
Decoherence in an accelerated universe
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In this paper we study the decoherence of the semiclassical branches of an accelerated universe. We use

a third quantization formalism to analyze the decoherence between two branches of a parent universe

caused by their interaction with the vacuum fluctuations of the space-time and with other parent universes

in a multiverse scenario.
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I. INTRODUCTION

Decoherence plays a fundamental role in quantum me-
chanics and cosmology. Through a decoherence process, a
subset of preferred states is effectively selected from the
whole quantum superposition and so that decoherence
becomes the ultimate reason for the emergence of a clas-
sical universe in quantum cosmology [1–3]. However, in a
closed system the choice between the relevant and the
irrelevant variables is rather arbitrary and different sub-
systems can effectively be considered as the environment
of a particular quantum system.

Decoherence and dissipative processes between a sys-
tem and its environment make the state of the system
evolve into a state of higher entropy [1]. In quantum
cosmology, such an entropy increasing provides us with
an arrow of time and it is thus responsible for the irrever-
sibility in the Universe [4].

The interaction between an homogeneous and an iso-
tropic universe and the density fluctuations and gravita-
tional waves has been studied in Refs. [5–10] (see also,
Refs. [11–13]). In this case, the relevant variables are the
scale factor and the homogeneous degrees of freedom of
the scalar field. What is considered as irrelevant degrees
of freedom, which are traced out from the state of the
Universe, induces however observable effects on the prop-
erties of the semiclassical branch of the Universe.

The following effects can be pointed out: the decoher-
ence of different branches of the Universe [6,7], the shift
of the coupling constants and the reduction of the value of
the cosmological constant [8,9], and the modification of
the coherence properties of the fields that propagate in the
space-time [8,10].

In this paper, we review the effects that decoherence
processes can produce on the state of an homogeneous and
isotropic branch of an accelerating universe. In Sec. II, we
apply the formalism developed in Refs. [6,7] to analyze the
decoherence between the expanding and contracting
branches of the Universe due to the interaction with a
scalar field, for quintessence-dominated, vacuum-
dominated, and phantom-dominated universes. The third

quantization formalism is used in Sec. III to study the
interaction between parent universes and between a parent
universe and a plasma of baby universes which represent,
in a first approximation, the quantum fluctuations of the
space-time of the parent universe, following the parallel
quantum optics developments. In Sec. IV, we draw some
conclusions.

II. DECOHERENCE OF THE BRANCHES OF AN
ACCELERATING UNIVERSE

In Refs. [1,6,7], the inhomogeneous modes of a scalar
field are taken as the irrelevant variables in order to obtain a
reduced density matrix that represented the quantum state
of the homogeneous universe. The inhomogeneous modes
were coupled to the metric of a spatially closed space-time
[14], which is assumed to be in the semiclassical regime.
The result is that the expanding and contracting branches
of the Universe are quickly decoupled for large values of
the scale factor. Thus, the Universe is either in an expand-
ing or in a contracting state but not in a quantum superpo-
sition of both.
In a flat universe, the formalism used in Ref. [6] cannot

be directly applied because the inhomogeneous modes of
the massless scalar field are coupled to a zero curvature
term of the metric [14]. However, we can consider a scalar
field with a mass term which is minimally coupled to the
curvature scalar. Except for this feature, in order to analyze
the decoherence of the branches of the accelerated uni-
verse, we can follow the same procedure used in Ref. [6].
Let us consider therefore a flat homogeneous and iso-

tropic universe which is dominated by a perfect fluid with
equation of state p ¼ w�, where p and � are the pressure
and the energy density of the fluid, respectively, and w is a
constant parameter. Let us also consider a scalar field ’
with mass, m. The Wheeler De Witt equation can be
written, with the usual choice of the factor ordering [1], as�
a2@2aa þ a@a þ�2

0

ℏ2
a2q � @2’’ þm2

ℏ2
a6’2

�
�ða; ’Þ ¼ 0;

(1)
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where a is the scale factor, �ða; ’Þ is the wave function of
the Universe, �2

0 ¼ 4�G�0 is a constant which is propor-

tional to the energy density of the Universe at a given
boundary hypersurface �0 [15], and q ¼ 3

2 ð1� wÞ. The
solutions of the gravitational part of Eq. (1) are given in
terms of Bessel functions [16,17],

�0ðaÞ / H ð1;2Þ
0 ð ~�0a

qÞ; (2)

with ~�0 � �0=q
ℏ, and H ð1Þ

n and H ð2Þ
n are the Hankel

functions of the first and second kinds of order n. The
boundary condition used in Eq. (2) is the tunneling bound-
ary condition [18]. In the asymptotic limit of large values
of the scale factor [19], we have

H ð1;2Þ
0 ð ~�0a

qÞ � a�q=2e�i½ ~�0a
q�ð�=4Þ�; (3)

where the þ and � signs correspond to the Hankel func-
tion of the first and second kinds, respectively. The solu-
tions given by Eq. (3) describe the expanding and
contracting branches of the semiclassical universe, as
can be checked by noting that the momentum operator is
given by

p̂ a�ðaÞ � �iℏ@a�ðaÞ / � @S0
@a

;

with S0 ¼ ~�0a
q the classical action, and the semiclassical

momentum becomes psc
a ¼ �að@a=@tÞ; then að@a=@tÞ /

�@S0=@a, where the time variable t is defined in terms of
the scale factor through the classical equation, að@a=@tÞ ¼
��0a

q�1 [18]. Thus, the Hankel function of the second
kind corresponds to the expanding branch of the Universe
and the Hankel function of the first kind describes its
contracting branch.

