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We propose a scheme to investigate whether nonuniform motion degrades entanglement of a relativistic

quantum field that is localized both in space and in time. For a Dirichlet scalar field in a cavity in

Minkowski space, in small but freely adjustable acceleration of finite but arbitrarily long duration,

degradation of observable magnitude occurs for massless transverse quanta of optical wavelength at Earth

gravity acceleration and for kaon mass quanta already at microgravity acceleration. We outline a space-

based experiment for observing the effect and its gravitational counterpart.
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I. INTRODUCTION

A common way to implement quantum information
tasks involves storing information in cavity field modes.
How the motion of the cavities affects the stored informa-
tion is a question that could be of practical relevance in
space-based experiments [1].

In this paper we analyze the degradation of initially
maximal entanglement between scalar field modes in two
Dirichlet cavities in Minkowski space, one inertial and the
other undergoing motion that need not be stationary. Our
analysis combines, to our knowledge for the first time in
relativistic quantum information theory, the explicit con-
finement of a quantum field to a finite size cavity and a
freely adjustable time-dependence of the cavity’s accelera-
tion. This allows observers within the cavities to imple-
ment quantum information protocols in a way that is
localized both in space and in time [2]. In particular, our
system-environment split is manifestly causal and invokes
no horizons or other teleological notions that would as-
sume acceleration to persist into the asymptotic, post-
measurement future (cf. [3]). By the equivalence principle,
the analysis can be regarded as a model of gravity effects
on entanglement.

Our main results are:
(i) In generic motion, particle creation in the moving

cavity causes the entanglement to depend on time.
This is in stark contrast to the previously analyzed
relativistic situations (see [4,5] for a small sample)
where uniform acceleration is assumed to persist into
the asymptotic future and the entanglement between
inertial and accelerated observers is argued to be
preserved in time.

(ii) We give an analytic method for computing the en-
tanglement for trajectories that consist of inertial
and uniformly linearly accelerated segments in the
small acceleration approximation. An advantage
over the small amplitude approximations customary
with the dynamical Casimir effect [6] is that the

segment durations and the travelled distances are
arbitrary. The entanglement remains constant within
each segment, but we find that it does depend on the
changes in the acceleration and on the time intervals
between these changes. We present explicit results
for three sample scenarios for a massless field in
(1þ 1) dimensions, finding, in particular, that in
this approximation any degradation caused by the
accelerated segments can be undone by fine-tuning
the durations of the intermediate inertial segments.

(iii) In (3þ 1) dimensions, the entanglement degrada-
tion has an observable magnitude for massless
transverse quanta of optical wavelength at Earth
gravity acceleration and for kaon mass quanta
already at microgravity acceleration. The effect
should hence be detectable in space-based experi-
ments, where it would, in particular, test whether
an equivalence principle between acceleration and
a gravitational field holds also in the context of
quantum information.

II. CAVITY PROTOTYPE CONFIGURATION

Let Alice and Rob (‘‘Relativistic Bob’’ [4]) be observers
in (1þ 1)-dimensional Minkowski spacetime, each carry-
ing a cavity that contains an uncharged scalar field of mass
� � 0 with Dirichlet boundary conditions. Alice and Rob
are initially inertial with vanishing relative velocity, and
each cavity has length � > 0. The field modes in each
cavity are discrete, indexed by the quantum number

n 2 f1; 2; . . .g and having the frequencies !n :¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ �2n2

p
=� where M :¼ �� (we set c ¼ ℏ ¼ 1).

Let Alice and Rob initially prepare their two-cavity
system in the maximally entangled Bell state j�i ¼ 1ffiffi

2
p �

ðj0iAj0iR þ j1kiAj1kiRÞ, where the subscripts A and R iden-
tify the cavity, j0i is the vacuum and j1ki is the one-particle
state with quantum number k. Experimentally, j�i might
be prepared by allowing a single atom to emit an excitation
of frequency !k over a flight through the two cavities [7],
and the assumption of a single k is experimentally
justified if � is so small that cavity’s frequency separation*Previously known as Fuentes-Guridi and Fuentes-Schuller.
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!nþ1 �!n is large compared with the frequency separa-
tions of the atom.

