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We present high-accuracy calculations of the density of states using multicanonical methods for lattice

gauge theory with a compact gauge group Uð1Þ on 44, 64, and 84 lattices. We show that the results are

consistent with weak and strong coupling expansions. We present methods based on Chebyshev

interpolations and Cauchy theorem to find the (Fisher’s) zeros of the partition function in the complex

� ¼ 1=g2 plane. The results are consistent with reweighting methods whenever the latter are accurate. We

discuss the volume dependence of the imaginary part of the Fisher’s zeros, the width and depth of the

plaquette distribution at the value of � where the two peaks have equal height. We discuss strategies to

discriminate between first- and second-order transitions and explore them with data at larger volume but

lower statistics. Higher statistics and even larger lattices are necessary to draw strong conclusions

regarding the order of the transition.
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I. INTRODUCTION

The ongoing effort at the Large Hadron Collider has
triggered a renewed interest in the phase structure of lattice
gauge theory models that may possibly provide an alter-
native to the Higgs mechanism of the electroweak symme-
try breaking. In particular, the locations of the conformal
windows for various families of models have stirred in-
tense discussions. Different numerical and analytical tech-
niques have been applied to QCD-like models with large
numbers of fermion flavors [1–6] or with fermions in
higher representations [7–12]. An interesting attempt to
classify possible phases of such models based on an effec-
tive potential for the Polyakov loop was made in [13]. See
also [14–16] for recent reviews of results and expectations.
Another direction where massive vector bosons emerge
without introducing new fermion species but in a model
with modified gauge transformations has been pursued in
[17,18].

In this context, it is important to understand the critical
behavior of lattice models from as many consistent points
of view as possible. Recently, it was proposed to consider
complex extensions [19–21] of the framework proposed by
Tomboulis [22] to explain confinement from the point of
view of the renormalization group approach. A general
feature that we observed is that the Fisher’s zeros, the zeros
of the partition function in the complex � plane [23], play
an important role in the determination of the global prop-
erties of the complex renormalization group flows. In the

case where a phase transition is present, the scaling prop-
erties of the zeros [24–29] allow us to distinguish between
a first- and second-order phase transition.
Despite its apparent simplicity, the case of the four-

dimensional pure gauge compact Uð1Þ model with a
Wilson action is not completely free of controversy. The
presence of a double peak for the plaquette distributions
near � ’ 1 suggests a first-order phase transition.
However, if spherical lattices are considered, the double
peak disappears [25,26]. In addition, finite size scaling, at
relatively small volumes seems consistent with a second-
order phase transition with an exponent � ’ 0:35–0:40. On
the other hand, a possible scenario [30] is that as the
volume increases, � slowly ‘‘rolls’’ towards the first-order
value � ¼ 1=D ¼ 0:25. In the more recent literature [31–
34], the idea that the transition is first order is favored.
Using finite size scaling, the authors of Ref. [33] estimated
the critical value �1 ¼ 1:011 131 0ð62Þ.
In this article, we introduce new methods to locate the

Fisher’s zeros of the four-dimensional pure gauge compact
Uð1Þ model with a Wilson action. We rely on high-
accuracy determinations of the density of states, a quantity
defined in Sec. II, by multicanonical methods [35–38]
presented in Sec. III. The lattice sizes considered are 44,
64, and 84. The consistency of the results with weak and
strong coupling expansion is checked in Sec. IV. The
density of states has a convex region which implies a
double-peak plaquette distribution near � ’ 1. The volume
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dependence of the double-peak distribution is discussed
empirically in Sec. V. In Sec. VI, Chebyshev interpolations
of the logarithm of the density of states and Cauchy
theorem are used to find the Fisher’s zeros in the complex
� ¼ 1=g2 plane. For the lowest zeros, it is possible to
check consistency with reweighting methods within error
bars estimated from the statistical fluctuations of 20 inde-
pendent multicanonical streams.

In the following, we use very high statistics on rather
small lattices, because this allows us to explore new analy-
sis methods and to test whether they converge faster toward
the infinite volume limit. We plan to use similar methods
for SUð2Þwhere the imaginary parts of the lowest zeros are
larger and reweighting methods become less reliable when
the volume increases [39].

Using high statistics at small volumes (44, 64, and 84),
we show that the imaginary part of the lowest zero appears
to decrease like L�3:08, when the linear size L increases
from 4 to 8. This could be interpreted as signaling a
second-order phase transition with � ¼ 0:325, a value
close to the estimates of Refs. [25,26]. However, using
data at larger volumes but with lower statistics, we found
indications for the ‘‘rolling’’ scenario of [30]. This is
discussed in Sec. VII where we also consider volume
effects on the width and depth of the plaquette distribution
at the value of � where the two peaks have equal height.
Simulations required to provide a clear-cut distinction
between first- and second-order transitions are discussed
in the Conclusions.