In the semiclassical regime, the wave function of the
Universe can be written as

�ða;’Þ ¼ CðaÞe�iS0ðaÞ�ða;’Þ; (4)

where CðaÞ ¼ a�ðq=2Þ. The function �ða;’Þ satisfies the
following Schrödinger equation [6,7]:

1

2a3

�
� @2

@’2
þm2a6

�
� ¼ i

@�

@t
: (5)

Following the above references, we shall look for Gaussian
solutions

� ¼ AðaÞe�BðaÞ’2
: (6)

Inserting Eq. (6) into Eq. (5), we obtain a differential
equation for the coefficients AðaÞ and BðaÞ that can be
solved with the normalization condition,

R
d’��� ¼ 1,

which is valid in the semiclassical regime where Eq. (6)
can be considered. It is obtained

A ¼ ��1=4ðBþ B�Þ1=4ei�ðtÞ; (7)

B ¼ �i
�0

2
aqþ1 _x

x
; (8)

where _x � @x=@a, and

a2 €xþ ð1þ qÞa _x� m2

�2
0

a2ð3�qÞx ¼ 0: (9)

For a universe dominated by a cosmological constant
(w ¼ �1 and q ¼ 3), the solutions to Eq. (9) can be
written as

x ¼ a�3=2ðc1ak1 þ c2a
�k1Þ; (10)

with

k1 ¼ 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

9�2
0

s
� 3

2
:

Choosing appropriate constants c1 and c2 to fulfill the
condition, Bþ B� > 0, which is required by the condition
of normalization for the function (6), the value of the
function BðaÞ can be approximated, in the semiclassical
regime, as

B�
0 � �0

2

�
3� i

m2

3�2
0

a3
�
; (11)

where the positive and negative signs correspond to the
solution of the function � for the expanding and the con-
tracting branches of the Universe, respectively.
In the quintessence regime, for which � 1

3 >w>�1,

the solutions of Eq. (9) can be written in terms of the
modified Bessel functions of order �, K�, and I�. In the
semiclassical regime, it reads

ðB�
QÞ� ¼ Bþ

Q � �0

2

�
i
m

�0

þ �ð3þ 2j�jÞa��e�2�a�
�
;

(12)

where q ¼ 3
2 ð1� wÞ � 3� � (with 1>�> 0), and � ¼

m=�0j�j.
In the phantom regime, for which w<�1 and �< 0,

the functions B�
F can be approximated in the semiclassical

regime by

ðB�
F Þ� ¼ Bþ

F � �0

2
ð�2iqaq þ c0Þ; (13)

with q ¼ 3þ j�j, and c0 is a positive constant.
The quantum state of the Universe can be generally

given by means of a density matrix [20,21]. It allows us
to describe pure as well as mixed states, providing us
therefore with more complete quantum description of the
state of the Universe. The reduced density matrix, which
represents the quantum state of a particular subsystem of
the whole Universe, can be computed by integrating out the
irrelevant degrees of freedom that correspond to the envi-
ronment. In the case we are dealing with, the reduced
density matrix can be written as [6]
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�rða; a0Þ ¼
Z 1

�1
d’��ða; ’Þ�ða0; ’Þ; (14)

which is given, except for irrelevant phases, by [6]

�rða; a0Þ /
�ðBðaÞ þ B�ðaÞÞðBða0Þ þ B�ða0ÞÞ

ðB�ðaÞ þ Bða0ÞÞ2
�
1=4

: (15)

For the case w ¼ �1, Eq. (15) can be approximated in the
semiclassical limit as

�rða; a0Þ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� im2

18�2
0

ða3 � a03Þ
r : (16)

The diagonal values of the reduced density matrix, for
which a � a0, become nearly unity. However, far from
the diagonal elements, for which a 	 a0, the reduced

density matrix asymptotically vanishes j�rj � a�3=2.
That means that the decoherence process between the
branches with different values of the scale factor is rather
effective for large values of the scale factor, such as
expected.
In the quintessence regime� 1

3 
 ! 
 �1, the decoher-

ence process turns out to be even more effective. The
reduced density matrix (15) can then be approximated as

�rða; a0Þ �
ffiffiffi
c

p � ðaa0Þ3��e�2�ða��a0�Þ

ð�i m2 ða3 � a03Þ þ c
2 ða3��e�2�a� þ a03��e�2�a0�ÞÞ2

�
1=4

: (17)

For the diagonal values we have �rða; aÞ � 1, and for the
off-diagonal values,

j�rða; a0Þj �
�
a0

a

�
q=2

a��e��a� ! 0ða 	 a0 > 1Þ: (18)

Finally, for the phantom regime,w<�1 and�< 0. For
large values of the scale factor in that regime, but still
before reaching the achronal region around the big rip
singularity, where the semiclassical approximation is no
longer valid [22],

�rða; a0Þ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� i q

c0
ðaq � a0qÞ

q ; (19)

and j�rj � a�ðq=2Þ, for a 	 a0. When the Universe ap-
proaches the big rip singularity, the state of the Universe
is given by a quantum superposition of states [22], con-
cordant with the expected quantum nature of the Universe
in such a region [22,23].

It can be concluded that, both in a contracting and an
expanding branch of an accelerated universe, the decoher-
ence process between the scale factor and a scalar field is
effective enough to remove the quantum interference be-
tween the different semiclassical branches that correspond
to different values of the scale factor.

The same decoherence process turns out to be also
effective to eliminate the interference between the con-
tracting and expanding branches. If the state of the
Universe is given by a quantum superposition of the states
that correspond to those branches, i.e.

