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We extend Douglas’ solution of the problem of finding minimal surfaces to anti-de Sitter space. The

case of a circle as a boundary contour is elaborated. We discuss applications toN ¼ 4 super Yang-Mills:

a circular Wilson loop and the Schwinger process, where we calculate the 1=
ffiffiffiffi
�

p
correction to the critical

value of constant electric field.
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I. INTRODUCTION

The Schwinger effect [1] of pair production in a constant
electric field is one of the beautiful predictions of QED.
The production rate of a pair of particles with masses m
and charges�e is exponentially suppressed for weak fields
E as

P / e��m2=jeEj; (1)

where the exponent has the meaning of a classical
Euclidean action associated with the tunneling. With in-
creasing E, fluctuations about the classical (Euclidean)
trajectory, which has the form of a circle of radius R ¼
m=jeEj, become more and more important, but nothing
special happens even for jeEj * 1=m2, when the saddle-
point approximation [2] in the path integral over (pseudo)
particle trajectories ceases to be applicable.

This smooth behavior drastically differs from that [3–5]1

in string theory, where there exists an instability for the
fields larger than a certain critical value of the order of the
string tension: jeEcj � 1=2��0. This instability is appar-
ently not related to the Schwinger effect and takes place
even for a neutral string with opposite charges at the ends,
thus occurring because stretching of the string then costs
negative energy.

Recently, a very interesting conjecture about an exis-
tence of such a critical electric field for N ¼ 4 super
Yang-Mills (SYM) has been made in Ref. [7], based on a
holographic description [8] of the Schwinger effect via the
AdS/CFT correspondence. In this approach the saddle-
point trajectory is governed in the supergravity approxi-
mation by a minimal surface spanned by a circle. The goal
of the present article is to account for fluctuations about
this minimal surface in anti-de Sitter (AdS), which result in
a preexponential factor. We evaluate the decay rate using a
representation of the Wilson loop inN ¼ 4 SYM through

a path integral over reparametrizations of the boundary
circle with the action prescribed by AdS/CFT, that holo-
graphically captures fluctuations in the bulk. We show that
the fluctuations do not cure the instability, and the critical
value of electric field is simply shifted in the quadratic
approximation (as is displayed in Eq. (35) below). Our
results confirm the expectation that the Schwinger effect
inN ¼ 4 SYM at strong coupling does not look as it does
in QED but is rather as it would appear in string theory.

II. THE SETUP

The saddle-point (Euclidean) action that determines the
exponent of the production rate in a constant electric field
is given by the minimum of

S ¼ 2�Rm� �jeEjR2 � lnWðcircleÞ (2)

with respect to the radius R of the circle. This effective
action emerges after performing the path integral over
(pseudo)particle trajectories, representing the vacuum-to-
vacuum amplitude in an external constant electric field. In
the path integral, first it is shown that the integral over the
proper time has a saddle point, and then one can show that
the saddle-point trajectory is a circle with (a large) radius
R ¼ m=jeEj [2]. The circle lies in the�, �-plane, when the
constant electric field E is given by the �, �-component of
the field strenght F��. The existence of this saddle point is

justified for small jeEj, when the logarithm of the Wilson
loop on the right-hand side of Eq. (2) is subleading at weak
couplings and contributes only to the preexponential.
The holographic description of the Schwinger effect in

SYM relies [8] on the spherical solution [9,10] of the
Euler-Lagrange equations for the minimal surface in AdS
enclosed by a circle in the boundary. We shall write it for
the upper half-plane (UHP) parametrization of the surface:
z ¼ xþ iy (y > 0), which is customary in string theory,
using the standard embedding space coordinates Y�1, Y0,
Y1, Y2, Y3, Y4 obeying

Y � Y � �Y2
�1 � Y2

0 þ Y2
1 þ Y2

2 þ Y2
3 þ Y2

4 ¼ �1: (3)
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The solution reads

Y1 ¼ 1� x2 � y2

2y
; Y2 ¼ x

y
;

Y�1 ¼ 1þ x2 þ y2

2y
; Y4 ¼ Y0 ¼ Y3 ¼ 0;

(4)

or

Z � R

Y�1 � Y4

¼ R
2y

1þ x2 þ y2
; (5a)

X1 � ZY1 ¼ R
1� x2 � y2

1þ x2 þ y2
; (5b)

X2 � ZY2 ¼ R
2x

1þ x2 þ y2
; (5c)

on the Poincare patch, so the induced metric

d‘2 ¼ dx2 þ dy2

y2
(6)

is the Poincare metric of the Lobachevsky plane. The
solution (5) obeys X2

1 þ X2
2 þ Z2 ¼ R2 and corresponds

to a circle of the radius R in the boundary when Z ¼ 0.
For these coordinates the Euler-Lagrange equations in

the embedding Y-space are

ð�� 2ÞYi ¼ 0; � ¼ y2
�
@2

@x2
þ @2

@y2

�
(7)

and the ‘‘mass’’ 2 arises because of the presence of the
Lagrange multiplier which is used to implement Eq. (3).