II. DENSITY OF STATES IN ABELIAN
GAUGE THEORY

In the following, we consider the pure gauge partition
function

Z ¼ Y
l

Z d�l
2�

e��S; (1)

with � � 1=g2 and the Wilson action

S ¼ X
p

ð1� cos�pÞ: (2)

We useD-dimensional symmetric cubic lattices with LD

sites and periodic boundary conditions. The number of
plaquettes is denoted N p � LDDðD� 1Þ=2. We define

the average action:

P � hS=N pi ¼ �dðlnZ=N pÞ=d�: (3)

Inserting 1 as the integral of the delta function over S in
Z, we can write

Z ¼
Z 2N p

0
dSnðSÞe��S; (4)

with the density of states defined as

nðSÞ ¼ Y
l

Z
dUl�

�
S�X

p

ð1� cos�pÞ
�
: (5)

Furthermore, we introduce the notation s for S=N p and

we define the entropy density fðsÞ via the equation
nðSÞ ¼ eN pfðS=N pÞ: (6)

A more general discussion for spin models [40] or gauge
models [41] can be found in the literature where the density
of states is sometimes called the spectral density. From its
definition, it is clear that nðSÞ is positive. Assuming that the
measure for the links is normalized to 1, the partition
function at � ¼ 0 is 1. It can be shown [42] that, if the
lattice has even number of sites in each direction, and if
the gauge group contains �1, then � cos�p goes into

�� cos�p by a change of variables �l ! �l þ � on a set

of links such that for any plaquette, exactly one link of the
set belongs to that plaquette. Using

Zð��Þ ¼ e2�N pZð�Þ; (7)

we find the duality

nð2N p � SÞ ¼ nðSÞ: (8)

This implies the reflection symmetry

fðsÞ ¼ fð2� sÞ: (9)

Numerical values of fðsÞ have been obtained for discrete
values of s between 0 and 1. When s is close to 0 or 2, fðsÞ
diverges logarithmically and we can only reach values of s
that are not too close to 0 or 2. Consequently, the results
cannot be used if j�j is too large. Using the symmetry
Eq. (9) and interpolation methods, a continuous function
can be obtained in an interval ½�; 2� ��, where � is an
appropriately small quantity.

III. CALCULATION OF THE DENSITY OF STATES

We performed Monte Carlo simulations in pure Uð1Þ
gauge theory using biased Metropolis-heatbath updates
[37]. To cover a large range of couplings � 2 ½0; 9�, we
used the multicanonical (MUCA) algorithm [35] with
Wang-Landau recursion [36] for the multicanonical
weights. The software we used is described in Ref. [38].
We generated large statistics on symmetric lattices with

volumes 44, 64, and 84. After the initial recursion, we
performed three MUCA runs on 44, and two runs on 64

and 84. The first MUCA run on 44 was regarded as explor-
atory and we did not include it in the final analysis. The
weights for each next run were refined from the previous
run. In total, we used 20 independent streams for each
lattice volume. In each stream, we ran Wang-Landau
recursion for the multicanonical weights before the pro-
duction, therefore the weights differ between the streams,
wijðSÞ, where S is the total action, i ¼ 1; . . . ; 20 denotes

different streams and j ¼ 1, 2 denotes MUCA runs.
The quality of a MUCA run is indicated by the number

of tunneling events (i.e., how often during a run the system
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travels from the lowest energy to the highest and back).
Also, to estimate how many statistically independent
events we generated, we measured the integrated autocor-
relation times. These data are summarized in Appendix A.
Our statistics consists of Nequi sweeps for equilibration and

Nrpt ¼ 64� Nequi sweeps for measurements, where

Nequi ¼ 106 for 44 and 64 lattices and 8� 105 for 84.

For the error analysis, we considered two MUCA runs in
each stream as independent measurements. Thus, on each
lattice we had 40 independent measurements in total. For
all quantities in the following, the error bars are estimated
from an uncorrelated average of these 40 measurements,
weighted with the number of tunneling events in each
corresponding run, since runs with more tunnelings sample
the density of states better. The average results for fðsÞ are
shown in Fig. 1.

To reweight an observable to the canonical ensemble, we
need to cancel the multicanonical weight wijðSÞ and

replace it with the Boltzmann factor expð��SÞ. For an
observable O of interest, for instance, plaquette, we
reweight the time series accumulated during a MUCA
run ij to a given coupling �:

hOiijð�Þ ¼
PNrpt

k¼1 O
k
ij expð��SkijÞ=wijðSkijÞPNrpt

k¼1 expð��SkijÞ=wijðSkijÞ
: (10)

The final average is then given as

hOið�Þ ¼
P

20
i¼1

P
2
j¼1 N

tunn
ij hOiijð�ÞP

20
i¼1

P
2
j¼1 N

tunn
ij

; (11)

where the number of tunnelings Ntunn
ij is given in

Appendix A.

IV. CONSISTENCY WITH EXISTING RESULTS
AND EXPANSIONS

A. Comparison with the average plaquette

As a check of consistency, we compared the average
plaquette at various �, as obtained directly from the runs,
Eq. (11), and calculated using the average density of states.
As shown in Fig. 2, there is a good agreement within the
estimated errors.

B. Series for fðsÞ
We compared the numerical results for fðsÞ with ana-

lytical results obtained using the weak and strong coupling
expansions. The general methodology has been discussed
for SUð2Þ in [43] and remains applicable here. The basic
ingredient is the saddle point equation at s0:

f0ðs0Þ ¼ �; (12)

which can be used to convert an expansion of f in powers
of s (or ðs� 1Þ2) into an expansion of s0 in powers of 1=�
(or �, respectively). The coefficients of f can then be
determined whenever the appropriate expansion of the
average plaquette is available. In order to take the finite
volume effects into account, we need to include at least the
lowest-order volume correction, namely,

P ¼ s0 þ ð1=2N pÞðf000ðs0Þ=ðf00ðs0ÞÞ2Þ þOð1=N 2
pÞ:
(13)

Using Eqs. (12) and (13) together with an existing expan-
sion of P including 1=N p effects up to a certain order, one

can determine the coefficients of f up to the corresponding
order.
It should also be noted that at finite volume, there is a finite

range of� for which f0 has a ‘‘Maxwellian kink’’ (discussed
in Sec. VII) and three solutions of Eq. (12) are available
rather than one. In this region, both expansions are expected
to fail. We now proceed to discuss them separately.

