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What is the size of the most massive object one expects to find in a survey of a given volume? In this

paper, we present a solution to this problem using extreme-value statistics, taking into account primordial

non-Gaussianity and its effects on the abundance and the clustering of rare objects. We calculate the

probability density function (PDF) of extreme-mass clusters in a survey volume, and show how primordial

non-Gaussianity shifts the peak of this PDF. We also study the sensitivity of the extreme-value PDFs to

changes in the mass functions, survey volume, redshift coverage, and the normalization of the matter

power spectrum, �8. For ‘‘local’’ non-Gaussianity parametrized by fNL, our correction for the extreme-

value PDF due to the bias is important when fNL * 100, and becomes more significant for wider and

deeper surveys. Applying our formalism to the massive high-redshift cluster XMMUJ0044.0-2-33, we find

that its existence is consistent with fNL ¼ 0, although the conclusion is sensitive to the assumed values of

the survey area and �8. We also discuss the convergence of the extreme-value distribution to one

of the three possible asymptotic forms, and argue that the convergence is insensitive to the presence of

non-Gaussianity.
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I. INTRODUCTION

The statistics of the primordial seeds that grew into the
observed large-scale structures holds a wealth of informa-
tion about the physics of the primordial Universe. In the
simplest models of inflation, the primordial density fluctu-
ations obey an almost Gaussian statistics (see [1] for a
review). Tiny deviations from Gaussianity may be quanti-
fied, amongst other ways,1 by the ‘‘local’’ non-Gaussianity
parameter, fNL, defined via the expansion of the nonlinear
Newtonian potential

� ¼ �þ fNLð�2 � h�2iÞ þ . . . ; (1)

where � is a Gaussian random field. This form of non-
Gaussianity arises in simple models of single and multi-
field inflation [2–4] as well as some curvaton models [5–7].
Observational constraints on fNL from the cosmic micro-
wave background (CMB) anisotropies are currently con-
sistent with fNL ¼ 32� 42 (2�) [8]. However, if fNL is in
fact much smaller, its effects on the CMB would be diffi-
cult to extract and distinguished from non-Gaussianity
arising from secondary sources such as gravitational lens-
ing and instrumental noise [9,10].

The statistics of large-scale structures offers a comple-
mentary probe of non-Gaussianity on much smaller scales
than the CMB. Indeed, it is possible that fNL measured on
Gpc scales may be quite different from that measured on
Mpc scales. In wave number space, this translates to a

possible k-dependence of fNL, which have been hinted at
by the numerous observations of massive high-redshift
clusters [11–15]. These massive clusters exist, according
to some, in greater abundances than expected from
Gaussian statistics. Some authors have concluded that the
level of non-Gaussianity on the Mpc scale required to
explain the existence of certain rare clusters is fNL ¼
a few� 102 [16,17]. In contrast, some have argued that
these claims are based on a misinterpretation of data, and
that the occurrences of these rare objects are in fact con-
sistent with Gaussian statistics [18–20].
In this work, we offer our opinion on this debate by

presenting an approach to calculating the probability of
observing rare objects based on extreme-value statistics.
We begin by asking: what is the probability distribution of
the most massive clusters found within a given volume at a
given redshift range? Our technique relies on a basic
application of the so-called void probability distribution
introduced by White [21]. This approach was successfully
used to study the abundances of massive clusters given a
Gaussian initial condition in [22,23]. In this work, we
extend the groundwork laid by these authors to study the
effect of fNL on the distribution of extreme-mass objects.
For other cosmological applications of extreme-value
theory, see [24–31].
Previous approaches to extreme-value statistics of clus-

ters have so far either neglected the clustering, or bias, of
galaxy clusters [31,32], or considered it in the Gaussian
case [22,29]. In this work, however, we have included the
effects of the bias in the presence of non-Gaussianity.
Whilst Davis et al. [22] have previously reported that the
effects of the bias on the extreme-value distribution are
small in the Gaussian case, it remains to be shown if this
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1In general, a non-Gaussian probability density function (PDF)

can have divergent moments (e.g. the Cauchy distribution). In
this work we assume that the primordial density distribution has
finite moments up to third order (i.e. finite skewness).
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also holds in the presence of non-Gaussianity, which can
introduce a strong scale dependence in the bias [33]. We
investigate this problem in this work using the formalism
of Valageas [34,35], who showed how the bias can be
calculated in real space for a given fNL. As we shall see
later, the contribution from the bias can indeed be signifi-
cant if fNL is sufficiently large.

II. THE PRIMORDIAL DENSITY FLUCTUATIONS

In this section, we introduce the parameters needed to
describe the primordial density fluctuations statistically.
Some of our present conventions (such as the Fourier
transform and the moments of the density fluctuations)
slightly differ from our earlier work [36,37]. In particular,
smoothing by a window function will be kept explicit, in
contrast with other work in which overdensities are defined
to be implicitly smoothed.

Let �c, �b, �r, �� be the time-dependent energy den-
sities of cold dark matter, baryons, radiation, and dark
energy. Let �m ¼ �c þ �b. We define the density parame-
ter for species i as

�i � �iðz ¼ 0Þ
�crit

; (2)

where �crit is the critical density defined as �crit �
3H2

0=8�G. The Hubble constant, H0, is parametrized by

h via the usual formulaH0 � 100h km s�1 Mpc�1. Results
from a range of astrophysical observations are consistent
with h ’ 0:7, �c ’ 0:23, �b ’ 0:046, �r ’ 8:6� 10�5,
and �� ¼ 1��m ��r (see e.g. [8,38]).

The density fluctuation field, �, is defined at redshift z as

�ðx; zÞ � �mðx; zÞ � h�mðzÞi
h�mðzÞi ; (3)

where h�mi is the mean matter energy density. To make the
notation less cumbersome, we shall write �ðxÞ to mean
�ðx; zÞ. The Fourier decomposition of �ðxÞ is given by

�ðxÞ ¼
Z

dk�ðkÞeik�x: (4)

The gravitational Newtonian potential, �, is related to
the density fluctuation by the cosmological Poisson
equation

�ðkÞ ¼ Aðk; zÞ�ðkÞ; (5)

A ðk; zÞ � 2

3�m

�
k

H0

�
2
TðkEHÞDðzÞ; (6)

where T is the transfer function and D is the linear growth
factor calculated using the fitting formula of [39,40] with
Dð0Þ � 0:76. We follow the approach outlined in [41] and
use the transfer function

TðkÞ ¼ ln½1þ ð0:124kÞ2�
ð0:124kÞ2

�
�
1þ ð1:257kÞ2 þ ð0:4452kÞ4 þ ð0:2197kÞ6
1þ ð1:606kÞ2 þ ð0:8568kÞ4 þ ð0:3927kÞ6

