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We investigate noninertial and gravitational effects on quantum states in electromagnetic fields and

present the analytic solution for energy eigenstates for the Schrödinger equation including noninertial,

gravitational, and electromagnetic effects. We find that in addition to the Landau quantization the rotation

of spacetime itself leads to the additional quantization, and that the energy levels for an electron are

different from those for a proton at the level of gravitational corrections.
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I. INTRODUCTION

In many quantum systems, gravitational interaction is
usually neglected because of the weakness of the interac-
tion. Hence, gravitational effects on quantum systems re-
main to be fully elucidated. At present, such circumstance
may be an obstacle to understanding the interplay between
the quantum theory and the gravitational theory. As
for verifications of gravitational effects on quantum sys-
tems, several experiments have been conducted. Colella,
Overhauser, and Werner [1] experimentally showed for the
first time a physical phenomenon involving both the Plank
constant ℏ and the gravitational constant G by using a
neutron interferometer elegantly. Since then, ingenious
experiments using neutrons [2–4] or atoms [5] have been
conducted to reveal gravitational or noninertial effects on
quantum systems.

On the other hand, electromagnetic fields are ubiquitous
in the universe. Around magnetized compact objects such
as magnetized neutron stars and magnetors, the couplings
between gravitational effects, quantum effects, and elec-
tromagnetic effects will come into play. Actually, signa-
tures of Landau quantization in x-ray cyclotron absorption
lines were observed on a neutron star surface [6] where the
gravitational effect is much stronger than that on the Earth.
While noninertial and gravitational effects on quantum
systems in unmagnetized circumstances have been well
studied theoretically [7–12], there are only a few reports
[13–17] about those effects in magnetized circumstances in
the literature.

In this paper, we investigate noninertial and gravitational
effects on quantum systems in electromagnetic fields by
solving the Schrödinger equation seriously for nonrelativ-
istic magnetized matter in slowly rotating Kerr spacetime.
We find the analytic solution for the quantum states of a
charged particle including noninertial, gravitational, and
electromagnetic effects for the first time in which we

neglect the effect of the intrinsic spin of a particle
[10,12,17].

II. SPACETIME METRIC

First, we discuss the metric around a rotating star. We
assume that the rotational axis is aligned with the z axis. In
this paper, we explicitly use the gravitational constant G
and the speed of light c for later conveniences. The space-
time metric is approximated by the slow rotation limit of
the Kerr metric

ds2 ¼
�
1� 2M�

r

�
c2dt2 þ 4M�a

r
sin2�cdtd�

� dr2

1� 2M�=r
� r2ðd�2 þ sin2�d�2Þ; (1)

whereM� ¼ GM=c2,M is the mass of the star, and a is the
Kerr parameter, which is considered to be small throughout
this paper. After the coordinate transformation ðx; y; zÞ ¼
ð� sin� cos�; � sin� sin�; � cos�Þ, where � ¼ ðr�M� þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 2M�r

p Þ=2, we derive

ds2 ¼ F 2G�2c2dt2 þ 4M�a
�3

G�2ðxdy� ydxÞcdt

� G4ðdx2 þ dy2 þ dz2Þ; (2)

where F � 1�M�=ð2�Þ and G � 1þM�=ð2�Þ.
Furthermore, we consider the coordinate transformation
to the rotating frame on the stellar surface, i.e., ðx;y;zÞ¼
ðx0cos�t�y0 sin�t; x0 sin�tþy0cos�t; z0Þ, where � is
the angular velocity of the rotating star. Dropping the
prime after the transformation, we obtain

ds2 ¼
�
F 2G�2c2 þ 4M�ca

�3
G�2�ðx2 þ y2Þ

�G4�2ðx2 þ y2Þ
�
dt2 þ 2

�
2M�ca
�3

G�2 �G4�

�

� ðxdy� ydxÞdt� G4ðdx2 þ dy2 þ dz2Þ: (3)
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Equation (3) provides the spacetime metric, which is de-
scribed by an observer on the surface of a rotating star.