�ðaÞ � CðaÞe�iScðaÞ�þða;’Þ þ C�ðaÞeiScðaÞ��ða; ’Þ;
(20)

with �þ ¼ ð��Þ�, then the reduced density matrix will
show four terms [6]: the terms �11 and �22, which describe
the quantum state of the expanding and contracting
branches, respectively, are given by the expressions given

above [Eqs. (16), (17), and (19)]. The crossed terms, which
correspond to the interference between the branches, are
given by [6]

ð�21Þ� ¼ �12 ¼
Z 1

�1
d’�þða; ’Þð��ða0; ’ÞÞ�: (21)

They turn out to be [6]

�12ða; a0Þ /
�ðBþðaÞ þ �BþðaÞÞðB�ða0Þ þ �B�ða0ÞÞ

ðBþðaÞ þ �B�ða0ÞÞ2
�
1=4

;

(22)

where �B � B�. In that case, even for similar values of the
scale factors, a � a0, the elements of the reduced density
matrix, �12 and �21, asymptotically vanish when the scale
factor grows along the semiclassical regime. For instance,
for a phantom-dominated universe, �12 turns out to be

�12 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� i q

c0
ðaq þ a0qÞ

q ; (23)

and the diagonal values,

j�12ða; aÞj � a�q=2: (24)

It means that the expanding and contracting branches of a
phantom universe, which correspond to the regions far
before and after the big rip singularity, decouple from
each other in the semiclassical regime. However, unlike
the results obtained in previous works [6,7], the decoher-
ence between different branches is, in the present model, of
the same order as the decoherence within the same branch.
Therefore, the decoherence process between the scale

factor and a scalar field with mass is seen to be effective
enough to remove the interference terms between the
different semiclassical branches of an accelerated universe.
It eliminates both the interference terms between the ex-
panding and contracting branches, and those between dif-
ferent branches that correspond to different values of the
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scale factor in the same expanding or contracting region of
the Universe.

In the case of a universe dominated by phantom energy,
the big rip singularity makes it impossible for a semiclas-
sical description of the Universe in the neighborhood of the
singularity. There, the state of the Universe is given by a
quantum superposition of states [22] and the quantum
effects are predominant [23]. Moreover, the evolution be-
comes nonunitary in the achronal region around the big
rip because of the presence of wormholes whose creation
is induced by the exotic character of the phantom energy
[24–26]. Therefore, a generalized quantum theory [15] has
to be used to give a proper quantum description of the
whole phantom universe.

III. DECOHERENCE IN ATHIRD
QUANTIZATION SCHEME

A. Parent and baby universes

In a third quantization formalism [27], the field to be
quantized is the wave function of the Universe. Then, the
state of the multiverse can be studied as a quantum field
theory in the superspace. In this section, we will mainly
follow the standard interaction scheme used in quantum
optics and quantum mechanics. However, the results in the
context of the multiverse will require new interpretations
which will be given whenever possible.

Let us consider the Wheeler–De Witt equation (1) with
no scalar field and without any factor ordering terms, i.e.

€�þ�2ðaÞ� ¼ 0; (25)

where the overdots mean derivative with respect to the
scale factor, and the value of �0 is given in Eq. (1).
Equation (25) can be seen as the classical equation of
motion for a harmonic oscillator with a time dependent
frequency, with the scale factor playing the role of the time
variable. The wave function of the multiverse then satisfies
the Schrödinger equation [17,27],

H j�i ¼ iℏ
@

@a
j�i; (26)

with

H ¼ 1

2
P̂2
� þ�2ðaÞ

2
�̂2: (27)

�̂ and P̂�, respectively, are the operators of the wave

function of a single universe and its conjugate momentum
in the Schrödinger picture. Going into the Heisenberg
picture, these operators can be written as

�̂ðaÞ ¼ Aða; a0Þ�̂þ Bða; a0ÞP̂�; (28)

P̂ �ðaÞ ¼ _Aða; a0Þ�̂þ _Bða; a0ÞP̂�; (29)

where the functions Aða; a0Þ and Bða; a0Þ satisfy Eq. (25)
with the initial conditions, Aða0; a0Þ ¼ _Bða0; a0Þ ¼ 1 and

_Aða0; a0Þ ¼ Bða0; a0Þ ¼ 0. The boundary condition that
we impose on the quantum state of the multiverse is that
the number of universes in the multiverse is constant along
the evolution of the scale factor within a single universe.
Then the state of the multiverse is given in terms of the
Lewis states, which are defined by the following creation
and annihilation operators for universes [17,28]:

bðaÞ �
ffiffiffiffiffiffi
1

2ℏ

s �
�̂

R
þ iðRP̂� � _R �̂Þ

�
; (30)

byðaÞ �
ffiffiffiffiffiffi
1

2ℏ

s �
�̂

R
� iðRP̂� � _R �̂Þ

�
; (31)

where R � RðaÞ is a function that satisfies the auxiliary
equation, €Rþ�2ðaÞR� 1

R3 ¼ 0. In terms of the operators

(30) and (31), the third quantized Hamiltonian (27) turns
out to be

H ¼ ℏ½��b2 þ �þby2 þ �0ðbybþ 1
2Þ�; (32)

where [17]

��þ ¼ �� ¼ 1

4

��
_R� i

R

�
2 þ�2R2

�
; (33)

�0 ¼ 1

2

�
_R2 þ 1

R2
þ�2R2

�
: (34)

We can consider large universes with a characteristic
length of order of the Hubble length of our Universe.
They will be called parent universes [27]. For large values
of the scale factor, the nondiagonal terms in the
Hamiltonian (32) vanish and the values of the coefficient
�0 asymptotically coincide with that of the proper fre-
quency of the Hamiltonian [17]. Then the quantum corre-
lations between the number states disappear and the
quantum transitions between different numbers of uni-
verses are therefore forbidden for parent universes. Let
us also notice that in that limit the adiabatic approximation

is satisfied,
_�
� � �, and no creation of further universes

can occur along the evolution of a parent universe.
Let us consider next the quantum fluctuations of the

space-time of a parent universe, whose contribution to
the wave function of the Universe becomes important at
the Planck scale [29]. Some of these fluctuations can be
viewed as tiny regions of the space-time that branch off
from the parent universe and rejoin the large regions there-
after; thus, they can be then interpreted as virtual baby
universes [27]. In that case [17], ��þ ¼ �� ! � !0