�
1=2

:

(7)

In addition, we also incorporate the baryonic correction of
Eisenstein and Hu [42], whereby the transfer function is
evaluated at

kEH ¼ k�1=2
r

H0�m

�
�þ 1� �

1þ ð0:43ksÞ4
��1

; (8)

with

� ¼ 1� 0:328 lnð431�mh
2Þ�b

�m

þ 0:38 lnð22:3�mh
2Þ
�
�b

�m

�
2
;

and

s ¼ 44:5 lnð9:83=�mh
2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 10ð�bh
2Þ3=4

q Mpc:

The power spectrum, PðkÞ, can be defined via the two-
point correlation function in Fourier space as

h�ðk1Þ; �ðk2Þi ¼ �Dðk1 þ k2ÞPðkÞ; (9)

where �D is the three-dimensional Dirac delta function. In
linear perturbation theory, it is usually assumed that
inflation laid down a primordial spectrum of the form
PðkÞ / kns , where ns is the scalar spectral index (assumed
to be 0.96 in this work).
The variance of linear density fluctuations smoothed on

scale R is given by

�2
R ¼ 4�

Z 1

0

dk

k
W2ðkRÞP ðkÞ; (10)

where P ðkÞ � k3PðkÞ / ½Aðk; zÞ�2ðk=H0Þns�1.
We choose W to be the spherical top-hat function of

radius R. In Fourier space, we have

WðkRÞ ¼ 3

�
sinðkRÞ
ðkRÞ3 � cosðkRÞ

ðkRÞ2
�
: (11)

The mass, M, of matter enclosed by a top-hat window of
radius R is given by

M � 4
3�R

3�m � 1:16� 1012�m

�
R

h�1 Mpc

�
3
h�1M�:

(12)

With the above relation, the smoothed variance, �R, can be
equivalently expressed as�M. Finally, the normalization of
P ðkÞ is such that

�8 � �ðR ¼ 8h�1 Mpc; z ¼ 0Þ ¼ 0:801: (13)
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III. CLUSTER NUMBER COUNTS

The mean number density, n, of objects with mass
greater than m, at redshift z can be calculated by

nð>m; zÞ ¼
Z 1

m

dn

dM
dM; (14)

where dn=dM is the differential number density. In the
presence of local non-Gaussianity MVJ [43] used a saddle-
point expansion (assuming that the deviation from
Gaussianity is sufficiently weak for such an expansion to
converge) to derive a correction factor for dn=dM of the
form

R ¼ exp

�
S3�

3
c

6�2
M

��
�2
c

6�
� dS3
d ln�M

þ �

�
; (15)

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �cS3

3

s
; (16)

where the third cumulant, S3, is given by S3 ¼ h�3i, and is
assumed to be almost independent of the smoothing mass-
scale, M. This latter assumption indeed holds on cluster
scales (see (18) below). S3 can be calculated either from a
three-dimensional integral

S3ðMÞ ¼ 6fR;RRð0Þ
�4

M

; (17)

with fR;RR defined in Eq. (34), or from the fitting

formula [36]

S3ðMÞ ¼ 3:15� 10�4fNL
�0:838

M

: (18)

The critical overdensity, �c, is taken to be2

�c ¼
ffiffiffi
a

p � 1:686; (19)

with the ‘‘fudge factor’’
ffiffiffi
a

p ¼ 0:9 as recommended by
[45], although there is still debate over its value [44,46].
There are alternative forms of the correction factor, R,

given by LoVerde et al.[47] based on a low-order
Edgeworth expansion, and by Paranjape et al.[48] based
on resumming terms in the saddle-point expansion of the
mass function. We tested both of these alternative correc-
tions and found that, in the range of parameters used in this
paper, there are only small differences between the various
prescriptions and our main results are unaffected by the
choice of the correction factor. In the rest of this work, we
shall use only the MVJ correction factor (see [45] for a
comparison between the correction factors).
In summary, we shall consider the non-Gaussian differ-

ential abundance of the form

dn

dM
¼ R� Fð�Þ�m

M

d ln��1

dM
; (20)

where � � �c=�M and Fð�Þ is one of the following three
standard mass-functions

press-schechter½49� FPS ¼
ffiffiffiffi
2

�

s
�e��2=2; (21)

Sheth -Torman½50� FST ¼ 0:322

ffiffiffiffiffiffi
2a

�

s
� exp

�
� a�2

2

�
½1þ ða�2Þ�0:3�; a ¼ 0:707; (22)

Tinker etal:½51;52� FTinker¼0:368½1þð��Þ�2���2	þ1e�
�2=2;

�¼0:589ð1þzÞ0:2; �¼�0:729ð1þzÞ�0:08;

	¼�0:243ð1þzÞ0:27; 
¼0:864ð1þzÞ�0:01: (23)

The Press-Schechter and Sheth-Tormen mass functions can
be derived by considering the overdensity, �, as a stochas-
tic function of the smoothing mass scale, M, and associat-
ing trajectories [in the ðM;�Þ plane] that overshoot a

barrier, �c, with a collapsed object. One can show that a

spherical collapse can be associated with a barrier of

constant height, resulting in the Press-Schechter mass

function [49], while an ellipsoidal collapse can be associ-

ated with a drifting barrier, �c ¼ 1:686ð1þ �ð�=�Þ�Þ
(�, � constant), giving the Sheth-Tormen mass function

[50]. The Tinker mass function belongs to a family of

so-called universal mass functions derived from a suite

of N-body simulations, with the functional form deviating

from simulation results by & 5% in the redshift range

considered here (for detail see [51,52], and also [53–55]).

2Note that �c is taken to be constant, while the redshift
dependence is carried by the factor Aðk; zÞ. This convention
agrees with [34,35] but is different from the ‘‘excursion-set’’
convention in which the redshift dependence is carried by �c,
with � extrapolated to z ¼ 0 (e.g. [44]). We believe our present
convention will facilitate comparison with [34,35], whose results
will be used in the next section.
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The number of objects with mass above M expected at
redshift z is given by the integral

dV

dz
�

Z 1

M

dn

dm
dm; (24)

where the volume element dV=dz satisfies

dV

dz
¼ fsky

4�

HðzÞ
�Z z

0

dz0

Hðz0Þ
�
2
; (25)

HðzÞ � H0½�mð1þ zÞ3 þ���1=2; (26)

and fsky is the fraction of the sky covered by the survey.

The number count for z ¼ 1, fsky ¼ 1, and fNL ¼ 0 or 100

is shown in Fig. 1. Comparing the mass functions, we see
that the Sheth-Tormen gives the highest number count,
followed by the Tinker and the Press-Schechter mass
functions. Changing fNL to 100 (right panel) increases
the number count at the high-mass end by roughly an order
of magnitude. See e.g. [46,56] for more comparisons be-
tween various mass functions.

