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We construct an analytical model for two-channel, two-body scattering amplitudes, and then apply it in

the description of the three-body J=c ! KþK��0 decay. In the construction of the partial wave

amplitudes, we combine the low-energy resonance region with the Regge asymptotic behavior determined

from direct two-body production. We find that resonance production in the K� channel in J=c decays

seems to differ from that observed in direct K� production, while the mass distribution in the K �K channel

may be compatible.
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I. INTRODUCTION

Meson spectroscopy has played an important role in
developing phenomenology and gaining insights into
QCD in the nonperturbative domain. In an amplitude
analysis of experimental data it is necessary to explore
all of the available theoretical constraints because the
extraction of resonance parameters requires the analysis
of partial waves outside of the kinematic range of experi-
mental data. In particular, amplitudes describing the mass
distribution of a two-body subsystem in a quarkonium
decay may be different from those describing scattering
of the same two particles. In this paper we focus on the
isospin 1=2, 1 and spin-one, P-wave scattering amplitudes
in the ��, K �K and K� channels, and compare the phase
shift data with two-body mass distributions from the three-
body J=c ! KþK��0 decay. These amplitudes are domi-
nated by the ground-state vector resonances �ð770Þ and
K�ð892Þ that are well established as quark-antiquark, QCD
bound states that are weakly coupled to the meson-meson
continuum. There is also strong experimental evidence for
higher mass vector resonances, although precisely how
many and to what extent these are related to QCD single-
hadron states remains an open issue [1–5].

In Table I we list the masses of the lowest vector-meson
states obtained from recent lattice QCD simulations [6]
and the quark potential model [7], and compare them to the
data compiled by the Particle Data Group (PDG) [8].
Below 2 GeV the PDG lists two excited isovector reso-
nances, the �0ð1450Þ and �00ð1700Þ, that could have the
quark model assignments of 2S and 1D, respectively. In
the lattice simulations of [6], the average pion mass is
approximately 400 MeV, which puts the � meson approxi-
mately 130 MeV above its measured mass. Shifting the
vector-mesons masses from lattice computations down by
130 MeV puts the first excited state around 1600 MeV,
which is�150 MeV higher than the measured mass of the
�0ð1450Þ. While a resonance in the 1600–1700 MeV mass
range can be clearly inferred from the ��-scattering phase
shift data [2], the experimental evidence for the �0ð1450Þ is

ambiguous [8]. The main motivation for the �0ð1450Þ
comes from the need to accommodate data on 4� produc-
tion [9,10]. To the best of our knowledge, however, there
has been no comprehensive analysis of all available
P-wave data, and the importance of the various inelastic
channels, possibly even the dominant one K �K , is yet to be
settled. For example, an alternative scenario that seems to
be supported by the lattice results might be that the 2S and
1D states are above 1.6 GeV while any residual strength
corresponding to the PDG �0ð1450Þ could be due to resid-
ual interactions between pions and/or inelastic channel
effects.
The vector mesons discussed above can be produced

in J=c ! K �K� and 3� decays. In this paper we focus
on the former; we studied the latter in Ref. [11]. The
J=c ! K �K� decay has been analyzed by the BESII
Collaboration [12]. The Dalitz plot distribution of the
KþK��0 events has clearly visible sharp bands corre-
sponding to the isospin-1=2, K��ð892Þ, and weaker bands
in the first excitedK0�-resonance region. The distribution is
shown in Fig. 1. There is also a significant enhancement in
the low KþK�-invariant mass region. In the BESII analy-
sis this broadband was associated with a new isovector
P-wave resonance Xð1570Þ, decaying to KþK� with the
pole position at ð1576� 409iÞ MeV seen through a strong
destructive interference with the �ð1700Þ. There have been
several theoretical attempts to explain this result [13,14].
In this work we address the following questions. Can the

broad enhancement in the low-mass K �K channel be de-
scribed by the P-wave K �K amplitudes determined from
phase shift analysis? And, more generally, can the Dalitz
plot distribution of K �K� events in the J=c decay be
described in terms of K �K and K� amplitudes recon-
structed from phase shift analysis? To do so, we use, and
further develop (by incorporating asymptotic energy de-
pendence), the P-wave �� and K �K amplitudes initially
constructed in [11,15]. The amplitudes that we use have the
correct analytical properties, satisfy two-body unitarity,
and reproduce the known data on �� scattering
[2,16,17]. In [11] we successfully used these amplitudes

PHYSICAL REVIEW D 85, 056003 (2012)

1550-7998=2012=85(5)=056003(14) 056003-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.85.056003


to describe the J=c ! �þ���0 Dalitz distribution. In
particular, we have found that since the �00ð1700Þ is quite
inelastic [2], destructive interference with the virtual
J=c ! K �K� ! 3� process is important in reducing the
Dalitz plot intensity in the �00 resonance region. We will
investigate if it is possible that a similar phenomenon is in
operation in the K �K�-final state and whether the virtual
J=c ! 3� ! K �K� decay may be responsible for the
broad structure at low KþK�-invariant mass.