FIG. 1 (color online). fðsÞ on a 44 (top), 64 (middle), and 84

(bottom) lattices; the errors have been multiplied by N p; for

readability, arbitrary constants have been added to separate the
data sets and only one of every 40 points is displayed.

FIG. 2 (color online). Difference between the average pla-
quette calculated with the density of states and directly, for a
84 lattice.
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C. Strong coupling

Following Ref. [43], we define

gðyÞ � fð1þ yÞ � X
m¼0

g2my
2m: (14)

Using saddle point approximation and comparing, order by
order, with the expansion of the average plaquette from
the strong coupling expansion [44], we can determine the
expansion of gðyÞ. As in the case of SUð2Þ, there are
logarithmic singularities at y ¼ �1, which can be sub-
tracted by defining

hðyÞ � gðyÞ � A lnð1� y2Þ � X
m¼0

h2my
2m: (15)

The value of A comes from the weak coupling expansion
and will be discussed in the next subsection [see Eq. (20)].
The infinite volume results are summarized in Table I. The
entries make clear that as the order increases, the effect of
the logarithmic subtractions becomes smaller. This indi-
cates singularities closer to y ¼ 0 (s ¼ 1).

The improvement of the approximation with successive
order is shown in Fig. 3. The graph shows that for s * 0:5,
successive orders provide better approximations up to the
point where the numerical accuracy is reached. Such a
range corresponds to a convergent region � & 0:9 in the
� plane.

It should be noted that for the strong coupling expansion,
the finite volume effects are negligible for V ¼ 84. Indeed,
they are even hard to resolve for V ¼ 44. This can be traced
to the fact [43] that even for this volume, the dependence
on V would appear at order �8 from the contributions of
strong coupling graphs called torelons [45] that wrap
around the periodic volume in one direction. As trans-
lations in that direction do not generate new graphs, such
graphs have a suppression of order 1=L compared to
graphs with a trivial topology. Consequently, for order
less than 8, the finite volume effects can be estimated by
canceling the volume dependence in the two terms of the
right-hand side of Eq. (13). For instance, at lowest order,
we find that

g2 ¼ �1þ 1=ð8VÞ: (16)

Consequently, the difference �fðsÞ of fðsÞ for two differ-
ent volumes V1 and V2 near y ¼ 0 (s ¼ 1) is

�fðsÞ ’ ð1=8Þð1=V1 � 1=V2Þðs� 1Þ2: (17)

Even for V ¼ 44, this difference is smaller than the error
bars in the region s ’ 1. In order to reduce the noise, we
have averaged the data in bins of ten data points. The
results are displayed in Fig. 4 which shows that the data
and the analytical result in Eq. (17) are compatible.

D. Weak coupling

A similar approach can be followed in the weak coupling
limit. At small s, the logarithmic singularity dominates and
we assume that

fðsÞ ¼ A lnðsÞ þ X
m¼0

fms
m: (18)

The unknown coefficients can be determined from the
weak coupling expansion of the average plaquette

P ’ X
m¼1

bm�
�m: (19)

The volume-dependent coefficients bm have been calcu-
lated up to order 4 in Ref. [46]. The two lowest orders of
the expansion can be performed exactly and yield

A ¼ 1=4� 5=ð12VÞ; (20)

f1 ¼ ð1=8Þð1� 1=VÞ: (21)

The higher orders involve numerical loop calculations. The
results of the expansion as well as the volume corrections
for the 44 and 64 lattices are shown in Table II.

FIG. 3 (color online). Natural logarithm of the absolute value
of the difference between fðsÞ calculated on a 84 lattice and
successive approximations obtained from the strong coupling
expansion.

TABLE I. Uð1Þ strong coupling expansion coefficients a2m of
P (rescaled from Ref. [44]), and of fðsÞ defined in the text.

m a2m g2m h2m

1 � 1
2 �1 � 3

4

2 1
16 � 1

4 � 1
8

3 � 13
96

43
36

23
18

4 779
6144 � 19

192 � 7
192

5 � 11819
61440 � 7343

1800 � 7253
1800

6 2017373
847360

465331
25920

466411
25920

7 � 20224291
123863040 � 983357143

1693440 � 983296663
1693440

8 5775175013
12683575296 � 201757201579

46448640 � 201755750059
46448640
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The difference between numerical and analytical results
is shown in Fig. 5 for V ¼ 84. The graph makes it clear that
the quality of the approximation increases as three succes-
sive corrections to the leading logarithm are added. The
third correction is good enough to reproduce the data
within the numerical accuracy for s < 0:1. This order is
not sufficient to identify a ‘‘nonperturbative envelope’’
defined in Ref. [47] and observed for SUð2Þ in Ref. [43].