4 and

�0 ! !0

2 , in Eq. (32), where !0 is a constant that depends

on the properties of the baby universe. The state of the
gravitational vacuum is then represented by a squeezed
state, with a particle creation of baby universes or fluctua-
tions occurring along the expansion of the parent universe
[30].
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Thus, parent and baby universes, which will be consid-
ered in the subsequent sections, can be described in the
context of a third quantization formalism as the states of a
harmonic oscillator. The advantage of such a formalism
then becomes clear: we can apply the well-studied machi-
nery of harmonic oscillators and quantum field theory for
the description of a parent universe or a plasma of baby
universes. For instance, the propagator for the quantum
state of a parent universe can be calculated from the
propagator for the harmonic oscillator with time dependent
frequency [31] (see also Refs. [32,33]),

Kð�f; a; �i; a0Þ ¼
�

1

2�iℏRðaÞRða0Þ sin�ða; a0Þ
�
1=2

� exp

�
i

2ℏ

� _RðaÞ
RðaÞ�

2
f �

_Rða0Þ
Rða0Þ�

2
i

��
(35)

exp

�
1

2ℏ sin�ða; a0Þ
��

1

R2ðaÞ�
2
f þ

1

R2ða0Þ
�2

i

�
cos�ða; a0Þ

� 2

RðaÞRða0Þ�i�f

��
;

(36)

where �f and �i are the wave functions of the parent

universe evaluated at two hypersurfaces given by the val-
ues of the scale factors a and a0, respectively, and �ða; a0Þ
is defined as [17,28]

�ða; a0Þ ¼
Z a

a0

da0

R2ða0Þ :

Another example is the density matrix that describes a heat
bath of baby universes at temperature T. It can bewritten as
the density matrix of a canonical ensemble of harmonic
oscillators (see, for instance, Ref. [2]),

�Bð�f;�iÞ¼
Y
n

!n

2�sinhð!n=kTÞ exp
�
� !n

2sinhð!n=kTÞ
�
�
ð�2

f;nþ�2
i;nÞcoshð!n=kTÞ�2�f;n�i;n

��
;

(37)

where �f;n and �i;n are the wave functions of the baby

universes, which are represented by harmonic oscillators
with frequency !n, and the index n labels the species of
baby universes considered in the space-time foam.

B. Parent-baby interaction

Let us now pose the interaction scheme between a parent
universe and its environment. First, we shall study the
interaction between a parent universe and the quantum
fluctuations of its space-time, these being represented by
a plasma of baby universes. The gravitational vacuum will
be considered in two different states: (i) the state of a heat

bath with temperature T, and (ii) a squeezed vacuum state.
Then, we shall analyze the interaction of a parent universe
with the rest of the parent universes in the context of a
multiverse.
The third quantization formalism of the Universe allows

us to follow a formal parallelism with the developments
made in quantum optics. Thus, we can represent the inter-
action between a parent universe and the quantum fluctua-
tions of its space-time by a total Hamiltonian given by

H ¼ HP þH" þHint; (38)

where HP is the Hamiltonian of the parent universe, H" is
the Hamiltonian of the plasma of baby universes, and Hint

is the interaction Hamiltonian. The former Hamiltonian is
represented by a harmonic oscillator with a frequency that
depends on the scale factor,

HP ¼ 1

2
P2
� þ�2ðaÞ

2
�2; (39)

with q ¼ 3
2 ð1� wÞ, and �ðaÞ ¼ �0

q aq�1, where �2
0 is

proportional to the current energy density of our Universe.
For the case of baby universes, the frequency of the

harmonic oscillator can effectively be considered a con-
stant determined by the energy and the characteristic
length of the baby universe, which can go from the
Planck length to the scale of laboratory physics in the
dilute-gas approximation [1,8,9,34]. It is therefore very
small compared with the large value of the length of the
parent universe, which is of the order of the Hubble length
of our Universe. Thus, the plasma of baby universes is
represented in our model by a set of harmonic oscillators
with constant frequency !i, where the index i labels the
different species of baby universes, i.e.

H" ¼ XN
i¼1

1

2
p2
�i

þ!2
i

2
�2

i : (40)

The interaction Hamiltonian, Hint in Eq. (38), can be
written as

Hint ¼
X
i

�i�P  fð�iÞ; (41)

where �i is an effective coupling constant between the
parent universe and the baby universe i, which is assumed
to be small so that the Born-Markov approximation can be
assumed to hold in the interaction scheme. The form of
fð�iÞ depends on the kind of interaction which is consid-
ered to take place between the parent and the baby uni-
verses. For instance, in the cases considered by Coleman
[8,9] and others [35], simply connected wormholes are
considered and thus single baby universes are nucleated,
fð�iÞ � �i. In the case considered by González-Dı́az
[10,36], where doubly connected wormholes are created
and therefore the baby universes are nucleated in pairs,
fð�iÞ � �2

i . We shall consider these two cases in the
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analysis to follow. In general, fð�iÞ can be a complicated
function and these two extreme cases can be considered as
the first terms of its series development.