IV. BIAS

In the seminal work of Dalal et al. [33], it was shown
quantitatively how non-Gaussianity gives rise to character-
istic changes in the clustering of density peaks correspond-
ing to rare objects. At leading order, it is common to define
the bias in Fourier space as the ratio of the power-spectra

b2ðkÞ ¼ PhaloðkÞ
PmðkÞ ; (27)

which represents the amplitude at which density peaks
(Phalo) trace the underlying dark-matter distribution (Pm).
The Fourier-space formalism was used by a majority of
papers on non-Gaussian bias (e.g. [45,57–60]).

However, an arguably more intuitive measure of the bias
is in real space, where the density fluctuation in peaks (i.e.
luminous objects) is expressed as a nonlinear function of

the local dark-matter density fluctuation. On linear scales,
the bias is given by the ratio of the correlation functions
[61,62]

b2ðrÞ ¼ �pkðrÞ
�ðrÞ ; (28)

where r is the comoving length in Eulerian space (through-
out this work quantities with a subscript ‘‘pk’’ are associ-
ated with density peaks). The correlation function, �, is
defined as

�ðx1;x2Þ ¼ h�ðx1Þ; �ðx2Þi; r ¼ jx1 � x2j: (29)

On linear scales where P ðkÞ is of a power-law form pa-
rametrized by ns, we can write

�ðrÞ ¼ 4�
Z 1

0

dk

k
P ðkÞj0ðkrÞ; (30)

where j0ðxÞ ¼ sinx=x. The real-space bias tells us
directly about the clustering amplitude of density peaks
separated by distance r. We shall refer to r as the separation
length.
Unfortunately, when comparing (27) and (28), we see

that the real-space bias, bðrÞ, and the Fourier-space bias,
bðkÞ, are not simply related via a Fourier transform but
rather a complicated convolution. In [37], we avoided this
problem by interpreting (28) as a ratio of joint probabilities
of finding overdensities at two points distance r apart, and
then applying a bivariate Edgeworth expansion. Because of
the algebraic nature of the Edgeworth expansion, this
technique was readily applied to non-Gaussianity parame-
trized by the cubic order parameter, gNL, but surprisingly
the application is much less straightforward for fNL.
An alternative method for calculating the real-space bias

in the presence of fNL was presented by Valageas [34,35]
in which he showed that analytic calculations could be
made as long as the separation length is sufficiently large.
In this work, we shall follow this formalism, of which we
give a simplified account here.
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FIG. 1 (color online). The number of objects above massM with fNL ¼ 0 (left) and 100 (right) at z ¼ 1, calculated over the full sky
using the Press-Schechter (P-S), Sheth-Tormen (S-T), and Tinker et al. mass functions. With fNL ¼ 100, the number count increases
by roughly an order of magnitude at the high-mass end compared with fNL ¼ 0.
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A crucial element in the real-space approach is the
mapping between the separation length, s, in Lagrangian
coordinates (associated with linear density fluctuations)
and that in Eulerian coordinates (associated with nonlinear
fluctuations). This relation is given by

s ’ r

�
1þ 2�RðrÞ

3

�
; (31)

accurate at large distances where �RðrÞ 	 1. Here �RðrÞ
can be interpreted as the radial profile of the linear density
contrast from the center of the halo. The profile is given by

�RðrÞ ¼ �c

�2
R

�2
R;0ðrÞ þ

�2
c

�4
R

�
f0;RRðrÞ þ 2gR;0RðrÞ

� 3
�2

R;0ðrÞ
�2

R

fR;RRð0Þ
�
: (32)

In this expression, the functions �R1;R2
ðrÞ, fR;R1R2

ðrÞ, and
gR;R1R2

ðrÞ are defined by the following integrals3

�2
R1;R2

ðrÞ ¼ 4�
Z 1

0

dk

k
P ðkÞWðkR1ÞWðkR2Þj0ðkrÞ; (33)

fR;R1R2
ðrÞ ¼ 8�2Dð0ÞfNL

Z 1

0

dk1
k1

P ðk1ÞWðk1R1Þ

�
Z 1

0

dk2
k2

P ðk2ÞWðk2R2Þ
Z 1

�1
d�WðkRÞ

� AðkÞ
Aðk1ÞAðk2Þ j0ðkrÞ; (34)

gR;R1R2
ðrÞ ¼ 8�2Dð0ÞfNL

Z 1

0

dk1
k1

P ðk1ÞWðk1R1Þj0ðk1rÞ

�
Z 1

0

dk2
k2

P ðk2ÞWðk2R2Þ
Z 1

�1
d�WðkRÞ

� AðkÞ
Aðk1ÞAðk2Þ ; (35)

where � is the cosine of the angle between k1 and k2, and

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 þ 2k1k2�

q
.

With these definitions, Valageas showed via a saddle-
point expansion that the bias for objects massM is given by

b2ðM; rÞ ¼ 1

�2
0;0ðrÞ

½ð1þ �RðsÞÞe�ðsÞ � 1�; (36)

where

�ðsÞ ¼ �2
R;RðsÞ�2

c

u�2
R

þ 2�3
c

u3

�
fR;RRðsÞ þ 2gR;RRðsÞ

þ
�
1� u3

�6
R

�
fR;RRð0Þ

�
; (37)

u ¼ �2
R þ �2

R;RðsÞ: (38)

Figure 2 shows the real-space bias for a range of M
and r. Keeping r fixed and varying M (left panel), non-
Gaussianity shifts bðMÞ up or down (depending on the sign
of fNL). On the other hand, keepingM fixed and varying r,
we see how nonzero fNL introduces a scale dependence on
bðrÞ (bðrÞ is roughly constant on large scale if fNL ¼ 0).
This scale dependence is similar to that seen in [37] for
gNL.
In the limit of large separation length, the non-Gaussian

bias bðrÞ (with M fixed) follows a simple scaling relation.
Given fNL, we can define the deviation from the Gaussian
bias as �b � bðfNLÞ � bðfNL ¼ 0Þ. For r 
 R, it was
shown that [34]

�b / fNLbðfNL ¼ 0Þ
�

r

h�1 Mpc

�
2
; (39)
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FIG. 2 (color online). The effect of fNL on the real-space bias, b, at z ¼ 1. In the panel on the left, the bias is shown as a function
of smoothing mass-scale, M, with separation length r ¼ 50h�1 Mpc. The other panel shows the effect of varying r with
M ¼ 1014h�1M�, illustrating the scale dependence of the bias when fNL ¼ �100.

3In this paper fNL is defined in the ‘‘LSS’’ convention. The
‘‘CMB’’ convention, as used in [34], satisfies fCMB

NL ¼ Dð0ÞfLSSNL .
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so that the overall scaling is �b� r2, since bðfNL ¼ 0Þ is
approximately constant for large r.

