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We study the spherical, top-hat collapse model for a mixed dark matter model including cold dark

matter (CDM) and massive neutrinos of mass scales ranging from m� ’ 0:05 to a few 0.1 eV, the range of

lower and upper bounds implied from the neutrino oscillation experiments and the cosmological

constraints. To develop this model, we properly take into account relative differences between the density

perturbation amplitudes of different components (radiation, baryon, CDM, and neutrinos) around the top-

hat CDM overdensity region assuming the adiabatic initial conditions. Furthermore, we solve the

linearized Boltzmann hierarchy equations to obtain time evolution of the linearized neutrino perturba-

tions, yet including the effect of nonlinear gravitational potential due to the nonlinear CDM and baryon

overdensities in the late stage. We find that the presence of massive neutrinos slows down the collapse of

CDM (plus baryon) overdensity; however, the neutrinos cannot fully catch up with the nonlinear CDM

perturbation due to its large free-streaming velocity for the ranges of neutrino masses and halo masses we

consider. We find that, just like CDM models, the collapse time of CDM overdensity is well monitored by

the linear theory extrapolated overdensity of CDM plus baryon perturbation, smoothed with a given halo

mass scale, if taking into account the suppression effect of the massive neutrinos on the linear growth rate.

Using these findings, we argue that the presence of massive neutrinos of mass scales 0.05 or 0.1 eV may

cause a significant decrease in the abundance of massive halos compared to the model without the massive

neutrinos, e.g., by 25% or factor 2, respectively, for halos with 1015M� and at z ¼ 1.
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I. INTRODUCTION

Galaxy clusters are the most massive, gravitationally
bound objects in the Universe, therefore, their abundance
and its redshift evolution are very sensitive to cosmology
including the nature of dark energy [1,2] as well as the
primordial non-Gaussianity [3,4]. There are various on-
going and planned surveys capable of finding many clus-
ters under a homogeneous and well-controlled/calibrated
selection, e.g., optical surveys such as the Sloan Digital
Sky Survey (SDSS) [5], Subaru Hyper SuprimeCam
Survey [6,7], and the arcminute-resolution cosmic
microwave background (CMB) experiments, Atacama
Cosmology Telescope [8] and South Pole Telescope [9],
with which clusters can be found via the Sunyaev-
Zel’dovich effect. These cluster catalogs can be used to
derive stringent constraints on cosmological parameters or
more generally test the paradigm of the cold dark matter
dominated structure formation scenario [2,10,11].

The neutrino oscillation experiments have revealed that
the standard three-flavor neutrinos have nonzero masses,
implying that the big bang relic neutrinos contribute to the
present-day mean matter density by at least about 0.4% and
0.8% if the neutrinos follow the normal mass and inverted
mass hierarchies corresponding to the lower bounds on the
sum of neutrino masses, 0.05 and 0.1 eV, respectively (see

e.g., [12]). While the absolute neutrino mass scale is still
unknown, large-scale structure probes provide a powerful
means of constraining the neutrino mass [10,13,14]. In fact
the cosmological probes have put currently the most
stringent upper bound on the sum of neutrino masses—
m�;tot < 0:2–0:8 eV (95% C. L.), the different bounds for

different probes that employ the different level of assump-
tions on nonlinear structure formation [1,15,16]. The on-
going and upcoming cosmological surveys promise to
further tighten the neutrino mass constraint and have the
potential to detect the absolute mass scale, rather than the
upper bound, if systematic errors are well under control.
See [17] for the current status of the cosmological neutrino
constraints and the future prospect.
However, the previous cluster cosmology experiments

rest on the use of a halo mass function calibrated based on
N-body simulations that ignore the effect of massive neu-
trinos (see e.g., [18,19]). Although there are several at-
tempts to simulate nonlinear structure formation in a mixed
dark matter (CDM plus massive neutrinos) model (see
[20,21] for the pioneer work and [22–25] for the recently
revisited attempts), it is still very difficult to accurately
simulate the structure formation especially for the neutrino
mass scales of a few 0.1 eV or lighter, because such light
mass-scale neutrinos have a fast free-streaming motion,
larger than the gravity-induced bulk motion, at relevant
redshift, and it is difficult to represent the (perturbed)
Fermi-Dirac distribution with a finite number of N-body
particles at every spatial position (see [23] for an attempt
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on the grid-based simulation of neutrinos}. There are also
several attempts [26–29] aimed at developing the pertur-
bation theory based approach to analytically model the
nonlinear structure formation for a mixed dark matter
(MDM) model by extending the linear perturbation theory
[30]. However, the perturbation theory based model is only
valid up to the quasinonlinear regime and breaks down for
the nonlinear regime relevant for halo formation.

Therefore, the purpose of this paper is to develop a top-
hat spherical collapse model for aMDMmodel fully taking
into account the effects of a multicomponent system (ra-
diation, baryon, CDM, and neutrinos) (see [31,32] for the
pioneer work on the spherical collapse model for a CDM
model) (also see [33,34]). There are several key ingredients
to include in developing this model. First, we carefully
account for differences in the density perturbation ampli-
tudes of each component around the top-hat CDM over-
density region assuming the adiabatic initial conditions as
predicted from the standard inflation scenario. Second, to
achieve the desired accuracy, we solve time evolution of
the density perturbations from the deeply radiation domi-
nated regime to the present time or from the sufficiently
linear regime to the nonlinear regime, where the initial
density perturbations are on superhorizon scales [35].
Hence, we properly take into account the transition of
perturbations from the superhorizon to subhorizon scales.
Third, to study the neutrino perturbations around the top-
hat CDM overdensity, which cannot be treated as a fluid,
we properly solve the linearized Boltzmann hierarchy
equations [30] taking into account the nonlinear gravita-
tional potential well due to the nonlinear CDM and baryon
perturbations.

The spherical collapse model is an approximatedmethod
for studying the nonlinear dynamics due to the unrealistic
symmetry assumed. Nevertheless, this gives a very useful
tool for studying various effects on nonlinear structure
formation: the spatial curvature or the cosmological con-
stant [36,37], time-varying and/or clustered dark energy
[38–43], the modified dark matter scenario [44], the modi-
fied gravity scenario [45–47], and the effect of baryon
perturbation [35]. As for the effect of massive neutrinos,
we know that the effect is small given the current upper
bounds on the sum of neutrino masses,& a few 0:1 eV (at
most a few percent contribution to the matter density).
Hence we expect that, once the nonlinear dynamics is
realized for a MDM model, we can perturbatively include
the effect of massive neutrino on the CDM simulation based
predictions by slightly modifying the model ingredients.
For example, the halo mass function is given as a function
of the peak height � � �c=�ðM; zÞ, where �ðM; zÞ is the
rms linearmass fluctuations of halomass scaleM at redshift
z, and �c is the linear theory extrapolated critical density as
indeed motivated by the top-hat spherical collapse model
[48]. Given these facts, we may be able to infer the effect of
massive neutrinos on the halo mass function once the

effects on �c and �ðM; zÞ are realized. Thus, along this
approach, we will also discuss the impact of massive neu-
trinos on the abundance of massive halos.
Throughout this paper, we employ, as our fiducial cos-

mological model, a flat �-dominated CDM model that is
consistent with the WMAP 7-year result [49]; the present-
day density parameters of matter and baryon are�m0h

2 ¼
0:1334 and �b0h

2 ¼ 0:0226, respectively; the dimension-
less Hubble parameter is h ¼ 0:71; the spectral tile and
normalization parameter of the primordial power spectrum
are ns ¼ 0:963 and As ¼ 2:43� 10�9, respectively. In
most parts of our paper, when adding massive neutrinos
to the fiducial cosmological model, we vary the CDM
density parameter �c0 by fixing the total dark matter
density to �c0h

2 þ��0h
2 ¼ 0:1108, where the energy

density parameter of a massive neutrino is specified by
the sum of neutrino masses as ��0h

2 ¼ m�;tot=94:1 eV
[12]. We assume the three neutrino species, and assume
one species among them is massive for simplicity.

II METHODOLOGY

In this section, we develop a method for solving a
spherical top-hat collapse of CDM overdensity in a multi-
component system, which consists of radiation (R), baryon
(b), cold dark matter (c), and massive neutrinos (�).

