
Lorentz-violating dynamics in the pre-Planckian Universe

G. Salesi*
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We have recently proposed a Lorentz-violating energy-momentum relation entailing an exact momen-

tum cutoff and studied various physical applications of that dispersion law. By a simple phenomenological

approach we study Lorentz violation effects on early Universe and pre-Planckian cosmological radiation.

In particular, we predict an effective infinite speed of light soon after the big bang, leading to a possible

solution of the horizon and flatness problems without recourse to inflation, cosmological scalar fields, or

other ad hoc energy sources.
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I. INTRODUCTION

As is well known, at the Planck scale classical and
quantum approaches lead to different predictions, and we
have to overcome general relativity in order to unify grav-
ity with the other fundamental forces of nature which are
well described by quantum field theory and the standard
model. For example, applying general relativity to the
black hole evaporation, we encounter unsolved theoretical
problems or inconsistencies, such as mass loss rate
divergence, baryon and lepton number nonconservation,
‘‘information paradox,’’ etc. Other serious problems and
divergences—the monopole problem, the cosmological
entropy problem, the coincidence problem, the flatness
problem, the horizon problem, the cosmological constant
problem—arise when studying the big bang singularity and
the pre-Planckian era in standard (relativistically cova-
riant) theories. On the other hand, in the last decades
Lorentz-violating (LV) theoretical approaches have been
proposed (implicitly or explicitly), entailing an essentially
noncontinuous, discrete spacetime where, as expected
from the uncertainty relations, a Planckian energy-
momentum scale naturally arises. Ultrahigh energy
Lorentz violations have been proposed in many different
experimental and theoretical frameworks, e.g. (see [1] and
references therein), superstring and quantum gravity theo-
ries, grand-unification theories, causal dynamical triangu-
lation, ‘‘extensions’’ of the standard model incorporating
breaking of Lorentz and CPT symmetries, foamlike quan-
tum spacetimes, classical spacetimes endowed with a non-
commutative geometry or with a discrete structure at the
Planck length, and theories with a variable speed of light or
variable physical constants.

An interesting theoretical approach to Lorentz symme-
try violation is found in ‘‘deformed’’ special relativity
[2–4], working in k-deformed Lie-algebra noncommuta-
tive spacetimes, in which both a fundamental mass scale
(depending on the particular model, it can be the Planck

mass 1019 GeV, the grand unified theory energy 1015 GeV,
the SUSY-breaking scale 1011 GeV, or the superstring
energy scale, etc.) and the speed of light act as character-
istic scales of a six-parameter group of spacetime
four-rotations with deformed but preserved Lorentz sym-
metries. Deformed relativity has been generalized to
curved spacetimes, as in the so-called ‘‘doubly general
relativity,’’ also called ‘‘gravity’s rainbow’’ [5]. The result-
ingmetric depends on both the probe energy and the gravity
field, as we might expect for sub-Planckian spatial regions.
In various recent papers [6–9] we have adopted a special

LV momentum-dependent metric where, analogously to
the phonon motions in a crystal lattice, particles can really
neglect the quantized structure of the underlying vacuum
only at low energies. On the contrary, at very high energies
particles can effectively feel the discretelike structure and
the quantum properties of the medium crossed. A very
general momentum-dependent metric can indeed be writ-
ten as follows:

d s2 ¼ f�2ðpÞdt2 � g�2ðpÞdl2; (1)

where the form factors f and g are expected to be different
from unity only for Planckian momenta, if the LV scale
is assumed to be the Planck energy. One of the most
important consequences of (1) is the modification of the
ordinary momentum-energy dispersion law E2 � p2 ¼
m2, by means of additional terms which vanish in the low
momentum limit:

E2f2ðpÞ � p2g2ðpÞ ¼ m2: (2)

On the basis of various physical considerations, we have
chosen the most simple LV metric, namely,

f2ðEÞ ¼ 1; g2ðpÞ ¼ 1� �p; (3)

where the positive LV parameter � is usually assumed to
be of the order of the reciprocal of the Planck mass,
��M�1