As a result of the interaction between the parent universe
and the plasma of baby universes, the properties of the
parent universe are modified so that its evolution effec-
tively becomes nonunitary. The master equation for the
reduced density matrix of the parent universe, when the
degrees of freedom of the baby universes are traced out,
can be written as [2,37]

@a�P ¼ �i½ ~HP; �P� � i	½�; fP�; �Pg� �D½�; ½�; �P��
� f½�; ½P�; �P��: (42)

The unitary part of the effective evolution of the parent
universe, given by the first term in Eq. (42), corresponds
to the evolution of a new harmonic oscillator, ~HP �
HP þ ð ~�2=2Þ�2, with a frequency which is shifted with
respect to the initial value �ðaÞ. The corresponding Lamb
shift is given by

~� 2ðaÞ ¼ �2
Z a

a0

da0
ða; a0ÞAða; a0Þ; (43)

where 
ða; a0Þ is the imaginary part of the correlation
function,

h�kðaÞ�kða0Þib ¼ �ða; a0Þ � i
ða; a0Þ; (44)

with k ¼ 1 and k ¼ 2, for linear and quadratic interactions,
respectively, and Aða; a0Þ is a solution of the Wheeler–
DeWitt equation (25) [see Eqs. (28) and (29)]. The shift for
the frequency of the harmonic oscillator that represents the
state of the parent universe corresponds to a shift of its
energy density. Therefore, the Lamb shift given by Eq. (43)
can be viewed to be equivalent to the mechanism proposed
by Coleman in order to set the most probable value of the
cosmological constant to zero. It is currently known that
the value of the cosmological constant is not zero but very
small, in fact, of the order of the current critical density.

Three terms can be distinguished in the nonunitary part
of the master equation (42). The dissipation coefficient
[37], 	ðaÞ, is given by

	ðaÞ ¼
Z a

a0

da0
ða; a0ÞBða; a0Þ; (45)

where Bða; a0Þ is defined by Eqs. (28) and (29). In quantum
mechanics, 	 is related to the momentum damping and to
the velocity of the wave packet. However, the wave func-
tion of the Universe is not defined upon the space-time but
in the superspace so that the interpretation of 	 does not
become so clear for the state of the multiverse.

The normal-diffusion coefficient [37], DðaÞ in Eq. (42),
is given by

DðaÞ ¼
Z a

a0

da0�ða; a0ÞAða; a0Þ; (46)

where �ða; a0Þ is the real part of the kernel (44). In quantum
mechanics,D gives a measure of the decoherence length of
a Gaussian wave packet [37]. In the case of the Universe,
this coefficient provides us therefore with a measure of the
effectiveness of the decoherence process of two different
branches of the Universe, � and �0, caused by the inter-
action with the quantum fluctuations of the gravitational
vacuum. Finally, the anomalous-diffusion coefficient [37]
in Eq. (42) is given by

fðaÞ ¼ �
Z a

a0

da0�ða; a0ÞBða; a0Þ: (47)

Let us now derive the results of the third quantization
formalism for linear and quadratic interactions. Two states
are considered for the gravitational vacuum: (i) a thermal
state and (ii) a squeezed vacuum state.

1. Case 1: Linear interaction

The wave functions that represent the baby universes are
given by the solutions corresponding to the harmonic
oscillator with constant frequency. These can be written,
in terms of the creation and annihilation operators of baby

universes, byi and bi, as

�iðaÞ ¼
ffiffiffiffiffiffiffiffi
1

2!i

s
ðe�i!iða�a0Þbi þ ei!iða�a0Þbyi Þ; (48)

where a is the scale factor of the parent universe, and

byi and bi are the creation and annihilation of baby uni-
verses evaluated at the hypersurface given by the value a0.
Then for the case of linear interaction k ¼ 1 in the corre-
lation function (44). In the case of a thermal bath of baby

universes, hb2i ib ¼ hðbyi Þ2ib ¼ 0 and hbyi biib ¼ NiðTÞ ¼
hbibyi ib � 1, with

NiðTÞ ¼ 1

eð!i=TÞ � 1
; (49)

where T is the temperature of the space-time foam [38],

in units of kB
ℏ ¼ 1. The noise kernel [37], �ða; a0Þ, and

the dissipation kernel [37], 
ða; a0Þ, in Eq. (44), can be
written as

�ða� a0Þ ¼ X
i

�2
i

2!i

ð2Ni þ 1Þ cos!iða� a0Þ;

¼
Z 1

0
d!Jð!Þ coth

�
!

2T

�
cos!ða� a0Þ; (50)


ða� a0Þ ¼ X
i

�2
i

2!i

sin!iða� a0Þ;

¼
Z 1

0
d!Jð!Þ sin!ða� a0Þ; (51)

where
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Jð!Þ � X
i

�2
i

2!i

�ð!�!iÞ

is the spectral density of baby universes in the space-time
foam. It encapsulates the physical properties of the plasma
of baby universes. The interaction scheme given so far can
be generally applied to more realistic problems by substi-
tuting the spectral density Jð!Þ by a heuristic function that
accounts more realistically for the spectral structure at the
environment. For the quantum fluctuations of the gravita-
tional vacuum, it is expected that the presence of baby
universes in the space-time foam be exponentially sup-
pressed for large values of the energy of the baby universe.
Therefore, we assume the following spectral density for the

bath of baby universes, Jð!Þ ¼ J20!
3e�!=�, where J0 and

� are two constants, the latter representing the cutoff for
the energy of the vacuum fluctuations, and the factor !3

has been introduced to make the value of Jð!Þ sufficiently
convergent at ! ! 0.