III. DIRICHLET GREEN FUNCTION AND
POISSON FORMULA IN ADS

As in flat space, we found it most convenient to use an
extension of Douglas’ algorithm [11] for finding minimal
surfaces to the Lobachevsky plane. Our program is to first
construct the Dirichlet Green function of Eq. (7) on the
Lobachevsky plane, and then to derive the version of the
Poisson formula relevant to the Lobachevsky plane. This
formula will then allow us to reconstruct the minimal
surface from its boundary value, so the problem of finding
the minimal surface will be reduced to the problem of
minimizing a boundary functional with respect to repara-
metrizations. Finally, we use this boundary functional for
evaluations of bulk fluctuations about the minimal surface.

The Dirichlet Green function on the Lobachevsky plane
is a function of the (geodesic) distance between the images
of the points ðx1; y1Þ and ðx2; y2Þ, which is determined by
the metric (6) to be

L2 ¼ ðx1 � x2Þ2 þ ðy1 � y2Þ2
4y1y2

: (8)

Acting by the operator on the left-hand side of Eq. (7), we
obtain the Legendre equation, whose solution for the
Dirichlet Green function is

Gðx1; y1; x2; y2Þ ¼ � 3

4�

�ðx1 � x2Þ2 þ y21 þ y22
4y1y2

� ln
ðx1 � x2Þ2 þ ðy1 � y2Þ2
ðx1 � x2Þ2 þ ðy1 þ y2Þ2

þ 1

�
:

(9)

To obtain the Poisson formula, which reconstructs a
harmonic function in the Lobachevsky plane (i.e., a func-
tion which obeys Eq. (7)) from its value at the boundary,
we take the normal derivative of Eq. (9) near the boundary
at a certain minimal value y2 ¼ ymin to which the
boundary is moved as usual to regularize divergences

@Gðx1; y1;x2; y2Þ
@y2

��������y2¼ymin

¼ 2y21ymin

�ððx1 � x2Þ2 þ y21Þ2
þOðy3minÞ:

(10)

We shall return soon to a physical meaning of this proce-
dure. Finally, we obtain

Yiðx; yÞ ¼
Z þ1

�1
ds

�

2YiðtðsÞÞy2ymin

ððx� sÞ2 þ y2Þ2 ; (11)

where YiðtðsÞÞ is the boundary value and the function tðsÞ is
a possible reparametrization of the boundary, which plays a
crucial role in Douglas’ algorithm. This is an extension of
the well-known Poisson formula to the Lobachevsky plane.
It is instructive to see how the known solution (4) for a

circular boundary is reproduced by Eq. (11) from the
boundary values

Y1ðtÞ ¼ 1� t2

2ymin

; Y2ðtÞ ¼ t

ymin

;

Y�1ðtÞ ¼ 1þ t2

2ymin

; Y0ðtÞ ¼ Y3ðtÞ ¼ Y4ðtÞ ¼ 0

(12)

for tðsÞ ¼ s, which means that no reparametrization of the
boundary is required for a circle, in analogy with the
situation for the ordinary Euclidean plane. The reason for
this is that the coordinates in use are conformal for a circle.
Note that ymin is nicely canceled, when (12) in substituted
in Eq. (11).

IV. AN EXTENSION OF DOUGLAS’
FUNCTIONAL TO ADS

As in flat space, to obtain the minimal surface we have to
minimize the quadratic action, which now reads

S ¼
Z

dxdy

�
1

2
@aYðx; yÞ � @aYðx; yÞ

þ �

y2
ðYðx; yÞ � Yðx; yÞ þ 1Þ

�
; (13)
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where Yiðx; yÞ is recovered in UHP from the boundary
value (12) by Eq. (11) and the Lagrange multiplier
�ðx; yÞ ¼ 1 at the minimum. This obtained value of S has
to be minimized with respect to the functions tðsÞ, repar-
ametrizing the boundary. The minimization is required for
Yi’s to obey a conformal gauge, where

ffiffiffi
g

p
would coincide

with the quadratic integrand in Eq. (13). Remarkably, this
can be formulated as the problem of minimizing a bound-
ary functional which is an extension of the flat-space
Douglas integral