Planck. This choice leads to a negative cubic correc-

tion to the ordinary covariant dispersion law,*salesi@unibg.it
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E2 ¼ p2 þm2 � �p3: (4)

As a matter of fact, the cubic corrections to the dispersion
law are the most recurring in the literature. Indeed, in
‘‘noncritical’’-Liouville string theory [10] we find E2 ¼
p2 þm2 þ �gsp

3=Ms, where gs is the string coupling and
Ms is a suitable mass scale; similar cubic expressions are
obtained in the above-mentioned LV standard model
extensions, in theories with a spacetime ‘‘medium’’ or
quantum foam, in quantum gravity, as well as in
deformed special relativity (e.g., in [2] we find cubic
corrections: E ¼ p2 þm2 � �Ep� p2 � �p3 for m ¼ 0
and p � 1=�).

In [6] we have adopted the dispersion law (4) in order to
give a simple explanation for the baryon asymmetry in the
Universe. Because of the negative sign of the LV term, we
were able to propose a straightforward mechanism for
generating the observed matter-antimatter asymmetry
through a Lorentz-breakdown energy scale of the order
of the Greisen-Zatsepin-Kuzmin cutoff. In [7] our LV
model leads to very specific physical predictions in the
neutrino oscillations scenario, accounting for observed
anomalies such as the apparently anomalous excess of
low-energy �e-like events, reported by the MiniBooNE
Collaboration, as well as the nonobservation of the corre-
sponding anomalous excess of ��e-like events. Upon inves-
tigating the black hole thermodynamics in a deformed
relativity framework with a Planckian cutoff [8], we
adopted a Schwarzschild momentum-dependent metric
modified according to the above law dispersion: in such a
way, obtaining net deviations of the basic thermodynam-
ical quantities from the Hawking-Bekenstein predictions.
In particular, the black hole evaporation is expected to quit
at a nonzero critical mass value of the order of the Planck
mass, leaving a zero temperature remnant, and avoiding
any spacetime singularity. We also found [9] large devia-
tions from the Hawking-Bekenstein predictions for the
black hole time evolution, depending on the value of the
Lorentz-violating parameter introduced. Actually, in that
paper, we predicted a slow death of terminal black holes in
the place of an infinitely fast evaporation (with a dramatic
final gamma-ray burst) predicted by the Hawking theory.

Let us remark that, in the literature on deformed special
relativity and gravity’s rainbow, the chosen form factors f
and g do not imply an exact Planck cutoff or a maximum
momentum. By contrast, in our dispersion law with a
negative term��p the energy vanishes when p ¼ pmax ¼
1
� �MPlanck, which plays the role of a ‘‘maximal momen-

tum’’ corresponding to the noncontinuous discrete
‘‘granular’’ nature of space. Actually, Eq. (4), unlike other
dispersion laws put forward in the literature, is not the
leading order term in a series expansion in �p but, rather,
Eqs. (3) are assumed to represent the exact form of a metric
endowed with a momentum cutoff. Even if other forms of
LV metric with an exact Planck cutoff are possible, it is
noticeable that most of our predictions quoted above seem

to be model independent and are reobtained in quantum
theoretical approaches to Planck-scale physics [11].
In some interesting works, e.g. in [12], it has been

argued that strong Lorentz violations at the Planck scale
can affect the relativistic covariance also at very lower
energies because of the existence of loop corrections in-
volving virtual particles with Planck-scale momenta.
As a consequence, the implications of the modified disper-
sion relations might involve extremely drastic modifica-
tions of the expected particle behavior. Nevertheless, in
our phenomenological approach (as, in general, in
gravity’s rainbow) we do assume that, after quantum and
thermodynamical averages on the pre-Planckian radiation
gas, primordial photons can still be described as usual
semiclassical objects [9], even though adopting a modified
dispersion law. Hence we shall assume, at least in the first
approximation, the basic postulates of the Bose-Einstein
statistics and the usual counting of the phase space avail-
able states. As a matter of fact, we think that it can be really
meaningful to study the dynamics of a semiclassical cos-
mological fluid evolving in a curved spacetime endowed
with an energy-dependent metric. This does not exclude
the subsequent inclusion of quantum corrections in future
calculations. Actually, as said before, the present dynami-
cal or statistical assumptions and approximations have
been very successful in describing very different physical
frameworks, e.g., cosmic baryon asymmetry or terminal
black holes.