The difference between V ¼ 44 and V ¼ 84 is shown in
Fig. 6. Note that for the smallest volume (V ¼ 44), the
resolution in s used during the multicanonical simulation is
coarser than the 1000 bins used to represent fðsÞ.
Consequently, some small ‘‘staircase’’ structure appears
near 0 where fðsÞ changes rapidly. For this reason, we
have averaged fðsÞ over bins of size 10 and Fig. 6 shows
a good agreement with the analytical expansion that in-
cludes the logarithmic singularity and a linear term.
Higher-order corrections are significantly smaller than
the errors bars. There is an arbitrary constant in the expan-

sion of fðxÞ which cannot be determined by the saddle
point equation. For the numerical data, such a constant may
differ for two different volumes and needs to be subtracted.

V. VOLUME DEPENDENCE IN THE
CROSSOVER REGION

A. Empirical parametrization

The difference of fðsÞ for 44 and 84 resembles the
effective potential for the central Coulomb potential with
a leading singularity near s ¼ 0:35 and a 1=s behavior at
larger s. Using in addition a constant that has no particular
meaning as long as we do not normalize the density of
states and a 1=s2 correction, we performed a 4-parameter
fit with the 311 bins corresponding to 0:39< s < 0:7. The
numerical result is

FIG. 4 (color online). Difference between fðsÞ on 44 and 84

near s ¼ 1 (boxes). The circles are obtained by averaging over
bins of size 10. The solid line is Eq. (17). The part with s > 1 can
be obtained by symmetry and is not shown.

TABLE II. The weak coupling expansion for V ¼ 1, 44, and
64. The upper half is the list of the expansion coefficients of the
average plaquette P with respect to 1=� [46]. The lower half is
the corresponding list of expansion coefficients of fðxÞ.

V ¼ 1 V ¼ 64 V ¼ 44

b1
1
4

1295
5184

255
1024

b2
1
32

2171747375
208971104256

65025
2097152

b3 0.013 11 0.013 09 0.012 96

b4 0.007 52 0.007 49 0.007 39

A 1
4

3883
15552

763
3072

f1
1
8

1295
10368

255
2048

f2 0.073 63 0.073 59 0.073 14

f3 0.076 38 0.076 05 0.075 15

FIG. 5 (color online). Difference between fðsÞ calculated on a
84 lattice and successive approximations obtained from the weak
coupling expansion.

FIG. 6 (color online). Difference between fðsÞ on 44 and 84

near s ¼ 0 with average over bins of size 10. The solid line is the
expansion described in the text.

DENSITY OF STATES AND FISHER’s ZEROS IN . . . PHYSICAL REVIEW D 85, 056010 (2012)

056010-5



fðsÞ ¼ �0:001 120 63þ 4:826 41� 10�6=ð�0:35þ sÞ2
� 0:000 680 501=s2 þ 0:001 728 82=s: (22)

As shown in Fig. 7, it fits the data reasonably well.

B. Volume dependence of the double peak

The plaquette distributions for the volumes considered
here have a double-peak structure for � near 1. At finite
volume, it is easy to locate the value of �, denoted �S

hereafter, where the two peaks of fðsÞ � �Ss have equal
height. Other pseudocritical � have been defined in the
literature [30,48–50]. The accuracy of the determination of
�S depends on the smoothness of the distribution and the
size of the error bars. In Fig. 8, we show that fðsÞ � �s is
slightly tilted to the left for � ¼ 1:001 75 and to the right
for � ¼ 1:001 79. Given the smoothness of the distribu-
tion, we conclude that �S ¼ 1:001 77ð2Þ. With the same
graphs, we can also determine approximate values of the
two maxima s1 and s2. The numerical results for the three
volumes considered are provided in Table III.

The density of states can be used to calculate the pla-
quette probability distribution at �S. The results are shown
in Fig. 9 where the normalization has been chosen in such a
way that the integral under the curve is approximately
one. Figure 9 makes it clear that the dip between the
peaks deepens and the peak separation decreases as the
volume increases. This will be discussed in more detail in
Sec. VII.

VI. FISHER’S ZEROS

A. Approximate zeros from reweightings

Approximate values of Z at fixed � can be obtained by
using the Riemann sum approximations of Eq. (4):

Zð�Þ ’ �s
X
s

eN pðfðsÞ��sÞ: (23)

We can now study how the error �f on fðxÞ can affect our
estimates of Z. The relevant quantityN p�f is included in

Fig. 1. For the three volumes, N p�f is of the order of a

few percents and linearization is justified. Small scale
fluctuations of the same order are visible in the distribu-
tions of the independent streams.
As we are interested in locating Fisher’s zeros, it is clear

that the errors have a potentially important effect near an
approximate zero. The best we can do is to identify regions
where jZj is significantly larger than j�Zj so that we can
confidently say that there are no zeros in these regions. If
we use the linear estimate

�Zð�Þ ’ �s
X
s

N p�fðsÞeN pðfðsÞ��sÞ; (24)

we have the inequality

j�Zð�Þj< �s
X
s

N pj�fðsÞjeN pðfðsÞ�Re�sÞ; (25)

but in general the bound is not sharp because the sign of
�fðsÞ can vary rapidly. We have estimated j�Zj by taking
the difference between Z calculated with the averaged f
and Z calculated with the stream with the most tunnelings.
The results are shown in Fig. 10. A mesh of 0.000 25 in� is

FIG. 7 (color online). Difference between fðsÞ on 44 and 84

near s ¼ 0:5. For readibilty, we only show every 5 points (no
binning). The solid line is the fit given in Eq. (22).