We then allow Rob to undergo arbitrary acceleration for
a finite interval of his proper time. After the acceleration
Rob’s cavity is again inertial and has proper length � in its
new rest frame. Figure 1 shows the prototype case where
Rob’s acceleration is uniform while it lasts.

Let Un, n ¼ 1; 2; . . . , denote Rob’s field modes that are
of positive frequency !n with respect to his proper time
before the acceleration. Let �Un, n ¼ 1; 2; . . . , similarly
denote Rob’s field modes that are of positive frequency
!n with respect to his proper time after the acceleration.
The two sets of modes are related by the Bogoliubov
transformation �Um ¼ P

nð�mnUn þ �mnU
�
nÞ, where the

star denotes complex conjugation and the coefficient ma-
trices � and � are determined by the motion of the cavity
during the acceleration [8]. Working in the Heisenberg
picture, the state j�i does not change in time, but for
late time observations the early time states j0iR and j1kiR
need to be expressed in terms of Rob’s late time vacuum
j�0iR and the late time excitations on it, by formulas that
involve the Bogoliubov coefficients [9]. In this sense, the
acceleration creates particles in Rob’s cavity.

We regard the late time system as tripartite between
Alice’s cavity, the (late time) frequency !k in Rob’s cavity
and the (late time) frequencies f!n j n � kg in Rob’s cav-
ity. As any excitations in the n � k frequencies are entirely
due to the acceleration, we regard these frequencies as the
environment. We ask: Has the entanglement between
Alice’s cavity and the frequency !k in Rob’s cavity been
degraded, from the maximal value it had before Rob’s
acceleration?

We quantify the entanglement by the negativity, the
widely used entanglement monotone defined by N ð�Þ :¼
�P

�I<0�I, where the reduced density matrix � is obtained

by tracing the full density matrix j�ih�j over Rob’s late
time frequencies f!n j n � kg and �I are the eigenvalues of
the partial transpose of �. N has the advantage of being

easy to compute in bipartite systems of arbitrary dimension
[10]. The closely related logarithmic negativity, EN :¼
lnð1þN Þ, is an upper bound on the distillable entangle-
ment ED and is operationally interpreted as the entangle-
ment cost EC under operations preserving the positivity of
partial transpose [11]. In this respect, the entanglement
quantification based on negativity nicely interpolates
between the two canonical (yet generically difficult to
compute) extremal entanglement measures ED and EC

[12]. A sample of recent entanglement analyses utilizing
negativity can be found in [13].
The situation covering all the scenarios below is when

� ¼ diagðz1; z2; . . .Þ þ h�ð1Þ þOðh2Þ and � ¼ h�ð1Þþ
Oðh2Þ, where h is a small parameter, the first-order coef-

ficient matrices �ð1Þ and �ð1Þ are off diagonal, and each zn
has unit modulus. We find that the first correction to �
occurs in order h2, the partial transpose is to this order an
8� 8matrix with exactly one negative eigenvalue, and the
order h2 formula for the negativity reads

N ¼ 1

2
� h2

X0

n

�
1

2
j�ð1Þ

nk j2 þ j�ð1Þ
nk j2

�
; (1)

where the prime on the sum means that the term n ¼ k is
omitted.

III. MASSLESS FIELD

We now specialize to a massless field. Let I, II and III
denote, respectively, the initial inertial region, the region of
acceleration and the final inertial region. As a first travel
scenario, let the acceleration in region II be uniform, in the
sense that Rob’s cavity is dragged to the right by the boost
Killing vector � :¼ x@t þ t@x as shown in Fig. 1. Let the
proper acceleration at the center of the cavity be h=�,
where the dimensionless positive parameter h must satisfy
h < 2 in order that the proper acceleration at the left end of
the cavity is finite. In region II, the field modes that are
positive frequency with respect to � are then a discrete set
Vn with n 2 f1; 2; . . .g and their frequencies with respect to
the proper time 	 at the center of the cavity are ~�n ¼
ð�hnÞ=½2�atanhðh=2Þ�.
The Bogoliubov transformation from fUng to fVng can be

computed by standard techniques [8] at the junction t ¼ 0.
The coefficient matrices, which we denote by �� and ��,
have small h expansions that begin