II. COSMOLOGICAL OPEN PROBLEMS IN A
LORENTZ-VIOLATING SCENARIO

Some authors [13] have recently claimed that the
adopted momentum-dependent metric can be more rigor-
ously classified as a (mass-dependent) Finslermetric rather
than a Riemannian one. As is well known, the Riemannian
manifolds are special cases of the Finsler manifolds, which
are the most general metric spaces in theories which
‘‘extend’’ Einstein’s general relativity. Nevertheless, for
simplicity, we hereafter shall call the cosmological evolu-
tion equations obtained from Einstein’s equations in the
presence of a momentum-dependent metric ‘‘Friedmann-
Lemaitre-Robertson-Walker (FLRW) equations.’’ Let us
note that in the present paper all the particles are assumed
to be massless radiation particles. This, as proved in [13],
makes the notions of ‘‘spacetime geometry’’ and of
‘‘tangent bundle geometry’’ still meaningful in the
Finsler metric, since each particle sees the same spacetime
geometrical structure. On the other hand, it is possible to
get the solutions of the Einstein equations for a
momentum-dependent FLRW metric [5] with the assump-
tions of space homogeneity and isotropy, time-independent
spatial components, and a zero cosmological constant �,
considering the early Universe as a sphere filled by a
photon hot gas with energy density � and pressure P.
Actually, the LV parameters f and g, such as the ones in
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Eq. (3), correspondingly ‘‘deform’’ one of the nonvanish-
ing Christoffel symbols (a indicates, as usual, the cosmic
scale factor),

�0
ij ¼

�
f

g

�
2
a _agij; �i

0j ¼
_a

a
�i
j: (5)

Consequently, taking into account the modified velo-
city four-vector u� ¼ ðf�1; 0; 0; 0Þ entering the energy-

momentum tensor [5], and introducing the Hubble constant
H � _a=a and the curvature parameter k, the LV Friedmann
equations with a zero cosmological constant � can be
written as in [5]:

H2 ¼ 8�G

3c2
�

f2
� k

�
g

f

�
2 c2

a2
;

€a

a
¼ � 4�G

3c2
�þ 3P

f2
;

(6)

which, according to our choice (3) for f and g, reduce to

H2 ¼ 8�G

3c2
�� kð1� �pÞ c

2

a2
;

€a

a
¼ � 4�G

3c2
ð�þ 3PÞ:

(7)

Since in this paper we adopt an approximate, essentially
qualitative approach to try to solve some cosmological
problems, we shall neglect the presence of the modulating
factor 1� �p [whose mean value ranges between 1 at

T ¼ 0 and
ffiffiffiffiffiffiffiffi
1=5

p
at T ¼ 1, cf. (14)]. Anyway, according

to the aim of the present work, in the first approximation
we shall neglect any LV correction to the spacetime metric
and shall refer to the usual Friedmann equations. We
instead will focus on the consequences of the LV energy-
momentum relation on the early cosmic expansion, in
particular, on the pre-Planckian photons’ mean velocity
which, as we are going to show, turns out to be nonconstant
and dependent on the temperature. As we will show below,
another important effect of our momentum-dependent met-
ric is a sharp modification (at very high temperatures) of
the equation of state linking � and P. Anyhow, when
applying the modified FRLW equations in studying the
early evolution of the Universe, we shall not explicitly
take into account the modified equation of state.