FIG. 8 (color online). fðsÞ � �s for � ¼ 1:001 75, 100 177,
and 1.001 79 on a 64 lattice. The horizontal lines have been
drawn to emphasize small height asymmetries.

TABLE III. �S, s1, and s2 defined in the text for L ¼ 4, 6, and
8.

L �S s1 s2

4 0.9793(1) 0.370(5) 0.445(5)

6 1.001 77(2) 0.353(2) 0.411(2)

8 1.007 34(1) 0.349(1) 0.395(1)
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used which is larger than the typical fluctuations in f. The
light (toward yellow online) regions represent the areas
where we cannot exclude zeros. The dark (toward blue
online) regions represent the areas where zeros are very
unlikely. A small light region is an indication for the
existence of a zero while a broad light region indicates
that the errors dominate. The second possibility typically
appears at large imaginary � where due to rapid oscilla-
tions of the integrand, cancellations occur making the final
results more sensitive to the errors on fðsÞ. In view of this
remark, Fig. 10 suggests that reweighting methods allow to
estimate the locations of the two lowest zeros for L ¼ 4
and three lowest zeros for L ¼ 6.

We have also calculated ReZ and ImZ from Eq. (23)
using the average f. Their respective zeros are shown in
Fig. 11. The complex zeros appear at the intersections of
the two sets of curves defined by ReZ ¼ 0 and ImZ ¼ 0,
respectively. This happens in a way which is consistent
with Fig. 10. Error bars can be estimated by comparing the
intersections for the 20 streams. The results are given in
Tables IV and V.

B. Chebyshev interpolations

The original grids of the density of states are sometimes
not sufficient for precise numerical integrationswhich is how
we define our partition function. It is especially truewhen the
imaginary component of� is large and, as a consequence, the
partition function oscillatesmore frequently than the original
grids can resolve. It is convenient to apply the Chebyshev
interpolation which provides arbitrary integrating step sizes
for designed integral precision. For the Chebyshev interpo-
lation of numerical data, the determination of the coefficients
by the least squarefitmethod ismore efficient and robust than
by discrete or integration methods. In this paper, we will
primarily follow this approach.

A range of interest ½a; b� can be mapped to ½�1; 1� in
which we express the target function by

fðyÞ ¼ XNc

n¼0

cnTnðyÞ: (26)

We then minimize the distance of the function to a data set
or multiple data sets, which will uniquely determine the
coefficients cn of linear equations.
We shall keep in mind that, like other polynomial

approximations, Chebyshev interpolations may introduce
artifacts such as fake zeros. We want to make sure that
the true zeros are distinct from the fake ones. Special
attention should be paid to the range of approximation.
In practice, we often use a small range to emphasize the
numerical signal from a certain region. The average pla-
quette hxi is related to the coupling �, through hxi� ¼
�@ lnZð�Þ=@�=N p. This is not valid if hxi goes beyond
the range of the approximation (an ellipse in the complex
plane, see below). Reducing the range of interpolation may
introduce fake zeros with large Im� in the � complex
plane. However, the lowest zeros are usually not affected.
Care should also be paid on the orders of the Chebyshev
approximation. True zeros should be independent of the
order of polynomials. In the following, we always use

FIG. 9 (color online). Plaquette distribution for Uð1Þ at �S for
L ¼ 4, 6, and 8.

FIG. 10 (color online). lnj�Z=Zj for 44 and 64 lattices.
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various orders of Chebyshev interpolations and make sure
that the zeros are free of these artifacts.

C. Ellipse of convergence

The definition

TnðzÞ ¼ cosðn arccosðzÞÞ (27)

shows that the expansion in Chebyshev polynomials is a
Fourier expansion for the variable arccosðxÞ. If jcnþ1=cnj

from Eq. (26) reaches a limit C, then the expansion con-
verges for jTnðzÞj<C�n. To work on the complex plane,
the following relation is helpful: TnðzÞ ¼ ð!n þ!�nÞ=2,
when z is expressed as z ¼ ð!þ!�1Þ=2. The conver-
gence of a Chebyshev series is then analyzed through the
variable !. It can be shown [51] that the region of con-
vergence on the ! plane is a ring confined by a pair of
concentric circles and the region is mapped into an area
bounded by an ellipse on the z plane.
The continuation of the Chebyshev expansion to the

complex plane is limited by the ellipse. Fortunately, in
the case of Uð1Þ, the lowest complex zeros are typically
very close to the real axis and these zeros are well inside
the ellipse of convergence.

D. Locating zeros with the residue theorem

There is a general algorithm to find the zeros of an
analytic function by using Cauchy’s integral theorem
[52]. For simplicity, we will only consider the special
case when all the zeros are of order 1 which apparently
applies to our problem. Suppose that an analytic function
Zð�Þ has K zeros enclosed by a closed contour C, then

1

2�i

I
c
ðlnZÞ0�nd� ¼ XK

i¼1

ð�iÞn; n ¼ 0; 1; 2; . . . (28)

where �i are all the zeros in contour C. When n ¼ 0, the
summation on the right-hand side is just the number of
zeros.
The partition function we are considering is an analytic

function, since it is just a sum of analytic functions. We
scan the complex plane with rectangular contours which
enclose two or less zeros. We monitor the n ¼ 0 integral
which should give the number of zeros very close to an
integer and a very small imaginary part. The method turns
out to be quite robust and reliable.

