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We examine cosmological, astrophysical and collider constraints on thermal dark matter (DM) with

mass mX in the range �1 MeV–10 GeV. Cosmic microwave background (CMB) observations, which

severely constrain light symmetric DM, can be evaded if the DM relic density is sufficiently asymmetric.

Cosmic microwave background constraints require the present anti-DM-to-DM ratio to be less than

�2� 10�6 (10�1) for DM mass mX ¼ 1 MeV (10 GeV) with ionizing efficiency factor f� 1. We

determine the minimum annihilation cross section for achieving these asymmetries subject to the relic

density constraint; these cross sections are larger than the usual thermal annihilation cross section. On

account of collider constraints, such annihilation cross sections can only be obtained by invoking light

mediators. These light mediators can give rise to significant DM self-interactions, and we derive a lower

bound on the mediator mass from elliptical DM halo shape constraints. We find that halo shapes require a

mediator with mass m� * 4� 10�2 MeV (40 MeV) for mX ¼ 1 MeV (10 GeV). We map all of these

constraints to the parameter space of DM-electron and DM-nucleon scattering cross sections for direct

detection. For DM-electron scattering, a significant fraction of the parameter space is already ruled out by

beam-dump and supernova cooling constraints.
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I. INTRODUCTION

Studies of dark matter (DM) have historically focused
on particles with weak scale mass �100 GeV [1–3]. The
reason is not only the focus of the high-energy physics
community on weak-scale phenomena, but also because
the annihilation cross section for a weakly interacting
massive particle (WIMP) naturally gives rise to the ob-
served cold DM relic abundance. This is the so-called
‘‘WIMP miracle.’’

More recently, there has been a broader interest in light
DM, with mass mX & 10 GeV. Part of the reason for this
interest is phenomenological. Direct detection results from
DAMA [4], CoGeNT [5,6], and CRESST [7] claim event
excesses that can be interpreted as nuclear scattering of
DMwith mass�10 GeV (although the mutual consistency
of these results is disputed). Meanwhile, dark matter with
masses of MeV has been studied as a possible explanation
of the INTEGRAL/SPI 511 keV signal [8–14].

There is also a theoretical motivation for light DM, as
DM with mass mX & 10 GeV appears in certain classes of
models naturally. In supersymmetric hidden sector models,
for example, gauge interactions generate light DM masses
and give rise to the correct annihilation cross section
[12,15,16]. The asymmetric DM (ADM) scenario, where
the DM particle X carries a chemical potential, analogous
to the baryons, provides another approach to light DM (see,
e.g., Refs. [17–20] and references therein). In these

scenarios, both DM (X) and anti-DM ( �X) particles may
populate the thermal bath in the early Universe; however,
the present number density is determined not only by the
annihilation cross section, but also by the DM-number
asymmetry �X. Depending on the value for �X, the DM
mass can be as low as �keV in ADM models [21], though
the natural scale for ADM is set by ð�CDM=�bÞmp �
5 GeV.
The purpose of this paper is to explore model-

independent constraints and predictions for the asymmetric
and symmetric limits of light DM with mass
�1 MeV–10 GeV.1 Although both phenomenological
and theoretical considerations have motivated the study
of light DM candidates, there are still a number of impor-
tant constraints that should be taken into account in real-
istic model building. In general, light thermal DM faces
two challenges: one is to evade bounds on energy injection
around redshifts z� 100–1000 coming from observations
of the cosmic microwave background (CMB); the other is
to achieve the required annihilation cross section without
conflicting with collider physics constraints.
CMB data from WMAP7 strongly limits DM annihila-

tion during the epoch of recombination and excludes sym-
metric thermal light DM with mass below �1–10 GeV if
the annihilation is through s-wave processes [22–24]. The
CMB bounds may be evaded in the symmetric case if DM
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1For DM much lighter than �1 MeV, DM can only annihilate
to neutrinos, new light states that remain relativistic through
matter-radiation equality, or hidden sector forces that decay
invisibly. In this case, the cosmic microwave background and
collider bounds discussed here do not apply.
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dominantly annihilates to neutrinos or if its annihilation is
p-wave suppressed. When the DM relic density is asym-
metric, DM annihilation during recombination can be
highly suppressed if the symmetric component is suffi-
ciently depleted, providing a natural way to resolve the
tension from CMB constraints for light DM scenarios.
Unlike the case of symmetric DM, the CMB places a lower
bound on the annihilation cross section for ADM from the
requirement of sufficient depletion of the symmetric com-
ponent. We calculate the minimum annihilation cross sec-
tion required in order to evade the CMB bound and achieve
the correct relic density simultaneously.

However, it is difficult to achieve the needed annihila-
tion rate to standard model (SM) particles through a weak-
scale mediator. Null results from monojet plus missing
energy searches at the Tevatron [25–27] and the LHC
[28,29] strongly constrain such a mediator if DM couples
to quarks and gluons. Meanwhile, the monophoton plus
missing energy search at LEP sets limits on the coupling
between DM and charged leptons [30] via such a heavy
state. These collider constraints are so strong that the
annihilation through an off-shell heavy mediator is gener-
ally insufficient for ADM to achieve the correct relic
density and evade the CMB constraint, if the DM mass is
below a few GeV. One way to evade the collider constraints
is to invoke a light mediator with mass much less than
�100 GeV. In this case, DM can annihilate to SM states
efficiently via the light state without conflicting with col-
lider bounds. Furthermore, if the mediator is lighter than
the DM, a new annihilation channel opens, and DM can
annihilate dominantly to the mediator directly. In this limit,
the mediator particle may couple to the SM sector rather
weakly.

The presence of the light mediator has various implica-
tions for DM dynamics in galaxies and for cosmology. The
light mediator may give rise to significant DM self-
interactions (i.e., DM-DM scattering); this is true in both
the symmetric and asymmetric limits, since the light state
mediates DM-DM interactions as well as anti-DM and DM
interactions. These interactions leave footprints in the DM
halo dynamics. There are limits on the DM self-interaction
cross section coming from observations of elliptical DM
halos and elliptical galaxy clusters. We combine these with
the relic density constraint to place a lower bound on the
mediator mass �4� 10�2 MeV� 40 MeV for DM
masses in the range �1 MeV–10 GeV. We assume this
massive mediator decays to SM relativistic degrees of
freedom in the early Universe to avoid the overclosure
problem and derive conditions for thermalization of the
DM and SM sectors.

These astrophysical and cosmological constraints can be
applied to the parameter space of scattering rates in direct
detection experiments. We consider DM-nucleon scatter-
ing for DM masses of 1–10 GeVand DM-electron scatter-
ing for DM masses 1 MeV–1 GeV. In the case of electron

scattering, we combine the astrophysical and cosmological
constraints with bounds from beam-dump experiments and
supernova cooling, which exclude a large region of the
allowed parameter space. In addition, the predictions are
very different dependent on whether the mediator is heav-
ier or lighter than the DM.
The rest of the paper is organized as follows. In Sec. II,

we present the relic density calculation for DM in the
presence of a chemical potential. In Sec. III, we study the
CMB constraint on ADM models and derive the annihila-
tion cross section required to evade the CMB bound. In
Sec. IV, we examine current collider physics constraints on
the DM annihilation cross section. In Sec. V, we study the
elliptical halo shape constraint on the mediator mass. In
Sec. VI, we map out the parameter space for DM direct
detection. We conclude in Sec. VII.