A. Modified blackbody thermodynamics

By adopting a thermal distribution and dispersion law
(4) for photons (m ¼ 0),

E ¼ pc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �p

p
; (8)

the spectral energy density in the semiclassical phase space
is given by

d� ¼ pc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �p

p

eðpc=kTÞ
ffiffiffiffiffiffiffiffiffiffi
1��p

p
� 1

8�p2

h3
dp: (9)

The total energy density is obtained by momentum
integration,

� ¼ U

V
¼

Z 1=�

0

8�c

h3
p3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �p

p

eðpc=kTÞ
ffiffiffiffiffiffiffiffiffiffi
1��p

p
� 1

dp: (10)

In the low temperature limit, T � c=k�, we can easily
recover the classical Stefan-Boltzmann law � ¼ �T4 ¼
�2k4T4=15ℏ3c3. By contrast, at high temperatures, T �
c=k�, replacing the exponential by its first order expan-
sion, we derive a new result, very different from the
classical one:

� ’ 8�

3

kT

h3�3
: (11)

In the same limit the photon density is given by

n ’ lim
T!1

Z 1=�

0

8�p2

h3
1

eðpc=kTÞ
ffiffiffiffiffiffiffiffiffiffi
1��p

p
� 1

dp ¼ 32�

3

kT

ch3�2
:

(12)

Even if both the total energy U ’ 8�
3

kT
h3�3 V and the total

photon number N ¼ nV ’ 32�
3

kT
ch3�2 V diverge for T ! 1,

the mean energy for photon is finite and (taking ��
1=MPlanckc) of the order of the Planck energy

" � U

N
¼ c

4�
: (13)

As a consequence, the classical energy equipartition prin-
ciple " ¼ 1

2 kT does not hold anymore. We could say that at

the big bang initial instant, when the temperature was
infinite, the mean energy for particle was not infinite, but
of the order of the Planck energy, thus avoiding a typical
divergence (" ! 1) resulting from standard cosmology.1

Similarly, for T ! 1 the photon mean momentum is finite,

�p ¼ 4

5�
: (14)

The radiation pressure (� indicates the grand potential)

P ¼ ��

V
¼ � 8�kT

h3

Z ð1=�Þ

0
p2 ln½1� e�ðpc

ffiffiffiffiffiffiffiffiffiffi
1��p

p
=kTÞ�dp

(15)

can be evaluated as above. At low temperatures we recover
the classical result P ¼ 1

3� ¼ 1
3�T

4, while at high tem-

peratures we find a linear-logarithmic law

P ’ 8�kT

3h3�3
ln
�kT

c
: (16)

1Analogously, in [14] different LV dispersion laws lead to
hotter pre-Planckian plasma which does not contain more ener-
getic photons at the peak of the distribution: it only contains
more photons at a peak located at the same energy.
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The pressure-energy ratio w in the presence of Lorentz
violation is, in general, a function of the temperature.
Actually, when approaching the big bang instant, with
T � c=k�, we have

w ’ ln
�kT

c
: (17)

In the same temperature domain the LV blackbody equa-
tion of state can be approximated as follows:

P ’ � ln

�
3h3�4�

8�

�
: (18)

For low temperatures the entropy density goes as usual,
s� 4

3�T
3, while for T � c=k� it diverges logarithmically,

s � S

V
¼

Z @�

@T

dT

T
’ 8�k

3h3�3
ln
�kT

c
: (19)

Noticeably, in the transition from the post-Planckian age to
the pre-Planckian one, we have a logarithmic correction to
the classical entropy, already found in various cosmologi-
cal models involving quantum corrections to general rela-
tivity predictions [15].

B. Horizon problem

The so-called ‘‘horizon problem’’ refers to the apparent
causality violation emerging from the observed very high
homogeneousness of the present Universe, which appears
to be near scale invariant up to a part in 105. Actually, the
too-fast expansion of the Hubble sphere in the early
Universe soon disconnects regions which move away
from each other, and one has to add, by hand, special initial
conditions in order to obtain the very regular cosmic
structure observed today.