A. Evolutionary equation of top-hat overdensity
on superhorizon scale

To achieve a sufficient accuracy of the spherical top-hat
collapse, we set up the initial conditions of perturbations in
a deeply radiation dominated era, zi ¼ 107 in our case. The
primary reason of this high initial redshift is to reproduce
the results in the earlier work [35] at the limit of massless
neutrino case (m�;tot ! 0), where the authors of [35]

studied the effect of baryon perturbation (without massive
neutrinos) on halos relevant for first stars at redshift
z * 30. Note that, for cluster scale halo formation, we
can start from the later initial redshift such as
z ’ 104–105, but here we use the initial redshift zi ¼ 107

in order to retain a broader coverage of our model validity.
In such a radiation dominated era, the perturbations of
interest are on superhorizon scales. To avoid gauge ambi-
guities that may arise in dealing with such superhorizon-
scale perturbations, we employ the following approach.
Since we are interested in a spherical top-hat overdensity

region, time evolution of such a top-hat region can be most
readily described by a perturbed Friedman universe (e.g.,
[34]). Here we mean by ‘‘perturbed’’ that the top-hat region
is described by a Friedman universe with a small positive
curvature that corresponds to the top-hat density perturba-
tion, where the top-hat region is embedded in the back-
ground Friedmann-Robertson-Walker (FRW) universe that
has a flat geometry. Thus the equation of motion for the
boundary radius of top-hat overdensity region is given as
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� _R

R

�
2 ¼ 8�G

3
½ ��cbð1þ �cbÞ þ ��Rð1þ �RÞ� � k

R2
; (1)

where R is the radius of the top-hat overdensity region of
matter (CDM and baryon) and radiation, ��cb and ��R are the
mean energy densities of matter (CDM plus baryon) and
radiation, and �cb and �R are their overdensities (e.g.,
defined as �R � �R= ��R � 1), respectively. The dot nota-
tion _ denotes the time derivative, and the constant k is the
effective curvature parameter (k > 0) that is given in terms
of the initial overdensity (see below). In this regime, the
massive neutrinos with mass scales that we are interested
in are still relativistic and contribute the radiation. Note
�cb ¼ ð ��c= ��MÞ�c þ ð ��b= ��MÞ�b ¼ �c because of �c ¼
�b on superhorizon scales for adiabatic initial conditions,
where ��M is the mean density of total matter ( ��M ¼
��c þ ��b or ��M ¼ ��c þ ��b þ ��� when the massive neu-
trino is relativistic or nonrelativistic, respectively). Also
note that the dark energy contribution is negligible in a
radiation dominated regime. The scale factor for the back-
ground universe obeys

H2 �
�
_a

a

�
2 ¼ 8�G

3
ð ��cb þ ��RÞ: (2)

We use the linear theory predictions to determine the
initial conditions of perturbations. The spherical top-hat
collapse model is equivalent to the case that the perturba-
tions are solved under the synchronous gauge condition. In
this case, the superhorizon-scale perturbations grow as
�cb / a2 [30,35]. Assuming this growing mode and using
the mass conservation R3 ��cbð1þ �cbÞ ¼ constant yield
the initial condition for the velocity _R=R:

_R

R

��������i
¼ Hi � 2

3

�cb;i

1þ �cb;i

Hi; (3)

where Hi � HðtiÞ and �cb;i � �cbðtiÞ. By inserting Eq. (3)

into Eq. (1) at the initial time ti we can express the effective
curvature parameter k in terms of the initial overdensity
�cb;i as

k

R2
i

� 8�G

3

�
��cb;i þ 4

3
��R;i

�
�cb;i

þH2
i

�
4

3

�cb;i

1þ �cb;i

� 4

9

�
�cb;i

1þ �cb;i

�
2
�
; (4)

where we have used the adiabatic initial condition to
reexpress radiation perturbation in terms of matter per-
turbation as �R ’ ð3=4Þ�cb. Hence Eq. (1) can be rewrit-
ten as� _R

R

�
2¼8�G

3

�
��cbð1þ�cbÞþ ��R

�
1þ4

3
�cb

��
� k

R2
: (5)

The relation between R and � follows from the mass
conservation: ð1þ �cbÞ ¼ ðR=RiÞ�3ð1þ �cb;iÞða=aiÞ3.
Hence, given the initial conditions on Ri (or �cb;i) and

_Ri, Eq. (5) can be solved numerically to obtain time
evolution of the top-hat overdensity �cb until the top-hat
region enters into the horizon.
Equation (5) is an exact equation that can be applied

even if the perturbation amplitude is large (unrealistic
though). In the radiation dominated regime, the linear
theory gives a good approximation. By linearizing Eq. (5)
we can derive the differential equation that governs time
evolution of the linear perturbation �L:

H _�L
cb¼�4�G

�
��cbþ4

3
��R

�
�L
cbþ

16�G

3

a2i
a2

��cb;i�cb;i; (6)

where we have used the fact ��R;i � ��M;i at the initial

redshift. Again note �cb � �L
cb to a good approximation

in this regime.

B. Evolutionary equations of perturbations
on subhorizon scales

When the overdensity region enters into the horizon,
perturbations of different components evolve in different
ways; the CDM overdensity continues to grow, and baryon
and neutrinos cannot grow together with CDM. We de-
scribe below our treatments of each component’s dynamics
on subhorizon scales after the horizon crossing.

1. CDM perturbation

CDM plays a major role in the spherical collapse
model. When the top-hat overdensity region enters into
the horizon, we use the following equation, obtained in
the Newtonian gauge, in order to solve the dynamics up
to the nonlinear collapse of spherical CDM overdensity
region:

€RcðtÞ
RcðtÞ ¼ � 4�G

3
½ ��totðtÞ þ �PtotðtÞ� �G�Mð<Rc; tÞ

R3
cðtÞ

; (7)

where RcðtÞ is the radius of the top-hat region of CDM
overdensity, and ��tot and �Ptot denote the mean energy and
pressure densities, which determine the cosmic expansion
history over the range of radiation, matter, and dark
energy dominated eras. Note RcðtenterÞ ¼ RðtenterÞ at the
horizon crossing, where RðtenterÞ is the radius of the initial
top-hat overdensity region discussed in the preceding
section. The quantity �M is the mass fluctuation within
the CDM overdensity sphere and includes contributions
from CDM, baryon, and neutrino perturbations: �M �
�Mc þ �Mb þ �M�. Note that we ignore perturbations of
dark energy in this paper (see [40,42], for the spherical
collapse model with dark energy perturbations, but with-
out massive neutrinos).
For CDM perturbation, the mass conservation within the

top-hat region holds:

IMPACT OF MASSIVE NEUTRINOS ON THE ABUNDANCE. . . PHYSICAL REVIEW D 85, 063521 (2012)

063521-3



Mc¼4�R3
c

3
��cðtÞ½1þ�cðtÞ�

¼4�R3
c; i;enter

3
��c;i;enterð1þ�c;i;enterÞ

’4�R3
c;i

3
��c;i; (8)

where �cðtÞ is the overdensity at time t, and the quantities
with subscript ‘‘c, i, enter’’ denote their quantities at the
horizon crossing. For the perturbations of interest, the
horizon crossing is earlier than the decoupling epoch,
where the perturbations are well in the linear regime. In
the equation above we have used �c;i � 1 at the initial

redshift, and so we used the fact that ��c;ið1þ �c;iÞ ’ ��c;i.

We determine �c; i; enter,Rc; i; enter, and _Rc; i; enter by matching

the values to those from Eq. (5) at the horizon crossing. We
again stress that, by matching these initial conditions from
superhorizon to subhorizon scales, we can achieve a suffi-
ciently accurate setup of the initial conditions needed for
the nonlinear spherical collapse dynamics, even for a high
collapse redshift such as z * 30.

To solve Eq. (7), we need to specify the mass fluctua-
tions of baryon and massive neutrinos, �MbðtÞ and �M�ðtÞ,
within the spherical region of radius RcðtÞ at each time
step. However, unlike CDM, the mass fluctuations are not
conserved within the CDM top-hat region, because baryon
is dragged out of the CDM potential well due to the tight
coupling with photons before the decoupling epoch, and
neutrinos are free-streaming out of the CDM potential well
due to their large thermal velocities [50]. In fact the linear
perturbation theory gives �c � �b � �� at the decoupling
epoch. Hence, for simplicity, we assume �b ¼ �� ¼ 0
during epochs after the horizon crossing to the decoupling
epoch. One can then find that Eq. (7) gives growing modes
of �c / lna and / a in the radiation and matter dominated
eras in the linear regime (i.e. �c � 1), as expected from
the linear perturbation theory.

After the decoupling epoch (z ’ 103), baryon becomes
cold and follows the mass conservation. We will below
describe our treatments of baryon and neutrino perturba-
tions in subsequent subsections.