E. Zero structure near the real axis

The lowest zeros from three volumes are given in
Table VI and shown in Fig. 12. The error bars take into
account both the Monte Carlo statistical error and the
(much smaller) Chebyshev interpolation error. The three
lines are the linear fits for the first, second, and third lowest
zeros. They intersect the real axis approximately at the
same point � ¼ 1:011 34ð1Þ. Figure 12 also shows that �S

and the real part of the zeros are highly correlated.
The good look of the linear fits is deceptive as they have

a rather large �2 and a small goodness of fit Q (see p. 111

FIG. 11 (color online). Zeros of the Re (þ , blue online) and
Im (x, red online) part of Z for Uð1Þ using the density of states
for 44 and 64 lattices.

TABLE IV. Real part of the first three zeros.

L First Second Third

4 0.9791(1) 0.9780(4) Not stable

6 1.001 80(5) 1.0007(1) 0.9993(5)

8 1.007 44(2) 1.0068(2) 1.0061(4)

TABLE V. Imaginary part of the first three zeros.

L First Second Third

4 0.0259(1) 0.057(1) Not stable

6 0.007 58(2) 0.018(1) 0.027(2)

8 0.003 06(2) 0.008(1) 0.012(1)
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of [53]) which can be explained by the small errors bars.
Another potentially deceptive result is that the imaginary
part of the lowest zero decreases like L�3:08. If this result is
indicative of what happens at larger volume, this would be
interpreted as signaling a second-order phase transition
with � ’ 1=3:08 ’ 0:325. Larger lattices are needed as
will be discussed in Sec. VII.

F. Dependence on the range of integration

In the previous calculations, the tails of integration play
a marginal role. If we are interested only in the zeros near
� ¼ 1, the density of states in a finite range is sufficient.
This information becomes very important at higher
volumes where the calculation is more expensive. In
Table VII, we provide the values sa and sb outside of which
the knowledge of fðsÞ has effects smaller than the error
bars on the zeros.

VII. TOWARD LARGER VOLUME
CALCULATIONS AND SCALING

In this section, we explore ways of discriminating be-
tween first- and second-order transitions. For this purpose,
we include data at larger volumes (L ¼ 10, 12, 14, and 20)
from Ref. [54] with much lower statistics, namely, one
stream with two MUCA runs.

A. Zeros

In Sec. VI, we explained that for the data for L ¼ 4, 6,
and 8, the imaginary part of the lowest zeros scales like
L�3:08. It is possible that as the volume increases, the
approach of the real axis rolls toward the L�4 scaling
expected for a first-order transition [30]. We now discuss
the scaling of the zeros using the lower statistics data for
the larger volumes given in Table VIII.
It is questionable that two MUCA runs could lead to a

reliable estimate of the errors. An error bar from just two
independent measurements fluctuates strongly and reaches
a 95% confidence range only at about 14 (instead of 2)
error bars (see p. 78 of [53]). We decided therefore to
smoothen the error bars by assuming that the real relative
error is the same for all four of our large lattices. Averaging
these relative errors and multiplying them by three, the
approximate 95% confidence range of four independent
data gives an error bar of 1.69%, which is then given in the
fourth column for all the large data of Table IX. Not to
overweight the far more accurate small lattice against the
large lattice data in the subsequent fits, they are also used
with a relative error of 1.69% and thus listed in Table IX.

TABLE VII. Values of sa and sb and the corresponding values
of � (Pð�Þ ¼ s).

L sa sb �a �b

4 0.274 0.488 1.125 0.945

6 0.284 0.436 1.1 0.985

8 0.295 0.408 1.075 1

FIG. 12 (color online). The lowest zeros from the volumes 44,
64, and 84 (from left to right). Linear fits for the first, second, and
third zeros (bottom to top) and their goodness of fit Q. The
diamonds on the real axis are the double-peak �’s from Table III.

TABLE VI. The lowest three zeros in the volumes 44, 64, and 84. Columns 2–4 are the real parts of the zeros, the estimate error �s

from different streams of Monte Carlo runs and the error �c due to the orders of Chebyshev interpolation (we used three different
orders 40, 44, and 50 for all three volumes). Columns 5–7 are similar quantities for the imaginary parts.

L Re� �s �c Im� �s �c

4

0.979 123 5 3:6� 10�5 5:3� 10�8 0.026 006 5 3:7� 10�5 3:9� 10�9

0.977 731 4 3:5� 10�4 7:1� 10�6 0.057 276 4 1:4� 10�4 3:3� 10�6

0.975 295 4 1:1� 10�3 2:9� 10�4 0.083 170 5 1:3� 10�3 3:2� 10�4

6

1.001 796 9 1:7� 10�5 1:7� 10�6 0.007 582 1 8:7� 10�6 1:4� 10�6

1.000 743 3 6:0� 10�5 2:3� 10�5 0.018 204 4 2:8� 10�5 4:0� 10�6

0.998 896 4 1:4� 10�4 2:7� 10�4 0.027 186 6 4:5� 10�4 1:5� 10�4

8

1.007 438 0 1:1� 10�5 7:7� 10�8 0.003 065 3 3:6� 10�6 6:8� 10�8

1.006 829 6 2:3� 10�5 2:1� 10�6 0.007 767 3 2:4� 10�5 3:3� 10�7

1.006 041 0 1:1� 10�4 1:2� 10�5 0.011 507 9 1:0� 10�4 8:5� 10�5
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We want to emphasize that this procedure has been de-
signed to understand how different fits allow to discrimi-
nate between first and second order rather than to extract
accurate values for the fitted parameters.