The functions Aða; a0Þ and Bða; a0Þ in Eqs. (28) and (29)
and Eqs. (43)–(47) can be expressed in terms of Bessel
functions. For large values of the scale factor, which cor-
respond to the description of parent universes, they can be
approximated as

Aða; a0Þ ¼
�
a0

a

�ðq�1Þ=2
cos

�
�0

q
ðaq � a0qÞ

�
; (52)

Bða; a0Þ ¼ ðaa0Þð1�q=2Þ 1

�0

sin

�
�0

q
ðaq � a0qÞ

�
; (53)

where q ¼ 3
2 ð1� wÞ. For, q ¼ 1 (w ¼ 1

3 ), these equations

are exact and correspond to the solutions of a harmonic
oscillator with constant frequency, �0. If we consider
small changes in the scale factor of the parent universe,
a� a0 � 1 and a� a0 � 1, then

~� 2ðaÞ � � 2c1a
2

n1n2

�
1� n2

�
a0
a

�
n1 þ n1

�
a0
a

�
n2
�
; (54)

DðaÞ � c2a

n1

�
1�

�
a0
a

�
n1
�
; (55)

with n1 ¼ qþ1
2 , n2 ¼ qþ3

2 , and

c1 ¼
Z 1

0
d!!Jð!Þ � 24J20�

5; (56)

c2 ¼
Z 1

0
d!Jð!Þ coth

�
!

2T

�
� 4J20�

3T; (57)

where the limit !T � 1 has been taken in the latter equation.

On the other hand, if we describe the plasma of baby
universes by a squeezed state, which can be considered a
more realistic case [1,30], then

hbyi bii ¼ sinh2ri � ~Ni; (58)

hbibyi i ¼ cosh2ri � ~Ni þ 1; (59)

hb2i i ¼ �1
2e

i�i sinh2ri; (60)

hðbyi Þ2i ¼ �1
2e

�i�i sinh2ri; (61)

where ri and �i are the squeezing parameters. The two first
terms are equivalent to the case of a thermal bath of baby
universes with an effective number of quanta given by
~Ni � sinh2ri. Thus, the dissipation kernel, 
ða; a0Þ, turns
out to be the same as in the thermal case, as is also given

by Eq. (51). Then, the Lamb shift ~�ðaÞ is that given by
Eq. (54). However, the squeezed vacuum introduces new
terms in the noise kernel, �ða; a0Þ. This is given in the case
of the squeezed vacuum by

�sða� a0Þ ¼ X
i

ℏ�2
i

2!i

fð2 ~Ni þ 1Þ cos!iða� a0Þ

� sinh2ri cosð!iðaþ a0 � 2a0Þ � �iÞg: (62)
Then the decoherence factor,DðaÞ, turns out to be given by
Eq. (55), with

cs2 ¼
Z 1

0
d!Jð!Þðcosh2r� sinh2r cos�Þ: (63)

A similar expression is obtained in Ref. [2] (see, also,
Ref. [39]). There a decoherence time scale is given by

t�1
D ¼ ffiffiffiffiffi

cs2
p

. In the limit of large squeezing [2], � ! 0 and

r ! �1, and we can estimate a decoherence scale for two
different branches of the parent universe given by

aD � 1

J0�
2ejrj

:

In both, a vacuum in a thermal and in a squeezed state,
the effect of decoherence due to the interaction of the
parent universe with the quantum fluctuations of the
space-time is similar if effectively we assume that

T ��N in the thermal bath, and that e2jrj � N in the
squeezed vacuum, that is, for a large number of fluctua-
tions of the space-time.
On the other hand, the time scale for the decoherence of

a wave packet is analyzed differently in Ref. [37]. There
the decoherence factor D measures the decoherence of a
Gaussian wave packet at spatial positions x and x0, with a
decoherence time given by [37] D ¼ 1=Dðx� x0Þ2. In the
case of the universe,� and�0 represent different branches
of the parent universe, and therefore, a decoherence scale
of order aD � 1=c2ð���0Þ2 can be assumed, with c2 as
given by Eq. (57) or Eq. (63) for the case of a thermal bath
or a squeezed vacuum, respectively.
In any case, it can be concluded that the scale at which

quantum interference between different branches of a par-
ent universe becomes important is very small, presumably
of the order of the Planck length.
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2. Case 2: Quadratic interaction

In the case of a quadratic interaction between the parent
universe and the baby universes, k ¼ 2 in the correlation
function given by Eq. (44). The formalism applies in the
same way as in all the previous cases and the quadratic
interaction only changes the functional form of the dissi-
pation and noise kernels,
ða; a0Þ and �ða; a0Þ, respectively.
For a vacuum in a thermal state and a� a0 � 1, they are
given by


ða; a0Þ ¼ 4
Z 1

0
d!Jð!ÞNða� a0Þ; (64)

�ða; a0Þ ¼ 2
Z 1

0
d!

Jð!Þ
!

N2; (65)

where N � Nð!Þ is defined in Eq. (49). Then the Lamb

shift, ~�ðaÞ, and the decoherence factor, DðaÞ, are those
given by Eqs. (54) and (55), respectively, with new coef-
ficients d1 and d2 instead of c1 and c2, given by

d1 ¼ 8T
Z 1

0
d!

Jð!Þ
!

� 16J20�
3T; (66)

d2 ¼ 8T2
Z 1

0
d!

Jð!Þ
!3

� 8J20�T2: (67)

For a squeezed vacuum state, the leading terms of the
dissipation and noise kernels turn out to be


ða; a0Þ �
Z 1

0
d!Jð!Þe2jrjða� a0Þ; (68)

�ða; a0Þ �
Z 1

0
d!

Jð!Þ
2!

e4jrj; (69)

and then

ds1 � 6J20�
4e2jrj; (70)

ds2 � J20�
3e4jrj: (71)

For the quadratic interaction, therefore, the coefficient d1
that determines the Lamb shift depends on the temperature,
for a thermal vacuum, and on the squeezing parameter r,
for a squeezed vacuum state. It depends thus on the
strength of the fluctuations of the space-time of the parent
universe, which is assumed to be large. The coefficient of
the decoherence factor, d2, depends on ~N2

i in the quadratic
interaction. However, this kind of interaction is of order ℏ2

instead of ℏ for linear interaction, and therefore the con-
tribution of the quadratic interaction is subdominant in the
semiclassical regime of the quantum state of the Universe.

