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We derive the Layzer-Irvine equation in the presence of a homogeneous (or quasihomogeneous) dark

energy component with an arbitrary equation of state. We extend the Layzer-Irvine equation to homoge-

neous and isotropic universes with an arbitrary number of dimensions and obtain the corresponding virial

relation for sufficiently relaxed objects. We find analogous equations describing the dynamics of cosmic

string loops and other p-branes of arbitrary dimensionality, discussing the corresponding relativistic and

nonrelativistic limits. Finally, we generalize the Layzer-Irvine equation to account for a nonminimal

interaction between dark matter and dark energy, discussing its practical use as a signature of such an

interaction.
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I. INTRODUCTION

The Newtonian energy conservation equation when
generalized to an expanding cosmological background
becomes

_EþHð2K þUÞ ¼ 0; (1)

where a dot represents a total derivative with respect to
physical time t, H is the Hubble parameter, E ¼ K þU,
with K and U being the peculiar kinetic and gravitational
potential energies, respectively, of a system of nonrelativ-
istic particles interacting through gravity. This equation
was derived independently in [1,2] and it is known as the
cosmic energy or Layzer-Irvine equation (see also [3]).
Equation (1) is valid throughout the entire process of
structure formation and in the _E ¼ 0 limit one recovers
the usual virial relation K ¼ �U=2 that holds for col-
lapsed objects that have reached the state of hydrostatic
equilibrium.

The Layzer-Irvine equation has been establishing itself
as one of the most renowned equations of modern cosmol-
ogy with its many applications including the determination
of the matter density, cluster mass and size, and the galaxy
peculiar velocity field [4–7]. More recently, some authors
[8–12] have been using the Layzer-Irvine equation as a tool
to detect a possible nonminimal interaction between the
dark matter (DM) and the dark energy (DE) which, to-
gether, account for approximately 96% of the energy con-
tent of the Universe today [13,14] and whose fundamental
nature is still largely unknown. The existence of such an

interaction would in general invalidate the energy balance
dictated by Eq. (1). Consequently, by measuring the prop-
erties of sufficiently relaxed structures, such as galaxy
clusters, one may expect to be able to detect a signature
of an interaction between DM and DE through deviations
from the usual virial relation [8–12].
In this paper, our main goal is to present a broad

discussion of the Layzer-Irvine equation in a generalized
framework (see also [15]). In Sec. II we start by deriving
the Layzer-Irvine equation in the presence of a homoge-
neous DE component, extending it to Friedmann-
Robertson-Walker (FRW) cosmologies with more than
three spatial dimensions. In Sec. III we show that the
dynamics of cosmic string loops and other p-branes of
arbitrary dimensionality are described by analogous equa-
tions, discussing the corresponding relativistic and non-
relativistic limits. In Sec. IV the Layzer-Irvine equation is
generalized to the case where the DM is non-minimally-
coupled to the DE background and the implications of such
a coupling are discussed. Finally, we conclude in Sec. V.

II. NON-INTERACTING HOMOGENEOUS DE

There is now overwhelming evidence for the cosmologi-
cal principle which states that the Universe is homogene-
ous and isotropic on cosmological scales. According to
Birkhoff’s theorem, in the context of general relativity, the
gravitational field must vanish inside a spherically sym-
metric shell, which is in agreement with the Newtonian
result. This allows for the use of Newtonian mechanics in
the study of the evolution of matter density fluctuations
on scales much smaller than the Hubble radius. In a statis-
tically homogeneous and isotropic FRW universe the
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evolution of the scale factor, a, obeys the Raychaudhuri
equation

€a

a
¼ � 4�G

3
½ð1þ 3wÞ�w þ ��m�; (2)

where �w is the DE density which we assume to be
homogeneous, w ¼ pw=�w is the DE equation of state
parameter where pw is the DE pressure and ��m is the
average value of the matter density �m. Consider an iso-
lated inhomogeneous region with a physical radius much
smaller than the Hubble radius (H�1). Let us assume that
the DE component is roughly homogeneous so that only
the matter component is perturbed. In this case the
Newtonian gravitational potential � obeys the generalized
Poisson equation [16]

r2� ¼ 4�G½ð1þ 3wÞ�w þ �m�: (3)

Integrating Eq. (3), one obtains

�ðr; tÞ ¼ �w þ�m ¼ �w þ ��m þ ��m; (4)

with

�w ¼ 2�G�w

3
ð1þ 3wÞr2; (5)

��m ¼ 2�G ��m

3
r2: (6)

Here r are physical coordinates, r ¼ jrj, �w is the gravi-
tational potential due to the homogeneous DE distribution,
and �m is the gravitational potential due to the matter
component, which has an homogeneous part ��m, satisfying
r2 ��m ¼ 4�G ��m, and an inhomogeneous one ��m,
satisfying r2��m ¼ 4�G��m with ��m ¼ �m � ��m.