We are going to show that in our model the effective
Universe horizon (Hubble radius or comoving causal
range) R � c= _a diverges at very early times, and through-
out the pre-Planckian era it is much larger than the horizon
radius predicted by the standard big bang theory.
Subsequently, towards the end of the pre-Planckian era,
the comoving distance decreases abruptly and only later
increases / a (in fact, at large times and small tempera-
tures our predictions totally agree with the standard ones).
As a matter of fact, due to dispersion relation (8), the
momentum-dependent group velocity is given by

cðpÞ ¼
��������
dE

dp

��������¼
j2� 3�pj
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �p

p c: (20)

On the other hand, owing to the photon statistic distribution

d fðpÞ ¼ 1

eðcp=kTÞ
ffiffiffiffiffiffiffiffiffiffi
1��p

p
� 1

8�p2

h3
dp; (21)

at the big bang infinite temperature the particle momentum
is of the order of the cutoff p ¼ 1=� (a sort of condensa-
tion in the momentum space). Then, for the above

expression of the group velocity, almost all particles in
the thermalized gas are endowed with infinite speed.2

Afterwards, the temperature decreases to the Planck one,
and we find an increasing number of photons with momen-
tum lower than the maximum one. Thus, on average, the
radiation flux slowed dramatically in the pre-Planckian era,
causing a decrease of the Hubble radius given by

RH ¼ v

_a
¼ ~cðTÞ

_a
;

where ~cðTÞ indicates the speed of most photons (e.g. the
ones endowed with the momentum which maximizes the
probability distribution density at a given temperature).
This might solve the horizon problem, if we think that
comoving regions of the very early Universe were causally
connected at any spatial scale since the speed of the
radiation particles was infinite at the beginning of the
Universe expansion. The same regions became discon-
nected at the end of the pre-Planckian era when the photon
speed decreased with the decrease of temperature: then,
reentering the Hubble radius only later, for T � TPL, when
v ¼ c for all photons and RH, as it occurs in the Lorentz-
covariant cosmology, does increase with the increase of the
Universe comoving radius, RH � a.
Besides the above considerations, there is another alter-

native approach to the horizon problem. The speed of
sound vsð�Þ through the radiation fluid filling the early
Universe is given by

v2
sð�Þ � c2

@p

@�
¼ c2

@ðw�Þ
@�

¼ c2
�
wþ �

@w

@�

�
: (22)

While for the Lorentz-invariant theory vs is equal to c=
ffiffiffi
3

p
,

in the present LV framework for T � c=k� we have, from
the above equation and from Eqs. (11) and (17),

vs ’ c

�
ln

�
3h2�4

8�c
�

��
1=2

: (23)

Consequently, for t ! 0 and �, T ! 1, the pre-Planckian
speed of sound is � cffiffi

3
p since it diverges together with

density and temperature. In various recent papers [17,18]

2Another definition, an alternative to the ’’frequency-
dependent’’ one in Eq. (20), is derived from deformed Lorentz
transformations, e.g., those quoted in [16], leading to a modified
Lorentz factor ~	 depending also on energy and momentum.
Actually, in special relativity, after a �v boost from the quiet
frame to the laboratory frame, we have p ¼ ðp0 þ v

c2
E0Þ	 and

E ¼ ðE0 þ vp0Þ	 from which, being in the quiet frame p0 ¼ 0

and E0 ¼ mc2, it follows that v ¼ pc2

E (which holds also for
massless particles with E ¼ pc). Analogously, in deformed
special relativity, from p ¼ ðp0 þ v

c2
E0Þ~	 and E¼ðE0 þvp0Þ~	,

we shall have v ¼ pc2

E as well: therefore, in our model v ¼
pcffiffiffiffiffiffiffiffiffiffi
1��p

p , implying an infinitely large speed of light at the cutoff,

just like the one defined in Eq. (20).
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it has been argued that if the speed of sound in the early
Universe was much larger than c, a nearly scale-invariant
spectrum of density fluctuations could have been produced
through a process independent of the usual horizon prob-
lem solutions. As a matter of fact, besides the Hubble
radius another horizon exists that is endowed with an
independent dynamics, namely, the ‘‘sound horizon’’

Rs � vs

_a
(24)

which is expected to grow much more than the comoving
distance predicted in the classical big bang theory. As an
example, in [17,19] it is shown that, in an expanding
Universe, the generation of a super-Hubble scale-invariant
spectrum of perturbations over a range of wavelengths
consistent with observation just requires, in the absence
of inflation and cosmic acceleration, a speed of sound
faster than the speed of light or a super-Planckian energy
density. Actually, both conditions are satisfied in our LV
scenario, where the speed of sound is highly superluminal
and very rapidly varying.