In later work, it will be necessary to define the effective
bias associated with a comoving volume. For a spherical
region of comoving radius L, we define such a bias as

bLðMÞ ¼ 1

V2

Z
V
dx1

Z
V
dx2bðM; jx1 � x2jÞ; : (40)

It will also be useful to define the effective bias for objects
of mass >M

bð>M; rÞ � 1

nð>MÞ
Z 1

M
bðm; rÞ dn

dm
dm: (41)

Combining the averaging processes (40) and (41), we can
define

�ðL;MÞ � bLð>MÞ; (42)

which, as shown in the Appendix, simplifies in the limit
r 
 RðMÞ to

�ðL;MÞ � FðLÞGðMÞ; (43)

where

FðLÞ ¼ 1þ 6
5KðzÞfNL

�
L

h�1 Mpc

�
2
; (44)

GðMÞ ¼ 1

nð>MÞ
Z 1

M
bðm; fNL ¼ 0Þ dn

dm
dm: (45)

An example of the effective bias, �, with L ¼
100h�1 Mpc is shown in Fig. 3, in which we set z ¼ 1
and use the Tinker mass function for dn=dM, although
using a different mass function only results in small dif-
ferences. Comparing this graph with that of bðMÞ (left
panel of Fig. 2), we see that while � retains the overall
shape of the curves, it is clearly more sensitive to non-
Gaussianity. This quantity will be especially useful in the
next section in which we consider the clustering of massive
objects within a specified volume in the presence of non-
Gaussianity.

We conclude this section with a brief comparison be-
tween the non-Gaussian imprints in the bias and in the
cluster counts. Because the non-Gaussian imprint on the
clustering of biased objects is significant only on large
scales, surveys covering a large volume (�Oð10Þ Gpc3)
will be required. Preliminary forecasts have shown good
prospects of achieving fNL �Oð1Þ constraints from mea-
surements of the bias with upcoming surveys such as Dark
Energy Survey,4 Euclid,5 and Large Synoptic Survey
Telescope6 [63,64]. On the other hand, cluster number
counts, while not requiring a large-volume survey, are
almost completely insensitive to the shape of non-
Gaussianity [47,65]. The bias probes correlation between
scales and is therefore sensitive to the shape of
non-Gaussianity, particularly the local shape, whereas the
equilateral shape shows up only weakly in the bias [66].
This suggests that a combination of these probes will be
required to constrain both the amplitude and the shape of
non-Gaussianity.

V. EXTREME-VALUE DISTRIBUTIONS

In this section, we present the calculation of the distri-
bution7 of extreme-mass clusters. The necessary ingre-
dients are the non-Gaussian number density and
real-space bias calculated in the previous sections.

A. Distribution function

White [21] derived the following expression for the
cumulative probability that a region of volume V contains
no object of mass M and above

PðMÞ ¼ exp

�X1
k¼1

ð�nð>mÞÞk
k!

�
�Yk
i¼1

Z
V
dxi

�
�
pk
k ðx1;x2; . . .xkÞ

�
; (46)

where �
pk
1 � 1, nð>MÞ is given by (14) and �

pk
k is the

k-point correlation function of density peaks in V associ-
ated with halos of mass >M. As in [22,23], we shall at
times refer to V as a ‘‘patch.’’ If we take the patch to be a
sphere of comoving radius L, the volume-averaged corre-
lation then simplifies to the cumulant (connected moment)
smoothed by a top-hat window of radius L as follows�Yk
i¼1

Z
V

dxi

V

�
�pk
k ðx1;x2; . . .xkÞ¼ h�k

pkicðLÞ

¼ð�pkðLÞÞ2k�2S
pk
k ðLÞ¼ ð�ðL;MÞ�LÞ2k�2S

pk
k ðLÞ; (47)
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FIG. 3 (color online). The effective bias, � [defined by
Eq. (43)] associated with objects of mass greater than M in a
spherical volume of radius L ¼ 100h�1 Mpc. Compared with
Fig. 2, the effect of non-Gaussianity on � is much more
apparent.

4http://www.darkenergysurvey.org
5http://sci.esa.int/euclid
6http://www.lsst.org
7We use the word ‘‘distribution’’ in the strict sense, referring to

the cumulative distribution and not the PDF.
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where � is given by (42). The cumulants for density
peaks have been calculated in the context of hierarchical
structure formation with Gaussian initial condition
[67–70]. In the presence of non-Gaussianity, however, the
perturbation theory required to calculate the cumulants for
density peaks becomes much more complex (see e.g.
[70–72]). To make analytic progress, we shall consider
only k up to 3 in the sum (46). The terms k ¼ 1 and 2
correspond to well-known results previously found in
[23,29], namely

� nV þ 1
2ðnV��LÞ2; (48)

where we have used the reduced cumulant S2 ¼ 1. Given a
weakly non-Gaussian initial condition, the third cumulants
for density peaks are expected to be dominated by non-
linear gravitational effects, since primordial nonvanishing
cumulants decay at the rate Sk=D

k�2ðzÞ [73]. Neglecting
these effects, we can use the expression for the cumulant of
the lognormal distribution [74]

S
pk
3 ðLÞ ¼ 3þ �2

L; (49)

which was found to be in fair agreement with N-body
simulations of non-Gaussian models with jfNLj as large
as 1000 (at least in the quasilinear regime with� ’ 1) [44].
This approximation is sufficient for the range of cluster
masses ( � 1014h�1M�) examined in this work.

Collecting these results, we find the extreme-value dis-
tribution

lnPðMÞ��Xþ1

2
X2Y2�1

6
X3Y4S

pk
3 ðLÞ;

whereX�nð>MÞV; Y��ðL;MÞ�L: (50)

Setting (50) equal logð1=2Þ (i.e. the median value of
Mmax) gives an estimate of the modal value of Mmax, at
least in weakly non-Gaussian distributions (see [29] for the
Gaussian case). However, the equation is nonlinear inMmax

and the approximate Mmax dependences in these terms are
not intuitive. Instead, we look for the peak in the derivative
of (50), i.e. the probability density function. Nevertheless,
the shape of the distribution function holds valuable sta-
tistical information to which we shall return when we
consider the extremal-type distributions in Appendix B.

B. PDF of extreme-mass objects

We can obtain the PDF for the most massive objects
expected in a volume by differentiating the distribution
function (50) with respect to M, noting that the only
dependence on M is in the number density, n, and the
bias, b. The result is

pðMÞ ¼ dP

dM

¼ VPðMÞ
�
� dn

dM

�
�1þ nV�2�2

L

� 1
2n

2V2�4�4
LS3ðLÞ

�

þ n2V��2
L

d�

dM

�
1� 2

3nV�
2�2

LS3ðLÞ
��

; (51)

where dn=dM is given by (20) [note the subtlety that
dnð>MÞ=dM ¼ �dn=dM]. Here, we see explicitly that
the PDF of extreme-mass objects not only depends on the
bias, but also on its mass variation, d�=dM.