Sflat ¼ 1

4�

Z
ds1

Z
ds2

ðxBðtðs1ÞÞ � xBðtðs2ÞÞÞ2
ðs1 � s2Þ2

(14)

to AdS space.
The Douglas integral (14) turned out to be extremely

useful for representing the area-law behavior of large
Wilson loops in QCD. Reference [12] contains a detailed
description of this method. An advantage of using such a
representation of the minimal area is that path integrals
over trajectories x�ðtÞ are now Gaussian and easily doable,
while nonlinearities are encoded in a path integral over
reparametrizations, whose extension to N ¼ 4 will be
soon considered.

Because Yi’s obey Eq. (7), the integral over y in Eq. (13)
reduces to a boundary term, after which the integral over x
yields

S¼� 1

�

Z
ds1

Z
ds2YBðtðs1ÞÞ �YBðtðs2ÞÞy2min

�
1

ðs1�s2Þ4
�
reg

(15)

with

�
1

ðs1 � s2Þ4
�
reg

¼
�

1

ððs1 � s2Þ2 þ 4y2minÞ2
þ 32y2min

ððs1 � s2Þ2 þ 4y2minÞ3

� 384y4min

ððs1 � s2Þ2 þ 4y2minÞ4
�
: (16)

This is the required boundary functional whose minimum
with respect to the functions tðsÞ equals the minimal area.

The integral on the right-hand side of Eq. (15) looks
pretty similar to that in Eq. (14), while the denominator in
Eq. (15) is ðs1 � s2Þ to degree four rather than square as in
Eq. (14). This is a manifestation of the well-known diver-
gences which are regularized by shifting the boundary
from y ¼ 0 to y ¼ ymin. In the dual language of D-branes
this corresponds [13,14] to the breaking of the UðNÞ sym-
metry down toUðN � 1Þ �Uð1Þ by assigning a finite mass
to the Uð1Þ gauge boson. If this mass is associated with
shifting the boundary to the slice Z ¼ ", then

yminðtÞ ¼ "

2R
ðt2 þ 1Þ (17)

from Eq. (12).
The right-hand side of Eq. (15) always diverges like

Sdiv ¼ 2�
R� "

"
; (18)

which comes from the domain ðs1 � s2Þ � ymin. It is uni-
versal and does not depend on the reparametrizing function
tðsÞ. Subtracting the divergent part, we obtain for the
regularized part

Sreg � S� Sdiv

¼ 1

2�

Z
ds1

Z
ds2 � ðYBðtðs1ÞÞ

� YBðtðs2ÞÞÞ2y2min

�
1

ðs1 � s2Þ4
�
reg
: (19)

The domain ðs1 � s2Þ � ymin now gives a finite contribu-
tion to this integral in view of the important formulaZ

dss2
�
1

s4

�
reg

¼ 0: (20)

V. REPARAMETRIZATION PATH INTEGRAL
IN N ¼ 4 SYM

We represent the circular Wilson loop in N ¼ 4 SYM
by the reparametrization path integral of the form

WðcircleÞ ¼ e
� ffiffi

�
p

Sdiv
2�

Z
DdifftðsÞe

� ffiffi
�

p
Sreg½t�
2� ; (21)

where

Sreg½t� ¼ 1

2�

Z
ds1ds2ðtðs1Þ � tðs2ÞÞ2

�
1

ðs1 � s2Þ4
�
reg
;

(22)

since Sdiv does not depend on the reparametrization as is

already pointed out. The constant
ffiffiffiffi
�

p
is prescribed by the

AdS/CFT correspondence to be

ffiffiffiffi
�

p ¼ R2
AdS

�0 ; (23)

but we shall simply consider it as a parameter of the ansatz
to be fixed by comparing with the Wilson loop in the
N ¼ 4 SYM perturbation theory.
Let us substitute for the reparametrizing function

tðsÞ ¼ sþ 1ffiffiffiffi
�4

p �ðsÞ: (24)

Because of Eq. (20) we then haveffiffiffiffi
�

p
Sreg ¼ 1

2�

Z
ds1ds2ð�ðs1Þ � �ðs2ÞÞ2

�
1

ðs1 � s2Þ4
�
reg
:

(25)
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While Eq. (25) is exactly equivalent to Eq. (22), we shall

restrict ourselves by an expansion in 1=
ffiffiffiffi
�4

p
to quadratic

order because the measure in the path integral (21) is the
one for integrating over subordinated functions with
dtðsÞ=ds � 0 and, as explicitly constructed in Ref. [12],
is highly nonlinear. Only to the quadratic order it can be
substituted by the ordinary Lebesgue measure.

