1Þ2 ¼ L‘0P.
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The probability distribution for the difference measure-
ment has a standard deviation

�X ¼
ffiffiffiffiffiffiffiffiffiffiffi
2L‘0P

q
; (18)

which is � ‘0P. As discussed below, over shorter time
intervals � < L=c, the position-difference observable dis-
plays fluctuations or noise with excursions of amplitude

�X � ffiffiffiffiffiffiffiffiffiffiffi
c�‘0P

p
.

The spread in the frequency-space wave packet corre-
sponds to a new measurement uncertainty in the definition
of a rest frame: a measurement of position in one direction
leads to velocity uncertainty in the transverse direction. In
addition to position uncertainty of a measurement, there is
a new transverse Planckian velocity uncertainty and a
corresponding uncertainty in phase that grows with propa-
gation distance.

C. Uncertainty, measurement noise, nonlocality,
and correlations

As usual, the quantum theory describes the evolution of
a wave function. It makes only statistical predictions about
outcomes of experiments. In a real experiment, the uncer-
tainty and indeterminacy described by the quantum wave
function manifests as randomness or noise.

The behavior on short time scales resembles clock error:
position difference wanders by about a Planck time per
Planck time. However, the wave description shows that the
effect should not be viewed simply as a randomwalk, but is
due to the complementary uncertainty of transverse rest-
frame velocity and position of the 2D wave functions. In
particular, it is also not right to think of the effect as
random walk in the orientation of light rays. Indeed, light
propagation has been regarded as classical all along; it is
the position of rest frames that is uncertain. The uncertain-
ties in angular position and rest-frame velocity become
smaller on larger scales (as in Fig. 4), so directions become
more classical, and larger systems more precisely approxi-
mate matter inhabiting a classical three-dimensional space.
However, the transverse position-difference uncertainty
increases with scale, up to the size of the causal diamond
defined by an apparatus. Thus, the longest waves dominate
the amplitude of the fluctuations. These occur coherently
over a light-crossing time.

A measurement in an interferometer determines a defi-
nite value at any given time for the position-difference
observable. In the causal diamond picture, randomness
continually enters the system from the world outside the
causal diamond, causing decoherence of the overall quan-
tum wave function. Measurements sharing the same causal
diamond, in the same orientation, must ‘‘collapse the
wave function’’ to the same spacetime state at each time,
because they measure the same incoming random modes
at the same time and place. Although this interpretation
of quantum-mechanical measurement uncertainty is

standard[8], the application to positions defining a quan-
tum geometry is new. There is no violation of the causal
structure of classical spacetime. However, correlations
arise, in the quantum departure from classical behavior,
between different systems that have no physical connection
apart from sharing the same spacetime volume.
Detection of the effect depends on a measurement ap-

paratus with macroscopic space-like extent in two direc-
tions. For experiments, the nonlocal character of the states
provides a powerful diagnostic technique using cross cor-
relation. Two nearly colocated and coaligned interferome-
ters that share an overlapping volume of spacetime, but
otherwise have no physical connection, experience com-
mon mode fluctuations, since the wave functions of the
spacetime volumes they measure must collapse into the
same state—the same coefficients A for modes on the scale
of the apparatus. Most of the displacement for an apparatus
of size L is from modes with wavelengths of order L, and
to the extent their measured diamonds overlap, their states
are strongly correlated over time intervals of order L=c. If
they are offset or misaligned from each other, the cross
correlation is reduced, and if they probe nonoverlapping
spacetime volumes, the correlation vanishes altogether.
The effects of these correlations on observable signals
are estimated quantitatively below.
The full quantum description of the interferometer will

include the quantum geometry discussed here, as well as
the degrees of freedom of the particle content. In the
standard theory of interferometer noise [31], the normal
modes of the photon field are modified by mirror reflec-
tions. The photon states (number eigenstates) have a delo-
calized character in space, extending across the entire
apparatus. When the quantum geometry is taken into ac-
count, these modes are entangled with the position states of
the matter in the mirrors. The derivation of modes above
adopts an approximation, that the beam splitter position-
difference observable at each time is measured using po-
sition defined by photon states prepared at infinity. In
reality the states are shaped by the apparatus, in particular,
the measurement depends on the relative position of the
beam splitter and end mirror trajectories. Although a full
quantum theory of the entangled system is not worked out
here, signal correlations in a real experiment are estimated
below, based on constraints imposed by causality.