��nn¼1� 1

240
�2n2h2þOðh4Þ; (2a)

��mn¼
ffiffiffiffiffiffiffi
mn

p ð�1þð�1Þm�nÞ
�2ðm�nÞ3 hþOðh2Þ ðm�nÞ; (2b)

��mn¼
ffiffiffiffiffiffiffi
mn

p ð1�ð�1Þm�nÞ
�2ðmþnÞ3 hþOðh2Þ: (2c)

The Bogoliubov transformation from region I to region
III can now bewritten as the composition of three individual

η
_

Alice Rob

x

III

II

t

I

FIG. 1 (color online). Cavity trajectories in Minkowski space.
Alice’s cavity remains inertial. Rob’s cavity is inertial in region
I, accelerates in region II and is again inertial in region III. The
figure shows the prototype case where Rob’s acceleration is to
the right and uniform throughout region II, and �
 is the duration
of the acceleration in Rindler time atanhðt=xÞ.
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transformations. The first is with the coefficient matrices
(��, ��) from I to II. The second is with the coefficient
matrices ðdiagðp; p2; p3; . . .Þ; diagðp�1; p�2; p�3; . . .ÞÞ,
where p :¼ expði ~�1 �	Þ and �	 is the duration of the accel-
eration in 	: this undoes the phases that the modes Vn

develop over region II. The third is the inverse of the first,
from II to III, with the coefficient matrices ð��y;���TÞ.
Collecting, we find from (1) that the negativityN 1 is given
to order h2 by

N 1 ¼ 1

2
� h2

X1
r¼0

akrjp1þ2r � 1j2

¼ 1

2
� 2½Qðk; 1Þ �Qðk; pÞ�h2; (3)

where

Qðn; zÞ :¼ 4n2

�4
Re

�
Li6ðzÞ � 1

64
Li6ðz2Þ

�
þ 6n

�4

� X1
r¼½ðn=2Þ�

Reðz1þ2rÞ
�

1

ð1þ 2rÞ5 �
n

ð1þ 2rÞ6
�

(4)

and anr are the coefficients in the expansion Qðn; zÞ ¼P1
r¼0 anrReðz1þ2rÞ. Here Li6 is the polylogarithm [14], the

square brackets in the lower limit of the sum in (4) denote
the integer part, and anr are all strictly positive. The sum
term in (4) isOðn�3Þ asn ! 1, and numerics shows that the
sum term contribution to Qðn; zÞ is less than 1.1% already
for n ¼ 1 and less than 0.25% for n � 2.

N 1 (3) is periodic in �	 with period 2� ~��1
1 and attains

its unique minimum at half-period. A plot is shown in
Fig. 2. The reason for the periodicity is that the full time
evolution of the field in Rob’s cavity during the accelerated
segment is periodic with this period since the frequencies
~�n are integer multiples of the fundamental frequency ~�1.
N 1 is therefore periodic not just in the small h approxi-
mation of (3) but exactly for arbitrary h. More generally,
the same periodicity occurs for all cavity trajectories that
contain a uniformly accelerated segment. We note that the
period can be written as 2�ðh=2Þ�1atanhðh=2Þ: this is the
proper time elapsed at the center of the cavity between

sending and recapturing a light ray that bounces off each
wall once.
As a second travel scenario, suppose that Rob blasts off

as above, coasts inertially for proper time �	0 and then
performs a braking manoeuvre that is the reverse of the
initial acceleration, bringing him to rest (at, say, Alpha
Centauri). Composing the segments as above, we see that
the negativity N 2 is periodic in �	0 with period 2�. Noting
that for leftward acceleration (2) holds with negative h, we
find to order h2 the formula