C. fNL and extreme-value PDF

The main results of this paper are shown in Fig. 4. The
panels show the probability density function (51) for the
three mass functions at redshift z ¼ 1, 1.6, and 3 (corre-
sponding to the left, middle, and right column) with fNL ¼
200, 100, and 0 (top, middle, and bottom row, respec-
tively). The survey volume is taken to be a sphere of radius
100h�1 Mpc. To display the correct scaling on the hori-
zontal log scale, we plot dP=d logMmax on the vertical axis
while the actual value of the PDF is dP=dMmax. From these
graphs, we make the following observations:
(a) Going from the bottom row to the top, we see that

increasing fNL increases the height of the PDF while
positively skewing it (i.e. lifting the positive tail).
This has the effect of increasing the mass of the most
probable extreme objects in a given volume.

(b) Going from the first column to the third, we see that
at higher redshifts, the PDFs are more peaked and
the peaks are located at lower Mmax.

(c) The Sheth-Tormen mass function predicts the larg-
est mass of extreme objects, followed by the Tinker
and the Press-Schechter mass functions. This is a
consequence of their predicted number densities as
seen in Fig. 1.

(d) The differences between the mass functions become
much more pronounced at high redshifts. In the third
column, we see a clear separation of the peaks for
different mass functions, with non-Gaussianity fur-
ther enhancing the differences.

(e) In Fig. 5, we show the effect of varying the patch
radius, L from 100 to 500h�1 Mpc (with z ¼ 1 and
fNL ¼ 100). By increasing L, the peak of the PDF
shifts significantly to higher Mmax. The PDF also
becomes more peaked with increasing L. This is
simply due to the fact that as the sample size, L,
approaches the population size, repeating the sam-
pling will yield almost identical maxima in the
samples.

Finally, we investigate the relative importance of the
three terms on the right-hand side of Eq. (50). We consider
the extreme-value distributions in following cases
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(A) fNL ¼ 100, L ¼ 100h�1 Mpc, z ¼ 1,
(B) fNL ¼ 200, L ¼ 500h�1 Mpc, z ¼ 3,
(C) fNL ¼ 0, L ¼ 500h�1 Mpc, z ¼ 3.

Figure 6 shows the resulting distributions when one, two,
or three terms on the right-hand side of (50) are taken into
account (using the Tinker mass function). In case (A), we
see that the Poisson approximation (keeping only the first
term in (50)) is fairly close to the 3-term result. Generally,
this holds as long as the non-Gaussian effects are small (i.e.
at small volume, low redshift). However, in case (B), we
see that the Poisson approximation underestimates the
extreme cluster masses. In this case the peak of the PDF,
though merely shifted by & 10%, is much narrower and
rises to a higher maximum value (as can be estimated
by eye from the slope around P ¼ 0:5). In both cases,

FIG. 4 (color online). The probability density function of the maximum mass, Mmax, of objects in a spherical volume of radius
L ¼ 100h�1 Mpc. In each panel, the mass functions used are Press-Schechter (dashed line), Tinker (solid line), and Sheth-Tormen
(dotted line). Top row: fNL ¼ 200 with z ¼ 1; 1:6, and 3 (from left to right). The PDF at the same redshifts are shown for fNL ¼ 100
(middle row) and fNL ¼ 0 (bottom row). The non-Gaussian effects are most visible in the third column in which the peaks can be seen
to move to higher Mmax with increasing fNL.
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FIG. 5 (color online). The extreme-value PDF for patch sizes
L ¼ 100h�1 Mpc (solid line), 250h�1 Mpc (dashed line), and
500h�1 Mpc (dotted line). The Tinker mass function is used,
with z ¼ 1, and fNL ¼ 100. We see that the location of the peak
is clearly very sensitive to changes in L.
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however, it is inconsistent to include the bias but ignore the
third term (representing the skewness of the halo distribu-
tion in the sample). This is shown in the upturns of the 2-
term distribution functions. In case (C), where fNL ¼ 0,
the 2nd and 3rd correction terms are negligible and the
Poisson approximation is very good indeed.

Strictly speaking, the calculations here are valid only for
L 
 r. In actual applications, we will be interested in the
cases where L ¼ O (a few Gpc). In such cases, the redshift
variation within the patch must be taken into account (as
emphasized in [22]). This requires replacing the number
density, bias, and cumulants by their average within a
comoving volume. We shall demonstrate this in the next
section.

VI. APPLICATIONS

A. A massive cluster at z ¼ 1:579:
A problem for �CDM?

Santos et al. [14] recently reported the discovery of a
cluster XMMUJ0044.0-2-33 (hereafter XMMUJ0044) at
z ¼ 1:579, detected in the x-ray data of the XMM-Newton
telescope and later followed up spectroscopically. The
cluster mass was estimated to be �3:5� 5� 1014M�,
far greater than the previous x-ray cluster of mass
5:7� 1013 at z ¼ 1:62 reported by Tanaka, Finoguenov
and Ueda [15]. We shall now use extreme-value statistics to
study the probability of finding XMMUJ0044 as the
maximum-mass cluster. In particular, we ask, is the exis-
tence of XMMUJ0044 consistent with fNL ¼ 0?

B. Eddington bias

We take the mass of XMMUJ0044 to be8 Mobs ¼
ð4:46� 0:79Þ � 1014M�ð¼ ð3:12� 0:55Þ � 1014h�1M�Þ

and ask: what is the probability that this cluster is the most
massive one in the redshift range 1:579 & z & 2:2? Here
the redshift upper bound is consistent with the highest
redshift probed by the XMM survey.
The reported cluster mass must first be corrected for

Eddington bias, which refers to the apparent boost in the
cluster mass due to the fact that it is more likely for lower-
mass objects to scatter to high luminosity than it is for rarer
massive objects to scatter to lower luminosity. We account
for this effect by the correction [20]

lnM ¼ lnMobs þ 1
2
�

2
InM; (52)

where �InM � 0:3 is the error estimated from the observa-
tion and 
 is the local slope of the mass function deter-
mined using the relation dn=d lnM / M
, and therefore
satisfies


 ¼ d2n

du2
=
dn

du
; u � lnM: (53)

The final masses with Eddington-bias corrections are listed
in Table I. The corrected mass depends on nð>MÞ and
hence it also depends on the mass function used. There is
also a weak dependence on fNL [entering via the MVJ
correction (16)]. With fNL ¼ 100, the changes in the cor-
rected masses are less than a percent and it is reasonable to
neglect this correction as long as jfNLj & Oð102Þ. We
quote the corrected mass with fNL ¼ 0 in Table I.