For these data, we performed 3-parameter fits, which are
listed in the following together with their goodness of fitQ:

y ¼ a1
L4

�
1þ a2

L
þ a3

L2

�
; Q ¼ 0:43; (29)

y ¼ a1L
a2

�
1þ a3

L

�
; Q ¼ 6:2� 10�4; (30)

y ¼ a1
L4

�
1þ a2L

a3

�
; Q ¼ 2:8� 10�3: (31)

The first fit shows that L�4 behavior is consistent with all
the data put together. The other two fits are in disagreement
with the data.

Using only the data from the L ¼ 4, 6, 8 lattices with the
modified error bars given in Table IX, the 2-parameter fit

y ¼ a1L
a2 ; Q ¼ 0:39 (32)

is also in agreement with the data and gives the exponent
a2 ¼ �3:082ð35Þ instead of �4. The fits (29) and (32) are
shown in Fig. 13.

However, the fit

y ¼ a1
L3:08

�
1þ a2

L
þ a3

L2

�
; (33)

with the seven data points leads toQ< 10�8. In addition, if
we perform a four-parameter fit as in Eqs. (29) and (33) but
with the leading exponent fitted, we obtain 4.121(74) for
this exponent with Q ¼ 0:72. These results seem to favor

the first-order possibility. However, they should be checked
with higher statistics data for the larger volumes.

B. Features of fðsÞ
In the infinite volume limit, the width of the double-peak

distribution goes to a nonzero limit (latent heat) for a first-
order phase transition. For a second-order transition, this
width should go to zero as an inverse power of L. These
two possibilities are tested by plotting the width versus 1=L
or in a log-log scale in Fig. 14.

FIG. 13 (color online). Fits of ImzðLÞ on a log-log scale.

TABLE IX. y ¼ Imz from two independent runs on L � 10
lattices and their combination as explained in the text together
with reduced accuracy values from L � 8 lattices.

L First run Second run Combined

4 � � � � � � 0.026 91 (44)

6 � � � � � � 0.007 58 (13)

8 � � � � � � 0.003 065 (52)

10 0.001 475 6 0.001 479 7 0.001 478 (25)

12 0.000 792 7 0.000 796 9 0.000 795 (14)

14 0.000 457 47 0.000 441 57 0.000 449 5 (76)

20 0.000 011 882 0.000 011 901 0.000 011 89 (21)

TABLE VIII. Higher-volume zeros. Columns 2 and 4 are the
averages over the two MUCA runs. Columns 3 and 5 are one-
half of the differences (not the estimated error, see text).

L Re� �Re=2 Im� � Im=2

10 1.009 47 2� 10�5 0.001 478 2� 10�6

12 1.010 27 2� 10�5 0.000 795 2� 10�6

14 1.010 64 2� 10�5 0.000 449 8� 10�6

20 1.011 01 1� 10�5 0.000 119 1� 10�6

FIG. 14 (color online). Width of f� �Ss as a function of L.
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The difference between the local minimum and the local
maxima of f� �Ss (by definition of �S, the two local
maxima have the same height) should decay like C=L for a
first-order transition with C proportional to the interface
tension. For a second-order transition, this difference should
go to zero as an inverse power ofL. The data is shownversus
1=L and on a log-log scale together with simple fits (made
withoutL ¼ 4) in Fig. 15. In the first fit, the 1=L2 corrections
are clearly important and it is not surprising that the power in
the second fit is between�1 and�2.

Using arguments from Ref. [55] leads to the conclusion
that for a second-order phase transition, the width should

scale like L�ð1��Þ=�, while the depth should scale like L�D.
If we use D ¼ 4, � ’ 0:325, and the hyperscaling relation
� ¼ 2�D� ’ 0:7, we obtain ð1� �Þ=� ’ 0:92 which is
not too far off for the width but very far off for the depth.

VIII. CONCLUSION

Using multicanonical methods, we have calculated the
density of states for pure Uð1Þ lattice gauge theory with
high precision on small 44, 64, and 84 lattices and with
moderate precision on larger 104, 124, 144, and 204 lattices.
From these data, we were able to locate low-lying Fisher’s
zeros by Chebyshev interpolations and residue theorem

methods. On the small lattices, the scaling properties of
the zeros are consistent with a second-order phase transi-
tion, while from the larger lattices there is some indication
that this turns around and becomes consistent with a first-
order transition.
Although Uð1Þ lattice gauge theory was already intro-

duced in the pioneering paper by Wilson [56], it still resists
to reveal clearly the true nature of its transition from the
confinement to the Coulomb phase. Like other physical
quantities, e.g., Polyakov loop susceptibilities, Fisher’s
zeros appear to need rather large lattices to display their
asymptotic scaling properties. As modern supercomputers
allow parallel processing on an unprecedented scale, the
solution may finally become achieved by brute force cal-
culations on very large lattices.
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APPENDIX A: MULTICANONICAL DATA

The number of tunnelings and the integrated autocorre-
lation times for 44, 64, and 84 lattices is given in Tables X,

FIG. 15 (color online). Difference between the local minimum
and the local maxima of f� �Ss as a function of L.