III. THE SCHRÖDINGER EQUATION WITH
GENERAL RELATIVISTIC CORRECTIONS

Let us obtain the Schrödinger equation with general
relativistic corrections from the Klein-Gordon equation
(see also Ref. ). Our approach is validated only when we
neglect the intrinsic spin. The Klein-Gordon equation for a
massive scalar field � in the presence of an electromag-
netic field is given by [13,14,16]

�
g��

�
r� � iq

ℏ
A�

��
r� � iq

ℏ
A�

�
þm2c2

ℏ2

�
� ¼ 0; (4)

where m is the mass of the field �, q is the electric charge,
g�� is the metric, and r� denotes the covariant derivative.

Now we focus on the polar region of the rotating star (see
Fig. 1). The magnetic field is approximated by a uniform
magnetic field in the polar region. Here we assume that
the magnetic-field lines are aligned with the rotational
axis. This special configuration enables us to obtain the
analytic solution for the field. Thus, we take the electro-
magnetic 4-potential as A� ¼ ð0;�By=2; Bx=2; 0Þ. To de-

rive the Schrödinger equation, we expand the field � as
�ðt; x; y; zÞ ¼ c ðt; x; y; zÞ exp½�iðmc2=ℏÞt�. From Eq. (4),
up to Oðc�1Þ, we obtain

iℏ
@

@t
c ¼

�
� ℏ2

2m
r2 �GMm

�
�

�
qB

2m
þ$ð�Þ

�
Lz

þ
�
q2B2

8m
þ qB

2
$ð�Þ

�
ðx2 þ y2Þ

�
c ; (5)

where r2 � @2x þ @2y þ @2z , Lz � �iℏðx@y � y@xÞ, and

$ð�Þ � �� 2GMa=ðc�3Þ. To take the origin of the z
axis at the surface, we transform z as z ! Rþ z, where R
is the radius of the star. Here we have x; y; z � R for the
polar region and derive � ’ Rð1þ zR�1Þ. For energy ei-
genstates, we obtain

Ec ¼
�
� ℏ2

2m
r2 þmUþmgz�

�
qB

2m
þ$ðRÞ

�
Lz

þ
�
q2B2

8m
þ qB

2
$ðRÞ

�
ðx2 þ y2Þ

�
c ; (6)

where E is the energy, U � �GM=R is the gravitational
potential, and g � GM=R2 is the gravitational acceleration.
Here we have neglected the term proportional to az=R4 in
$. Equation (6) governs quantum states on the surface of a
rotating star.

IV. QUANTUM STATES ON THE SURFACE
OF A ROTATING STAR

Here, we discuss quantum states on the stellar surface.
To solve Eq. (6) for c , we assume the separation of
variables as c ðx; y; zÞ ¼ Fðx; yÞGðzÞ, where functions F
and G are introduced. From Eq. (6), we can derive the
differential equation for F and that for G in the cylindrical
coordinates ðr; �; zÞ
ðE�mU� KÞFðr; �Þ

¼
�
� ℏ2

2m

�
@2r þ 1

r
@r

�
þ p̂2

�

2mr2
�

�
qB

2m
þ$ðRÞ

�
p̂�

þ
�
q2B2

8m
þ qB

2
$ðRÞ

�
r2
�
Fðr; �Þ; (7)

KGðzÞ ¼
�
� ℏ2

2m

d2

dz2
þmgz

�
GðzÞ; (8)

where p̂� � �iℏ@� and K is a constant introduced by the
method of separation of variables. When we consider a
neutron star, we should recall that the electron capture
process is dominant inside a neutron star. When we take
account of the potential inside a neutron star, we should
replace the latter Eq. (8) with the equation

KGðzÞ ¼
�
� ℏ2

2m

@2

@z2
þ VeffðzÞ

�
GðzÞ; (9)

where the effective potential VeffðzÞ is assumed to be

VeffðzÞ ¼
�
mgz ðz > 0Þ
1 ðz � 0Þ : (10)

Here the form of Veff for z � 0 may be somewhat ideal.
(See Sec. V, Discussion & Conclusion, for anticipation of
more realistic cases.) Thus, we can find quantum states on
the neutron star by solving Eqs. (7) and (9).
First, we discuss Eq. (9) for the wave function in the

z-direction. This equation was already investigated in
[8,18]. The solution of Eq. (9) is given by the Airy function