C. Parent-parent interaction

We can also consider the interaction between a parent
universe and the rest of the universes of a multiverse made
up of parent universes. In that case, the squeezing effect of

the state of the multiverse asymptotically disappears [17],
i.e. r ! 0 as a ! 1. It seems then most appropriate con-

sidering a thermal state of N parent universes, with N�1 ¼
e!=T � 1, where T is a temperature analog in the multi-
verse. It includes the special case for whichN ¼ 0 (T ¼ 0)
that represents the interaction of a parent universe with the
fluctuations of its ground state.
For parent universes, the coefficients of their wave

functions can be approximated by Eqs. (52) and (53), and
then

~�2ðaÞ � � 2

aq�1

Z a

a0

Z 1

0
d�0Jð�0Þ sin�

0

q
ðaq � a0qÞ

� cos
�0

q
ðaq � a0qÞ; (72)

DðaÞ � 1

aq�1

Z a

a0

Z 1

0
d�0Jð�0Þð2N þ 1Þa0q�1

� cos
�0

q
ðaq � a0qÞ cos�0

q
ðaq � a0qÞ; (73)

where Jð�0Þ is now the spectral density of parent universes
in the multiverse, and �0 refers to the energy density of
parent universes, which is assumed to be picked around the
current energy density of our Universe. For small intervals
of the scale factor,

~� 2ðaÞ � � 2cp1a
2

qn

�
qþ

�
a0
a

�
n � n

�
a0
a

��
; (74)

DðaÞ � cp2a

q

�
1�

�
a0
a

�
q
�
; (75)

where n ¼ qþ 1, and

cp1 ¼
Z 1

0
d�0Jð�0Þ�0; (76)

cp2 ¼
Z 1

0
d�0Jð�0Þ coth�

0

2T
: (77)

If we assume that the energy density of the parent universes
of the multiverse is highly peaked around the value of the
theoretical value of the energy density of our Universe,�0,

then Jð!0Þ � �ð�0 ��0Þ, cp1 ��0, and c
p
2 � coth�0

2T . The

corresponding Lamb shift given by cp1 is therefore of the

same order as the energy density that corresponded to a
universe without any interactions. Then the effective en-
ergy density of the Universe turns out to be approximately
zero. Furthermore, with the same choice of spectral density
in the multiverse, the decoherence between two different
branches of a parent universe is effective for a large num-
ber of universes in the environmental multiverse, i.e., when
cp2 � 2T

�0
	 1. However, these results are highly dependent

on the choice of the spectral density of the multiverse.
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For other values of the interval a� a0 rather than
a� a0 � 1, numerical methods have to be employed
and the results strongly depend on the estimation of the
relative value of the energies of the universes, and on the
choice taken for the spectral density. A particularly simple
case is when q ¼ 1, i.e. for universes which are dominated
by a radiationlike fluid (p ¼ 1

3�). Then, the quantum state

that describes the universes is that of a harmonic oscillator
with constant frequency where the approximations used in
Eqs. (52) and (53) become necessarily exact manipula-
tions, with q ¼ 1. In such a case, assuming a large interval
of interaction (a� a0 ! 1) and a spectral density given

by Jð!Þ ¼ J20!
3e�ð!=�Þ, it is obtained

D ¼
Z 1

0
d

Z 1

0
d!Jð!Þð2N þ 1Þ cos! cos�0

¼ �J20�
2
0Te

��0=�: (78)

� in Eq. (78) is a cutoff for the energy density of the
environment and �0 is the energy density of a distin-
guished universe which herewith refers to our own. For

an environment of baby universes, �0

� 	 1, and the deco-

herence between two branches of the parent universe is
only effective for a large number of vacuum fluctuations or,
equivalently, for large values of the squeezing parameter r.

For an environment made up of parent universes, �0

� � 1,

and the decoherence effect is more effective even for the
interaction of the parent universe with the fluctuations of its
ground state, for which D��3

0.

Moreover, assuming the same spectral density as for
Eq. (78) and a� a0 ! 1, the Lamb shift can be expressed
in terms of a Meijer G function, i.e.

~� 2 ¼ �2
Z 1

0
d

Z 1

0
d!Jð!Þ sin! cos�0

¼ 4
ffiffiffiffi
�

p
J20�

3G21
13

0
0; 3; 12

�2
0

4�2

� �
; (79)

which is depicted in Fig. 1. For an environment made up of

baby universes, �0

� 	 1 and the Lamb shift turns out to be

very small. However, for an environment of parent uni-
verses, �0 �� and the corresponding Lamb shift can be
of the order of the original frequency, resulting then in an
effective value of the energy density of the Universe very
close to zero.
The multiverse of parent universes turns out to be more

effective for both the decoherence between two branches
and the reduction of the theoretical value of the vacuum
energy density of our Universe.

D. Thermodynamical quantities

As a consequence of the interaction of a single universe
with an environment made up of baby or parent universes,
the universe undergoes an effectively nonunitary evolution
determined by the last three terms of the master equation
(42). As a simple example, let us take the value q ¼ 1, so
that D / ða� a0Þ, 	 / ða� a0Þ3, and f / ða� a0Þ2. For
a small value of the interval�a � a� a0, we can consider
only the decoherence factor DðaÞ. The master equation
(42) can be written then, in the configuration space, as

@a�Pð�;�0;aÞ¼
�
� i

2

�
@2

@�02�
@2

@�2

�
� i�2ðaÞ

2
ð�2��02Þ

�DðaÞð���0Þ2
�
�Pð�;�0;aÞ; (80)

with DðaÞ � c2ða� a0Þ, where c2 is given by Eqs. (57),
(63), (67), (71), and (77) for the different kinds of inter-
actions considered in this section, and �ðaÞ � �efða0Þ.
The master equation (80) can be solved with the Gaussian
ansatz [2,37],