II. RELIC DENSITY FOR SYMMETRIC AND
ASYMMETRIC DARK MATTER

Our starting point is to establish that the correct relic
density of �CDMh

2 ¼ 0:1109� 0:0056 [31] can be ob-
tained, where we assume that the annihilation cross section
h�vi and the asymmetry �X are floating parameters.
In the usual thermal WIMP scenario, the correct relic

density is determined by DM annihilation until freeze-out.
For Dirac DM in the symmetric limit, the cold DM relic
density is �CDMh

2 � 0:11ð6� 10�26 cm3=sÞ=h�vi. DM
may also carry a chemical potential which leads to an
asymmetry between the number density of DM and anti-
DM. In this case, when the DM sector is thermalized, the
present relic density is determined both by the annihilation
cross section and the primordial DM asymmetry �X �
ðnX � n �XÞ=s, where nX, n �X are the DM and anti-DM-
number densities and s is the entropy density. In the
asymmetric limit, neglecting any washout or dilution ef-
fects, the correct relic density is obtained for a primordial
asymmetry given by

�X � �CDM

mX

�c

s0
; (1)

where s0�2969:5cm�3 and �c�1:0540h2�104 eV=cm3

are the entropy density and critical density today. In the
asymmetric limit, the annihilation cross section is suffi-
ciently large that the thermally-populated symmetric com-
ponent is a subdominant component of the energy density
today.
Depending on the strength of indirect constraints on DM

annihilation, light DM scenarios must interpolate between
the symmetric and asymmetric limits. We thus require
precise calculations of the present anti-DM-to-DM ratio
r1 ¼ � �X=�X, which controls the size of indirect signals
from DM annihilation. Note that r1 is related to the
absolute relic densities by
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�X ¼ 1

1� r1
�XmXs0

�c

; � �X ¼ r1
1� r1

�XmXs0
�c

;

(2)

and the total CDM relic density is �CDM ¼ �X þ� �X.
To compute r1, we solve the Boltzmann equations for

nX, n �X freeze-out in the presence of a nonzero chemical
potential [32]. In this work, we focus on the case where
DM is in thermal equilibrium with the photon thermal bath
through freeze-out. In general, this assumption may not
hold if there is a weakly coupled light mediator coupling
DM to the SM. We leave the more general case for future
work [33], noting that the effects on the relic density are up
to Oð10Þ, depending on mX.

The coupled Boltzmann equations for the species nþ ¼
nX and n� ¼ n �X are

dn�
dt

¼ �3Hn� � h�vi½nþn� � neqþneq��; (3)

where h�vi is the thermally-averaged annihilation cross
section over the X and �X phase space distributions [34].
The Hubble expansion rate is H � 1:66

ffiffiffiffiffiffiffiffi
geff

p
T2=Mpl,

where Mpl � 1:22� 1019 GeV is the Planck mass and

geff is the effective number of degrees of freedom for the
energy density. If there is a primordial asymmetry in X
number, then there is a nonzero chemical potential �

which appears in the equilibrium distributions as neq� ¼
e��=Tneq. Here, neq is the usual equilibrium distribution

with � ¼ 0, and, thus, neqþneq� ¼ ðneqÞ2.
We then take the standard definitions x ¼ mX=T and

Y� ¼ n�=s, where s ¼ ð2�2=45ÞheffðTÞT3 is the entropy
density and heffðTÞ is the effective number of degrees of
freedom for the entropy density. We write the annihilation
cross section as h�vi ¼ �0x

�n, with n ¼ 0 and n ¼ 1 for
s-wave and p-wave annihilation processes, respectively.
Then, simplifying Eq. (3) gives

dY�
dx

¼ � �

xnþ2

ffiffiffiffiffi
g�

p ðYþY� � ðYeqÞ2Þ; (4)

where � � 0:264MplmX�0 and Yeq ’ 0:145ðg=heffÞ�
x3=2e�x � ax3=2e�x. The effective number of degrees of

freedom is
ffiffiffiffiffi
g�

p ¼ heffffiffiffiffiffiffi
geff

p ð1þ T
3heff

dheff ðTÞ
dT Þ [34].

After being generated at some high temperature, the DM
asymmetry is a conserved quantity, so we have the
constraint

�X ¼ Yþ � Y�; (5)

which is constant at any given epoch.2 In order to impose
this condition on our numerical solutions, we define the

departure from equilibrium � by Y� ¼ Y
eq
� þ � and in-

stead solve the (single) equation for �.
It is helpful to present approximate analytic solutions in

the limit of constant
ffiffiffiffiffi
g�

p
[32,38,39]. Equation (4) can be

solved analytically at late times when ðYeqÞ2 becomes
negligible. In this limit, using Eq. (5), we can integrate
Eq. (4) separately for �X and X to obtain

Y�ð1Þ ’ ��X

1� ½1	 �X=Y�ðxfÞ�e	�X�
ffiffiffiffi
g�

p
x�n�1
f

=ðnþ1Þ : (6)

These solutions also apply for the symmetric case in the
limit of �X ! 0. We take the freeze-out temperature xf ¼
mX=Tf as derived in Ref. [38]:

xf ’ ln½ðnþ 1Þ ffiffiffiffiffi
g�

p
a�� þ 1

2

� ln
ln2½ðnþ 1Þ ffiffiffiffiffi

g�
p

a��
ln2nþ4½ðnþ 1Þ ffiffiffiffiffi

g�
p

a�� � ð ffiffiffiffiffi
g�

p Þ2½ðnþ 1Þ��X=2�2
:

(7)

Using Y�ð1Þ given in Eq. (6), we can obtain the present
ratio of the �X to X number densities:

r1 � Y�
Yþ

ð1Þ ’ Y�ðxfÞ
YþðxfÞ exp

� ��X�
ffiffiffiffiffi
g�

p
xnþ1
f ðnþ 1Þ

�
: (8)

While we can obtain a precise analytic result for rðxfÞ ¼
Y�ðxfÞ=YþðxfÞ, it turns out that the consequence of ne-

glecting the ðYeqÞ2 in the late-time solution can almost
exactly be accounted for by simply setting rðxfÞ ¼ 1.

This gives numerically accurate answers over a wide range
of �X and h�vi as discussed in Ref. [38]. Note that the
solution here only converges when �X� is small enough,ffiffiffiffiffi
g�

p
�X� < 2xnþ2

f .

III. CMB CONSTRAINTS

For both symmetric and asymmetric thermal DM, the
DM particles must have a sufficiently large annihilation
cross section in order to achieve the correct relic density.
This annihilation may have many indirect astrophysical
signatures; among these, the most robust prediction (or
constraint) is the effect of DM annihilation on the cosmic
microwave background [40], since the effect only depends
on the average DM energy density. We first summarize
recent studies of CMB constraints on DM annihilation and
then discuss scenarios which naturally evade these con-
straints for light DM, focusing on the asymmetric DM
scenario.
Energy deposition from DM annihilation distorts the

surface of last scattering, which affects the CMB anisotro-
pies and is thus constrained by WMAP7 data. CMB con-
straints become increasingly severe for smaller DM
masses: the energy released in DM annihilations scales
as �mXðnXÞ2 � �2

CDM=mX, where �CDM is the average

energy density in DM. This implies the effect of DM
annihilation on the CMB scales as �h�vi=mX. Though

2We assume there is no Majorana mass term for DM, and,
thus, X � �X oscillation [21,35–37] does not occur. We also
assume there is no entropy production in this case, and there
are no DM-number violating interactions at these temperatures.
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the precise bound depends on the mass and annihilation
channels, WMAP7 limits the amount of annihilation
during recombination to below the thermal relic annihila-
tion cross section if mX & 1–10 GeV [22,23,41,42].
Furthermore, Planck data can improve these constraints
by up to a factor of 10.

For self-annihilating DM particles such as Majorana
fermions or real scalars, the energy deposition rate per
volume at redshift z is

dE

dtdV
ðzÞ ¼ �2

c�
2
CDMð1þ zÞ6fðzÞ h�viCMB

mX

; (9)

where �c is the critical density at the present time,
h�viCMB is the thermally-averaged annihilation cross sec-
tion at the epoch of recombination, and fðzÞ parametrizes
the amount of energy absorbed by the photon-baryon fluid
at redshift z, relative to the total energy released by DM
annihilation at that redshift.