C. Flatness problem

Another basic problem of standard cosmology is the
‘‘flatness problem’’: since today the observed curvature
of the Universe is close to zero, the Friedmann equations
imply an infinitely vanishing curvature in the early
Universe, which therefore would be very improbable and
too unstable. In the absence of Lorentz violations the
FRLW equation for the Hubble constant is written

H2 ¼ 8�G

3c2
�� k

c2

a2
: (25)

The previous equation can be rewritten as follows (here-
after we label present time quantities by zero),

H2 ¼ H2
0

�
�

�0

�m0 þ a�2�k0

�
; (26)

where H0 is the Hubble constant today; the current
‘‘matter-energy density parameter’’

�m0 � �0=�c (27)

is defined as the ratio between the actual energy density �0

and the critical energy density �c ¼ 3H2
0c

2=8�G; the

quantity

�k0 � �kc2=H2
0a

2
0 ¼ �kc2=H2

0 (28)

(the expansion radius a0 in the present age is taken to be
unitary) indicates today’s ‘‘curvature density parameter.’’ It
is easily proved that between the two density parameters
the constraint �m0 þ�k0 ¼ 1 holds. Taking into account
Eq. (26), the ‘‘relative curvature,’’ or ‘‘deviation from
flatness,’’ can be defined as

C ðaÞ � j�k0ja�2

�m0�=�0

: (29)

Since in the standard FRLW model �� a�3ð1þwÞ�0, we
can also write

C ðaÞ ¼ j�k0ja�2

�m0a
�3ð1þwÞ ¼

j�m0 � 1ja�2

�m0a
�3ð1þwÞ ¼ C0a1þ3w; (30)

where

C 0 � j�k0j
�m0

¼ kc2�c

H2
0�0

is the small deviation from flatness measured today. As
is well known, taking into account that a� T�1 and
(from Wilkinson Microwave Anisotropy Probe and
COsmic Background Explorer) �k0 < 0:1, for the radia-
tion casew ¼ 1=3we infer from Eq. (30) that at the Planck
timeCwas of the order of 10�62: namely, the cosmological
flatness problem.
In recent years cosmologists have tried to solve the

flatness problem via inflationary models in an accelerating
Universe (w<�1=3), or by introducing a time-varying
Newton ‘‘constant’’ GðtÞ, or even by assuming a curvature
parameter kð�Þ depending on the early Universe energy
density. As an example, in [14] a gravity’s rainbow ap-
proach is proposed, where the curvature term is multiplied
times a metric form factor gð�Þ depending on the Universe
energy density: this choice, in turn, implies a speed of light
cð�Þ depending on � which in the pre-Planckian epoch is
much larger than c. In what follows we shall not consider
LV modifications to the curvature, but only an effective
dependence of the speed of light on energy density. As a
matter of fact, we have previously seen that the primordial
speed of radiation particles, ~cðTÞ, is strongly dependent on
the temperature. Taking into account that the temperature
can be considered as a function of the energy density
[actually, in pre-Planckian times we have that � and T
are linearly proportional, cf. Eq. (11)], we can assume that
the speed of light is a function of the density as well. Notice
that our temperature- or density-dependent speed of light,
~cð�ðtÞÞ or ~cðTðtÞÞ, is implicitly time varying, ranging from
infinite at t ¼ 0 to c at t � TPL. Let us now rewrite the
above FRLW equation in our LV scenario with time-
varying speed of light ~cðtÞ,