�ð�;�0; aÞ ¼ e�AðaÞð���0Þ2�iBðaÞð�2��02Þ�CðaÞð�þ�0Þ2�NðaÞ:
(81)

The coefficients AðaÞ, BðaÞ, and CðaÞ satisfy the following
differential equations [2] (N is a normalization factor):

_A ¼ 4ABþDðaÞ; (82)

_B ¼ 2B2 � 8ACþ 1
2�

2; (83)

_C ¼ 4BC: (84)

In order to analyze the decoherence effects of the environ-
ment on the Universe, let us consider a separable initial
state for the distinguished Universe, i.e. a pure state, given
by [37]

�ð�;�0; a0Þ ¼
�

1

2�b2

�
1=2

e�ð�2þ�02Þ=4b2 : (85)

In that case, the initial conditions for the coefficients AðaÞ,
BðaÞ, and CðaÞ are Aða0Þ ¼ Cða0Þ ¼ 1

8b2
, and Bða0Þ ¼ 0.

With the assumption, �a � 1, and disregarding higher
orders than�a, it is obtained (see Appendix A2 in Ref. [2])

Aða� a0Þ � 1
8ð1þ 16C0ða� a0ÞÞ; (86)
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FIG. 1 (color online). The Lamb shift, Eq. (79), in units
4
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Bða� a0Þ � C0

�2
0

ða� a0Þ; (87)

Cða� a0Þ � 1
8; (88)

where C0 ¼ �4
0 � c2

8 (with b ¼ 1). These coefficients al-

low us to obtain the thermodynamical properties of the
parent universe. For instance, the purity of the state, � , is
given by [37]

�ða� a0Þ ¼
ffiffiffiffiffiffiffiffiffiffi
CðaÞ
AðaÞ

s
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 16C0ða� a0Þ
p : (89)

The linear entropy [2], Slin � Trð�� �2Þ, turns out to be

Slin ¼ 1� � � 1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16C0ða� a0Þ

p ; (90)

and the entropy of the distinguished universe, which for the
initial state is zero as corresponds to a pure state [see
Eq. (85)], grows up due to the interaction with the environ-
ment according to

S ¼ � 1

p0

ðp0 lnp0 þ q0 lnq0Þ; (91)

where [2]

p0 ¼ 2�

1þ �
; (92)

q0 ¼ 1� �

1þ �
: (93)

The linear entropy and the entropy given by Eqs. (90) and
(91), respectively, are depicted in Fig. 2 in units for which
C0 ¼ 1, so that it is qualitatively valid for all kinds of
interactions and environments considered in this section.

The interaction between the parent universe and
environment (made up of baby or parent universes) makes
the state of the universe to evolve into a mixed state. That
means that there exists a loss of information in the state of
the distinguished universe as a consequence of the inter-
action with the quantum fluctuations of the space-time or
with other universes of the multiverse. That loss of infor-
mation makes the different branches of the universe lose
their quantum coherence and, together with other decoher-
ence processes, leads to the feature that the universe can be
described in terms of the semiclassical branch which we
live in. It is worth noticing that such a loss of information
appears as a result of the trace operation of the degrees of
freedom that corresponds to the environment. The total
system, formed by the parent universe and the rest of the
universes (baby or parent), retains all the information of the
system along the evolution of the multiverse.

IV. CONCLUSIONS

The interaction between the scale factor and a scalar
field with mass is seen to decohere the expanding and
contracting branches of a geometrically flat, homogeneous,
and isotropic universe, whose expansion (or contraction) is
accelerated. The decoherence turns out to be more effec-
tive in the case of a universe dominated by a quintessence
fluid than when a vacuum or a phantom-dominated uni-
verse is considered. This might be related to the quantum
nature of the latter universes provided that classicality can
be a condition originated from decoherence. That would
agree with the results obtained in other works which also
suggest the quantum character of the phantom universe
[22,23].
The interaction of a parent universe with the environ-

ment, being this formed by a multiverse of parent or baby
universes, can be analyzed following a parallel develop-
ment to what is usually made in quantum optics. Within the
approximations considered in this paper, the squeezed
vacuum state and the thermal state of baby universes
produce similar effects provided that the squeezing of the
state of baby universes be interpreted as an effective cre-
ation of a high number of fluctuations, i.e. for a large
squeezing effect.
The linear interaction produces leading terms in the

change of the properties of the parent universe, the effects
of the quadratic interaction, being therefore subdominant.
However, it does not imply that the quadratic interaction
has no relevant effects on the state of the parent universe
because it is actually responsible for the change of the high
order coherence properties of the fields that propagate
upon the space-time [10].
The distinguished universe undergoes an effectively

nonunitary evolution as due to the interaction with the
environment. The decoherence and dissipation effects are
even more acute if the environment is taken to be a multi-
verse made up of parent universes, because their energy

FIG. 2 (color online). Entropy and linear entropy of the state of
a parent universe which is interacting with a plasma of baby
universes, for a linear interaction [see Eqs. (90) and (91)].
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density is assumed to be of the order of that for the
distinguished parent universe.

Similar as to what happens with the Lamb shift in
quantum mechanics, here the vacuum energy of the dis-
tinguished universe is also shifted. In the case of an envi-
ronment made up of baby universes, which can be
considered to be similar to that previously studied by
Coleman [8], the corresponding Lamb shift is important

for a large squeezing effect or a large number of vacuum
fluctuations. The effect is greater if the environment is a
multiverse of parent universes since the corresponding
Lamb shift matches the theoretical predictions for the
vacuum energy of a single universe. That could effectively
reduce the value of the energy density of the universe to be
very close to zero even for the interaction between the
parent universe with the fluctuations of its ground state.
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