D. Relation to black hole entropy

It is instructive to compare the spacetime degrees of
freedom encoded on space-like surfaces of the effective
wave theory with the entropy of a black hole event horizon.
This is the most direct way to set an absolute normalization
for the effective theory, and thereby for experimental
predictions.
The spacetime modes here are described in flat space-

time. The treatment breaks down for systems (or modes)
whose size approaches the radius of spacetime curvature.
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For an experiment on the Earth’s surface, that is about a

light hour [ � cðGN�Þ�1=2 where � denotes the mean
density of the Earth], so curvature can be safely neglected
in description of any laboratory apparatus. Curvature of a
null wave front corresponds to a gravitational focusing of
normal rays, and it is this gravitational lensing that links
the thermodynamic description of spacetime to the classi-
cal Einstein equations [12].

In the case of a black hole, the curvature radius corre-
sponds to the Schwarzschild radius. Modes on this scale
exhibit Hawking radiation, which converts the spacetime
degrees of freedom into particle degrees of freedom whose
excitation is detectable far from the hole. Curvature of the
event horizon connects long wavelength modes to modes
outside the horizon that appear to a distant observer (or in
flat space, an accelerating one) as thermally populated.
This thermal conversion process cannot be described using
the flat-space theory described by Eq. (10). However, we
conjecture that the number of degrees of freedom is the
same on any 2D space-like surface, whether in a laboratory
or a black hole.

Consider modes on a rectangular 2D space-like surface,
with sizes L1 and L2 in the two dimensions at rest. These
lengths set the maximum wavelength and minimum wave
number of modes on the surface, k1 min ¼ 2�=L1, k2 min ¼
2�=L2, and modes of each have integer multiples of these
minimum values. Suppose also that there is a Planckian
maximum frequency, !max, in the effective theory. The
number of degrees of freedom is identified with number
of independent modes—the number of different k1, k2 pairs
consistent with the dispersion relation [Eq. (13)], with
frequency up to !max.

We choose to count by k1. At each k1, values of k2 are
integer multiples of k2min. The frequencies have values
given by Eq. (13), up to a maximum given by the maximum
frequency, !max. At k1 min the maximum is

k2 max ¼ 2!max=c‘
0
Pk1 min: (19)

The total number of modes N is given by summing over
discrete values of k1 from k1 min to k1 max, a sum that has
k1 max=k1 min terms:

N ¼ k2max

k2min

�
1þ 1

2
þ 1

3
þ . . .þ k1 min

k1 max

�

� 2!maxA

ð2�Þ2c‘0P
logðk1 max=k1 minÞ; (20)

where A ¼ L1L2 ¼ ð2�Þ2=k1 mink2min is the area of the
surface.

The log factor in this counting may well be unphysical;
it arises from modes which are super-Planckian in one of
the space-like dimensions. It goes away if we insist that k1
and k2 are both subject to a Planckian upper bound, which
seems reasonable for an emergent theory of geometry. This
idea explicitly introduces the notion of a maximum fre-
quency of spatial wave functions, as mentioned in the

introduction in the context of the standard quantum limit
for interferometers, Eq. (1). If we set k1 max ¼ k2max ¼
!max=c, the number of modes is

N ¼
�
k1 maxk2max

k1 mink2min

�
¼ A!2

max

ð2�Þ2 ¼ A

ð2�Þ2
2!max

c‘0P
; (21)

where the last equality is imposed by the dispersion rela-
tion, Eq. (13). This fixes the maximum frequencies to the
scale of the commutator, so there is only one independent
scale for the effective theory. That in turn can be normal-
ized by reference to black holes.
Since the effective theory describes ‘‘pure spacetime’’

quantum degrees of freedom, it is natural to identify the
number of degrees of freedom [Eq. (21)] with the entropy
of a black hole event horizon of the same area,