The quantity fðzÞ gives the efficiency of energy deposi-
tion at redshift z and thus depends on the spectrum of
photons, neutrinos, and e� resulting fromDM annihilation.
In general, the dependence of fðzÞ on z is mild [41], and an
excellent approximation is to take fðzÞ � feWIMPðzÞwhere
f is a constant and eWIMPðzÞ is a universal function for
WIMP DM [24]. In addition, to leading order f ’ ð1� f�Þ
[23], where f� is the fraction of energy going to neutrinos
per annihilation. For DM annihilation channels to charged
lepton or pion final states, f � 0:2–1; here, annihilation
only to e� can give f� 1.

There is also some mild mX dependence in fðzÞ (or f),
since the spectrum of DM annihilation products depends
onmX. Reference [41] computed detailed efficiency curves
fðzÞ for mX > 1–10 GeV, depending on the channel.
However, the observed trend is that efficiency does not
depend strongly on mass in the range 1–1000 GeV and,
furthermore, increases for lower mass.3 We will extrapo-
late results to mX < 1 GeV; we expect this is a conserva-
tive approach.

The WMAP7 limit on DM energy injection at the
95% C.L. can be written as [22]

f
h�viCMB

mX

<
2:42� 10�27 cm3=s

GeV
: (10)

This bound4 as given assumes DM particles are self-
annihilating, i.e. Majorana fermions or real scalars. For

DM candidates that are Dirac fermions or complex scalars,
as in ADM scenarios, the energy injection rate is

dE

dtdV
ðzÞ ¼ 2�2

c�
2
CDM

r1
ð1þ r1Þ2

ð1þ zÞ6fðzÞ h�viCMB

mX

;

(11)

where we have used �X þ � �X ¼ �CDM and r1 ¼ � �X=�X.
Note there is factor of 2 in the energy injection rate relative
to the self-annihilating case, accounting for the number of
possible annihilations. Comparing Eq. (9) and (11), we can
translate the bound given in Eq. (10) to the Dirac fermion
or complex scalar case:

2r1
ð1þ r1Þ2 f

h�viCMB

mX

<
2:42� 10�27 cm3=s

GeV
: (12)

We show this constraint for various r1 values in Fig. 1; the
dotted black line gives the thermal relic annihilation cross
section in the symmetric case, where we have solved for
the relic density numerically and taken f ¼ 1.

FIG. 1 (color online). WMAP7 95% C.L. constraints on the
DM annihilation cross section and mass for asymmetric dark
matter and s-wave annihilation. We show constraints for
various values of r ¼ r1 ¼ � �X=�X, the anti-DM-to-DM ratio
at the present time. The shaded region (blue) is excluded by
the WMAP7 data, with different shades corresponding to
different r1. Along the horizontal contours of constant r are
the values of h�vi, where the correct relic density can be
obtained for an efficiency factor f ¼ 1. The turnover around
mX � 10 GeV comes from the drop in SM degrees of freedom
when the Universe has temperature �1 GeV. The thick solid
(red) line is the intersection of the WMAP7 and relic density
contours: it indicates the minimum h�vi needed to obtain the
observed relic density and satisfy CMB constraints for s-wave
annihilation.

3Above mX, m� > 1 MeV, most of the annihilation products
rapidly cascade down to lower energies, and the efficiency f is
only mildly sensitive to the initial energy spectrum of annihila-
tion products (normalizing for the total energy). However, pho-
tons in the range �0:1–1 GeV deposit their energy relatively
inefficiently. For annihilation of the sub-GeV scale DM, typi-
cally a smaller fraction of the total energy goes into photons of
these energies, which increases the total efficiency slightly. We
thank Tracy Slatyer for this point.

4Note: the results of [23] are slightly weaker by a factor of
1.2–2.
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ADM can evade CMB bounds while still allowing
s-wave annihilation.5 The CMB bounds do not completely
disappear in the ADM scenario, however, because there is a
small symmetric component of DM remaining, r1, the size
of which depends on h�vi. Because of the exponential
dependence of r1 on h�vi, as shown in Eq. (8), the
CMB constraints lead to a lower bound on h�vi. This is
shown in Fig. 1, where we map out the constraints in the
h�viCMB and mX parameter space, computing the relic
density numerically and applying the constraint in
Eq. (10). The solid line (red) gives the resulting lower
bound on fh�viCMB. This lower bound on fh�viCMB

translates to an upper bound on the residual symmetric
component, r1, as shown in Fig. 2. We give analytic
approximations to these numerical solutions next.

When r1 
 1, we can ignore the �X contribution to the
total relic density, and the DM asymmetry parameter �X is
set by�X � �CDM�c=ðmXs0Þ. For a given�X, the required
annihilation cross section at freeze-out to achieve a par-
ticular residual symmetric component, r1, can be obtained
by rewriting Eq. (8) as

h�vif ’
s0xf

0:264�CDM�c
ffiffiffiffiffiffiffiffi
g�;f

p
Mpl

ln

�
1

r1

�

’ cf � 5� 10�26 cm3=s� ln

�
1

r1

�
; (13)

where cf � ðxf20Þð 4ffiffiffiffiffiffi
g�;f

p Þ is an Oð1Þ factor. We show the

numerical result as the horizontal contours of constant r1
in Fig. 1; for mX < 1 GeV, we obtain a good approxima-
tion to the numerical solution by taking cf ¼ 1. On the

other hand, the CMB bound on the annihilation cross
section when r1 
 1 is

h�viCMB <
2:42� 10�27 cm3=s

2f

�
mX

1 GeV

��
1

r1

�
: (14)

For s-wave annihilation, we take h�vif ’ h�viCMB. Since

h�vif increases with logð1=r1Þ, but the CMB bound on

h�viCMB increases with 1=r1, we can evade the CMB
constraints by decreasing r1. For a given DM mass, ther-
mal ADM is consistent with the CMB constraints if r1
satisfies the following condition:

r1 ln

�
1

r1

�
<

2:42� 10�2

f� cf

�
mX

1 GeV

�
: (15)

The numerical result for this bound is shown in Fig. 2; a
good analytic approximation is given by r1 <
r0= lnð1=r0Þ, with r0 ’ 2� 10�2ðmX=GeVÞ=f. Taking
f� 1, we can see that r1 has to be smaller than
5� 10�3 and 2� 10�6 for mX � 1 GeV and 1 MeV,
respectively.
Likewise, we can combine Eq. (13) and (14) to place a

lower bound on h�vif:

h�vif
cf � 5� 10�26 cm3=s

*

8<
: ln

�
40cff� 1 GeV

mX

�
þ lnln

�
40cff� 1 GeV

mX

�
; mX & f� 10 GeV:

2; mX * f� 10 GeV:
(16)

Note ifmX is larger than f� 10 GeV, the CMB constraints
do not apply, and the annihilation cross section is set by the
relic density requirement. The analytic approximation in
Eq. (16) agrees well with the numerical results, which are
shown in Fig. 2.
With these constraints on the minimum annihilation

cross section, we now turn to discussing what classes of
models can generate the needed annihilation cross section
consistent with collider constraints.

minimum < v>

0.01 0.10 1.00 10.00 100.00

mX [GeV]

10-25

10-24
<

v>

h2=0.11, r=1

f = 1
f = 0.1

maximum r

0.01 0.10 1.00 10.00 100.00

mX [GeV]

10-6

10-5

10-4

10-3

10-2

10-1

100

r

f = 0.1
f = 1

FIG. 2 (color online). (Top) Minimum h�vi for efficient anni-
hilation of the symmetric component in an ADM scenario, such
that CMB bounds can be evaded, for two different values of the
efficiency f. The black dotted line gives the thermal relic h�vi
for the symmetric case. (Bottom) The corresponding maximum
allowed r1, the anti-DM-to-DM ratio at the present time.