Linearizing Eq. (7) yields the following equation to
describe the evolution of linear CDM perturbation:

€�L
c þ 2H _�L

c � 4�G½ ��c�
L
c þ ��b�

L
bð<RL

c Þ
þ ����

L
�ð<RL

c Þ� ¼ 0; (9)

where �L
c is the linear CDM overdensity, and �L

bð<RcÞ and
�L
�ð<RcÞ are the linear density perturbations averaged

within the sphere of radius RL
c . Here the comoving radius

of RL
c is set to the same in the linear theory: RL

c =a ¼
RL
c;i=ai. The initial conditions for �L

c;i and
_�L
c;i are set by

matching to Eq. (6) at the horizon crossing. Before the
decoupling epoch and until sufficiently higher redshift

before halo formation, the equation above gives a good
approximation to Eq. (7).

2. Baryon perturbation

Next let us consider evolution of baryon perturbation in
a CDM top-hat overdensity region.
After the horizon crossing of the spherical top-hat over-

density region until the decoupling epoch (zdec), baryon is
tightly coupled to photon and the baryon density perturba-
tion cannot grow. More exactly, the baryon-photon fluid
oscillates according to the acoustic sound wave in the CDM
potential well—the baryon acoustic oscillations [51]. The
characteristic scale of this clustering is about 150 Mpc for
our fiducial cosmological model. Therefore, even if the
baryon perturbation initially had a top-hat overdensity
profile as in CDM, the baryon perturbation becomes in-
creasingly more spatially extended than the CDM top-hat
region as time goes by until zdec. The linear perturbation
theory predicts that the baryon density perturbation be-
comes much smaller in the amplitude than the CDM den-
sity perturbation at the decoupling epoch for length scales
of interest; �b � �c at zdec for scales of interest.
Therefore, we simply assume that the baryon density

perturbation averaged within the CDM top-hat region is
�bð<RcÞ ¼ 0 during epochs from the horizon crossing to
the decoupling epoch; zenter > z 	 zdec, where zdec is speci-
fied once a background cosmological model is given, e.g.,
from the CAMB code [52]. We have checked that the
spherical collapse of CDM overdensity is not changed
even if we instead use the different assumption;
�bð<RcÞ ¼ �bð<Rc; zenterÞ, where �bð<Rc; zenterÞ is the
baryon overdensity when the CDM top-hat region had
the horizon crossing.
After the decoupling epoch baryon becomes a cold

component, it can cluster together with CDM perturbation.
We can thus use the spherical collapse equation to solve
nonlinear evolution of baryon perturbation in the CDM
top-hat region just like the CDM case [Eq. (7)]:

€RbðtÞ
RbðtÞ¼�4�G

3
½ ��totðtÞþ �PtotðtÞ��G�Mð<Rb;tÞ

R3
bðtÞ

: (10)

Here RbðtÞ is the radius of baryon overdensity region,
which is chosen from the radius satisfying Rb ¼ Rc at
zdec. After the decoupling epoch, the mass conservation
holds: RbðtÞ3 ��bðtÞ½1þ �bð<RbÞ� ¼ constant. The initial
conditions are set to _Rb ¼ HRb at zdec, which corresponds

to _�b ¼ 0, motivated by the fact that baryon-photon cou-
pling prevents baryon perturbation from growing before
the decoupling epoch. Thus the baryon velocity perturba-
tion is different from that of CDM perturbation, given as
_Rb > _Rc, so the time evolution of baryon radius RbðtÞ
differs from the CDM radius RcðtÞ. As times goes by, the
baryon perturbation eventually catches up with the CDM
perturbation as we will explicitly show below.
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3. Neutrino perturbation

The neutrino perturbation on subhorizon scales cannot
be captured by the CDM potential well due to the large
free-streaming velocity. As a result, the neutrino perturba-
tion around the CDM overdensity extends out to a radius
comparable with the free-streaming scale that is given as
�fs ’ a�1H�1�v;�ðzÞ in the units of a comoving scale; here

�v;� is the velocity dispersion of the Fermi-Dirac distrib-

uted neutrinos (see Appendix A in [12] for the definition).
For example, for neutrinos of mass scalem� ’ 0:1 eV, � ’
20h�1 Mpc at z ¼ 0. To model these physical processes
we use the modified CAMB code to solve the time evolu-
tion of neutrino clustering, where we properly take into
account the nonlinear gravitational potential due to non-
linear CDM and baryon perturbations in the late stage (see
[26] for a similar approach to solving the evolution of
mildly nonlinear perturbations).

To be more precise, we solve the linearized Boltzmann
equation that governs time evolution of the neutrino distri-
bution function fðxi; q; n̂j; �Þ ¼ f0ð�Þ½1þ�ðxi; q; n̂j; �Þ�.
Here � is the conformal time, q and n̂j denote the comoving

momentum and its direction, � ¼ ðq2 þ a2m2
�Þ is the

proper energy times scale factor aðtÞ, f0 is the background
distribution function (the Fermi-Dirac distribution), and�
is the perturbed distribution function. The Boltzmann equa-
tion in an expanding universe can be reduced to the follow-
ing hierarchical equations in Fourier space [30]:

_�0¼�qk

�
þ1

6
_	
dlnf0
dlnq

;

_�1¼qk

3�
ð�0�2�2Þ��k

3q
c
dlnf0
dlnq

;

_�‘¼ qk

ð2‘þ1Þ�½‘�‘�1�ð‘þ1Þ�‘þ1� ðl	2Þ;

(11)

where c and 	 are the metric perturbations in the
Newtonian gauge, and the perturbed distribution function
� is expanded in terms of the Legendre polynomials as

�ð ~k;n̂;q;�Þ�X1
‘¼0

ð�iÞ‘ð2‘þ1Þ�‘ð ~k;q;�ÞP‘ðk̂ 
 n̂Þ: (12)

Our main interest is to study the impact of massive
neutrinos on the spherical collapse of CDM overdensity
in the matter or dark energy dominated era. At redshifts
after the decoupling epoch, the difference between metric
perturbations c and 	, which arises from anisotropic
stress, is negligible: c ¼ 	. In this case, the potential
perturbation is given by the Poisson equation as

�k2c ðk; �Þ ¼ 4�Ga2
X

i¼b;c;�

��ið�Þ~�iðk; �Þ; (13)

where ~�iðkÞ denotes the Fourier-transformed coefficients
of the ith component (i ¼ c; b; �). We insert the nonlinear
top-hat overdensities of CDM and baryon into the Poisson

equation above to compute the potential including the
nonlinear contribution. Note that we take the center of
the top-hat region as the coordinate center, which makes
the potential dependent only on the length of wave vector
k; c ðkÞ ¼ c ðkÞ. The corresponding potential for the
linear theory extrapolated density perturbations is com-

puted from �k2c Lðk; �Þ ¼ 4�Ga2
P

i¼b;c;� ��ið�Þ~�L
i ðk; �Þ.

Because we have assumed that CDM and baryon over-
densities take spherical top-hat profiles, whose radii are
Rc and Rb, respectively, the Fourier-transformed counter-
parts of CDM and baryon perturbations are given analyti-
cally as

~�iðk; �Þ ¼ 4�

k3
½sinðkRiÞ � kRi cosðkRiÞ��ið�Þ; (14)

where i ¼ c or b, and �c;bð�Þ are the mean overdensities of

CDM and baryon within their respective top-hat regions.
We can compute the neutrino perturbation in Fourier
space from the zeroth moment of the perturbed distribution
function:

~��ðk; �Þ ¼ 4�a�4
Z

q2dq�f0�0ðk; �Þ: (15)

The corresponding linear perturbation is given as
~�L
�ðk; �Þ ¼ 4�a�4

R
q2dq�f0�

L
0 ðk; �Þ, a standard output

of the CAMB code.
We also need to compute the real-space overdensity of

neutrino perturbations at each time step, which is needed
for the spherical collapse model of CDM and baryon over-
densities. The radial profile of neutrino density perturba-
tion and its mass fluctuation within the CDM or baryon
top-hat regions are

��ðr; �Þ ¼
Z 1

0
4�k2dk

sinðkrÞ
kr

~��ðk; �Þ; (16)

�M�ð<Rc;b; �Þ �
Z Rc;b

0
4�r2dr �����ðrÞ: (17)

We use the publicly available code FFTLog [53] to com-
pute the density profile at each time step, because the code
allows for a fast computation of the integration involving
the Bessel function kernel. Similarly, the density profile
and the mass fluctuation for the linear neutrino perturba-
tion can be obtained by using the linear density perturba-

tion ~�L
�ðk; �Þ instead of ~��ðk; �Þ.