H2 ¼ 8�G

3~c2
�� k

~c2

a2
: (31)

Rewriting the above equation in terms of �k0 and �m0,
after a little algebra we see that Eq. (26) can be modified as
follows:

H2 ¼ H2
0

��
c

~c

�
2 �

�0

�m0 þ
�
~c

c

�
2
a�2�k0

�
; (32)

while, in the place of (29), we now obtain
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C ðaÞ ¼
�
~c

c

�
4 j�k0ja�2

�m0�=�0

¼
�
~c

c

�
4 �0

�a2
C0: (33)

From the above equation we therefore deduce that, in
contrast with classical theory, at an initial instant, when
T � TPL, the deviation from flatness can be nonvanishing,

C ða � 1Þ � C0;

because in (33) the very small factor �0=ð�a2Þ � a1þ3w

can be counterbalanced by the very large ratio ð~c=cÞ4
which is diverging in the pre-Planckian era. We then see
that the superluminality of the pre-Planckian Universe, due
to our LV dispersion law, is the key to the solution not only
of the horizon problem but also of the flatness problem.

D. Cosmic entropy arrow

As it occurs in other cosmological models without the
flatness problem, the present phenomenological model
entails, as expected, a nonconservation entropy effect,
even without recourse to a ‘‘reheating’’ of the Universe.
One possible explanation for the apparent energy noncon-
servation, due to entropy nonconservation in the absence of
reheating sources, can be related to the breaking of
Poincaré-Lorentz symmetry (in particular, the spacetime
translation invariance) in the pre-Planckian Universe [14].
Assuming Lorentz symmetry and c constant, by exploiting
the Friedmann acceleration equation €a ¼ � 4�G

3c2
ð�þ 3PÞa

and Eq. (25), we obtain

_�þ 3Hð�þ PÞ ¼ 0 (34)

which is a fluidodynamical version of the entropy conser-
vation law for adiabatic processes,

S ¼ const: (35)

In fact, starting from the first law of thermodynamics

dQ ¼ TdS ¼ pdV þ dU;

we can write (V / a3, S � sV)

TdS ¼ Pda3 þ dð�a3Þ ¼ ð�þ PÞda3 þ a3d� (36)

which, by taking the derivative with respect to time (in
thermal equilibrium), just becomes

Ta�3 dS

dt
¼ 3Hð�þ PÞ þ _�: (37)

Then, from (37) and (34), we obtain (35).
Let us now assume a nonconstant speed of light

c ¼ cðTðtÞÞ and take the derivative with respect to time
of the modified Friedmann equation for H, Eq. (31). Also
taking into account the modified Friedmann acceleration
equation

€a

a
¼ � 4�G

3~c2
ð�þ 3PÞ;

we finally get

Ta�3 dS

dt
¼ _�þ 3Hð�þ PÞ ¼ 2� _~c~c�1 þ 3k~c3 _~c

4�Ga2
: (38)

Therefore, in the early LV Universe, with _~c � 0, we have,
in general, entropy nonconservation, while after the pre-
Planckian era and in the present Universe, the total entropy
is constant in time. In particular, as _~c < 0, for k > 0 we
always have decreasing entropy. For k < 0 the entropy
increases if the following condition holds:

2� _~c~c�1 þ 3k~c3 _~c

4�Ga2
> 0: (39)

When k ¼ �1 this constraint requires that in the pre-
Planckian phase the entropy does increase if the energy
density is larger than a value of the critical density corre-
sponding to a ‘‘luminal’’ expansion speed:

� >
3~c2

8�G

�
~c

a

�
2 � 3~c2

8�G
~H2: (40)

Notice also that, in contrast to the classical predictions, in
the presence of Lorentz symmetry violation, we do not
have constant entropy, even in the case k ¼ 0, where the
entropy loss rate is

dS

dt
¼ 2� _~c~c�1a3

T
: (41)

The above results are also expected on the basis of simple
physical considerations [20,21]. The entropy variation can-
not be ascribed to dissipation or particle production, as the
cosmological fluid is perfect and the particle number is
invariant. As a matter of fact, the entropy of such a special
fluid as a LV primordial plasma turns out to be nonconstant
as long as the speed of light is also nonconstant. For open
universes the increasing entropy can be qualitatively justi-
fied since the decreasing speed of light means a narrowing
of the past light cone of the observers, who hence gradually
lose information [20].