This paper is organized as follows. The partial wave
decomposition of the decay J=c ! KþK��0 is given in
Sec. II. In Sec. III, we discuss our P-wave amplitudes and
compare with the BESII data of Fig. 1. Ideally, the set of
partial waves that are developed here could be used in a full
Dalitz plot analysis, but this requires a full knowledge of
experimental acceptances and resolutions. In this work we
simply compare, qualitatively, a sample of Dalitz plot
distributions generated from our amplitudes with the
BESII result of Fig. 1. We include more details on the
amplitude construction in the appendixes.

II. PARTIALWAVE AMPLITUDES IN
THE J=c ! KþK��0 DECAY

Denoting the four momenta by p�;0, P for K�, �0 and

J=c , respectively, the general expression for the J=c !
KþK��0 amplitude is given by

h�0KþK�; outjJ=c ð�Þ; ini ¼ ið2�Þ4�4

� X
i¼0;�

pi � P

�
T�:

(1)

The Dalitz plot invariants are defined by sij ¼ ðpi þ pjÞ2
with i, j ¼ �, 0 referring to K� and the �0, respectively.
The general expression for the helicity amplitude of T� is
given by

T� ¼ X
S;L

X
�¼�;0

NSL�½D1�
�;�ðrþ�ÞdS�;0ð�þþ�ÞFþ�

SL ðsþ�Þ

þD1�
�;�ðrþ0ÞdS�;0ð�þþ0ÞFþ0

SL ðsþ0Þ
þD1�

�;�ðr�0ÞdS�;0ð���0ÞF�0
SL ðs�0Þ�; (2)

where NSL� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2Sþ 1Þp hS�;L0j1�i=4�. Here � is the

spin projection of the J=c along the eþe� beam axis,
which together with x and y define a lab coordinate system,
S is the spin of a two-particle subsystem (the isobar), and L
is the relative orbital angular momentum between the
isobar and the spectator meson. The rotation rij is given

by three Euler angles, rij ¼ rijð�ij; #ij; c
i
ijÞ, which rotate

the standard configuration in the ðijÞk-coupling scheme to
the actual one. In the standard configuration of the ðijÞk
coupling J=c is at rest, particle k has momentum along the
negative z axis, and particles i and j have momenta in the
xz plane with the particle j moving in the positive x
direction. The azimuthal and polar angles, �ij and #ij,

are defined in the J=c rest frame and refer to the actual
direction of motion of the ðijÞ pair. Finally, c i

ij and �
i
ij are

the azimuthal and the polar angle of the ith particle in the
ðijÞ two-particle (isobar) rest frame.

The scalar form factors Fij
SLðsijÞ describe the dynamics

of the decay in the isobar model i.e. under the assumption
that in a given isobar channel the form factors are functions
of the subenergy of that isobar only. In the L� S basis, the
parity of the KþK��0 state is given by P ¼ ð�1ÞSþLþ1,
and under charge conjugation the two isobar channels
jðKþ�0ÞK�i and jðK��0ÞKþi are exchanged while the
third isobar channel jðKþK�Þ�0i is a charge-conjugation
eigenstate with the eigenvalue ð�1ÞS. Thus, charge con-
jugation invariance implies that in Eq. (2) there are only
two independent form factors, which we define as

Fþ�
SL � 1� ð�1ÞS

2
FK �K
SL ; Fþ0

SL ¼ �F�0
SL � �FK�

SL

(3)

and obtain
FIG. 1. The J=c ! KþK��0 Dalitz plot distribution from the
BESII Collaboration [12].

TABLE I. Masses of the first few lowest-lying vector meson
resonances.

�ð1��Þ K�ð1�Þ
0.90 0.95

Lattice QCD [6] 1.8 1.8

. . . . . .
0:77ð13S1Þ 0:90ð13S1Þ

Quark model [7] 1:45ð23S1Þ 1:58ð23S1Þ
1:66ð13D1Þ 1:78ð13D1Þ

. . . . . .
0.775 0.895

PDG [8] 1.465 1.414

1.720 1.717
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T�¼
X
S;L

X
�¼�1;0

N0
SL�½D1�

�;�ðrþ�ÞdS�;0ð�þþ�ÞFþ�
SL ðsþ�Þ

�D1�
�;�ðrþ0ÞdS�;0ð�þþ0ÞFK�

SL ðsþ0Þ
þD1�

�;�ðr�0ÞdS�;0ð���0ÞFK�
SL ðs�0Þ� (4)

with N0
SL� � NSL�ð1þ ð�1ÞSþLÞ=2. The � ¼ 0 compo-

nent vanishes due to parity conservation, and we can
further reduce the partial wave expansion to