N 2 ¼ 1

2
� h2

X1
r¼0

akrjp1þ2r � 1j2jðpp0Þ1þ2r � 1j2

¼ 1

2
� 2½2Qðk; 1Þ � 2Qðk; pÞ þQðk; p0Þ

� 2Qðk; pp0Þ þQðk; p2p0Þ�h2; (5)

where p0 :¼ expði� �	0=�Þ. In addition to displaying the
periodicities in �	 and �	0, (5) shows that the coefficient of
h2 vanishes iff p ¼ 1 or pp0 ¼ 1. This implies that to order
h2, any entanglement degradation caused by the acceler-
ated segments can be cancelled by fine-tuning the duration
of the coasting segment. A plot is shown in Fig. 3.
As a third scenario, suppose Rob travels to Alpha

Centauri as above, rests there for proper time �	00 and then
returns to Alice by reversing the outward manoeuvres.
Again composing the segments, we see that the negativity
N 3 is periodic in �	00 with period 2�, and to order h2 we
find

N 3 ¼ 1

2
� h2

X1
r¼0

akrjp1þ2r � 1j2jðpp0Þ1þ2r � 1j2

� jðp2p0p00Þ1þ2r � 1j2; (6)

where p00 :¼ expði� �	00=�Þ, and the sum can be expressed
as a sum of 14Qs if desired [cf. the final expressions in (3)
and (5)]. The periodicites in �	, �	0 and �	00 are manifest in (6).
The coefficient of h2 vanishes iff p ¼ 1, pp0 ¼ 1 or
p2p0p00 ¼ 1, so that to order h2 any entanglement degra-
dation caused by the accelerated segments can be cancelled

FIG. 2. The plot shows ð12 �N 1Þh�2 with k ¼ 1 as a function
of u :¼ ~�1 �	 over the full period 0 � u � 2�.

FIG. 3 (color online). The plot shows ð12 �N 2Þh�2 with
k ¼ 1 as a function of u :¼ ~�1 �	 and v :¼ � �	0=� over the full
periods 0 � u � 2� and 0 � v � 2�. Note the zeroes at u � 0
mod 2� and at uþ v � 0 mod 2�.
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by fine-tuning the duration of either of the independent
inertial segments. Selected plots are shown in Fig. 4.

Four comments are in order. First, should one wish to
consider noninertial initial or final states for Rob, our small
h analysis is applicable whenever the assumptions leading
to formula (1) still hold. For example, in a kickstart

scenario that contains just regions I and II of Fig. 1, so
that Rob’s final state is uniformly accelerating, we find
N kick ¼ 1

2 �Qðk; 1Þh2.
Second, the validity of our perturbative treatment re-

quires the negativity to remain close to its initial value 1
2 ,

which in our scenarios happens when kh 	 1. As the
expansions (2) are not uniform in the indices, the treatment
could potentially have missed even in this regime effects
due to very high energy modes. However, we have verified
that when the h2 terms are included in the expansions (2),
these expansions satisfy the Bogoliubov identities [8] per-
turbatively to order h2 and the products of the order h
matrices in the identities are unconditionally convergent.
This gives confidence in our order h2 negativity formulas,
whose infinite sums come from similar products of order h
matrices.
Third, the matrices (2) can be self-consistently truncated

to the lowest 2� 2 block provided the rows and columns
are renormalized by suitable factors of the form 1þOðh2Þ
to preserve the Bogoliubov identities to order h2. Taking
Rob’s initial excitation to be in the lower frequency, we
find that all the above negativity results hold with the
replacement Qð1; zÞ ! a10ReðzÞ þ 1

2a11Reðz3Þ, and the er-
ror in this replacement is less than 0.7%. The high fre-
quency effects on the entanglement are hence very strongly
suppressed.
Fourth, the analysis can be adapted to a fermionic field

[15] and to scenarios where mode entanglement is gener-
ated from an initially unentangled state [16].