S ¼ A

4ðctPÞ2
; (22)

where tP �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏGN=c

5
q

is the conventional definition of

Planck time. By setting N ¼ S we arrive at a normaliza-
tion for the effective theory, !max ¼ �=tP, or

‘0P ¼ 2ctP=�: (23)

This formula fixes the observable noise amplitude in stan-
dard physical units, as in Eq. (18).
This estimate is precise, but not necessarily accurate. In

the absence of a more complete microscopic theory that
connects the wave theory to curved spacetime, we do not
know that N ¼ S is an exact relation; the argument lacks
precise control over the correspondence of black hole
entropy to position degrees of freedom in the wave theory.
A fundamental theory that clarifies these relationships
should eliminate the arbitrary character of the assumptions,
and can be tested directly and precisely. The concrete
estimate here serves as a suitable target for experimental
design, but it should be emphasized that in the real world
the absolute normalization might be different by a factor
of the order of unity. Other predictions, such as the shapes
of the frequency spectrum and cross correlation function,
do not depend on this overall amplitude normalization.

E. Relation to paraxial wave theory

A different equation was previously suggested as the
basis of a candidate effective theory[35], partly based on a
connection with the kinematics of Matrix theory[34]. For a
Michelson interferometer with a classical observable quan-
tity X ¼ x1 � x2, the wave function was posited to obey a
1þ 1D paraxial wave equation,

@tc ðX; tÞ ¼ �ic2tP@
2
Xc ðX; tÞ; (24)

which has wave solutions

c ðX; tÞ ¼ X
k

Ak exp½ið!t� kXÞ�; (25)

and dispersion relation
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! ¼ c2tPk
2: (26)

Except for the coefficient, Eq. (24) resembles the non-
relativistic Schrödinger wave equation. Quantum uncer-
tainty based on this equation is described in analogy with
wave optics: the wave solutions have a diffractive trans-
verse beamwidth. For interferometers, there are periodic
solutions for the wave function in analogy with optical
cavities, where the position uncertainty corresponds to
the beamwidth, and the apparatus size corresponds to the
cavity length. These solutions are useful to illustrate the
character of the noise in a finite apparatus.

Equations (10) and (24) refer to spatial wave functions
on different kinds of 2D space-like hypersurfaces.
Equation (24) describes motion referred to null wave fronts
(in this case, those defined by laser cavity modes), while
Eq. (10) describes motion on a 2D surface at rest, in this
case the plane of the interferometer. We have not yet
investigated the detailed connection between these differ-
ent views of the effect. Equation (10) describes a conjugate
relationship between two transverse directions not present
in Eq. (24): it can ‘‘squeeze uncertainty’’ into one direction
or another, it is manifestly linear and nondispersive in each
direction, and it is motivated here by connection to a time
series of Moyal deformations. Both equations represent a
similar information bound, corresponding to the holo-
graphic number of degrees of freedom, and display similar
macroscopic uncertainty.

IV. STATISTICAL PROPERTIES OF
HOLOGRAPHIC NOISE

The above properties suffice to estimate the statistical
properties of the noise in an interferometer. We express the
detected phase as the apparent arm-length difference XðtÞ,
in length units. We first estimate the time-domain autocor-
relation function for a single interferometer, defined as

�ð�Þ � lim
T!1ð2TÞ

�1
Z T

�T
dtXðtÞXðtþ �Þ � hXðtÞXðtþ �Þi:

(27)

The mean square displacement over an interval � is then
related to the correlation function by

h½XðtÞ � Xðtþ �Þ�2i ¼ 2hX2i � 2�ð�Þ (28)

The Planckian random walk described above leads over
short intervals to a mean square displacement linear in �:

h½XðtÞ � Xðtþ �Þ�2i ¼ c2tP�ð2=�Þ; (29)

where we have normalized the coefficient to agree with the
value of �X2 ¼ c�‘0P ¼ c2�tPð2=�Þ derived above from
the wave packet theory normalized to black hole entropy. It
is expected that the simple random-walk described by
Eq. (29) should hold for � � 2L=c, since the size of the
apparatus should not affect the behavior.