GðzÞ ¼ Ai

��
2m2g

ℏ2

�ð1=3Þ�
z� K

mg

��
: (11)

B

ω

FIG. 1 (color online). Illustration of the polar region of a
rotating star. We assume that the magnetic axis is aligned with
the rotational axis.
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Here K is quantized due to the boundary condition at
z ¼ 0, i.e., Gð0Þ ¼ 0, as Kn ¼ ℏ!?ðmÞ�n, where n ¼
0; 1; 2; � � � , !?ðmÞ � ðmg2=ð2ℏÞÞ1=3, and �n denotes the
zero-points of the Airy function, i.e., Aið��nÞ ¼ 0.
Therefore, the wave function in the z-direction is given
by Eq. (11) with quantized energy K ¼ Kn.

Next, we discuss Eq. (7) in the xy-plane. Let us take
eigenstates for p̂�, i.e., Fðr; �Þ ¼ exp½iðp�=ℏÞ��fðrÞ,
where f is a function of r only. From Eq. (7), we derive�

d2

dr2
þ 1

r

d

dr
� �2r2 � p2

�

ℏ2r2
þ E

�
f ¼ 0; (12)

where

� ¼
�
q2B2

4ℏ2
þmqB

ℏ2
$ðRÞ

�ð1=2Þ
; (13)

E ¼ 2m

ℏ2
ðE�mU� KnÞ þ

�
qB

ℏ2
þ 2m

ℏ2
$ðRÞ

�
p�: (14)

Furthermore, we assume fðrÞ ¼ r‘e�ð�=2Þr2 ~fðrÞ, where ‘ is
defined as

‘ ¼ 	p�

ℏ
for q ¼ 	e; (15)

where e > 0 is the elementary charge. When we adopt the
variable x ¼ �r2, we derive�

x
d2

dx2
þ fð‘þ 1Þ � xg d

dx
þ

�
E
4�

� ‘þ 1

2

��
~fðxÞ ¼ 0:

(16)

This equation is equivalent to the confluent hypergeometric
equation xy00 þ ð�� xÞy0 � 	y ¼ 0. Hence, the solutions
of Eq. (16) are given by the confluent hypergeometric
functions in the form

y ¼ 1F1ð	; �; xÞ ¼ 1þ 	

�

x

1!
þ 	ð	þ 1Þ

�ð�þ 1Þ
x2

2!
þ . . . :

(17)

We now discuss the integrability condition of the wave
function F. The integral of F�F is calculated asZ 2


0
d�

Z 1

0
rdrF�F ¼ 


�‘þ1

Z 1

0
dxx‘e�x½~fðxÞ�2; (18)

where F� denotes the complex conjugate of F. Thus, when
the series in Eq. (17) ends at a finite order, the integral of
Eq. (18) becomes finite. Therefore, to make the wave
function integrable, the constant 	 in Eq. (17) must be
zero or negative integers, i.e., 	 ¼ �n0, where n0 ¼
0; 1; 2; � � � . In the same way, from Eq. (16) we obtain the
condition

E
4�

� ‘þ 1

2
¼ n0: (19)

In this case, we can find integrable wave functions. When
the condition Eq. (19) is satisfied, the solution of Eq. (16) is

given by the associated Laguerre polynomials ~fðxÞ ¼
L‘
n0 ðxÞ. Thus, we obtain

Fðr; �Þ ¼ eiðp��=ℏÞr‘e�ð�=2Þr2L‘
n0 ð�r2Þ: (20)

For q ¼ 	e, Eq. (19) is approximately calculated as

E�mU� Kn ’ ℏ
�
eB

m
	 2$ðRÞ

��
n0 þ 1

2

�
: (21)

Equations (20) and (21) describe the Landau quantization
with general relativistic corrections in the xy-plane.
Consequently, we obtain the wave function on the polar

region

c ¼ Ar‘e�ð�=2Þr2L‘
n0 ð�r2ÞAi

��
2m2g

ℏ2

�ð1=3Þ
z� �n

�
;

(22)

where A is a normalization factor, and ‘ is given by
Eq. (15) and must be zero or positive. The energy eigen-
values for q ¼ 	e are given by

Enn0 ’ mUþ ℏ!?ðmÞ�n þ ℏ
�
eB

m
	 2$ðRÞ

��
n0 þ 1

2

�
;

(23)

where the positive sign corresponds to the case for a
proton, and the negative sign corresponds to the case for
an electron. Equations (22) and (23) provide the quantum
states of the field c on the surface of a rotating star.