C. Redshift averaging

The patch of interest is now a spherical shell whose
thickness is determined by the redshift band �z. To ac-
count for the redshift variation within the shell, we perform
the following modifications to the variables X and Y in the
distribution function (50)

X ¼ hnð>MÞiV ¼
Z
�z

dz
Z 1

M
dm

dn

dm

dV

dz
; (54)

Y ¼ �shellðMÞh�i: (55)
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FIG. 6 (color online). The contributions of the 3 terms in (50) towards the extreme-value distributions, using 3 sets of parameters
Left panel: (A) fNL ¼ 100, L ¼ 100h�1 Mpc, z ¼ 1. Middle panel: (B) fNL ¼ 200, L ¼ 500h�1 Mpc, z ¼ 3. Right panel:
(C) fNL ¼ 0, L ¼ 500h�1 Mpc, z ¼ 3. In case (B), the Poisson approximation (‘‘1-term’’) is clearly inaccurate.

8The mass of XMMUJ0044 published in [14] is ð4:25�
0:75Þ � 1014M�, given with respect to the critical density.
Assuming NFW cluster profile, Waizmann et al. [30] showed
that, with respect to the mean background density, the value
increases to ð4:46� 0:79Þ � 1014M�. We thank J. C. Waizmann
for bringing this point to our attention.

PRIMORDIAL NON-GAUSSIANITY AND EXTREME-VALUE . . . PHYSICAL REVIEW D 85, 063508 (2012)

063508-9



The bias averaged within the shell, �shell, is derived in
Appendix A (Eq. (A17)) and is given by

�shell ¼ L3hFðLÞi þ ‘3

L3 � ‘3
hGðMÞi: (56)

Here L and ‘ are comoving lengths corresponding to red-
shifts 2.2 and 1.579, respectively. h�i, hFðLÞi and hGðMÞi
are the redshift averages of (10), (44), and (45). We define
the redshift average of a quantity, QðzÞ, by

hQi ¼ 1

V

Z
�z

dzQðzÞdV
dz

: (57)

D. Results

We are interested in the probability that a cluster of mass
in the range ½ �Mþ �; �M� �� is the maximum-mass object
observed in a survey with a given fsky and redshift range.

Denoting this probability as �, we can express it as the
difference in the distribution function (50) evaluated at
�M� �,

� ¼ Pð �Mþ �Þ � Pð �M� �Þ: (58)

We take the mass range to be those in shown in Table I. In
addition to the choice of mass function explored in the
previous sections, here we consider three other factors that
affect �.

1. Dependence on fsky

The XDCP survey covers a sky area of approximately
80deg2 [14]. However, the value of fsky appropriate for

our calculation must take into account all previous sur-
veys that have explored the redshift interval in other
parts of the sky, regardless of whether a positive detec-
tion is reported.
In Fig. 7 (left panel), we show� as a function of survey

area in square degree. Here � is calculated using the
Tinker mass function and fNL ¼ 0. We see that the obser-
vation of an extreme object such as XMMUJ0044 is most
likely in a survey area of around 50deg2 (where � ’ 0:5).
At wider coverages, we expect the most probable extreme
mass to be larger. In fact, taking fsky ¼ 1 as the most

conservative limit, we find the most likely extreme
object in this redshift range to be a cluster of mass
�7� 8� 1014h�1M� (Fig. 7, right panel), well above
the Eddington-corrected mass of XMMUJ0044. On the
other hand, taking fsky ¼ 80deg2, the most probable

extreme-mass object is consistent with XMMUJ0044, as
the peak of the extreme-value PDF lies within the mass
estimate (vertical contours in Fig. 7).
It is difficult to estimate what is the correct value of fsky

is needed in such cases and, unfortunately, the question of
whether non-Gaussianity is needed to explain the existence
of certain clusters depends sensitively on the value of fsky
assumed. Making the most conservative interpretation us-
ing fsky ¼ 1 and assuming that there are good prospects for

discovering many more massive high-redshift clusters in

TABLE I. Observed and Eddington-corrected mass for the cluster XMMUJ0044, in units of
1014h�1M�.

Observed mass Eddington-corrected mass

ð1014h�1M�Þ Press-Schechter Sheth-Tormen Tinker

3:12� 0:55 2:48� 0:40 2:62� 0:43 2:56� 0:41
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FIG. 7 (color online). Left panel: The probability � pEq. (58)] that XMMUJ0044 is the most massive cluster in 1:579< z < 2:2
plotted as a function of sky coverage (in square degree). Using the Tinker mass function, the probability is maximized to� 50% when
fsky is of order 50deg

2. Right panel: The extreme-value PDF with coverages (from left to right) 80deg2, 1000deg2 and full sky (using

the Tinker mass function and fNL ¼ 0). Note from Table I that the cluster lies at 2:56� 0:41h�1M� (vertical dotted lines).
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the future, we conclude that XMMUJ0044 presents no
tension with �CDM (see also the conclusions of [20,31]).

2. Dependence on fNL.

In Fig. 8 (left panel) we show the effect of introducing
fNL ¼ �150 to the extreme-value PDF. Here we take a
fiducial value of fsky ¼ 1, and use the Tinker mass func-

tion. As expected, the PDF is shifted left or right depending
on the sign of fNL.

3. Dependence on �8

The panel on the right of Fig. 8 shows the equivalent
effect when �8 is varied in the range �8 ¼ 0:801� 0:03
(taken from the WMAP 7-year constraint [8]), while fNL is
fixed to 0. The shift of the PDF towards more massive
extreme objects follows from the fact that a greater �8

introduces a larger spread in the mass range of cluster in
the survey volume.

The similarity between the two panels of Fig. 8 reflects
the well-known degeneracy between fNL and �8 [75,76].
This degeneracy can be easily broken, for instance, by the
constraint on the galaxy power spectrum (which is sensi-
tive to �8 but not fNL) or the CMB temperature anisotro-
pies [19].

In summary, the degenerate effects between fsky, fNL
and �8 shown here imply that it is very difficult to deduce
information on non-Gaussianity from the extreme-
value distributions alone. The most sensible approach is
combine the results from several cluster surveys (to
achieve fsky ¼ 1) with probes of the CMB (to break the

�8 degeneracy), assuming selection effects and error in the
mass determination can be kept in check.

E. The most massive object in the Universe

As a consistency check, we plot the extreme-value PDF
for an extended redshift range z > 0 and fsky ¼ 1 in Fig. 9.