We employ the decoupling epoch zdec to set up the
initial conditions of neutrino perturbations as in the
baryon perturbations. Since the neutrino perturbations at
zdec are well in the linear regime, we can determine the
initial conditions by matching to the linear perturbation
theory predictions. To be more precise, assuming the
adiabatic initial conditions, we can determine the neutrino
density perturbation at zdec around the top-hat CDM over-
density region [54]:

~��ðk; �decÞ ¼ �L
�ðk; �decÞ ¼ T�ðk; �decÞ

Tcðk; �decÞ �
L
c ðk; �decÞ; (18)
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where ~�cðk; �decÞ is the Fourier transform of the CDM
top-hat overdensity [Eq. (14)], and the functions
T�ðk; �decÞ and Tcðk; �decÞ are the transfer functions of
massive neutrinos and CDM at zdec, respectively. We
use the CAMB outputs to obtain the transfer functions.
The ratio T�=Tc takes into account the relative amplitude
difference of neutrino and CDM perturbations at zdec
under the adiabatic initial conditions. We compute the
zeroth moment of the perturbed distribution �0ðk; zdecÞ
at the initial time by multiplying the CAMB output

Tr½�L
0 ðk; �decÞ� with ~�cðk; zdecÞ=Tcðk; �decÞ so that

Eq. (15) gives the neutrino density perturbation around
the CDM top-hat overdensity, where Tr½�L

0 ðk; �decÞ� is the
linear transfer of the zeroth moment of the perturbed
distribution function. Similarly, we compute the higher-
order function �lðk; zdecÞ (l 	 1) from the CAMB outputs

Tr½�L
l ðk; zdecÞ� multiplied by ~�cðk; zdecÞ=Tcðk; zdecÞ. We

can obtain the subsequent evolution of neutrino pertur-
bations by solving the Boltzmann equation hierarchies
[Eq. (11)] given these initial conditions at zdec.

Our approach above is still an approximation; we used
the linearized Boltzmann equations where each term in the
hierarchies depends linearly on perturbation quantities.
In other words, even though we include the effect of non-
linear gravitational potential, we ignore nonlinear terms in
the Boltzmann equations, e.g., the term proportional to
Oð�	Þ, which can be important if the neutrino perturba-
tion itself becomes nonlinear. We will come back to this
issue later.

C. Summary: Our recipe for solving the spherical
top-hat collapse model

Here is a quick summary of the procedures we take for
solving the spherical top-hat collapse model in a multi-
component system of CDM, baryon, and neutrinos.

(1) Choose a target mass scale of halo,Mc, to determine
the comoving scale of the spherical top-hat CDM

overdensity region via the relation Rc;0ðMcÞ ¼
ð3Mc=4� ��c;0Þ1=3.

(2) Solve the linear CDM perturbation of the comoving
scale Rc;0 from the initial time zi ¼ 107 to the

present time based on the linear perturbation theory,
assuming the adiabatic initial conditions. In these
calculations we properly take into account the fact
that the density perturbations are on superhorizon
scales in early epochs, enter into the horizon, and
evolve on subhorizon scales.

(3) Choose a target collapse redshift zcoll that corre-
sponds to the halo formation. Then, as a first guess,
normalize the initial top-hat CDM overdensity,
�cðziÞ, for a given cosmological model in such a
way that the linear theory extrapolated overdensity
satisfies the condition �L

c ðzcollÞ ¼ 1:686ð1þ zcollÞ, a
prediction for the collapse redshift for Einstein–
de Sitter model, a CDM model without baryon and
massive neutrino contributions.

(4) Solve the spherical top-hat collapse of CDM over-
density [Eq. (7)], coupled with the spherical top-hat
collapse of baryon overdensity [Eq. (10)] and the
linearized Boltzmann equations of neutrino pertur-
bations (see Sec. II B 3).

(5) Solve the nonlinear evolution of CDM overdensity
until �c ! 1. Iteratively solve the spherical col-
lapse model by changing the initial overdensity
amplitude �cðziÞ until the CDM overdensity
comes to collapse at the target collapse redshift,
�cðzcollÞ ! 1. Also obtain the linear theory ex-
trapolated overdensity for CDM or CDM plus
baryon perturbations, �L

c ðzcollÞ or �L
cbðzcollÞ.

Table I also gives a quick summary of these treatments,
clarifying which equations we use for solving the spherical
top-hat collapse model.
It would also be useful to explicitly list the assumptions

we employ for the spherical collapse model:
(i) We used the linearized Boltzmann hierarchy

equations to solve the time evolution of linearized
neutrino perturbations. However, we include the
effect of nonlinear gravitational potential due

TABLE I. A quick summary of our recipe used for solving the spherical top-hat collapse model in a multicomponent system (CDM,
baryon, massive neutrinos, and radiation), where the initial top-hat CDM overdensity drives the collapse at late times. We set the initial
time to be in the deeply radiation dominated regime, zi ¼ 107, in order to achieve a sufficient accuracy of setting up the initial
conditions needed for the nonlinear dynamics. Also note that we assumed the adiabatic initial conditions that determine the relations
between density perturbation amplitudes of different components at the initial time (see text for details). The density perturbations of
interest are on superhorizon scales at the initial time, enter into the horizon, and evolve on subhorizon scales. The notation ‘‘,’’
denotes the matching of perturbations between different equations. Massive neutrinos with mass scales (& a few 0:1 eV) become
nonrelativistic after the decoupling epoch (zdec), and we set up the neutrino perturbation amplitudes at zdec by matching with the
CAMB outputs (see text for details).

Superhorizon Subhorizon before the decoupling (zdec) Subhorizon after zdec

CDM perturbed FRW [Eq. (5)] , spherical collapse model [Eq. (7)] spherical collapse model [Eq. (7)]

Baryon perturbed FRW [Eq. (5)] �b ¼ 0 spherical collapse model [Eq. (10)]

Massive-� perturbed FRW [Eq. (5)] �� ¼ 0 , linearized Boltzmann eqs. (Sec. II B 3)

Radiation perturbed FRW [Eq. (5)] - -
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to the nonlinear CDM and baryon density
perturbations.

(ii) We assumed the top-hat profiles of CDM and
baryon perturbations.

(iii) We set the baryon and neutrino density perturba-
tions to zero, i.e. �b ¼ �� ¼ 0, before the decou-
pling epoch, because we found it gives a good
approximation compared to a more rigorous calcu-
lation under the adiabatic initial conditions.

For the second assumption above, rigorously speaking,
even if we consider a spherically symmetric top-hat over-
density region at the initial time, the radial profile become
changed by the presence of radiation, baryon, and neutrino
perturbations, which go out of the CDM overdensity region
after the horizon crossing. As a result, the overdensity
region no longer obeys a top-hat profile. However, a spheri-
cal top-hat collapse model is anyway an approximated
method for studying the nonlinear dynamics of the initial
overdensity regions, preferentially representing density
peaks in the primordial perturbations. Hence the top-hat
overdensity region can be interpreted as the average den-
sity contrast around such density peaks after making a top-
hat filtering with the smoothing scale of target halo mass
scale {see e. g, [34], for a similar discussion). For these
reasons, our treatment of assuming a spherically symmet-
ric, top-hat overdensity for CDM perturbation is adequate
enough for our purpose. Our main goal is to study the
impact of massive neutrinos on the spherical collapse by
comparing the results with and without massive neutrino
contribution. Also note that our method includes the limit
of spherical collapse for a pure CDM model without
baryon and massive neutrino contributions, by imposing
�b ¼ �� ¼ 0.

III. RESULTS

A. Spherical collapse in a mixed dark matter model

To compute the spherical collapse model, we assume a
flat-geometry cold dark matter,� dominated cosmological
model (�CDM) that is consistent with the WMAP results
[49]. We further need to specify neutrino parameters. In
this paper, we assume standard three flavors of neutrinos.
Because structure formation is sensitive only to the sum of
the three-species neutrino masses, we assume, for simplic-
ity, that only one species of neutrinos are massive and other
two species are massless. In this case, the neutrino free-
streaming scale is shortest for a fixed total neutrino mass
(or a fixed ��0), and therefore the neutrino has the largest
ability to cluster on small scales compared to a case that the
total neutrino mass is split into different species. We then
study how the spherical collapse is affected by a massive
neutrino assuming the mass scale ranging from 0.05 to a
few 0.1 eV. This range of mass scales covers the lower and
upper bounds on the neutrino mass implied from the neu-
trino oscillation experiments and the cosmological con-

straints [15–17]. In most parts of this paper, when we
add the massive neutrinos, we keep the energy density of
‘‘dark matter’’ (�c0 þ��0) and other parameters fixed,
and vary �c0.
Figure 1 shows how the CDM top-hat overdensity grows

as a function of cosmic time. We assumed m� ¼ 0:05 eV
for neutrino mass, a mass scale close to the lower bound
implied from the normal mass hierarchy, and halo mass
scale M ¼ ð4�=3ÞR3