For c� ¼ 2L, the autocorrelation must vanish, because
the random walk in phase is limited by the size of the
apparatus. The light in the two directions of the interfer-
ometer is not the same as waves arriving from infinity, but
is prepared differently, by interactions with the beam split-
ter. The beam splitter has a definite (classical) position at
any given time; however, the light from this one instant
enters the detector at times separated by 2L=c, having
propagated in different directions. The random walk is
thus bounded; an interferometer does not measure holo-
graphic fluctuations of larger physical size, but only those
within the causal boundaries defined by a single light round
trip � ¼ 2L=c, the longest time interval over which relative
phases in the two directions experience a differential ran-
dom walk that affects the measured phase. If one arm is
regarded as a reference clock, the train of pulses used to
compare with the other arm only has a ‘‘memory’’ lasting
for a time 2L=c before it is ‘‘reset.’’
These constraints lead to an estimate of the overall

correlation function that is sufficiently precise to design
an exploratory experiment. The total variance is hX2i ¼
�ð� ¼ 0Þ ¼ 4ctPL=�. Using Eqs. (28) and (29), that is,
simply extrapolating the linear behavior to � ¼ 2L=c, the
autocorrelation function then becomes

�ð�Þ ¼ ð2ctP=�Þð2L� c�Þ; 0< c� < 2L (30)

¼ 0; c� > 2L: (31)

The time-domain correlation fixes other measurable sta-
tistical properties, including the frequency spectrum. The

spectrum ~�ðfÞ is given by the cosine transform,

~�ðfÞ ¼ 2
Z 1

0
d��ð�Þ cosð�!Þ; (32)

where! ¼ 2�f. Integration of this formula using Eq. (30)
gives a prediction for the spectrum of the displacement
noise,

~�ðfÞ¼ 4c2tP
�ð2�fÞ2 ½1�cosðf=fcÞ�; fc�c=4�L: (33)

The spectrum at frequencies above fc oscillates with a

decreasing envelope that scales like ~�ðfÞ / f�2. At fre-
quencies much higher than fc, the mean square fluctuation

in a frequency band �f goes like ~�ðfÞ�f / ð�f=fÞ�
ðc2tP=fÞ. This is independent of L, as it should be, and
shows the increasing variance in position as f decreases.
The apparatus size acts as a cutoff; fluctuations from

longer longitudinal modes do not add to the fluctuations,
and the spectrum at frequencies far below fc approaches
a constant. In particular, the mean square displacement
averaged over a time T much longer than 2L=c is
� ð4ctPL=�Þð2L=cTÞ, showing what has already been
stated, that the effect in a given spatial volume decreases
in a time-averaged experiment. This simply reflects the fact
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that the frequency spectrum of the displacement is flat at
frequencies far below the inverse system size.

These results can be extended to estimate the cross
correlation for two interferometers, including the cases
when they are slightly displaced from each other or
misaligned. Let XA; XB denote the apparent arm-length
difference in each of two interferometers A and B. The
cross correlation is defined as the limiting average,

�ð�Þ� � lim
T!1ð2TÞ

�1
Z T

�T
dtXAðtÞXBðtþ �Þ

� hXAðtÞXBðtþ �Þi: (34)

Based on the above interpretation of the uncertainty, we
adopt the following rule for estimating cross correlations.
Transverse displacements are the same to first order on the
space-like surface defined by each null plane wave front,
and decorrelate only slowly (to second order in ! for each
mode) with transverse separation. Thus, the differential
phase perturbations in the two machines are almost the
same when both pairs of laser wave fronts are traveling in
the same direction at the same time in the lab frame, with
small transverse separation compared to the propagation
distance. If they are displaced or misaligned the correlation
is reduced by appropriate directional and overlap projec-
tion factors.