This gives the extreme-value PDF for the most massive
object in the Universe. With �8 ¼ 0:801, we find this to be

an object of mass 2� 5� 1015h�1M�, depending on the
mass function. The result using the Tinker mass function is
Mmax � 3:5� 1015h�1M�; which agrees broadly with
those reported by [22,77]. The effect of fNL ¼ 100 in-
creases this value by less than 10%.

F. Extremal types

Extreme-value distributions obey a limit theorem
analogous to the central limit theorem. This is the so-called
extremal types theorem, which roughly states that extreme-
value distributions converge to one of three possible types
in the large-sample limit (see Appendix B). This beautiful
theorem has found applications in areas such as meteorol-
ogy, engineering, and finance, where a large volume of data
allows extreme-value statistics to be modeled by fitting
only one or two parameters of an extremal type (analogous
to fitting the mean and variance of the normal distribution)
[78,79].
In cluster cosmology, the dearth of cluster data at present

is not ideal for application of the limit theorem, although
there have been attempts to apply it to simulated data (see
[22,23]). The question of which extremal-type extreme-
mass clusters converge to remains unclear, although there
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is some evidence from simulations that fNL appears to play
no role in the convergence [28,80]. We concur with this
latter view and present the detail our investigation in
Appendix B.

VII. CONCLUSION AND DISCUSSION

In summary, we have investigated quantitatively how the
statistics of extreme-mass clusters is affected by uncertain-
ties in the mass function, non-Gaussian corrections of the
mass function and bias, Eddington correction, fsky, red-

shift, fNL, and �8. More specifically:
(1) We have presented a procedure to calculate the

statistics of extreme-mass galaxy clusters in the
presence of primordial non-Gaussianity parame-
trized by fNL. Our main results are the expressions
for the cumulative probability distribution (50) and
the probability density function (51) for the most
massive object in a survey of a given sky coverage
and redshift range. These expressions enable us to
deduce the most probable extreme-mass cluster in a
survey of a given specification. The effects of
changing the mass function and varying the value
of fNL, survey volume, and redshift are summarized
in Figs. 4 and 5.

(2) Our correction terms for the extreme-value distribu-
tion [second and third terms on the right-hand side
of (50)] are significant when considering a large
volume, high redshift, or large non-Gaussianity
(see Fig. 6). For non-Gaussianity with fNL ¼
Oð1Þ, the first term of (50) (Poisson approximation)
suffices.

(3) Next, we applied our formalism to investigate the
extreme-value properties of cluster XMMUJ0044 0-
2-33 (Mobs ’ 3:12� 1014h�1M� at z ¼ 1:579). We
find that the probability that the cluster is the most
likely extreme-mass cluster in the survey depends
sensitively on the assumed sky coverage, but is
consistent with fNL ¼ 0 (assuming �8 ¼ 0:801).
More conservatively, with fsky ¼ 1, the most prob-

able extreme-mass cluster is expected to be much
larger and perhaps this will be confirmed by future
x-ray cluster surveys.

(4) We show that the effect of fNL in shifting the
extreme-mass cluster to higher values is degenerate
with an increase in �8 (Fig. 8). The degeneracy can
be broken by combining cluster data with CMB
constraints.

An important ingredient in our calculation is the mass
function. In the presence of primordial non-Gaussianity, it
remains to be seen what the correct mass function should
be. Our investigation showed that the Press-Schechter,
Sheth-Tormen, and Tinker mass functions give similar
extreme-value statistics at low redshift, but there are large
differences at high redshift and large fNL. The understand-
ing of the correct form of the mass function appropriate for

these extreme-mass objects is important since the uncer-
tainty in the distribution of extreme-mass clusters due to
the mass function is comparable with that from the mass
determination (typically �lnM � 0:3). Thus, it remains for
further numerical simulations along the lines of [45,46] to
establish the validity of the various mass functions and
non-Gaussian correction factors in the presence of non-
Gaussianity.
Another crucial ingredient is the bias which, in this

work, was calculated using the real-space formalism given
in [34,35] combined with our averaging procedure outlined
in Appendix A. As pointed out in these papers, it is
possible to extend the calculation to other types of non-
Gaussianity (nonlocal or higher-order local type). It will be
an interesting extension to study extreme-value statistics in
the presence of different types of non-Gaussianity.
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APPENDIX A: VOLUME-AVERAGED BIAS AND
ITS APPROXIMATION

Let bGðMÞ be the real-space bias associated with objects
of mass M with fNL ¼ 0. In the text, we have seen that bG

is independent of r to a good approximation. In the pres-
ence of non-Gaussianity, the large-r behavior of bðM; rÞ is
given by

bðM; rÞ � fðrÞgðMÞ; where (A1)

fðrÞ � 1þ KðzÞfNL
�

r

h�1 Mpc

�
2
; (A2)

gðMÞ � bðM; fNL ¼ 0Þ; (A3)

and KðzÞ is independent of r, M, and fNL. This approxi-
mation allows the averaging (40) and (41) to be performed
separately on fðrÞ and gðMÞ.
Our goal is to perform the averaging (40) within a given

volume. In the analysis of clusters lying within a redshift
range �z, the associated volume is a spherical shell whose
thickness is proportional to �z. Whilst the integration (40)
could, in principle, be evaluated using a six-dimensional
Monte Carlo integration, in this Appendix we show how
(40) could be reduced to a triple integral. The results
presented here are clearly applicable to other fields in
which volume averages are required.
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To begin, let us first consider an integral of the form

Iðx1Þ ¼
Z
V
dx2fðjx1 � x2jÞ; (A4)

where x1 is a fixed vector and V is a sphere.

1. Integration within a given sphere

If x1 lies inside a given sphere of radius L, we rotate the
coordinate axes so that x1 lies along with the z-axis. We
then translate the origin to the tip of x1. Let the spherical
coordinates centered on this new origin be given by
ðu; ;�Þ. One can show that the equation of the surface
of the sphere is given by

u ¼ �x1 cosþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � x21sin

2
q

; x1 ¼ jx1j: (A5)

Hence, the integral (A4) can be written asZ
V
dx2fðjx1 � x2jÞ

¼
Z �

0
sind

Z U

0
u2du

Z 2�

0
d�fðu; ;�Þ; (A6)

¼ 2�
Z 1

�1
d�

Z U

0
duu2fðuÞ; (A7)

where the integration limit is given by

U ¼ �x1�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � x21ð1��2Þ

q
: (A8)

2. Integration outside a given sphere

If x1 lies outside a given sphere of radius ‘, the same
transformation gives

Z
V
dx1fðjx1 � x2jÞ ¼ 2�

Z �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�‘2=x2

p

�1
d�

Z uþ

u�
duu2fðuÞ;

(A9)

where

u� ¼ �x1��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 � x21ð1��2Þ

q
: (A10)