c;i ��c;i ¼ 1014h�1M� corresponding to

the comoving radius, Rc;0 ¼ 6:89h�1 Mpc, for our fiducial
�CDM model. By considering massive halos, we can
estimate the largest effect of neutrinos on the spherical
top-hat collapse, as such a massive halo has the ability to
trap neutrinos around it due to the deepest gravitational
potential well. We, as a working example, set the initial
CDM overdensity so that the top-hat region collapses at
redshift zcoll ’ 0:5 for a model without massive neutrino.
The plot also shows the baryon density contrast within

the CDM top-hat region as well as the radial profile of
neutrino perturbations out to radii outside the top-hat re-
gion. Note that, for the baryon perturbation, we show only
its density contrast within the CDM top-hat region (more
exactly speaking, the baryon overdensity region is slightly
more spatially extended than the CDM as we described
above). At sufficiently high redshifts such as z ¼ 570, the
baryon and neutrino perturbations are smaller in the am-
plitudes than the CDM density contrast. Then at lower
redshifts, the baryon perturbation eventually catches up
with the CDM perturbation. For this particular case, at
lower redshifts z & 30, the comoving radius of the CDM
top-hat region starts to shrink, entering into the nonlinear
regime (or equivalently deviating from the linear evolu-
tion). The figure explicitly demonstrates that the CDM and
baryon perturbations, i.e. cold components, can collapse
together having �c, �b ! 1 at the collapse redshift.
On the other hand, the neutrinos of this mass scale

cannot catch up with the CDM perturbation due to the
large free-streaming velocity. To be more precise, the
present-day free-streaming scale in the comoving scale
unit is �fs ’ �v;�H

�1
0 � 40h�1 Mpc (see Appendix A in

[12]), which is much larger than a few Mpc, a scale of the
virial radius of massive halos. The plot shows that the
neutrinos are indeed clustering around the CDM top-hat
region, and come to have the radial profile. The neutrino
perturbation peaks at the center of the CDM top-hat region,
but the density contrast is still smaller than unity, so not yet
in the highly nonlinear regime. More precisely, the neu-
trino perturbation averaged within the CDM top-hat region
�� ’ 0:19 at the collapse redshift. We have also checked
that, when the neutrino mass is in the range smaller than a
few 0.1 eV, the neutrino density contrast grows only up to
the weakly nonlinear regime �� ’ a few even at the col-
lapse time (for the case ofm�;tot ¼ 0:1 eV, �� ’ 0:51 at the
collapse redshift). Note that, for the halo of 1015M� and
the collapse redshift zcoll ’ 0:5, �� ’ 0:54 and 2 for
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m�;tot ¼ 0:05 and 0.1 eV, respectively. Therefore, our

approach using the linearized Boltzmann equations for
neutrino perturbations is approximately validated. Once
the halo is formed via virialization of the kinetic and
gravitational bound energies, the neutrino would become
stably clustered around the halo region as studied in
[55,56]. Nevertheless, the resulting neutrino overdensity

is much smaller than the CDM and baryon perturbations in
a halo region; therefore, we ignore the neutrino mass
contribution to the halo mass in the following analysis
for simplicity.
Figure 2 shows the time evolution of density contrasts

within the top-hat region for each component. Note that we
computed the neutrino density contrast by averaging the

FIG. 1 (color online). Radial profile of density perturbation for each component (CDM, baryon, and massive neutrino) in the CDM
top-hat overdensity region assuming the adiabatic initial conditions to determine relative amplitudes of different components. We plot
the profiles in units of comoving scale, Mpc=h. We assumed m� ¼ 0:05 eV for neutrino mass scale, R ¼ 6:89 h�1 Mpc for radius of
the top-hat region, which corresponds to halo mass scale M ¼ 1014 h�1M� for our fiducial cosmological model, and determined the
initial density amplitude so that the top-hat region collapses around z ¼ 0:5. Note that, for the baryon perturbation, we show its density
contrast within the CDM top-hat region for illustrative clarity (the baryon top-hat perturbation computed is spatially more extended,
and holds the mass conservation within its own top-hat region). The different panels show the profiles at different redshifts as
indicated. At sufficiently early redshift such as z ¼ 570, after the decoupling epoch, �b, �� � �c, because baryon was coupled with
radiation until the decoupling epoch (z ’ 1100) and neutrino was free streaming out of CDM potential well. As time goes by, the
baryon perturbation eventually catches up with the CDM perturbation. Then at redshifts lower than z ’ 30 for this case, the top-hat
radius starts to shrink and the top-hat dynamics deviates from the linear theory and enters into the nonlinear regime. As for neutrinos,
the large velocity dispersion of neutrino particles prevents them from catching up with the nonlinear collapse and then begins to have a
more spatially extended profile than the CDM and baryon top-hat region. Even when CDM and baryon collapse (z ’ 0:5), the neutrino
perturbation stays in the quasi nonlinear regime as �� & 1.
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density profile within the top-hat region. The CDM and
baryon collapse at zcoll ’ 0:48 having �c, �b ! 1. The
neutrinos are affected by the nonlinear clustering of CDM
perturbations, but do not enter into the highly nonlinear
regime.

In Fig. 3, we compare the spherical collapses of CDM
perturbation for models with and without baryon perturba-
tion and/or massive neutrino contributions. We used the
same initial conditions of CDM perturbation except for the
result without baryon perturbation ( labeled as ‘‘w/o �b and
m�’’). For the model without baryon perturbation (thin
solid curve), we set the CDM perturbation amplitude to
match the CDM amplitude at zdec for our fiducial model
(without massive neutrino), but set �m0 ¼ �c0. In this
case, if we set a sufficiently early collapse redshift, this
model gives the collapse redshift given by �cðzcollÞ ’
1:686ð1þ zcollÞ, the case for an Einstein–de Sitter model.
At later collapse redshift, the cosmological constant be-
comes dominant in the cosmic expansion, and the collapse
redshift differs from the Einstein–de Sitter prediction. This
result is compared with other curves. First, the dashed
curve shows the collapse of CDM perturbation �c when
the baryon perturbation is added. The presence of baryon
perturbation, which cannot grow during epochs from the
horizon enter until the decoupling epoch, delays the spheri-
cal collapse. The delay is rather significant, from zcoll ’ 0:9
to 0.5, and therefore the result suggests that we need to
carefully take into account the effect of baryon perturba-
tion on the nonlinear structure formation in N-body simu-
lations, especially when we set up the initial conditions (we

will discuss this issue later). The bold solid and dotted
curves show the spherical collapse when massive neutrino
is further added for mass scales of 0.05 and 0.1 eV, re-
spectively. The collapse redshifts are further delayed as
zcoll ’ 0:48 and 0.45, respectively. These mass scales cor-
respond to the lower bounds on total neutrino mass for the
normal and inverted mass hierarchies. Thus, adding the
smoother, massive components into the CDM perturbation
progressively delays the spherical collapse.
We then study the linear theory extrapolated overdensity

at the collapse redshift (we will often call it the critical
overdensity hereafter). In Fig. 4 we show the critical over-
density of CDM plus baryon perturbation, �L

cbðzcoll;RÞ,
smoothed with length scales R ¼ 6:89 and 14:8h�1 Mpc
corresponding to halo mass scales M ¼ 1014 and
1015h�1M�, respectively, (the subscript ‘‘cb’’ stands for
CDM plus baryon). The overdensity �L

cbðz; rÞ can serve as a
clock to infer the collapse redshift, because it can be easily
computed once the initial power spectra of CDM and
baryon perturbations, halo mass scale, and cosmological

FIG. 3 (color online). Time evolution of the CDM top-hat
overdensity for different models. The dashed curve shows the
result for our fiducial cosmological model without massive
neutrino. We again assumed the halo mass scale M ¼
1014h�1M� and determined the initial CDM perturbation so
that the top-hat region collapses at z ’ 0:5. The solid curve
shows the result when ignoring the baryon perturbation, where
the CDM perturbation amplitude is set so as to match that of the
dashed curve at the decoupling epoch z ’ 1100. Note that the
model of the solid curve leads the linear theory extrapolated
overdensity to be �L ¼ 1:686 at redshifts before dark energy
domination in the cosmic expansion (the result shown here is
affected by dark energy domination). Comparing the solid and
dashed curves manifests that the presence of baryon perturba-
tion, which has a smaller amplitude at earlier redshifts as implied
from Figs. 1 and 2, delays the spherical collapse. The solid and
dotted curves show the results when further including massive
neutrino for a fixed dark matter density�c0 þ��0. The neutrino
perturbation is smoother than that of CDM perturbation, and
delays the spherical collapse.