III. CONCLUSIONS

Starting from a special dispersion law endowed with a
net momentum cutoff already proposed and investigated in
our previous papers, here we have studied various impor-
tant physical consequences of Lorentz symmetry breaking
on the expanding primordial radiation plasma, soon after
the big bang. Taking into account Lorentz violations at the
Planck scale is indeed one of the more effective ways to
describe, within a mere phenomenological approach,
physical domains where quantum mechanics is expected
to strongly affect the general relativity predictions.
We have first found that in the presence of Lorentz

violations the blackbody radiation obeys the ordinary
Stefan-Boltzmann equation of state only for temperatures
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much lower than the Planck one. By contrast, we have
proved that in the pre-Planckian era the energy density and
the pressure are linearly proportional to the temperature, in
contrast to the classical T4 behavior. As a consequence, the
pressure-energy ratio, as well as the entropy, is logarithmi-
cally proportional to the temperature. The logarithmic
behavior of the cosmic entropy around the Planck time,
emerging in the present nonquantum phenomenological
framework, is sometimes found in loop quantum cosmol-
ogy and in other quantum gravity applications to the big
bang theory.

We have applied our phenomenological approach to the
Universe expansion soon after the big bang, but before the
Planck time, in order to yield a likely explanation, agreeing
with experimental data from the COsmic Background
Explorer and Wilkinson Microwave Anisotropy Probe, to
fundamental open problems in cosmology.

We have therefore investigated the dynamical effective
modifications to the initial Universe evolution due to our
dispersion law, focusing on the sharp dependence of the
pre-Planckian photon speed and sound speed on tempera-
ture and energy density, i.e. on time. In fact, we show that
in our model both speeds are expected to be infinitely
larger than c when approaching the big bang. Actually,
superluminal motion of different cosmic regions and/or
super-Hubble scale-invariant perturbations can prevent
the horizon problem.

Analogously, the divergence of the speed of light does
seem to provide a solution to the troublesome flatness
problem. We exploit a first approximation to a LV version
of Friedmann equations without modifying the spacetime
metric but assuming a modified equation of state and a
speed of light varying with temperature or density.
Consequently, the vanishing pre-Planckian Universe
curvature predicted by the classical big bang model is

now multiplied times the fourth power of an infinitely large
speed of light. In such a way, the resulting early curvature
does not vanish anymore and our beginning Universe does
not need to be highly fine-tuned. Thus, at the big bang
instant the energy-matter density is not required to be
infinitely close to the critical value (departing from it up
to a part in 1062) as it happens in standard cosmology.
Finally, we have briefly studied the reheating and cosmic

time arrow issues, which are topics emerging in any model
beyond the classical big bang theory, e.g., in inflation
theories. We evaluate the nonvanishing entropy production
in a Universe crossed by photons endowed with an effec-
tive time-varying speed of light: as a matter of fact, a
nonconstant entropy in thermal equilibrium can, in the
end, be due to the underlying Lorentz symmetry breaking.
In a forthcoming paper we shall numerically solve the

FLRW equations with a momentum-dependent metric.
Anyway, the present phenomenological approximation of
a more exact analysis has shown that some basic serious
problems in contemporary cosmology can be overcome
without recourse to inflation or to new energy fields.
Recalling what we said in the introduction section about
the relation occurring between relativistic covariance and
effective spacetime structure, we could conclude that the
Planck time appears as a watershed between a hot age
(characterized by spacetime discreteness and noncommu-
tativity, Poincaré group violation, and infinite photon
speed) and a cold age, where c stabilizes to the actual
constant value in a commutative spacetime continuum
endowed with exact relativistic symmetries.
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