For example, consider two aligned interferometers con-
figured as in Fig. 3(b), displaced by a small distance �L
along one axis, where �L � L. The cross correlation of
measured phase displacement (in length units) becomes

��ð�Þ� ð2ctP=�Þð2L�2�L�c�Þ; 0<c�<2L�2�L

(35)

¼ 0; c� > 2L� 2�L: (36)

That is, the cross correlation is the same as the autocorre-
lation of the largest interferometer that would fit into the
in-common spacetime volume between the two. These
formulas provide concrete predictions for experimental
tests of the framework presented here. Assuming the theory
is correctly normalized by black hole thermodynamics,
there are no free parameters in the predictions, so there is
a clearly defined experimental target.

Another simple configuration is two adjacent interfer-
ometers, with one arm of each parallel and adjacent to the
other but with the other arms extending in opposite direc-
tions, as in Fig. 3(c). In this setup the space-like surfaces
defined by wave fronts in the opposite arms never coincide.
Since the causal diamonds of those end mirrors do not
overlap, the holographic noise in the two signals is uncor-
related, even though their other diamonds do overlap.

In addition, in this configuration the beam splitters are at
right angles to each other and therefore the phases of
reflected light depend on precisely orthogonal components
of displacement, so their signals should be uncorrelated.
This result can be derived in the operator description. For

the configuration just described, with opposite arms along
axis 1, the cross correlation of the two machines A and B at
zero lag (� ¼ 0) is

hXAXBi ¼ h½�x1AðtÞ � x2Aðt� 2L=cÞ�
� ½x1BðtÞ � x2Bðt� 2L=cÞ�i (37)

¼ h�x1AðtÞx1BðtÞ þ x2Aðt� 2L=cÞx2Bðt� 2L=cÞ (38)

� x2Aðt� 2L=cÞx1BðtÞ þ x1AðtÞx2Bðt� 2L=cÞÞi: (39)

In machine A, a positive displacement along axis 1 length-
ens arm 1, while in machine B it shortens it; this appears as
the opposite signs for the machines in line (37). The terms
in line (38) then cancel, while the summed terms in line
(39) average to zero by symmetry, so the overall cross
correlation vanishes. This argument also shows that the
cross correlation in this setup should vanish, providing a
useful configuration for an experimental null control. Note
that cross correlation in this setup would not vanish for
fluctuations caused by gravitational waves or metric fluc-
tuations, or other sources of conventional environmental
noise.

V. COMPARISON WITH EXPERIMENTS

It is useful to compare sensitivity to Planckian direc-
tional position fluctuations in the language of frequency
error (or Allan variance) often used to characterize clocks.
Planck precision here does not mean a clock error of one
Planck time; rather, it means a total random error that
accumulates like a random walk of a Planck time per
Planck time. Variance from an ideal clock (or between
two clocks) grows linearly with time interval �, while the
fractional clock error decreases over longer intervals like

��1=2. In the case of Planckian position noise, the differ-
ence of position in two directions similarly fluctuates as a
Planckian random walk up to the scale of the apparatus.
With the adopted Planckian normalization [Eq. (29)],

the fractional standard deviation over a duration � is

��ð�Þ
�

� �tð�Þ=� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 5:39� 10�44 sec

��

s

¼ 1:85� 10�22=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�= sec

p
: (40)

For comparison, frequency error in the best atomic clocks

is currently [36] ��ð�Þ=� ¼ 2:8� 10�15=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�= sec

p
. Thus

the predicted noise level is far below the currently practi-
cable level of time measurements using atomic clocks. It is
not possible, for example, to measure Planckian position
variations using local time standards.
However, over short (but still macroscopic) time inter-

vals, Planckian noise in position differences, between two
directions, may be detectable using interferometers. For
durations � � 2L=c, interferometers are, in this limited
differential sense, by far the most stable clocks.
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Current sensitivities of LIGO and GEO600 are shown in
Fig. 5, along with the holographic-noise prediction,
Eq. (40). Figure 6 compares a wider range of experimental
approaches, and shows that interferometry is currently the
most promising approach to detect the effect.