5In the symmetric limit, one can evade the CMB bounds if DM
annihilates via p-wave suppressed interactions. Then h�viCMB ’
ðvCMB=vfÞ2h�vif and since vCMB � 10�8 while vf � 0:3, the
annihilation cross section at recombination is highly suppressed,
and WMAP constraints are substantially weakened. An in-
creased branching ratio to neutrinos (smaller f) can also alleviate
the tension with CMB data for light DM.
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IV. LIGHT MEDIATORS

Thus far, we have treated the annihilation cross section
h�vi as a free parameter. To proceed, we must specify the
physics that generates this cross section. First, DM may
annihilate directly to SM particles through heavy media-
tors with mass greater than the weak scale. This coupling to
the SM implies light DM can be produced in abundance in
colliders. We review constraints from missing (transverse)
energy searches at collider experiments and from direct-
detection experiments, which conflict with the h�vi re-
quired to obtain the observed relic density. In this case,
thermal light DM is ruled out in both the symmetric and
asymmetric scenarios. Second, DM can annihilate via new
light states which have a mass below the typical momen-
tum transfer scale in the colliders. In this case, the collider
constraint can be evaded. If the new state is lighter than
DM, it can be very weakly coupled to the SM.

A. Collider and direct-detection constraints on light
DM with heavy mediators

In the heavy mediator case, a convenient way to parame-
trize the DM-SM coupling is via higher dimensional op-
erators, which is valid if the mediator mass is heavier
than the relevant energy scale. Here, we give two typical
examples,

O 1:
�X	�X �f	�f

�2
1

and O2:
�XX �ff

�2
2

; (17)

where X is DM, f is a SM fermion, and �1;2 are cutoff

scales forO1;2. The cutoff scale, in terms of the parameters

in the UV-complete models, is � ¼ m�=
ffiffiffiffiffiffiffiffiffiffiffi
gXgf

p
, where

m� is the mediator mass, and gX and gf are coupling

constants of DM-mediator and SM-mediator interactions,
respectively.

In the limit of mX � mf, the DM annihilation cross

sections at freeze-out are given by

h�vi1 ’
Nc

f

�

m2
X

�4
1

and h�vi2 ’
Nc

f

8�

m2
X

�4
2

1

xf
; (18)

for O1 and O2, respectively. N
c
f is the color multiplicity

factor of fermion f, and xf ¼ mX=T � 20, with T the

temperature. Note that the annihilation cross section
through O2 is p-wave suppressed. Now, we can estimate
the limit on the cut-off scales �1 and �2 by requiring the
correct relic density

�1 & 370 GeV

�Nc
f

3

�ð1=4Þ� mX

10 GeV

�ð1=2Þ

�
�
6� 10�26 cm3=s

h�vi
�ð1=4Þ

; (19)

�2 & 100 GeV

�Nc
f

3

�ð1=4Þ� mX

10 GeV

�ð1=2Þ

�
�
6� 10�26 cm3=s

h�vi
�ð1=4Þ�20

xf

�ð1=4Þ
; (20)

where the limit is relevant for both the asymmetric and
symmetric cases. Since the annihilation cross section is
p-wave suppressed forO2, we need a smaller cut-off scale
to obtain the correct relic abundance. Now, we review
various constraints on the cut-off scales �1;2:

(i) Direct Detection Constraints
If DM couples to quarks, the operators O1;2 can lead

to direct-detection signals with the DM-nucleon
scattering cross section: �n1;2 ��2

n=�
4
1;2, and �n is

the DM-nucleon reduced mass. For a DM mass
�10 GeV, taking the value of �1;2 given in

Eqs. (19) and (20), we expect the DM-nucleon scat-
tering cross section to be �n1 � 10�38 cm2 and

�n2 � 10�36 cm2. However, the current upper bound

on �n from direct-detection experiments for DM
with mass mX * 10 GeV is �n & 10�42 cm2 [43],
which is much smaller than the predicted values
from requiring the correct thermal relic density. For
DM with mass below a few GeV, the recoil energies
are too small and direct-detection bounds are cur-
rently very weak or nonexistent.

(ii) Tevatron and LHC Constraints
The DM-quark interactions given inO1;2 can lead to

signals of monojet plus missing transverse energy at
hadron colliders, while the Tevatron data for this
signal matches the SM prediction well. We require
that O1;2 do not give rise to sizable contributions

to this signal. The lower bounds on �1;2 are

�400 GeV and �400 GeV [25–27], respectively,
for DMmassesmX & 10 GeV that we are interested
in. Recent LHC results give a stronger limit on
�1 * 700 GeV [29]. Therefore, the Tevatron and
LHC searches have excluded both thermal symmet-
ric DM and ADM in the whole range of light DM if
the DM particles annihilate to light quarks through
O1 and O2.

(iii) LEP Constraints
If DM particles couple to the electron through
O1;2, the monophoton search at LEP sets a limit

on the cutoff scale: �1 * 480 GeV and �2 *
440 GeV for DM mass mX & 10 GeV [30]. Note
the limit also applies to the case where DM couples
to three generations of charged leptons universally.
One may avoid the limit by coupling DM only to�
or 
. However, this approach usually involves
model building complications and severe flavor
constraints.
Thus, we conclude that forO1;2, DM does not have

the correct relic abundance for symmetric DM and
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ADM due to the combination of direct detection
and collider constraints. The direct detection con-
straints can be relaxed by suppressing the direct-
detection scattering cross section; this can happen,
for example, if the scattering of nuclei is velocity-
suppressed, notably through an axial interaction.
However, the collider bounds are still severe for
higher-dimensional operators involving interac-
tions with light quarks or electrons [25–30].

B. Light dark matter with light mediators

One simple way to evade the collider constraints for
light DM is to invoke light mediators with masses much
smaller than the typical transverse momentum of the col-
liders pT �Oð100 GeVÞ (or the center-of-mass energy
�200 GeV for LEP). In this limit, the effective theory
approach breaks down, and the collider bounds become
much weaker [27,29,30,44]. In general, if the mediator
mass is much less than the pT probed at colliders, there
exists a large parameter space for light-DM scenarios to
achieve the correct relic density. We consider a hidden
sector with Dirac DM coupled to a light mediator which
could be a spin-1 or spin-0 particle; for ease of notation, we
always refer to it as �. We write the Lagrangians as

LV ¼ gX �X	�X�� þ gf �f	
�f�� þmX

�XX þm2
��

���;

(21)

L S ¼ gX �XX�þ gf �ff�þmX
�XX þm2

��
2; (22)

where m� is the mediator mass. We consider two cases for

the mediator mass6: a mediator withm� > 2mX and lighter

mediator with m� <mX.

In the case of pT � m� > 2mX, the DM particles can

annihilate to SM particles through the s-channel process.
There is a collider bound on gf because an on-shell me-

diator which decays to X �X can be produced, potentially
contributing to the monojet plus missing transverse energy
signal. Tevatron data has been employed to place an upper

bound on gf < 0:015=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Brð� ! X �XÞp

for m� < 20 GeV

[44], where Brð� ! X �XÞ is the branching ratio of� decay
to the DM pair. In this case, the annihilation cross section is
given by h�viV ’ 4�Xg

2
fm

2
XN

c
f=m

4
� and h�viS ’

�Xg
2
fm

2
XN

c
f=2m

4
�xf, where �X � g2X=4�. To see how the

collider constraint affects the annihilation cross section in
this case, we take the conservative limit gf & 0:015, set-

ting Brð� ! X �XÞ � 1. From the relic density constraint,
we then obtain an upper bound on the mediator mass,

m� & 13 GeV

�
�X

10�1

�
1=4

�
10�25 cm3=s

h�vi
�
1=4

�
mX

1 GeV

�
1=2

:

(23)

This bound7 is consistent with our assumption that
m� � mX.