FIG. 2 (color online). Time evolution of the density contrast of
each component, averaged within the CDM top-hat region. We
used the same initial conditions and model parameters as in
Fig. 1. For this particular case, the neutrino perturbation aver-
aged within the CDM top-hat region �� ’ 0:19 at the collapse
redshift, and therefore is still in the quasi nonlinear regime.
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model are specified. In an Einstein–de Sitter universe
(�c0 ¼ 1), which includes CDM alone, the critical
overdensity can be derived analytically [31,32] and is
found to be �L

c ðzcÞ ¼ 1:686, independently of halo mass
and collapse redshift. Even for a model with curvature or
dark energy contribution, the critical density �L

c ðzcÞ �
1:686 format:justify/>to a good approximation, indepen-
dently of halo mass [36–38]. The top solid curve shows the
critical overdensity when baryon is included, but massive
neutrino is ignored. The critical overdensity differs from
1.686, and the change of �L

cbðzcoll;RÞ is due to the presence
of baryon perturbation, which has a smaller amplitude than
the CDM perturbation at higher redshifts (e.g., see Fig. 1).
Our result is consistent with the result in [35], where they
studied the effect of baryon perturbation on the spherical
collapse at high redshift for much smaller halos that are
relevant for first stars. Although the presence of smoother
baryon perturbation delays the spherical collapse, it leads
to the smaller �L

cbðzcoll;RÞ than 1.686. However, note that

the linearly extrapolated overdensity for CDM perturbation
alone, �L

c ðzcoll;RÞ, is indeed greater than 1.686. That is, the
initial CDM top-hat overdensity with greater amplitude
than expected from �L

c ðzcoll;RÞ ¼ 1:686 is needed so that
it collapses at a given collapse redshift zcoll. The curve
peaks around zcoll ’ 2 (acoll ’ 0:33) having �L

cbðzcoll;RÞ ’
1:682. At the lower redshifts than zcoll ’ 2, especially at
zcoll & 1, the critical overdensity becomes smaller than the
peak value due to the effect of the cosmological constant.
When the cosmological constant or more generally dark

energy begins to dominate the cosmic energy density, the
accelerating cosmic expansion slows down the growth of
CDM plus baryon perturbation and delays the spherical
collapse. This yields the smaller critical overdensity. Both
the linear and nonlinear growths of CDM plus baryon
perturbation are delayed by the cosmic acceleration, and
the linear growth is more suppressed than the nonlinear
growth, because the spherical collapse eventually separates
from the cosmic expansion in the nonlinear stage, and
becomes more affected by the self-gravity of nonlinear
CDM plus baryon overdensity. For these reasons, when
the growth of density perturbations is suppressed by the
faster cosmic expansion than the Einstein–de Sitter model,
it generally leads to the smaller critical overdensity
�L
cbðzcoll;RÞ than 1.686.

The other curves in Fig. 4 show the results for
�L
cbðzcoll;RÞ when including the massive neutrino for a

fixed total matter density �m0. The presence of massive
neutrino further delays the spherical collapse (see Fig. 3),
and in turn leads to the smaller critical overdensity
�L
cbðzcoll;RÞ, the same trend for the effects of baryon

perturbation and the cosmological constant. However, the
massive neutrino only decreases �L

cbðzcoll;RÞ by less than

0.1% compared to the dashed curve, for these halo mass
and neutrino mass scales and over a range of redshifts we
have studied. This small change in �L

cbðzcoll;RÞ can be

contrasted with the effect on the linear growth rate; the
growth rate is suppressed by the amount of �4f� at
relevant redshift compared to the growth rate without the

FIG. 4 (color online). The linear theory extrapolated density contrast of CDM plus baryon perturbation at the collapse redshift—the
so-called critical density that can be used to infer the collapse redshift based on the linear theory. The left and right panels show the
results for halo mass scales M ¼ 1014 and 1015h�1M�, respectively. The different curves are the results without and with massive
neutrino contribution assuming different neutrino mass scales. Note that the density contrast shown here is not for CDM perturbation
alone, and the corresponding critical density of CDM perturbation is greater than shown in this plot. The overall change in the critical
density from the Einstein–de Sitter result �L ¼ 1:686 arises from the effect of baryon perturbation for higher redshifts, while the
change at lower redshift z & 1 is due to dark energy domination in the cosmic expansion. The effect of massive neutrino is in the range
of the different curves. The curves show nontrivial dependence on neutrino mass scale (see the next figure).

KIYOTOMO ICHIKI AND MASAHIRO TAKADA PHYSICAL REVIEW D 85, 063521 (2012)

063521-10



massive neutrino [12,13], corresponding to 1.6% and 3.2%
suppression for the neutrino mass scales of 0.05 and 0.1 eV,
respectively. The results imply that the neutrino effect on
the spherical collapse is well captured by the linear growth
rate of CDM plus baryon perturbation.

The different curves show that the change in �L
cb is not

monotonic with changing neutrino masses, when keeping
the present-day dark matter density (�c0 þ��0) fixed.
This nontrivial dependence can be understood as follows.
The neutrino effect on the spherical collapse arises from its
effect on the cosmic expansion history and the gravita-
tional collapse of CDM perturbation. First, the presence of
massive neutrino leads to a faster cosmic expansion during
the time that the neutrino was relativistic, which slows
down the growth of CDM perturbation. Note that the
neutrino becomes nonrelativistic when TCMB ’ m�.
Second, the neutrino perturbation does contribute to the
nonlinear gravitational collapse of CDM perturbation, and
therefore accelerates the spherical collapse to some extent.
The net effect arises from these competing effects. We can
study which of these two effects is more important as
follows. Figure 5 shows the results when we ignore the
neutrino perturbation (�� ¼ 0) in both the spherical col-
lapse calculation as well as the linear growth calculation
for CDM plus baryon perturbation. The figure shows that,
with increasing the neutrino mass scale, the time of the
spherical collapse delays more and the critical overdensity
becomes monotonically smaller. Hence, comparing Figs. 4
and 5 manifests that the neutrino perturbation does con-
tribute to the spherical collapse, which differs from the
effect of a smooth dark energy model [38,57].

In Fig. 6, we summarize dependences of the critical
overdensity on halo mass and neutrino mass, assuming
the collapse redshift zcoll ¼ 0. It can be found that, for a
fixed halo mass scale, the critical overdensity first de-
creases with increasing the neutrino mass from 0.05 eV,
but then starts to increase at greater neutrino mass scales
from some mass scale. The turnover neutrino mass scale
slightly changes with halo mass scale. This nontrivial
dependence arises depending on which of the two compet-
ing effects discussed above dominates. If we ignore the
neutrino perturbation, the critical overdensity decreases
with increasing neutrino mass independently of halo mass.
Summarizing the results in Figs. 4–6, we can conclude

that the effect of massive neutrino on the critical over-
density is very small, less than �0:5%, compared to the
critical overdensity without massive neutrino, for neutrino
mass scales m� & 0:5 eV and halo mass scales in which
we are interested.

B. The impact of massive neutrinos
on halo mass function

In this subsection, we estimate the impact of massive
neutrinos on the halo mass function that is one of the most
important observables for cluster surveys.
As we have shown, the effect of the massive neutrino on

the nonlinear gravitational collapse of CDM plus baryon
perturbation is well captured by the linear growth rate.
In other words, the nonlinear neutrino clustering around

FIG. 5 (color online). Similar to the previous figure, but we
here ignored the effect of neutrino perturbation on the spherical
collapse and on the linear density calculation; i.e. we set �� ¼ 0
and �L

� ¼ 0. The critical overdensity becomes smaller at each
redshift with increasing the neutrino mass scale. Therefore,
comparing this figure with Fig. 4 clarifies that the nontrivial
dependence of �L

cb on neutrino mass scale is due to the effect of

neutrino perturbation (see text for details).