IV. MASSIVE FIELD

For a massive field the frequencies are not uniformly
spaced and the negativity is no longer periodic in the
durations of the inertial and uniformly accelerated seg-
ments. The massive counterparts of the expansions (2)
can be found using uniform asymptotic expansions of
modified Bessel functions [14,17], with the result

��nn ¼ 1�
�
�2n2

240
þ M2

120
þM2ðM2 � 5Þ

240�2n2
þM2ðM2 � 24Þ

96�4n4

�
h2 þOðh4Þ; ��nn ¼ Oðh2Þ; (7a)

��mn þ ��mn ¼ 2mnð�1þ ð�1Þm�nÞ½�2ðn2 þ 3m2Þ þ 4M2�ðM2 þ �2n2Þ1=4
�4ðm2 � n2Þ3ðM2 þ �2m2Þ1=4 hþOðh2Þ ðm � nÞ; (7b)

��mn � ��mn ¼ 2mnð�1þ ð�1Þm�nÞ½�2ðm2 þ 3n2Þ þ 4M2�ðM2 þ �2m2Þ1=4
�4ðm2 � n2Þ3ðM2 þ �2n2Þ1=4 hþOðh2Þ ðm � nÞ; (7c)

and we have again verified that the Bogoliubov identities are satisfied perturbatively to order h2. The perturbative treatment
is now valid provided h 	 1 and hM2 & 100, allowing the possibility thatM may be large. When k 	 M, a qualitatively
new feature is that the order h contribution in �� is proportional toM2, resulting in an overall enhancement factorM4 in the
negativity. In the travel scenario with one accelerated segment, the negativity takes in this limit the form

FIG. 4 (color online). The plots show ð12 �N 3Þh�2 with k ¼
1 as a function of u :¼ ~�1 �	 and v :¼ � �	0=� for 0 � u � 2�
and 0 � v � 2� when (from top to bottom) �	00 ¼ 0, 2�=3 and
4�=3.
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N 1¼1

2
�h2M4�256k2

�8

X00

n

n2

ðk2�n2Þ6

�
�
1�cos½ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þ�2k2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þ�2n2

p
Þð �	=�Þ�

�
;

(8)

where the double prime means that the sum is over positive
nwith n � kþ 1mod 2.N 1 (8) is approximately periodic
in �	 with period 4M�=�, but it contains also significant
higher frequency components. Plots are shown in Fig. 5.

V. DISCUSSION: (3þ 1) DIMENSIONS

The above (1þ 1)-dimensional entanglement degrada-
tion analysis extends immediately to linear acceleration in
(3þ 1)-dimensional Minkowski space, where the trans-
verse momentum merely contributes to the effective
(1þ 1)-dimensional mass. For a massless field in a cavity
of length � ¼ 10 m and acceleration 10 ms�2, an effect of

observable magnitude can be achieved by trapping quanta
of optical wavelengths provided the momentum is highly
transverse so that k 	 M 
 108. Were it possible to trap
and stabilise massive quanta of kaon mass � ¼ 10�27 kg
in a cavity of length � ¼ 10 cm, the effect would become
observable already at the extreme microgravity accelera-
tion of 10�10 ms�2.
These estimates suggest that experimental verification

of the effect is feasible, but they also suggest that accel-
erations of gravitational origin should be properly ac-
counted for, both in the theoretical analysis and in the
experimental setup. On the theoretical side, we anticipate
that the core properties of our analysis extend to nonlinear
acceleration and to weakly curved spacetime. To achieve
experimental control, especially on accelerations on gravi-
tational origin, the experiment may need to be performed
by entangling cavities in spaceships. An experiment within
a single spaceship could test the relative acceleration effect
analyzed in this paper. An experiment using cavities in
two and possibly widely separated spaceships would test
whether an equivalence principle between acceleration and
a gravitational field holds also in the context of quantum
information. An experimental confirmation that gravity
degrades entanglement would indeed provide a novel ad-
dition to the currently scarce experimental evidence on
quantum phenomena involving gravity [18].
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