Ifm� <mX, DM can annihilate to the mediator directly,

and the annihilation cross section is determined primarily
by the hidden sector coupling gX:

h�viV ¼ ��2
X

m2
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
m�

mX

�
2

s
;

h�viS ¼ 9

2

��2
X

m2
X

T

mX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
m�

mX

�
2

s
;

(24)

for the vector and scalar mediators, respectively.
Meanwhile, gf determines how the DM sector couples to

the SM sector. As for the collider physics, the production of
X �X occurs through an off-shell mediator; since this is a
three-body process, the bound is rather weak. Tevatron
data requires gf & 0:2 if the mediator couples to quarks

universally [44].
Although gf does not appear to play an important role in

the relic density, this coupling controls the width (lifetime)
of � and is relevant for cosmology. The width �� of the

mediator is

ð��ÞV ¼ 4Nc
f

3

m�

16�
g2f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
2mf

m�

�
2

s
;

ð��ÞS ¼ 2Nc
f

m�

16�
g2f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
2mf

m�

�
2

s
;

(25)

where the lifetime 
� ¼ ��1
� . In Sec. II, we assumed the

DM particles to be in thermal equilibrium with the SM
thermal bath in the early Universe, and in this case, the
standard freeze-out picture and cosmology apply. Now, we
check the condition for thermalization of the two sectors. If
the mediator decay rate is larger than the Hubble expansion
rate at temperatures T > m�, then the inverse decay pro-

cesses can keep � in chemical equilibrium with the SM
thermal bath [45]. At these temperatures, the decay rate is
given by �� � g2fm

2
�=ð16�TÞ, where the factor of m�=T

accounts for the effect of time dilation. In order for the
mediator to stay in thermal equilibrium with the SM ther-
mal bath through DM freeze-out, we require �� * H at

temperatures T �mX. This gives a constraint on gf:

6In this paper, we do not consider the intermediate case
m� � 2mX, where there is a resonance in the s-channel annihi-
lation of �XX.

7Note that in this case, there are also strong bounds on m�

from neutrino experiments [13]; however, we have checked that
it is still possible to obtain the correct relic density and that the
direct-detection predictions are unaffected.

SYMMETRIC AND ASYMMETRIC LIGHT DARK MATTER PHYSICAL REVIEW D 85, 063503 (2012)

063503-7



gf �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16���

m�

s
� 8� 10�8

� ffiffiffiffiffiffiffiffi
geff

p
9

�
1=2

�
mX

GeV

�
3=2

�
�
100 MeV

m�

�
: (26)

If gf is less than the bound given in Eq. (26), the DM

sector can have a different temperature from the SM sector,
and the standard freeze-out calculation can be modified in
a number of ways. We have checked that these effects lead
to change in the minimum annihilation cross section by
less than a factorOð10Þ, compared to the results we derived
in Sec. II and III. Furthermore, the massive mediator is a
late-decaying particle and, in the case where the mediator
decays to the SM states, can modify standard nucleosyn-
thesis (BBN). There are stringent constraints on the had-
ronic decay of long-lived particles from the 4He fraction,
which requires that the lifetime of the mediator be less

than 10�2 s [46–48]. This leads to a lower bound of gq *

1:6� 10�11
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 GeV=m�

q
for a vector mediator, where we

take Nc
f ¼ 3. For leptonic decay modes, we take the life-

time of the mediator 
� & 1s, and obtain a slightly weaker

bound, ge * 5� 10�11
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 MeV=m�

q
, for a vector media-

tor with Nc
f ¼ 1.

Finally, we comment on the calculation of the relic
density and application of the CMB constraints in the light
mediator case. When m� <mX, �XX can annihilate to ��,

but� decays to standard-model particles rapidly compared
to the relevant time scales at recombination so that the
CMB constraints are unchanged. The only difference be-
tween a heavy mediator and light mediator with large
width is whether there is a contribution to the effective
degrees of freedom, g�, from the light mediator. A slightly
higher g� in the light mediator case gives rise to smaller r1,
which in turn weakens the lower bound on h�vi from CMB
constraints.

In addition, we have neglected the Sommerfeld enhance-
ment effect. As wewill discuss in the following section, the
mediator mass is bounded from below by DM halo shapes;
this limits the size of any Sommerfeld enhancement. In
addition, since h�vi � ��2

X=m
2
X, for light DM the cou-

pling �X can be much smaller and still satisfy the relic
density constraint. For the DM masses considered here, we
have checked that the Sommerfeld enhancement effect is
negligible for s-wave and p-wave annihilation processes at
both freeze-out and during recombination, if we take �X

and m� close to their minimum allowed values.

V. HALO SHAPE CONSTRAINTS ON THE
MEDIATOR MASS

The presence of the light mediator allows for significant
DM self-interactions, which can have nontrivial effects
on DM halo dynamics. A number of astrophysical

observations constrain DM self-interactions, for example,
observations of the Bullet Cluster [49], elliptical galaxy
clusters [50], and elliptical DM halos [51,52]. Among
these, the upper bound on DM self-interaction from the
ellipticity of DM halos is the strongest [51]. DM self-
interactions can erase the velocity anisotropy and lead to
spherical DM halos, so the observed ellipticity of DM
halos constrains the DM self-scattering rate. Because the
strength of self-interaction increases as the mediator mass
decreases, we can use the elliptical halo shape constraint to
place a lower limit on the mediator mass. Note that in the
case ofm� ¼ 0, the ellipticity of the DM halos then places

a strong upper limit on the hidden sector coupling gX [53];
it is only possible to obtain the correct relic density if
mX * 103 GeV [51,54].8

The effect of DM self-interactions on DM halo shapes
can be parametrized by the average rate for DM particles to
change velocities by Oð1Þ [52]:

�k ¼
Z

d3v1d
3v2fðv1Þfðv2ÞðnXvrel�TÞðv2

rel=v
2
0Þ; (27)

where nX is the DM density in the DM halo, vrel ¼
j ~v1 � ~v2j, and fðvÞ is the DM velocity distribution in the

DM halo, for which we take fðvÞ ¼ e�v2=v2
0=ðv0

ffiffiffiffi
�

p Þ3. �T

is the scattering cross section weighted by the momentum
transfer: �T ¼ R

d��ðd�=d��Þð1� cos��Þ.
The form of�T depends on the particle physics nature of

DM self-interactions and the relevant momentum scales. If
the mediator is lighter than the typical momentum transfer
in collisions, DM particles interact through long-range
forces, and �T depends on velocity. In the opposite limit
where the mediator is heavy compared to momentum
transfer, DM self-interactions are contact interactions,
and �T is independent of vrel. In this case, we can take
the �T out of the velocity integrals in Eq. (27) and the
calculation is straightforward. We first will derive the
upper bound on the DM self-interaction cross section
assuming a contact interaction and then show that this limit
applies in deriving the minimum mediator mass.
We consider the well-studied elliptical galaxy NGC720

[56,57], taking our bound from the observed ellipticity at a
radius of 5 kpc. The DM density profile is fit with local
density 4 GeV=cm3 and radial velocity dispersion �v2

r ¼
v2
0=2 ’ ð240 km=sÞ2. We require the average time for DM

self-interactions to create Oð1Þ changes on DM velocities
to be larger than the galaxy lifetime tg � 1010 years, i.e.

��1
k > tg. This gives the upper bound

�T & 4:4� 10�27 cm2

�
mX

1 GeV

��
1010 years

tg

�
: (28)

8This limit can be relaxed if the hidden sector is much colder
than the visible sector when DM freezes out. In this case, DM
can achieve the correct relic density with a smaller annihilation
cross section [55].
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The reader should bear in mind that this is an analytic
estimate, and detailedN-body simulations studying a range
of elliptical galaxies are required for a robust bound.