Before evaluating the path integral (21), it is worth
noting that the integral (25) has three zero modes

�1ðsÞ ¼ 1; �2ðsÞ ¼ s; �3ðsÞ ¼ s2; (26)

which is a consequence of three SLð2;RÞ symmetries. For
the second and third ones, Eq. (20) is again important.

These three zero modes result in a preexponential factor

of ��3=4 in a full analogy with the string theory analysis
[15]. We thus obtain from the ansatz (21) at large �

WðcircleÞ / ��3=4e
ffiffiffi
�

p
; (27)

reproducing the result [16] for the N ¼ 4 SYM perturba-
tion theory, providing � is identified with the ’t Hooft
coupling. Since fermions and the RR field, which are
present in the IIB string representation of the N ¼ 4
SYM, will manifest themselves only to next orders, we
believe that the constant factor in Eq. (27) is also calculable
like that [17] in the string representation.

VI. REPARAMETRIZATION PATH INTEGRAL IN
N ¼ 4 SYM (CONTINUED)

In the derivation of Eq. (27), we have mostly paid
attention to the dependence of the result on � rather than
on 1="which plays the role of theUð1Þ boson mass [13,14]

m ¼
ffiffiffiffi
�

p
2�"

(28)

as is already mentioned. We shall now concentrate on the
dependence of WðcircleÞ on ", looking in detail at the
divergences regularized by ". We are thus interested in
the contributions from the reparametrization path integral
to the effective action, which are important at small ".

The calculation is pretty much similar to that of
Ref. [18] for a T � R rectangle in flat space, where the
Lüscher term was obtained from the path integral over
reparametrizations. In that case T=R was large, now R="
is large. The idea is to perform a mode expansion

�ðsÞ ¼ X
n

�nfnðsÞ (29)

using a complete set of orthogonal basis functions fnðsÞ (in
general complex ones obeying f�nðsÞ ¼ f	nðsÞ), and then
do the Gaussian integrals over �n’s. We can restrict our-
selves by those modes for which the integral (25) has
maximal ‘‘divergence’’ �ðR="Þ�. We then obtain

Y
n

�
R

"

���=2 ¼
�
R

"

�
�=2 ¼ eð�=2Þ lnðR="Þ; (30)

where the product goes over those modes for which the
integral (25) is�ðR="Þ�. We have used here the �-function
regularization of the product and taken into account
that fnðsÞ’s are complex functions, so n ranges from �1
to þ1.
What is the value of �? We have no reason to expect that

typical functions in the path integral over �ðsÞ are continu-
ous, as it is the case for usual path integrals with Wiener
measure. Moreover, for smooth functions we can substitute
ð�ðs1Þ � �ðs2ÞÞ2 ¼ ðs1 � s2Þ2ðd�ðs1Þ=ds1Þ2 and their
contribution to (25) vanishes in view of Eq. (20). This is
intimately linked to the above mentioned SLð2;RÞ sym-
metry of the integral. In general, � is determined by the
Hausdorff dimension of �ðsÞ. We assume that typical
trajectories in the reparametrization path integral have
Hausdorff dimension zero,2 as was advocated in
Ref. [19]. This corresponds to � ¼ 3. Some more argu-
ments in favor of this are given in Appendix A, where we
discuss in detail the Fourier expansion of �ðsÞ.

VII. SCHWINGER EFFECT IN N ¼ 4 SYM

In the gravity approximation, when fluctuations about
the minimal surface are not taken into account, the action
(2) reads [8]

ffiffiffiffi
�

p
Scl ¼

ffiffiffiffi
�

p
�

�
cosh	� 1� jeEj

m2
sinh2	

�
; (31)

where sinh	 ¼ R=" ¼ 2�mR=
ffiffiffiffi
�

p
. This formula is appli-

cable, strictly speaking, for jeEj & m2, when the minimi-
zation of Scl with respect to 	 gives

cosh	0 ¼ 2�m2

jeEj ffiffiffiffi
�

p : (32)

As was pointed out in Ref. [7], this equation has no

solution for 	0 when jeEj> 2�m2=
ffiffiffiffi
�

p
, which implies

the existence of a critical electric field.
We are now in a position to answer the question as to

how fluctuations about the minimal surface affect this very
interesting result. The calculation of their contribution to
the effective action has been already obtained in Eq. (30).
For the sum of Scl plus the contribution from fluctuations
about the minimal surface in the quadratic approximation
we have

ffiffiffiffi
�

p
Sclþ1 loop ¼

ffiffiffiffi
�

p
�

�
cosh	� 1� jeEj

m2
sinh2	

�

� �

2
lncosh	: (33)

2We remind that the Hausdorff dimension of the usual
Brownian trajectories is one half.