V. DISCUSSION & CONCLUSION

We discuss physical consequences of the quantized
states with the general relativistic corrections. The energy
states in Eq. (23) are characterized by two integers n and
n0. In Eq. (23), the first term is the gravitational potential
and merely shifts the zero-point energy of the system. The
second term denotes the energy levels in the vertical di-
rection. The vertical energy levels depend on the mass m
only, not on the magnetic field B. Thus, the energy levels
for a proton are different from those for an electron (see
also Table I). The third term denotes the Landau quantiza-
tion with the general relativistic correction. The sign in
front of the correction 2$ depends on the charge of a
particle. Thus, the energy step for a proton is different
from that for an electron. Therefore, in principle, we could
determine which particle comes into play on the surface
from the fine structure of the eigenstates due to the gravi-
tational corrections.
It is worth noting that the Landau quantization caused

by $ survive in the limit of B ! 0. Therefore, the rota-
tion of the spacetime cause the Landau quantization
without magnetic fields. This effect might be called
spacetime rotation-induced (or geometric) Landau quan-
tization (see also [19,20]).
Next, we discuss observability of the quantum states

discussed above for neutron stars. Here it should be noted
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that we actually observe the energy that is subject to the
gravitational redshift, i.e., Eobs ¼ �redE, where �red is the
factor for gravitational redshift. For the vertical quantum
levels, we can obtain the order estimates �red!?ðmeÞ 

109½Hz�, �red!?ðmpÞ 
 1010½Hz�, whereme is the mass for

an electron and mp is the mass for a proton. The first few

eigen frequencies for the vertical energy levels are shown
in Table I. In practice, the potential well Veff would
broaden in the direction of z < 0 and the intervals of the
energy levels would narrow. When the magnetic field
strength varies from 108½G� to 1015½G�, we derive the order
estimates for cyclotron frequencies, �redeB=me 
 1015 �
1022½Hz�, �redeB=mp 
 1012 � 1019½Hz�. For millisecond

pulsars, we derive the order estimates of the rotational
terms in $ as 2�red�
 103½Hz� and �red4GMa=ðcR3Þ ¼
�red4GM=ðc2RÞ � J=ðMR2Þ 
 102½Hz�. Thus, the cyclo-
tron frequency is the most energetic for neutron stars.
The vertical energy step is the second most energetic,
and the general relativistic correction to the Landau energy
is the lowest. Hence, we can determine the quantity B=m
from the most energetic absorption lines that are almost
given by the cyclotron frequency. While we can determine

the massm, in principle, from the gravitational corrections.
Once we could detect the gravitational corrections from
observations, we could determine the magnetic field
strength itself. However, it would be difficult to detect
the gravitational corrections at present. In general, the
absorption lines are broaden by thermal, quantum, and
environmental effects [21]. The probability of absorption
in the vicinity of an absorption line would be proportional
to the factor expð�j�Ej=ðkBTÞÞ, where �E is the energy
difference from the absorption line, kB is the Boltzmann
constant, and T is the temperature of the environment.
Since the surface of a neutron star typically has a tempera-
ture of T 
 106½K� [22], the absorption line is broaden by
the frequency width �!T 
 kBT=ℏ
 1017½Hz�. Thus, the
absorption lines below �!T would be blurred. Although
we could easily detect the cyclotron frequency above�!T ,
it would be difficult to detect the gravitational corrections
owing to the thermal turbulence. Nonetheless, the infor-
mation of the gravitational corrections is certainly hidden
in the features of broaden absorption curves in spectra; this
would be investigated in future work.
Although we have focused our attention on a neutron

star, the spacetime rotation-induced Landau quantization is
universal phenomena. Thus, the effect may be detectable
with physical systems of ultralow temperature, such as
superconductor in laboratories on the Earth [23] rather
than on a neutron star; such an experimental verification
is awaited.
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