FIG. 6 (color online). The plot shows how the critical over-
density �L

cb changes with different halo mass scales and neutrino

mass scales. Here we consider zcoll ¼ 0 for the collapse redshift.
For comparison, the dashed curve shows the result without
massive neutrino. More massive halos have a deeper gravita-
tional potential well and therefore are more capable of capturing
neutrinos around it. In addition, neutrinos of greater mass scales
have a smaller free-streaming scale, and are more captured by
the CDM top-hat region. These facts together with Figs. 4 and 5
explain the nontrivial dependence of �L

cb on halo mass scales as

well as neutrino mass scales.
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the CDM overdensity does not largely change the non-
linear dynamics, and therefore is very unlikely to change
structural properties of mass distribution within a halo. We
here assume that the halo mass function for a MDM model
can be obtained from a mapping of the mass function in
CDM models without massive neutrino. That is, we as-
sume that the mapping of halo mass function can be
obtained by assuming that (1) only the cold component
(CDM plus baryon) can collapse to form halos, and (2) the
halo mass function for a MDM model can be obtained just
by replacing the linear theory mass fluctuations appearing
in the mass function for a CDM model with the corre-
sponding mass fluctuation of CDM plus baryon perturba-
tion for a MDM model:

dn

d lnM
ðzÞ ¼ ��cb

M
� f

�
� ¼ �L

cb;critðM; zÞ
�bcðM; zÞ

�
d�

d lnM
; (19)

where the function fð�Þ is the fitting formula that is ob-
tained based on a suit of N-body simulations for CDM
models. The previous works have shown that the fitting
formula is well characterized in terms of the peak height,
� � �L

crit=�ðM; zÞ [18,58], where �L
crit is the linear theory

extrapolated critical overdensity for halo formation at a
given redshift and �ðM; zÞ is the linear rms mass fluctua-
tion smoothed with the halo mass scaleM and at redshift z.
In Eq. (19), we assumed that we can obtain the halo mass
function for a MDMmodel simply by using the peak height
for CDM plus baryon perturbation as well as by using the
prefactor ��cb=M, the mean mass density of CDM plus
baryon, because the cold component is the collapsing
component to form halos. To be more precise, the rms
mass fluctuation of halo mass M for CDM plus baryon
perturbation is defined as

�2
cbðM; zÞ �

Z 1

0

dk

k

k3

2�2
PL
cbðk; zÞ ~W2ðkRMÞ; (20)

where PL
cbðk; zÞ is the linear power spectrum of CDM

plus baryon perturbation at target redshift z, and ~WðkRMÞ
the Fourier-transformed top-hat filter: ~WðxÞ � 3ðsinx�
x cosxÞ=x3. The filtering scale and halo mass are related
via M ¼ ð4�=3Þ ��cb;0R

3
M ( ��cb;0 is the present-day mean

mass density of CDM plus baryon).
As for the fitting formula, we use the formula in [19] that

is obtained from N-body simulations for a range of CDM
models varying around the fiducial cosmological model
consistent with the WMAP data:

fð�; zÞ ¼ A

ffiffiffiffi
2

�

s
exp

�
�a�2

2

�
½1þ ða�2Þp�ð ffiffiffi

a
p

�Þq 1
�
; (21)

where A ¼ 0:333ð1þ zÞ�0:11, a ¼ 0:788ð1þ zÞ�0:01, p ¼
0:807, and q ¼ 1:795. For the peak height � ¼
�crit=�ðM; zÞ, the authors of Ref. [19] simply used the
fixed critical overdensity �crit ¼ 1:686, the value of the
Einstein–de Sitter model, and then found the best-fit

parameters A, a and so on by fitting the functional form
above with the mass function measured from simulations
for variant CDM models. More exactly speaking, when we
have the effects of baryon perturbation and cosmic accel-
eration, the critical overdensity �L is changed from the
Einstein–de Sitter value �L ¼ 1:686. However, the change
is very small, less than a percent level (see Fig. 4), and
therefore it was assumed that the change of �L is absorbed
by tuning the fitting model parameters. If the change of �L

is properly taken into account, the fitting will yield slightly
different best-fit model parameters of A, a and so on.
Furthermore, although the presence of baryon perturbation
changes the collapse of CDM perturbation (see Fig. 3), we
here assume that the simulations in [19] properly take into
account the effect of baryon when setting up the initial
conditions of N-body simulations (see below for a further
discussion). To compute �cbðM; zÞ in Eq. (19), we use the
CAMB code [52] to compute the transfer functions. The
CAMB outputs include the effect of massive neutrinos or
baryon perturbations on the growth of CDM perturbation.
The upper panel of Fig. 7 compares the halo mass

functions at z ¼ 0 for different models with and without

FIG. 7 (color online). The upper panel shows the halo mass
function at z ¼ 0 for CDM-dominated models with and without
massive neutrinos. The halo mass function for a mixed dark
matter model (CDM plus massive neutrino) is computed by
mapping the fitting formula for the CDM model based simula-
tions using Eq. (19). For the solid and dotted curves, we assume
the neutrino mass scales m� ¼ 0:05 and 0.1 eV, which are close
to the lower mass bounds for the normal and inverted mass
hierarchies (NH and IH), respectively. The presence of massive
neutrino, for a fixed �c0 þ��0, decreases the abundance of
massive halos. The lower panel explicitly shows the ratio of the
mass functions for models with and without massive neutrino
contribution. The linear mass fluctuation such as �8 changes
only by a few percent at most for these neutrino masses;
however, the abundance of massive halos may decrease by up
to a factor 2 at a few 1015h�1M�.
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massive neutrino contribution. The lower panel explicitly
shows the ratio of the mass functions with and without
massive neutrino. Here we assumed m� ¼ 0:05 and 0.1 eV
for the neutrino mass scale, which are close to the lower
bounds of the normal mass hierarchy (NH) and the inverted
hierarchy (IH) that are implied from the terrestrial experi-
ments. Hence either of these results would inevitably exist
in our universe. The presence of a massive neutrino de-
creases the abundance of halos, more significantly for more
massive halos that reside in the exponential tail of mass
function. The decrease in the halo abundance is up to a
factor 2 around �5� 1015h�1M�. This change can be
compared to the effect on the linear mass fluctuation
such as �8; the neutrino of these mass scales decreases
�8 only by a few percent for neutrinos of these mass scales.
Again the higher sensitivity of halo mass function to
neutrino mass is through the exponential tail of mass
function at massive halo ends. The thin solid curve in the
lower panel (although almost overlapped with the dotted
curve) shows the ratio when further taking into account
the change in the critical density �L

cb in the mass function

[Eq. (19)]; more explicitly we decreases the critical density
by 0.03%, a maximum change implied from Fig. 6 for the
case of m�;tot ¼ 0:1 eV. It is clear that the change in the

critical density due to the massive neutrinos causes a
negligible effect on the halo mass function.

Figure 8 shows the similar results, but for higher red-
shifts z ¼ 1 and 1.5, respectively. The decrease in the
abundance of cluster scale halos is more significant at
higher redshifts.

One may think whether or not the effect of massive
neutrino on the halo mass function is mostly described
by the change of �8, the normalization parameter of power
spectrum amplitudes often used in the literature. Figure 9
compares the halo mass functions for a MDM model with

m� ¼ 0:1 eV and for a�CDMmodel where �8 at z ¼ 1 is
lowered so as to match the �8 value for the MDM model;
more precisely, �8ðz ¼ 1Þ is changed to 0.486 from 0.500.
Note that both the models have the same �c0 þ��0. The
�CDMmodel with the lowered �8 roughly reproduces the
decrease in the halo abundance. However, the two curves

FIG. 8 (color online). Similar to the previous plot, but for z ¼ 1 (left) and 1.5 (right), respectively. The effect of massive neutrino on
the abundance of halos for a fixed halo mass scale is more significant at higher redshift.

FIG. 9 (color online). Similar plot to the lowerpanel in Fig. 7,
but we here compare the halo mass function for a MDM model
with m� ¼ 0:1 eV to the mass function for a CDM model
(without massive neutrino), where �8 value is lowered by the
same amount as in the neutrino suppression effect on the linear
mass fluctuation at 8h�1 Mpc for the MDM model. More
exactly, the �8 value at z ¼ 1 is changed to 0.486 from 0.500
for the dashed curve. The CDM model with normalization of the
lowered �8 value reproduces the mass function for the MDM
model, for the same �c0 þ��0, within 30% level accuracy over
the range of halo masses we consider.

IMPACT OF MASSIVE NEUTRINOS ON THE ABUNDANCE. . . PHYSICAL REVIEW D 85, 063521 (2012)

063521-13



do not exactly agree because of the difference in the
linear power spectra of CDM and baryon perturbations.
Nevertheless, this gives a justification of the neutrino mass
constraint derived in [1], where the neutrino mass con-
straint is obtained from the allowed range of �8 values that
are derived by comparing the observed abundance of x-ray
luminous clusters with the model halo mass functions
varying within CDM models without massive neutrino
contribution.

C. Discussion: Cosmological parameter degeneracies

When adding the massive neutrinos for different masses,
we have so far kept the total dark matter density, �c0 þ
��0, fixed. For a more practical perspective, the CMB
information gives precise constraints on the CDM and
baryon densities, �c0h

2 and �b0h
2, as well as the curva-

ture parameter or equivalently the total energy density,
�c0 þ�b0 þ��0 þ�� ’ 1. Massive neutrinos with
small mass scales of a few & 0:1 eV were relativistic
before the decoupling epoch, and do not affect the CMB
observables. Therefore, the CMB observables cannot well
constrain the neutrino mass of the small mass scales,
leaving degeneracies in cosmological parameters. Given
these facts one might think that, when adding the massive
neutrinos, we should keep these CMB-constrained parame-
ters fixed. If we assume a flat geometry, this is equivalent to
varying either the Hubble parameter h or the energy den-
sity of the cosmological constant�� with fixing the CMB
parameters above. For example, when the neutrino mass
m�;tot ¼ 0:1 eV is added, this leads to h ¼ 0:7128 or

�� ¼ 0:7333 from the fiducial values h ¼ 0:71 or �� ¼
0:7354, respectively.