JAN AMBJØRN AND YURI MAKEENKO PHYSICAL REVIEW D 85, 061901(R) (2012)

RAPID COMMUNICATIONS

061901-4



The negative sign for the contribution from the fluctuations
in the second line of this formula is like for the Lüscher
term in string theory. We have mentioned already this
analogy, but would like to emphasize that it may have
far-reaching consequences.

The minimum of the effective action (33) is now
reached for

1

cosh	0

¼
ffiffiffiffi
�

p
�

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �jeEj

�m2

s �
; (34)

so the solution (32) is only slightly modified by the quan-
tum fluctuations. They simply shift the critical value of the
constant electric field to the value

jeEcj ¼ �m2

�
2ffiffiffiffi
�

p � �

�

�
; (35)

where � ¼ 3 as is argued. Thus the quantum fluctuations

about the minimal surface result in a 1=
ffiffiffiffi
�

p
correction at

large �, as it might be expected.
Our final comment is on how the one-loop effective

action (33) agrees with that resulting in superstring theory
from semiclassical fluctuations about the minimal surface.
The case of an open superstring inAdS5 � S5 with the ends
lying in the boundary circle was elaborated in
Refs. [17,20,21]. It is tempting to assume that � ¼ 3 is
just the number of the SLð2;RÞ zero modes, whose con-
tribution has gotten regularized by nonvanishing ". This
issue will be addressed elsewhere.
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APPENDIX A: MOMENTUM-SPACE ANALYSIS

We can handle Eq. (25) by introducing the one-
dimensional Fourier transformation

�ðpÞ ¼
Z

ds�ðsÞeips; (A1)

which is of the type of the mode expansion (29). Noting
that

DðpÞ�
Z
dseips

�
1

ðs1�s2Þ4
�
reg

¼��e�2jpjymin

2y3min

ð1þjpjyminÞð1þjpjyminþjpj2y2minÞ;

(A2)

we obtain

Sreg ¼ 1

�

Z dp

2�

dq

2�
�

�
q

2
þ p

�
�

�
q

2
� p

�

�
Z

dse�iqsðDð0Þ �DðpÞÞ: (A3)

The above-mentioned SLð2;RÞ symmetry of the right-hand
side is manifest because the Fourier-transformed zero
modes (26) are

�1ðpÞ ¼ 
ðpÞ; �2ðpÞ ¼ 
0ðpÞ; �3ðpÞ ¼ 
00ðpÞ:
(A4)

A subtlety with the expression on the right-hand side
of Eq. (A3) is that DðpÞ depends on s, as ymin does
according to Eq. (17) with t ¼ s. Otherwise it would
simply involve 
ðqÞ after integrating over s.
Nevertheless, we do not expect a cancellation on the
right-hand side of Eq. (A3) for generic values of p. We
therefore evaluate

Sreg �
�
R

"

�
3
; (A5)

which corresponds to � ¼ 3.
For constant ymin we can rigorously obtain this behavior

by evaluating the path integral over �ðpÞ, whose contribu-
tion to the effective action reads

Z
dp lnðDðpÞ �Dð0ÞÞ ¼ 3

2
lnymin þOð1Þ; (A6)

where the �-function regularization has been used again.
The use of the �-function regularization can be justified
by a conformal mapping of UHP onto a unit disk, whose
boundary is a circle parametrized by � ¼ 2 arctans.
Then the mode expansion goes in expðip�Þ with
integer p.
It is now clear that the same consideration as for constant

ymin is applicable for our case of Eq. (17) as well, because
the ðR="Þ3 factor factorizes in ðDðpÞ �Dð0ÞÞ on the right-
hand side of Eq. (A3).
Finally we mention that DðpÞ �Dð0Þ ¼ �jpj3=6þ

Oðy2minÞ as p 
 1=ymin. Such an emergence of jpj3
for AdS instead of jpj as in flat space [the latter
dependence stems from Eq. (14)] was first emphasized
in Ref. [22].
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