The Lagrangian for a system of point mass DM particles
of mass mi, whose trajectories are given by ri ¼ aðtÞxi

may be written as

L ¼ X

i

ðKi �UiÞ; (7)

where

K i ¼ 1

2
mi _ri � _ri ¼ 1

2
miv

2
i þ

d

dt

�
1

2
mia _ax2i

�
� 1

2
mia €ax

2
i

(8)

is the kinetic energy associated with the massmi, xi ¼ jxij,
vi ¼ _ri �Hri is the peculiar velocity, H ¼ _a=a is the
Hubble parameter, vi ¼ jvij and

U i ¼ mi�mi

2
þmi�wi

¼ �mi

G

2

X

j�i

mj

jrj � rij þ
2�Gð1þ 3wÞ�w

3
mir

2
i ; (9)

is the potential energy associated with the mass mi. Here
�mi and �wi are the values of �m and �w at r ¼ ri,

excluding the contribution of the mass mi. Note that the
contribution of the mass mi to the matter density in Eq. (3)
is given by �m ¼ mi�ðr� riÞ, where �ðr� riÞ is the three-
dimensional Dirac delta function.
We shall assume that the background evolution of the

universe, given by aðtÞ, is fixed, depending only on
the average values of the density �� and pressure �p.
Consequently, in Eq. (7) it is sufficient to consider only
the inhomogeneous contribution to the gravitational poten-
tial energy given by Eq. (9).
By performing the transformation

L ! L� d

dt

�
1

2
a _a

X

i

mix
2
i

�
; (10)

the Lagrangian may be written as

L ¼ K �U; (11)

with

K ¼ 1

2

X

i

ðmiv
2
i Þ; (12)

U ¼ X

i

Ui; (13)

where

Ui ¼ Ui þ 1

2

�
€a

a

�
mir

2
i

¼ �mi

G

2

X

j�i

mj

jrj � rij �
2�G ��m

3
mir

2
i ; (14)

where last equality was obtained using the Raychaudhuri
equation (Eq. (2)). Since ��m / a�3 and r ¼ ax, for con-
stant xi one has Ui / a�1 and, consequently, U / a�1. In
the literature U is usually given in a continuous form as

U ¼ G

2

Z ½�mðrÞ � ��m�½�mðr0Þ � ��m�
jr� r0j d3rd3r0: (15)

The Hamiltonian is given by

H ¼ X

i

�
p2
i

2mi

�Ui

�
; (16)

with pi ¼ mivi and the classical energy equation is

dH
dt

¼ @H
@t

; (17)

where the partial derivative with respect to time is com-
puted at fixed particle comoving coordinates xi and co-
moving momenta pi=a ¼ mi _xi. This way, one has
U / a�1 and K / a�2. Consequently, using Eq. (17) one
finally obtains

_EþHð2K þUÞ ¼ 0; (18)
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which generalizes the result in [17] (wherew ¼ �1) to any
homogenous DE form. For relaxed objects with _E ¼ 0 one
obtains the usual virial relation

K ¼ U

2
: (19)

This shows that the minimally-coupled homogeneous DE
does not explicitly enter the Layzer-Irvine equation. The
effect of DE is felt only through the impact it has on
the evolution of the Hubble parameter H. This generalizes
the result in [17], where the DE role was played by a
cosmological constant, to any homogenous DE. Thus
Eq. (18) applies to small (characteristic lengthscale
� H�1) isolated inhomogeneous regions in a homogene-
ous and isotropic background with arbitrary dynamics
(note that nothing was assumed about the time evolution
of w in the derivation of the Layzer-Irvine equation). In the
derivation of Eq. (18) it was further assumed that the DM
particles interact only through gravity, so that both their
mass and number is conserved. We shall relax that assump-
tion in Sec. IV.