Other astrophysical constraints have been derived for
�=mX, assuming a hard sphere scattering cross section �.
A similar bound derived from shapes of elliptical galaxy
clusters is (�=mX & 10�25:5 cm2ðmX=GeVÞ) [50].
Specifically, this estimate is obtained from the inner regions
of the galaxy cluster MS2137-23, at a radius of 70 kpc with
dark matter density �1 GeV=cm3. Cosmological simula-
tions of cluster-sized objects support this estimatewithin an
order of magnitude [58]; however, the bound is still based
on a single cluster. There is also a bound derived from the
Bullet Cluster [�=mX & 2� 10�24 cm2ðmX=GeVÞ] [49],
reproduced in simulations of the collision by Ref. [59].
Note that this result is not derived from the shapes of the
merging clusters but from requiring that the subcluster does
not lose a significant fraction of its mass in passing through
the larger cluster; however, we have found that the bound is
too weak in this case to give a minimum mediator mass.

For the vector and scalar interactions considered here,
the force is described by a Yukawa potential VðrÞ ¼
��Xe

�m�r=r. Depending on the mediator, and whether
we are in the asymmetric limit, the sign may be positive
or negative. For the vector case, we have both XX inter-
actions (þ ) and X �X interactions (� ) unless we are in the
asymmetric limit. For the scalar case, the sign is always
negative. However, in the limit of a contact interaction, the
sign of the potential does not matter. The momentum
transfer cross section for scattering through t- and
u-channel processes in the Born approximation is

�T � 4��2
Xm

2
X

m4
�

; (29)

which is subject to the bound in Eq. (28). We have assumed
a contact interaction,mXvrel=m� 
 1; we will justify later

that this is a valid assumption in deriving the bounds below.
On the other hand, the relic density constraint places a

lower bound on the annihilation cross section h�vi *
10�25 cm3=s for light DM and thus on �X:

�XjV * 5� 10�5

� h�vi
10�25 cm3=s

�
1=2

�
mX

GeV

�
;

�XjS * 11� 10�5

� h�vi
10�25 cm3=s

�
1=2

�
mX

GeV

��
xf
20

�
1=2

;

(30)

for vector and scalar coupling, respectively. Note that we
assume m� <mX and take the annihilation cross sections

in Eq. (24).
Since�X cannot be arbitrarily small,m� cannot be made

arbitrarily small. Combining the bound on �X with
Eq. (29), we obtain a lower bound on the mediator mass:

m�jV * 7 MeV

� h�vi
10�25 cm3=s

�
1=4

�
mX

GeV

�
3=4

;

m�jS * 11 MeV

� h�vi
10�25 cm3=s

�
1=4

�
xf
20

�
1=4

�
mX

GeV

�
3=4

;

(31)

for the vector and scalar mediator cases, where we take the
elliptical galaxy with tg ¼ 1010 years. Note that because

the bound on m� scales as ��1=4
T in the contact interaction

limit, the result is not very sensitive to the precise bound
on �T .
In deriving the above bound on m�, we have assumed

that m� � mXvrel and that the Born approximation is

valid. Now, we check that the bound given in Eq. (31) is
consistent with these assumptions. The condition m� �
mXvrel is satisfied for 1 MeV<mX < 10 GeV, since from

Eq. (31), we have m�=mX � 10�2ðmX=GeVÞ�1=4 but

vrel � 10�3. In this limit, the Born approximation is valid
if the following condition is satisfied:

mX

��������
Z 1

0
rVðrÞdr

��������¼ mX�X

m�


 1: (32)

From Eq. (30), we can see vrel � �X in the DM mass
range we are interested in, and thus this condition is also
satisfied if m� � mXvrel. We emphasize that we cannot

extrapolate the lower mass bound given in Eq. (31) to
mX * 50 GeV because the Born approximation breaks
down. For these higher masses, in general, one has to solve
the scattering problem numerically [60]. In the classical
limit where mXvrel � m�, there is a fitting formula
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m
 = m X
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Elliptical cluster shape

Relic density only
With CMB constraint

FIG. 3 (color online). Lower limit on the mediator mass from
combining relic density and DM self-interaction constraints. We
show the case of a vector mediator; the result for a scalar
mediator is similar and is given in Eq. (31). We consider DM
self-interaction constraints from elliptical halo shapes and ellip-
tical cluster shapes. Bullet cluster constraints do not give a lower
bound on m�. The dashed red line indicates the bound on the

mass from elliptical halo shapes if CMB bounds are also applied,
assuming efficiency f � 1.
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available in Ref. [61] for the transfer cross section, which
has been used to study self-interactions via a light mediator
for DM masses greater than �100 GeV [45,52,62,63].

In Fig. 3, we show the lower limit on m� for the vector

case, including the result derived from the more conserva-
tive bounds from elliptical cluster shapes. We also show the
slightly stronger result if we take the CMB constraint on
the cross section,9 given in Eq. (17). There is a turnover for
the elliptical cluster bounds because the contact interaction
limit breaks down; here, we use the full cross section, again
in the Born approximation, given in Ref. [52]. The bounds
from the Bullet Cluster, which we derive following
Ref. [51], do not give rise to a lower bound on m�.

VI. DIRECT DETECTION

Given the experimental effort needed to detect DM
directly, it is important to map out the parameter space of
direct-detection cross sections, subject to the astrophysical
and cosmological constraints we have discussed. Current
experiments are not sensitive to DM-nucleon scattering if
the DM mass is below �1 GeV because of the energy
thresholds. It has been suggested that DM-electron scatter-
ing may provide an alternative way for the detection of
light DM [64]. We consider DM-nucleon scattering for
mX * 1 GeV and DM-electron scattering for 1 MeV &
mX & 1 GeV.

We compute the range of allowed elastic scattering cross
sections within the framework of light DM annihilating via
hidden sector mediators, assuming mediator couplings to
electrons or light quarks. We consider both lighter media-
tors, m� <mX, and heavier mediators, where we focus on

the case m� � mX. When m� <mX, the mediator can be

very weakly coupled to the SM, and so the scattering cross
sections can be much smaller than when m� � mX.

However, there is still a lower limit on the cross section
coming from the lower bounds on the couplings of the
mediator to the DM and SM fermions, �X and gf, respec-

tively. The lower bound on �X is derived from requiring
that relic density and CMB constraints are satisfied. We
consider two possible lower bounds on gf: from requiring

the thermalization between the DM and SM sectors, or
from requiring decay of the mediator before BBN. When
m� � mX, the lower limit on the cross section arises

purely from the relic density and CMB constraints.
Meanwhile, we obtain upper bounds on the electron

scattering cross section from the combination of halo-
shape bounds and requiring that the mediator does not
significantly affect the electron anomalous magnetic mo-
ment. Including supernova and beam-dump constraints on
the dark force coupling [65] then carves out a nontrivial
part of the parameter space for electron scattering.

Figure 4 summarizes our results for the case where the
mediator is a vector. We show the possible DM-nucleon
(left panel) and DM-electron (right panel) scattering cross
sections as a function of DM mass. The green shaded
region is the parameter space for m� <mX which is al-

lowed by the constraints from the relic density, BBN, and
DM halo shape constraints; in the electron case, we include
beam-dump and supernova cooling constraints. The lighter
green area is set by the additional assumption that the
mediator has large decay width and thus that the two
sectors are in thermal equilibrium. In the nucleon scatter-
ing case, m� � mX is ruled out by CRESST-I and

XENON10. In the electron scattering case, the red shaded
region labeled m� � mX gives the allowed cross sections.

In the following sections, we derive these results and
present more details.