3. Averaging within a shell

Denote r ¼ jx1 � x2j. The net contribution of fðrÞ
within a spherical shell of inner radius, ‘, and outer radius,
L, is obtained by subtracting (A9) from (A7). Finally, the
average of f over the entire shell is obtained by integrating
x1 over the sphere, and then dividing by the volume of the
sphere,

�f shell ¼ 1

V2
shell

Z
V
dx1

Z
V
dx2fðrÞ; (A11)

¼ 4�

V2
shell

Z L

‘
x21dx1½ðA7Þ-ðA9Þ�; (A12)

where

Vshell ¼ 4�

3
ðL3 � ‘3Þ: (A13)

4. Applications to the bias

Let us first apply (A12) to calculate the bias averaged
within a sphere radius L (Eqs. (43)–(45)). Substituting
‘ ¼ 0 and fðrÞ as in (A2) we find

�f sphere ¼ 1þ 6
5KðzÞfNL

�
L

h�1 Mpc

�
2
: (A14)

Therefore, the bias averaged over V for mass >M
[Eq. (42)] becomes

�ðL;MÞ � �fsphereGðMÞ; (A15)

where

GðMÞ � 1

nð>MÞ
Z 1

M
bðm; fNL ¼ 0Þ dn

dm
dm: (A16)

More generally, with nonzero ‘, we find

�f sphere ¼
L3 �fsphereðLÞ þ ‘3

L3 � ‘3
: (A17)

Note that by setting ‘ ¼ 0, we recover �fsphere. To include

the averaging over redshift, one performs the replacement

�f shell ! 1

V

Z
�z

dz �fshell
dV

dz
: (A18)

APPENDIX B: EXTREMAL TYPES

The shape of the extreme-value distribution function
holds valuable information about the statistical nature of
galaxy clusters. The following theorem, which roughly
states that extreme-value distributions converge to one of
only three possible types, lies at the heart of extreme-value
theory.
Extremal Types Theorem—Let Xi be independent and

identically distributed random variables. Define the block
maximum as Mn � max1infXig. If, for some constants
an > 0, bn, we have

PðanMn þ bn  xÞ ! GðxÞ as n ! 1;

(in other words, if the distribution of rescaled maxima
converges to a distribution G for large-sample size), then
G is one of the following distributions:
(I) Gumbel type,

GðxÞ ¼ expð�e�yÞ;

(II) Fréchet type,

GðxÞ ¼
�
0; x  b
expð�y��Þ; x > b

;
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(III) Weibull type,

GðxÞ ¼
�
expð�ð�yÞ�Þ; x  b
1; x > b

;

where y ¼ axþ b, a, b, c are constants, a > 0 and
�> 0.

See, for example, [81] for the proof. In this Appendix,
we investigate which of these extremal types do the dis-
tributions of extreme-mass clusters belong to.

The following function will be useful in distinguishing
between the three cases:

gðxÞ ¼ � lnð� lnPðxÞÞ: (B1)

In the case of the Gumbel distribution, gðxÞ ¼ P�1ðxÞ ¼
inffy: PðyÞ � xg, which means that gðxÞ is the x-quantile
of P. We shall refer to gðxÞ as the quantile function
[79,82].

To see which extremal type a given extreme-value dis-
tribution, PðxÞ, belongs to, one simply plots the quantile
function and analyze its curvature for increasing patch size
L. If the quantile is a linear, the distribution is of Gumbel
type. If it concaves up (i.e. g00ðxÞ> 0), the distribution is of
Weibull type. If the quantile concaves down, it is of Fréchet
type. Note that the quantiles must be plotted on linear and
not logarithmic scales.

Figure 10 shows the quantile plot, gðMmaxÞ, of the
distribution of extreme-mass clusters, PðMmaxÞ, with fNL
in the range 0–200. The parameters for each curve are those
listed in the cases (A), (B), and (C) in Sec. VC, and the

Tinker mass function is used. The concavity of these
graphs clearly shows that the distribution of extreme-
mass clusters are of the Fréchet type, although the tails
of the quantile graphs show an almost linear (i.e. Gumbel)
behavior.
The Fréchet distribution9 arises in situations when

there is a natural lower limit in the distribution function
(PðxÞ ¼ 0 for x  some constant). In our case, the
definition of a galaxy cluster (e.g. via M200) translates
to a loose lower bound on Mmax and this may explain
why the distribution of extreme-mass clusters appears to
be of the Fréchet type. If only the high-mass tail of the
distribution is taken into account, the Gumbel distribu-
tion is a reasonable approximation. As pointed out in
[23], if the underlying distribution is exactly Gaussian,
the distribution can be shown to converge to the Gumbel
type, albeit very slowly. In any case, we find that
PðMmaxÞ, for all practical purposes, belongs to the
Fréchet family.
This conclusion is remarkably robust against changes in

fNL, mass function, redshift, and patch size. It may be
possible that this insensitivity stems from the truncation
of the series (50). A more thorough approach to studying
the extremal-type convergence is to fit the distribution to
some functional form (e.g. see [28,80] in which the
extreme-value distributions are modeled as a generalized
extreme-value distribution) or prove the convergence using
one of the criteria given, for example, in [78,81]. Like
[28,80], we find the convergence insensitive to the value
of fNL.
We note that, contrary to the observation in [23], we

found no combination of parameters which give rise to a
Weibull distribution, which arises when there is a natural
upper bound for the distribution function. Moreover, it is
worth noting that if the PDFs such as those in Figs. 4
and 5 are well-approximated by ‘‘skew-symmetric’’
functions (e.g. an Edgeworth expansion) then the distri-
bution cannot converge to the Weibull type as proven
in [83].
Finally, we point out an interesting fact that if the

coefficients in the expansion (46) conspire to make PðxÞ
an exactly Poissonian distribution

Pðx; �Þ ¼ e��
Xx
k¼0

�k

k!
; (B2)

then the limiting distribution GðxÞ will completely degen-
erate to G ¼ 1 or 0. This is one of the rare examples where
the extreme-value distribution does not converge to any of
the three standard distributions. Of course, we do not
expect a realistic distribution of galaxy clusters to be
exactly Poissonian.
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FIG. 10 (color online). The quantile plots for the distributions
of extreme-mass clusters for the three cases: (A) fNL ¼ 100,
L ¼ 100h�1 Mpc, z ¼ 1; (B) fNL ¼ 200, L ¼ 500h�1 Mpc,
z ¼ 3; and (C) fNL ¼ 0, L ¼ 500h�1 Mpc, z ¼ 3. The Tinker
mass function was used. The concavity of these curves suggests
that they belong to the Fréchet class of distribution though they
approach the Gumbel distribution at the high-mass end. This
behavior is insensitive to changes in all other parameters.

9Some applications of the Fréchet distribution to environmen-
tal sciences are summarized in [78,79].
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