Consider first a direct, naı̈ve comparison of predicted
and measured displacement spectral densities. The
low-frequency limit of the predicted spectral density,
Eq. (33), is

~�ðfÞ � 8tPL
2

�
; f � fc: (41)

The rms fluctuation corresponding to this flat spectrum
is shown in Fig. 5 as dashed lines for LIGO and GEO600.
The experimental points are taken from published noise
curves [37–39] at the most sensitive frequency. For
L ¼ 600 m, the predicted amplitude spectral density is

ffiffiffiffiffiffiffiffiffiffiffi
~�ðfÞ

q
¼ 2:2� 10�19 m=

ffiffiffiffiffiffi
Hz

p
, slightly higher than the

observed minimum noise in GEO600. For LIGO, the
predicted value is much higher than the measured noise.
At first glance this comparison makes it look like holo-

graphic noise should already have been detected, if it
exists. The fact that LIGO does not see excess noise at
this level constrains the spectral density of random noise in
metric fluctuations to well below the Planckian value.
Indeed, this result rules out some earlier theories of
Planck-scale fluctuations [25].
However, it is important to take detailed account of the

response of these specific interferometers to holographic
displacements at the frequencies being measured. The
quoted noise levels are for displacements caused by gravi-
tational waves, which have a different physical character
from holographic noise. LIGO and GEO600 both employ
interferometer configurations that increase their sensitiv-
ities to low-frequency gravitational waves, without in-
creasing their sensitivity to holographic noise.
In the case of GEO600, the arms are folded; in the case

of LIGO, the arms have Fabry-Perot cavities. In both cases,
extra inboard mirrors near the beam splitter reflect light
back to the end mirrors. These features amplify the phase
response to low-frequency gravitational-wave displace-
ments. Total phase displacement from gravitational waves
adds coherently over multiple reflections in the arm folds
or cavities as the wave passes, just as if the arms were
longer. The displacement of the inboard mirrors by a low-
frequency wave adds to the measured phase displacement.
However, such single-arm amplification does not happen in
response to holographic position jitter, since the jitter does
not affect normal reflections along a single direction, but
only arises in a comparison of two different directions. The
inboard test masses (mirrors) and end mirrors reflect light
in a single direction, and in each arm they are always in the
position eigenstate for that direction. Indeed, this behavior
derives directly from the definition of position we adopted
at the beginning: everything along a null trajectory in a
single direction is always in the same position state for that
direction, and all interactions with light traveling in that
direction are the same as the classical case. If the transverse
jitter is visualized as a classical motion, this directional
coherence appears like a quantum-mechanical ‘‘spooky
action at a distance.’’ But the only departure from classical
behavior comes where the positions in two directions are
compared, in this case by beam splitter reflections.
Thus, the extra reflections in cavities or folded arms do

not contribute holographic phase noise. In these configu-
rations, the signal is sensitive to holographic jitter only of
the beam splitter relative to the end mirrors at any given
time. That displacement is determined by the physical
length of the arms, i.e., the causal diamond, which is
smaller than the light storage time that determines the
LIGO and GEO600 low-frequency gravitational-wave
sensitivity. Thus, LIGO’s holographic-noise sensitivity is

FIG. 5 (color online). Differential-position fluctuation as a
function of time interval or wave period. Both scales are in
meters. For interferometers, the radius of the causal diamond is
the arm length, L. The holographic-noise line refers to the
transverse displacement amplitude estimated in Eq. (40), for
time interval c� ¼ 2L. For averaging time c� � 2L, corre-
sponding to the flat low-frequency limit of the predicted spec-
trum, Eq. (41), the mean fluctuation amplitude falls off asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�ðfÞ�f