A. Nucleon scattering

We first consider nucleon scattering in the mass range
1 GeV & mX & 10 GeV, taking universal couplings to the
light quarks given by gq. The DM-nucleon scattering cross

section is given by

�n ¼ 4�Xg
2
n

�2
n

m4
�

; (33)

where �n is the WIMP-nucleon reduced mass, and gn ¼
3gq is the ��-nucleon coupling constant. The upper

bounds here are set by results from direct-detection experi-
ments, in particular, CRESST-I [66] and XENON10 [67].
We have taken a contact interaction; this is a good approxi-
mation over much of the parameter space because the
momentum transfer is generally less than the minimum
mediator mass allowed by the ellipticity of DM halos, as
discussed in Sec. V. We note that momentum dependence
can be relevant for scattering off heavier nuclei such as
xenon if we takem� to be close to this minimum value and

thus can change the upper limit from XENON10 [68–70].
However, the lower limit is obtained in the limit thatm� �
mX, and thus momentum dependence will not be impor-
tant. We therefore consider the bounds on a contact inter-
action for simplicity.
To determine the lower limit on this cross section, we

bound �X and gq from below in the case that the mediator

is lighter than the DM, m� <mX. For thermal DM and

masses mX > 1 GeV, a lower bound on �X is determined
primarily by the relic density. As described in Sec. III,
CMB constraints are only important in this mass range if
�� decays dominantly to electrons, for which the effi-

ciency factor is f� 1. For �� coupling primarily to

quarks, f � 0:2 and CMB bounds do not apply above
mX � 2 GeV. Then the minimum annihilation cross sec-
tion is h�vi � ��2

X=m
2
X � 10�25 cm3=s, giving a bound

of �X * 5:2� 10�5ðmX=GeVÞ. Requiring thermal equi-
librium between the hidden and visible sectors, we take the

9In the scalar case, annihilation is p-wave suppressed, and thus
CMB constraints do not apply.
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bound on gq in Eq. (26), with
ffiffiffiffiffiffiffiffi
geff

p � 9. Combining the

limits above results in a lower bound on the nucleon
scattering cross section:

�n * 10�48 cm2 �
�
mX

GeV

�
4
�
GeV

m�

�
6
�

�n

0:5 GeV

�
2
: (34)

Since m� <mX, this quantity is saturated for anymX if we

set m� to its maximum value of m� �mX. This bound is

indicated by the ‘‘large width’’ line in Fig. 4.
Coincidentally, the lower limit here is similar to the best
achievable sensitivity for WIMP-nucleon scattering if the
dominant irreducible background is a coherent scattering
of atmospheric neutrinos off of nuclei [71–73]. However,
these studies focused on WIMP DM; for light DM, solar
neutrinos become much more important, and the best
achievable sensitivity may be several orders of magnitude
weaker.

The lower bound on �n given in Eq. (34) is derived by
requiring the two sectors to be in thermal equilibrium. We
may relax this assumption and just demand the mediator

decay by nucleosynthesis. This gives gq * 1:6�
10�11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 GeV=m�

q
, as discussed in Sec. IVB. For such

gq, the two sectors are decoupled through freeze-out;

then, the relic density calculation is slightly more compli-
cated and depends on the thermal history of the sectors.
The change in the relic density then modifies the bound on
�X. We have checked that the full calculation generally
only changes the bound on �X by an Oð1Þ factor [33], so
here we take the bound on �X from the large � width case

for simplicity. In this limit, the lower bound on �n is
given by

�n * 5� 10�54 cm2 �
�
mX

GeV

��
GeV

m�

�
5
�

�n

0:5 GeV

�
2
;

(35)

labeled as ‘‘decay before BBN’’ in Fig. 4.
For reference, we also give the lower bound on the cross

section in the case where m� � mX. Here, DM annihila-

tion occurs directly to SM final states through ��, with

annihilation cross section h�vi ¼ 4�Xg
2
nm

2
X=m

4
�. Since

the same combination of parameters enters in both the
annihilation cross section and the nucleon scattering cross
section, we can directly apply the relic density constraint to
obtain

�n * 5� 10�37 cm2

�
1 GeV

mX

�
2
�

�n

0:5 GeV

�
2
: (36)

This is the ‘‘m� � mX’’ line in Fig. 4. However, this

scenario is ruled out by the direct-detection limits on the
cross section.

B. Electron scattering

We consider scattering off electrons for DM in the mass
range 1 MeV<mX < 1 GeV. The DM-electron scattering
cross section is

�e ¼ 4�Xg
2
e

�2
e

m4
�

: (37)
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FIG. 4 (color online). (Left) Nucleon scattering through a vector mediator. The green shaded region indicates the allowed parameter
space of direct-detection cross sections. The lighter green region (labeled ‘‘Large width’’) imposes the bound of thermal coupling
between the two sectors while the larger shaded area encompassing this region only requires mediator decay before BBN. Also shown
is the lower bound for the heavy mediator (m� � mX) case. (Right) Electron scattering through a vector mediator, for m� <mX

(green) and m� � mX (red); the intersection of the two regions is shaded brown. We show the projected sensitivity of a Ge

experiment, taken from Ref. [64]. Beam-dump, supernova, and halo-shape constraints apply here and carve out the region of large �e

at low mX. For more details, see the text. In the lighter green region labeled ‘‘Large width,’’ the condition of thermal equilibrium
between the visible and hidden sectors is imposed.
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The lower bound on the scattering cross section can be
derived in the same way as in the nucleon case, taking
m� <mX. Here, both CMB and relic density constraints

apply, since mX < 1 GeV, and the energy deposition effi-
ciency f � 1 for decay to electrons. We take the bound on
the annihilation cross section in Eq. (16) with cf � 1,

giving a lower limit on �X:

�X * 4� 10�7

�
mX

10 MeV

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

�
40 GeV

mX

�s
: (38)

As in the nucleon case, a lower bound on the DM-
electron scattering cross section can be derived by assum-
ing that the hidden and visible sectors are in thermal
equilibrium. Analogously to Eq. (34), we find

�e * 3� 10�51 cm2 �
�

mX

10 MeV

�
4
�
10 MeV

m�

�
6

�
�

�e

0:5 MeV

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

�
40 GeV

mX

�s
; (39)

where we take
ffiffiffiffiffiffiffiffi
geff

p � 3.
Again, it is possible that the DM sector thermal

bath evolves independently from the SM sector, and in
this case, we only require the mediator to decay before

BBN. From Sec. IVB, we take the bound ge *

5� 10�11
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 MeV=m�

q
. The minimum scattering cross

section is

�e * 3� 10�53 cm2

�
mX

10 MeV

��
10 MeV

m�

�
5

�
�

�e

0:5 MeV

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

�
40 GeV

mX

�s
: (40)

If the annihilation goes through a heavier mediator
m� � mX, we derive the strongest lower bound on the

scattering cross section by applying CMB and relic density
constraints:

�e * 4� 10�39 cm2

�
10 MeV

mX

�
2

�
�

�e

0:5 MeV

�
2
ln

�
40 GeV

mX

�
: (41)

For electron scattering, there are no direct experimental
bounds on �e. However, form� <mX, there are bounds on

�e arising from indirect constraints, namely, halo-shape
bounds and from searches for new light gauge bosons [65].
The halo-shape constraint requires that the self-scattering
cross section satisfy �T=mX < 4:4� 10�27 cm2=GeV
with �T ’ 4��2

Xm
2
X=m

4
�. If m� <mX, then constraints

on new light gauge bosons rule out parts of the ðm�; geÞ
parameter space; we show beam-dump, supernova cooling,

and electron anomalous magnetic moment constraints10 in
Fig. 5 (left panel). Here, we make use of the convention in
Ref. [65], where ge ¼ 
e, with the kinetic mixing parame-
ter 
 � 
Y cos�W and e electric charge. The solid line (and
shaded region) indicates the constraint.
As a simple application of the constraints discussed

above, we derive the upper bound on the cross section by
rewriting �e:

�e ¼ 4�2
effiffiffiffiffiffiffiffiffiffiffiffiffi

4�mX

p
ffiffiffiffiffiffiffi
�T

mX

s �
ge
m�

�
2

& 3:5� 10�35 cm2

�
�e

0:5 MeV

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 MeV

mX

s
: (42)