Extra dimensions

It is interesting to generalize the above result to a N þ
1-dimensional FRW universe with N > 2. In that case, at
fixed particle comoving coordinates xi and comoving mo-
menta pi=a ¼ mi _xi, one has U / a�Nþ2 and K / a�2,
which leads to

_EþHð2K þ ðN � 2ÞUÞ ¼ 0: (20)

Taking the case of sufficiently relaxed objects, for which
_E ¼ 0 is a good approximation, then the virial relation
becomes

K ¼ �ðN � 2Þ
2

U; (21)

which reduces to Eq. (19) if N ¼ 3.

III. P-BRANE DYNAMICS

The dynamics of maximally cosmic strings loops, do-
main walls, as well as higher dimensional p-branes in a
cosmological background has been studied in detail in
[18,19]. This work has recently been extended to account
for the dynamics of cosmological p-brane networks
[20,21].

A. Cosmic Strings

In the absence of nongravitational interactions (as well
as gravitational radiation backreaction) the evolution of the
total energy E of a cosmic string loop is given by [18]

_E ¼ 2HE

�
1

2
� �v2

�
; (22)

with

E ¼ �a
Z

�ds; (23)

�v 2 ¼
R
v2�dsR
�ds

; (24)

where � is the energy per unit length, ds is the infini-
tesimal comoving arclength, v is the loop velocity at a

particular point and � ¼ ð1� v2Þ�1=2. For very small
loops (with E=� � H�1) it is in general a good ap-
proximation to consider that the expansion has, on av-
erage, no impact on the total energy. Hence, the average
over a sufficiently long time of the total energy hEit and
root-mean-square (RMS) velocity h �v2it ¼ 1=2 is ap-
proximately constant.
In the case of a very large nonrelativistic loop, the total

energy can be decomposed into the potential energy asso-
ciated with the loop length U ¼ �L / a, and the kinetic
energy associated to the loop motion K ¼ �L �v2=2 / a�3

( �v / a�2), where L is the physical length of the loop. As a
result, using Eq. (17) one obtains,

_EþHð3K �UÞ ¼ 0: (25)

Equation (25) is very similar to the Layzer-Irvine equation:
in both equations the derivative with respect to physical
time of the total energy is proportional to the Hubble
parameter times specific linear combinations of the kinetic
and potential energy terms. Note, however, that in the case
of nonrelativistic cosmic strings one cannot set _E ¼ 0 and
therefore there is no analogy with the gravitational
virial relation. This happens because in the nonrelativistic
regime K � U so that E�U / a. Another difference is
that, contrary to Eq. (25) that has a relativistic version
(Eq. (22)), there is no relativistic generalization of the
Layzer-Irvine equation.

B. p-branes

Analogously to the case of the Layzer-Irvine equation,
we can also generalize the cosmic string case to higher
dimensions. In the case of a p-brane, Eq. (22) generalizes
to [19]

_E ¼ ðpþ 1ÞHE

�
p

pþ 1
� �v2

�
; (26)

with

E ¼ �pa
p
Z

�dA; (27)

�v 2 ¼
R
v2�dAR
�dA

; (28)
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where �p is the energy per unit p-dimensional area, dA is

the infinitesimal comoving p-dimensional area, v is the p-

brane velocity at a particular point, and � ¼ ð1� v2Þ�1=2.

For very small p-branes (with ðE=�pÞ1=p � H�1) the

expansion has in general a very small impact on the time
average of the total energy hEit and RMS velocity h �v2it ¼
p=ðpþ 1Þ, which are therefore roughly constant. On the
other hand, for very large nonrelativistic p-branes one has
U ¼ �pA / ap and K ¼ �pA �v2=2 / a�2�p ( �v / a�p�1),

where A ¼ apA is the physical p-dimensional area of the
p-branes. As a result, the energy equation becomes

_EþHðð2þ pÞK � pUÞ ¼ 0: (29)

This equation generalizes Eq. (25) to p-branes of arbitrary
dimension in N þ 1-dimensional homogeneous and iso-
tropic FRW universes (with p < N). The similarities with
the Layzer-Irvine equation are again very evident.