q
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2L=c�
p

, as shown by the dashed lines for the

600 m arms of GEO600 and 4 km arms of LIGO. Current
GEO600 and LIGO sensitivities show the standard deviation
of displacement at the minimum of their noise curves, about
800 Hz and 150 Hz, respectively, for gravitational wave induced
displacements. This plot does not show the additional factor to
correct for the reduced response of these particular layouts to
holographic noise. Folded arms in GEO600, and Fabry-Perot
arm cavities in LIGO, reduce sensitivities to holographic noise
by about a factor of 2 and 100, respectively, at low frequencies,
so current measurements remain above the holographic-noise
predictions. The point labeled Holometer shows the estimated
photon shot noise limit for two 40 m, colocated interferometers,
with the same cavity power as GEO600, cross-correlated for 1 h
up to frequency c=2L ¼ 3:74 MHz. An instrument of this kind
should be able to convincingly rule out or detect holographic
noise.
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worse than its sensitivity to gravitational-wave displace-
ments at low frequencies by about the number of reflec-
tions in the Fabry-Perot cavities, or about a factor of a
hundred; in the case of GEO600, the suppression from
folded arms is a factor of 2. When this factor is included,
holographic noise is not currently ruled out by either LIGO
or GEO600. The latter is within a factor of two of being
limited primarily by holographic noise, if the overall nor-
malization adopted here is correct.

It appears that current interferometer technology is
nearly able to detect the effect, but that a new experiment
must be built to achieve a convincing detection or limit.
The optimal frequency for holographic-noise detection is
� c=2L, two to three orders of magnitude higher than the
optimal frequencies of gravitational-wave detectors. The
design should be optimized to allow a direct measurement
of holographic noise, and to distinguish it from other noise
sources, particularly the dominant photon shot noise.

One way to isolate the holographic component of noise
as a distinctive signal is to cross-correlate two nearly
colocated interferometers at high frequencies. Because of
their overlapping spacetime volumes, their holographic
displacements are correlated [as in Fig. 3(b) and Eq. (35)
], whereas their photon shot noise is independent. With a
long integration, a time-averaged holographic correlation
emerges above uncorrelated photon shot noise, in a way
similar to the correlation technique used with LIGO at
much lower frequencies for isolating gravitational-wave
stochastic backgrounds. (The LIGO correlation studies
however do not themselves constrain holographic noise,
because the interferometers being correlated are not colo-
cated—indeed, they are kept separate to avoid acoustic
sources of cross correlation at low frequency.)
An experiment based on this concept is currently

under construction at Fermilab using two nearly colocated
interferometers with 40 m arms. Their signals will be

FIG. 6 (color online). Comparison of measurement precision of a larger variety of experiments to position fluctuations.
Differential position change in length or time is plotted as a function of system size or duration, both with decimal log
scales in meters, extending from the Planck scale to the Hubble scale. The holographic-noise prediction and interferometer
sensitivities are shown as in Fig. 5, with the addition of LISA. Rough estimates of precision with current technology for
other experimental techniques are labeled. The upper dashed line shows rough scales of natural systems; the lower dashed
line shows a fractional transverse position fluctuation, or angular indeterminacy, �x=x ¼ ��=� ¼ �� ¼ 10�20. Laser-based
interferometry is the most sensitive technique by this measure, and the only one currently capable of detecting holographic
noise.
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correlated at high frequencies, that is, � c=2L �
3:74 MHz (40 m=L), to reduce shot noise and distinguish
other external sources of cross correlation. If noise
is dominated by photon shot noise comparable to
GEO600 (that is, if they have the same laser power on
the beam splitters), the sensitivity can be estimated
by extrapolation from GEO600’s measured noise
at � 800 Hz. The differential-position amplitude spectral

density in m=
ffiffiffiffiffiffi
Hz

p
is the same; the rms displacement

sensitivity is worse than GEO600 by the bandwidth

factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:74� 106=800

p
, but is then improved over an

integration interval � by a factor ð��3:74�106HzÞ�1=4.
This estimate for � ¼ 1 hour is labeled ‘‘Holometer’’ in
Fig. 5. An experiment based on this design that achieves
the photon shot noise limit should achieve a highly signifi-
cant detection of Planckian holographic noise, if it exists.
As a control, the holographic noise can be ‘‘turned off’’ by

correlating interferometers in a null configuration, as in
Fig. 3(c).
This experiment will explore quantum departures from

classical behavior of position in spacetime that have never
been tested before to Planckian precision, and that lie
beyond the current predictive scope of reliably tested
physical theory. Because new spacetime physics is sus-
pected to appear at the Planck scale, it appears to be well
motivated as an exploratory experiment.
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