Here, we have applied the halo-shape constraint and taken
ðge=m�Þ2 & 10�1 e2=GeV2, arising from measurements

of the electron anomalous magnetic moment [74].
To explain more complicated constraints on the ðmX;�eÞ

plane from the supernova cooling and beam-dump experi-
ments for m� <mX, we show again the allowed parameter

space for electron scattering cross sections, but highlight
boundaries of the constraints by labeling ‘‘A’’, ‘‘B’’, and
‘‘C’’ in the right panel of Fig. 5. We can map excluded
regions on the ðm�; geÞ plane to these constraints:

(i) Constraint A:
For m� <mX & 8 MeV, supernova plus beam-

dump constraints require ge & 1:3� 10�9. This pla-
ces a stringent upper bound on the cross section,
which we derive by taking m� to its minimum value

of m� ¼ 2me � 1 MeV and then setting �X to the

maximum value allowed by halo-shape constraints:

�X < 9:5� 10�6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 MeV=mX

p
. This upper bound

is then

�e & 6� 10�45 cm2

�
�e

0:5 MeV

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 MeV

mX

s
: (43)

Note that the constraint changes somewhat if
we also consider m� < 1 MeV. In this case, su-

pernova cooling constraints still require ge &
1:3� 10�9, but halo shapes allow for a somewhat
smaller m�. As a result, the upper bound is

slightly weaker if we allow m� < 1 MeV: �e &

6� 10�44 cm2ð�e=0:5 MeVÞ2ð10 MeV=mXÞ�2.
(ii) Constraint B:

This constraint applies for the large width
case. In contrast with constraint A, taking
ðm�; geÞ ¼ ð1 MeV; 1:3� 10�9Þ is in conflict with

10In general, there are also constraints from low-energy eþe�
colliders, fixed target experiments, and neutrino experiments
[13]. We find these do not significantly affect our results. In
the case of kinetic mixing, bounds from measurements of the
muon anomalous magnetic moment also apply. We do not
include them in this paper.
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the condition of thermal equilibrium between the
two sectors if the DM mass mX * 5 MeV.
Furthermore, for mX * 20 MeV, the region (m� �
20 MeV, ge � 3� 10�8) opens up. These compet-
ing effects lead to the kink in line B.

(iii) Constraint C:
For mX * 8 MeV, then supernova and beam-dump
constraints allow a region of larger ge: for example,
(m� � 8 MeV, ge � 6� 10�4) is now allowed.

The red dashed lower bound on ge in the left panel
of Fig. 5 then gives rise to the constraint C. The
lower bound on the cross section here comes from

setting m� �mX, applying the red dashed lower

bound on ge, and setting �X to its minimum value
from CMB constraints.

We make two final notes. First, in the heavy mediator
case, the beam-dump constraints do not apply, and the CMB
constraints are, in general, much stronger. As a result, the
high-�e, low-mX region which is excluded in the light
mediator case is again allowed indicated by the light red
shaded region labeled m� �mX in Fig. 4. Second, if we

remove the constraintm� > 1 MeV,�will decay invisibly,

and only the supernova constraints are relevant. Then, a
small region of parameter space with ge � 1:3� 10�9 and
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FIG. 5 (color online). (Left) Constraints on mediator mass m� and coupling to electrons ge for m� <mX. The shaded region is
excluded from electron anomalous magnetic moment, beam-dump experiments, and supernova cooling [65]. The red dashed line
shows the ge value used to derive the corresponding red dashed line (C) in the right plot. (Right) Constraints on electron scattering from
Fig. 4. The boundaries A, B, and C are discussed in more detail in the text.
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FIG. 6 (color online). For fixed mX and a mediator with mass m� < mX, we generate random values of ðm�; geÞ allowed by beam-
dump, supernova, ae, and BBN constraints. We show a sample of allowed points in the ðm�; geÞ parameter space; the solid curve is

extrapolated from the constraints in Ref. [65], also shown in the left panel of Fig. 5. For each ðm�; geÞ point, we then sample the

allowed �X satisfying halo-shape and relic-density constraints and compute the corresponding elastic scattering cross section �e. The
color of the point is determined by �e. (Left) mX ¼ 20 MeV, where the minimum mediator mass is m� ¼ 1 MeV. (Right) mX ¼
100 MeV, where the minimum mediator mass m� * 3 MeV is set by halo-shape constraints.
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m� < 1 MeV opens up, as discussed above under

constraint A.
We have verified the bounds discussed above by per-

forming a general scan of the hidden sector parameter
space. Figure 6 illustrates our method. We begin by map-
ping out the parameter space of ðm�; geÞ and require either
large � width or � decay before BBN. We combine this
with the constraints in Ref. [65], given by the solid curve in
the top panels of Fig. 6. In doing so, we impose the limit
1 MeV<m� <mX for the case of m� <mX and m� >

2mX in the case wherem� � mX. The lower limit ofm� >

1 MeV is imposed in order to allow for � decay to elec-
trons. If the halo-shape constraint gives a stronger lower
bound onm�, then we take ðm�Þmin;halo <m� <mX for the

m� <mX case, where ðm�Þmin;halo is minimum mediator

mass allowed by the halo-shape constraint. This generates
the sampled points in ðm�; geÞ that we have shown. For a

fixed ðm�; geÞ, a range of values for �X is allowed, giving

rise to a range of allowed scattering cross sections. We
sample random �X values, subject to the halo-shape con-
straint and the relic density constraint as in Eq. (38). This
then gives a randomly sampled �e value, which we
indicate by the color of the point in Fig. 6. For a fixed
mX value, because of the range of allowed m� and �X

values, excluded regions in ge do not directly map to an
excluded region in �e. An excluded region in �e only
arises if a sufficiently large region of ge is excluded, as
shown in the left plot of Fig. 6. We thus verify the possible
values of �e in this way, imposing all the constraints self-
consistently.

VII. CONCLUSIONS

Given the unknown nature of DM, it is important to
carry out broad-based studies of models of DM. In this
paper, we have examined constraints on thermal DM with
mass 1 MeV & mX & 10 GeV, a mass range interesting
for numerous phenomenological and theoretical reasons.
We considered bounds from cosmology, colliders, and
astrophysics and derived implications of these constraints
on direct detection.

CMB constraints on DM annihilation present the most
serious challenge for light thermal DM, excluding
symmetric thermal relic DM with s-wave annihilation
if mX & 1–10 GeV. Two natural ways to evade this

constraint are to have a DM-number asymmetry or
velocity-suppressed annihilation. In the asymmetric case,
we found the constraint on the annihilation cross section
such that the symmetric component efficiently annihilates
away; the minimum cross section is larger than the usual
thermal relic cross section by a factor of a few, depending
on the mass.
Achieving this minimum cross section is difficult if

annihilation occurs through a weak-scale (or heavier) me-

diator. Collider and direct-detection constraints have

forced the presence of relatively light mediator states in

the hidden sector in order to achieve the correct relic

abundance and evade the CMB bounds. On the other

hand, we found that the DM halo shape bounds on DM

self-interactions require that the mediator is not too light.

We examined constraints from elliptical galaxy NGC720

and elliptical clusters and derived a lower bound on the

mass of the mediator particle.
We also calculated the range of scattering cross sections

allowed within this scenario. Although the lowest bound

which is cosmologically consistent is well below the reach

of any current or envisioned direct-detection experiments,

we showed that several cosmologically interesting bench-

marks could be reached. For example, in the case of

scattering off nucleons, a hidden sector in thermal contact

with the SM at T �mX can be ruled out if an experiment

can reach cross sections with �n & 10�48 cm2. In the case

of scattering off electrons, the scenario where m� � mX

can be probed by direct detection. Beam-dump and super-

nova constraints carve out a significant fraction of the

available parameter space if m� <mX.
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