Figure 10 shows the critical density for halos of M ¼
1515h�1M� for a MDM model with various neutrino mass
scales, where we varied either �� or h by the amount
determined by the neutrino mass scale, but fixing �c0h

2.

FIG. 10 (color online). As in Fig. 4, the linear theory extrapolated critical density for halos of M ¼ 1015h�1M� as a function of
collapse redshift for MDM models of different neutrino mass scales, where we added massive neutrinos around the fiducial �CDM
model by changing either h or �� parameter with fixing the CDM density parameter �c0h

2 and keeping the flat geometry �c0 þ
�b0 þ��0 þ�� ¼ 1 (see text for details). Note that, for the previous plots, we varied the CDM dark matter density �c0 with fixing
the total dark matter density �c0 þ��0 to the fiducial value when adding massive neutrinos.

FIG. 11 (color online). Shown is the ratio of the halo mass
functions with and without massive neutrinos ofm�;tot ¼ 0:1 eV.
The different curves show the results when changing either h,
��, or �c0 alone around our fiducial cosmological model (see
the end of Sec. I) with fixing the parameters�b0h

2 and assuming
a flat geometry of �c0 þ�b0 þ��0 þ�� ¼ 1. We have so far
considered the case varying �c0, and the cases varying h or ��

are motivated by the fact that the CMB observables well con-
strain the curvature parameter, �ch

2 and �b0h
2. Around our

fiducial cosmological model, these are equivalent to the parame-
ter changes, h ¼ 0:71 ! h ¼ 0:7128, �� ¼ 0:7354 ! 0:7333,
or �c0 ¼ 0:2198 ! 0:2177, respectively.

KIYOTOMO ICHIKI AND MASAHIRO TAKADA PHYSICAL REVIEW D 85, 063521 (2012)

063521-14



The results are similar to Fig. 4; the effect of massive
neutrinos on the critical density is very small for the range
of cosmological models. Figure 11 shows how the MDM
models alter the halo mass function compared to the case
without massive neutrinos, which can be compared with
our fiducial case where the massive neutrinos of m�;tot ¼
0:1 eV are added by varying the CDM density parameter
�c0. The parameter change of h or �� also leads to the
smaller abundance of massive halos as in the case changing
�c0, but the decrease is slightly smaller than the case when
changing �c0.

IV. SUMMARY

In this paper, we have developed a method to solve the
nonlinear dynamics of the top-hat CDM overdensity region
including the effects of baryon perturbation and massive
neutrinos. In developing the spherical collapse model, we
properly set up the initial conditions of each components
(baryon, CDM, and neutrinos), which have different am-
plitudes and profiles, assuming the adiabatic initial
conditions (see Fig. 1). In fact we found that the nonlinear
dynamics is very sensitive to the detailed setup of the
initial conditions of top-hat CDM perturbation, more pre-
cisely �cðziÞ and the velocity of top-hat radius _RðziÞ.
For example, we cannot employ the linear theory predic-
tion for an Einstein–de Sitter model, � / a, to set up the
initial conditions, e.g., even at an epoch in the sufficiently
linear regime such as the decoupling epoch zini ’ 1100,
because this solution ignores the fact that the CDM per-
turbation is affected by the presence of baryon and massive
neutrino.

Since we cannot treat the neutrinos as a perfect fluid, we
properly solved the linearized Boltzmann hierarchy equa-
tions to compute time evolution of linearized neutrino
perturbations, where we include the effect of nonlinear
gravitational potential due to the nonlinear CDM and
baryon perturbation in the late stage. For neutrino mass
scales lighter than a few 0.1 eV, the range inferred from the
neutrino oscillation experiments and the cosmological con-
straints, the neutrino perturbation stays in the quasi non-
linear regime, �� & 1 (see Fig. 2). This gives a justification
of our treatment where we used the linearized Boltzmann
equations. As for an improved modeling, one can further
include the nonlinear terms such as the coupling term
between the nonlinear gravitational potential and the per-
turbed phase-space density of neutrinos in order to solve
the time evolution of neutrino perturbations in a perturba-
tion theory manner.

By solving the spherical collapse model for cosmologi-
cal models around a �CDM model that is consistent with
the WMAP data, we found that both the neutrino and
baryon perturbations delay the collapse of CDM overden-
sity compared to a model with CDM alone (Fig. 3).
However, interestingly we found that the collapse redshift
can be well monitored by the linear theory extrapolated

overdensity of CDM (plus baryon) perturbation(s) for the
ranges of neutrino masses (& a few 0:1 eV) and halo mass
scales we have considered. This result is promising be-
cause the linear theory extrapolated overdensity (the criti-
cal density) can be accurately computed using the linear
perturbation theory, once cosmological model and neutrino
mass are specified. In other words, we found that the
massive neutrinos with the range of mass scales lead to
only a small change in the critical density by & 0:1%
compared to the model without massive neutrino, but
with the same �m0 (Figs. 4–6).
Given the results of the spherical collapse model, we

gave Eq. (19) to estimate the halo mass function including
the effect of massive neutrinos, where the effect of massive
neutrinos are properly taken into account in the linear mass
fluctuations of CDM and baryon perturbations at a given
redshift, smoothed with a given halo mass scale; �cbðM; zÞ
(also see [24], for the similar discussion). Using the equa-
tion, we found that the presence of massive neutrinos with
0.05 and 0.1 eV, the lower-bound mass scales of normal and
inverted mass hierarchies, respectively, may cause a sig-
nificant decrease in the abundance of massive halos; more
specifically, up to a factor of 2 for halos with 1015M� and at
z� 1 (see Figs. 7 and 8). Thus our results imply that
massive neutrinos, which should exist in our universe,
relax to some extent a possible tension that the cutting-
edge Sunyaev-Zel’dovich experiments could not find as
many massive clusters as what was originally expected
[8,9]. This needs to be further studied more carefully.
Since it is still challenging to accurately simulate nonlinear
structure formation in a MDM model, especially for such
light neutrino mass scales of& a few 0:1 eV (see [23–25],
for the attempts), the analytical model developed in this
paper will give a useful tool or at least useful guidance for
interpreting ongoing and upcoming wide-area surveys of
massive clusters.
Our findings also propose several applications. First,

as we stressed above, a careful setup of the initial con-
ditions is very important in order to have an accurate
nonlinear dynamics, for a multicomponent system with
CDM, baryon, and neutrinos. This implies that it is very
important to set up the accurate initial conditions for
cosmological simulations including the effect of baryon
such as smoothed particle hydrodynamical simulations
(see [59–61] for a similar discussion). Because the spheri-
cal collapse model gives an exact solution of the nonlinear
dynamics, albeit an unrealistic symmetry assumed, we can
explore how to set up the initial conditions by combining
the spherical collapse model with the linear and/or pertur-
bation theory predictions. For example, it was shown that
using the second-order Lagrangian perturbation theory
allows one to set up more accurate initial conditions of
N-body simulations that are simulations for a model with
CDM alone or single cold component [62,63]. We can
extend this analysis to a multicomponent system; we can
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apply the second-order Lagrangian perturbation theory to
CDM and baryon perturbations separately by taking into
account the different growth rates, and then can study how
the improved initial conditions can reproduce the exact
solution of spherical collapse for CDM and baryon pertur-
bations starting from a given initial redshift. Such a study
will give a useful guidance for exploring how to set up
the initial conditions for CDM and baryon particles in a
smoothed particle hydrodynamical-type simulation. This
can be further extended to a case also including the neu-
trino particles. These are our future study and will be
presented elsewhere.

Second, several studies recently claimed that detected
massive clusters at high redshifts beyond z� 1 may give a
tension of a �CDM structure formation model ([64,65]
and references therein). It is indeed interesting to explore
whether or not these particular catalogs of clusters, which
are found by different observations/surveys under different
selection functions, can falsify the �CDM predictions
as explored in [9,66]. However, the effect of massive

neutrinos has been ignored in the previous studies.
Again, the method developed in this paper can be used to
address how the presence of the high-z massive clusters
may falsify a more realistic cosmological model that in-
cludes massive neutrino contribution. This study will be
presented elsewhere.
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