TABLE X. MUCA data for 44.

MUCA 1 MUCA 2 MUCA 3

# Ntunn Ntunn 	int Ntunn 	int

1 1512 3886 99(2) 4697 110(1)

2 1406 4018 109(1) 2833 720(35)

3 1974 4723 114(5) 3492 540(15)

4 1552 4537 216(5) 2684 750(18)

5 774 5038 175(12) 4920 367(29)

6 963 4769 109(1) 5682 164(4)

7 196 397 1383(124) 3162 679(34)

8 4089 3875 101(5) 4547 116(5)

9 2344 4214 108(7) 4599 266(6)

10 1652 4582 185(15) 3484 625(48)

11 1622 4179 111(7) 5030 255(12)

12 1722 4281 126(3) 3985 674(101)

13 3406 4081 98(1) 4994 146(3)

14 1271 4127 104(6) 5257 135(6)

15 488 4610 255(9) 3776 524(14)

16 2351 4394 108(3) 4167 338(12)

17 788 4785 123(4) 4598 356(10)

18 735 4680 134(4) 4661 364(16)

19 845 4450 200(4) 3675 537(14)

20 2697 3526 93(1) 4123 104(7)
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XI, and XII. Figure 16 illustrates the fluctuations among
streams and the correlations among MUCA runs for the
zeros on a 64 lattice. In Table XIII, we summarize the
parameters of simulations on 104–204 lattices.

APPENDIX B: NUMERICAL DATA
USED IN SEC. VII

In order to calculate the quantities used to make the
graphs of Sec. VII, we have first fitted fðsÞ in a region
slightly wider than the location of the two peaks of fðsÞ �
�S with the first 12 Chebyshev polynomials. Higher
order polynomials tend to pick up the noise and provide
results which are less stable. Using this polynomial

TABLE XI. MUCA data for 64.

MUCA 1 MUCA 2

# Ntunn 	int Ntunn 	int

1 1351 702(48) 950 559(27)

2 708 466(12) 897 480(11)

3 367 422(12) 947 502(17)

4 454 474(30) 971 561(31)

5 580 484(37) 894 565(47)

6 682 481(21) 911 511(23)

7 523 423(14) 909 557(43)

8 765 512(28) 903 532(33)

9 696 510(27) 921 485(12)

10 652 469(32) 935 569(53)

11 513 544(46) 976 523(33)

12 378 396(18) 976 536(27)

13 867 559(17) 961 495(10)

14 661 496(13) 932 509(28)

15 545 542(50) 896 554(38)

16 615 497(14) 920 496(13)

17 475 438(16) 979 543(46)

18 822 464(10) 903 486(11)

19 878 570(35) 892 508(30)

20 578 588(62) 949 572(28)

TABLE XII. MUCA data for 84.

MUCA 1 MUCA 2

# Ntunn 	int Ntunn 	int

1 145 1756(99) 252 1782(124)

2 79 1298(69) 240 1798(78)

3 75 1475(144) 259 2486(368)

4 121 1291(141) 216 2159(235)

5 150 2420(364) 216 1660(154)

6 86 1097(40) 256 1528(55)

7 74 1103(51) 255 1621(105)

8 132 1419(48) 254 1568(98)

9 187 3089(438) 197 3074(397)

10 98 1370(94) 255 1706(104)

11 142 1389(47) 208 1700(218)

12 165 1804(343) 254 1800(256)

13 93 1265(111) 270 1912(160)

14 212 2012(114) 231 1855(254)

15 137 1581(181) 249 1855(170)

16 159 1904(235) 211 1674(224)

17 269 1773(76) 213 2169(256)

18 206 1773(176) 234 1503(52)

19 214 1756(76) 212 1954(265)

20 96 1680(221) 227 1697(101)

FIG. 16 (color online). Imaginary (top) and real (bottom) part
of the complex zeros of MUCA run 1 versus MUCA run 2 for the
20 streams on a 64 lattice.

TABLE XIII. MUCA data for volumes where simulations
were performed in narrow ½�min; �max� range. Last two columns
summarize the number of tunneling events. 104–124 is from [54].

Volume Sweeps �min �max MUCA1 MUCA2

104 32� 96 000 0.980 1.030 103 133

124 32� 112 000 0.990 1.030 75 82

144 32� 128 000 1.000 1.020 57 51

204 64� 100 000 1.010 1.012 155 210
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approximation, we calculated the two roots of f00ðsÞ in the
interval considered. We call them sL (Left) and sR (Right).
They are the local extrema of f0ðsÞ. The corresponding �
[obtained from the saddle point Eq. (12)] are denoted �L

and �R. For �L < �< �R, the saddle point Eq. (12) has
three solutions instead of one (the ‘‘Maxwell kink’’). �S

corresponds to the case where the area of the kink below
and above are equal. The locations of the maxima of
fðsÞ � �Ss are called s1 and s2 as in Sec. V. �ðf� �SsÞ
denotes the difference between the local minimum and the
local maxima of f� �Ss. The numerical results are pro-
vided in Table XIV.
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