IV. INTERACTING DE

One of the ways to better understand the physics of DE is
through its influence on the formation of large-scale struc-
tures in the Universe. In an accelerated Universe the char-
acteristic timescale for linear perturbation growth may
become large compared to the Hubble time. However, if
DE and DM interact nonminimally [22–25], then DE in-
fluences the process of structure formation in a more active
way, not only through its impact on the acceleration of the
Universe (see, for example, [26–29]).

The coupling between DM and DE adds new source
terms to the usual Layzer-Irvine equation [8–10,12]
[Eq. (1)]. These extra terms can be written, with all gen-
erality, as

@K

@t

��������int
¼ �ðtÞHK;

@U

@t

��������int
¼ 	ðtÞHU; (30)

so that the generalized Layzer-Irvine equation becomes

_EþHðð2� �ÞK þ ð1� 	ÞUÞ ¼ 0: (31)

The functions �ðtÞ and 	ðtÞ depend on the details of the
process of energy and momentum transfer between DM
and DE and are therefore model dependent [30]. For
example, if DE decays into DM, then new particles with
nonvanishing momentum may be continuously added to
the system. This way it would be crucial for the computa-
tion of �ðtÞ and 	ðtÞ to know not only the rate of energy
transfer but also the initial RMS velocities of the new
particles. On the other hand, the coupling might also occur
through the dependence of the mass of the DM particles on
the value of the DE field (see, for example, [25]). In this
paper, the model dependence associated with different
choices of coupling models is incorporated in the

freedom to choose the evolution of the parameters �ðtÞ
and 	ðtÞ.
In [8,12] the case with � ¼ 0 was considered, with 	

being related to the coupling strength. It was argued that 	
could be determined by measuring the kinetic and potential
energy of sufficiently relaxed structures such as galaxy
clusters. The homogeneous DE case with � ¼ 	=2 has
also been considered in [10] in the context of coupled DE
models and in [11] in the context of time varying vacuum
cosmologies (see also [31,32] for further details on running
vacuum models). If � and 	 are constants then the
virial relation obtained assuming hydrostatic equilibrium
( _E ¼ 0) is given by

K ¼ 	� 1

2� �
U: (32)

We note, however, that in the presence of such an interac-
tion one cannot, in general, assume hydrostatic equilib-
rium. This can only happen if � and 	 are constant or,
according to Eq. (31), if their evolution is given by

	ðtÞ ¼ ðEþ ð1� �ðtÞÞKÞ=U; (33)

with constant E, which does not happen in general. These
two cases are very special and consequently, in the pres-
ence of an interaction between DM and DE, gravitationally
bound systems are not expected to reach virial equilibrium.
As a result, deviation from the usual virial relation in
galaxy clusters is therefore a general signature of a non-
minimal coupling between DM and DE.
The breakdown of the usual virial relation is also ex-

pected in the case of inhomogeneous DE. In order for
significant clustering to occur on scales much smaller
than the Hubble radius the DE sound speed must be very
small. In that case new contributions, accounting for the
impact of DE inhomogeneities on DM clustering, must
be taken into account. However, these are expected to be
model dependent. For example, it has been shown, that the
clustering of DEmight be associated with a modification of
the DE equation of state parameter, a process known as DE
mutation [33].

V. CONCLUSIONS

In this paper we studied the Layzer-Irvine equation and
discussed some of its generalizations. In particular, we
derived the Layzer-Irvine equation in the presence of a
general homogeneous DE background showing that the
final form of the equation is not affected explicitly by the
DE component. We further generalized the equation and
the virial relation to FRW cosmologies with N þ 1 dimen-
sions (with N > 2). We have also demonstrated that the
macroscopic dynamical energy equations of cosmic string
loops and other p-branes of arbitrary dimensionality are, in
the nonrelativistic limit, analogous to the Layzer-Irvine
equation. Finally, we generalized the Layzer-Irvine equa-
tion to account for a nonminimal interaction between DM
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and a homogeneous DE form. We have shown that, in
general, gravitationally bound systems are not expected
to reach hydrostatic equilibrium in the presence of a cou-
pling between these two components. This contrasts with
the usual assumption made in the literature where the
equilibrium relation _E ¼ 0 is assumed a priori. Hence, a
nonminimal coupling between DM and DE will generally

lead to the breakdown of the usual virial relation K ¼
�U=2, providing a crucial signature of such an interaction.
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