T� ¼
X
S;L

N0
SL1

�
½D1�

�;1ðrþ�Þ

þD1�
�;�1ðrþ�Þ�dS1;0ð�þþ�Þ

1�ð�1ÞS
2

FK �K
SL ðsþ�Þ

� ½D1�
�;1ðrþ0ÞþD1�

�;�1ðrþ0Þ�dS1;0ð�þþ0ÞFK�
SL ðsþ0Þ

þ ½D1�
�;1ðr�0ÞþD1�

�;�1ðr�0Þ�dS1;0ð���0ÞFK�
SL ðs�0Þ

�
: (5)

Finally, it is useful to rewrite the above amplitude in terms
of a single set of angles describing orientation of the decay
plane. Using the relation between Euler rotations

rþ� ¼ r�0rð0; �þ; 0Þ ¼ rþ0r
�1ð0; 0; �Þr�1ð0; ��; 0Þ;

(6)

where �þð��Þ is the angle between Kþ (K�) and �0 and
in the KþK��0 rest frame, enables us to write T in terms
of rþ� alone,

T� ¼ X
S;L

N0
SL1½D1�

�;1ðrþ�Þ

þD1�
�;�1ðrþ�Þ�

�
dS1;0ð�þþ�Þ

1� ð�1ÞS
2

FK �K
SL ðsþ�Þ

þ dS1;0ð�þþ0ÞFK�
SL ðsþ0Þ þ dS1;0ð���0ÞFK�

SL ðs�0Þ
�
: (7)

The allowed quantum numbers in the KþK� channel are
SPC ¼ 1��ð�Þ; 3��ð�3Þ; . . . ; and in the K��0 channels
SP ¼ 1�ðK�Þ; 2þðK�

2Þ; 3�ðK�
3Þ; . . . . Throughout the rest of

the paper we will assume that the Dalitz distribution can be
saturated with the lowest partial waves, i.e. Pwaves in both
KþK� and K��0 channels, and we test this hypothesis by
studying the effect of the D-wave resonances in the K�
channels. Parity conservation implies S ¼ L; therefore, in

the following we will simply denote Fij
SL by Fij

L . The

(unnormalized) J=c partial-decay width with respect to
one of the Dalitz invariants (e.g. MKþK� ¼ ffiffiffiffiffiffiffiffiffi

sþ�
p

) is ob-

tained by integrating the square of the decay amplitude
over the orientation of the decay plane and the other
independent invariant

d�

d
ffiffiffiffiffiffiffiffiffi
sþ�

p ¼ N
ffiffiffiffiffiffiffiffiffi
sþ�

p Z sup�0
ðsþ�Þ

sdn�0
ðsþ�Þ

ds�0jTj2 (8)

and

jTj2 ¼
��������X

S;L

N0
SL1

�
dS1;0ð�þþ�Þ

1� ð�1ÞS
2

FK �K
L ðsþ�Þ

þ dS1;0ð�þþ0ÞFK�
L ðsþ0Þ þ dS1;0ð���0ÞFK�

L ðs�0Þ
���������2

:

(9)

The overall normalization (N) is adjusted to match the
measured number of events. It is jTj2 that determines the
distribution of events in the Dalitz plot (i.e. jTj2 ¼ const
would give a flat distribution). The integration limits

sup=dn�0 ðsþ�Þ are roots of the equation, which define the

boundary of the Dalitz plot

sþ�sþ0s�0 � ðsþ0 þ s�0Þðm2
�m

2
K þM2m2

KÞ
� sþ�ðm4

K þM2m2
�Þ

þ 2ðm4
Km

2
� þM2m4

K þ 2M2m2
Km

2
�Þ ¼ 0: (10)

Projections along the MKþ� ¼ ffiffiffiffiffiffiffiffi
sþ0

p
and MK�� ¼ ffiffiffiffiffiffiffiffi

s�0
p

axes can be defined analogously.
In the following section we discuss parametrizations of

the form factors FK �K
L and FK�

L in terms of two-body
amplitudes. Any parameters remaining in these parametri-
zations, which are related to the production process as
opposed to final-state interactions, should be determined
by fitting the Dalitz distributions. As discussed in Sec. I we
do not fit the published Dalitz distribution but instead show
the predicted distributions for specific values of these
parameters.

III. THEORETICALMODEL FOR FORMFACTORS

Unitarity relates production form factors to two-body
amplitudes. In [11,15] we constructed analytical represen-
tations for the isovector, P-wave, two-body, ��, and K �K
amplitudes. Here, we further extend the analysis of [11] by
constraining the high-energy behavior and extending the
approach to theK� channel. We begin with aK matrix and
phenomenological parametrization of the known data (on
the real axis) on phase shifts and elasticities. Even though
the K matrix offers an analytical representation for the
amplitude, it often leads to spurious poles and zeros of
the amplitude when extrapolated outside the physical re-
gion. Therefore, we use the analytical representation for
phase shifts and inelasticity via the K matrix only in the
data region and smoothly extrapolate to match the asymp-
totic behavior of the partial waves at high energies. We
then use the amplitudes, constructed in this way, over the
whole physical energy range as input into the Omnés-
Muskhelishvili integral to construct the regular part of
the scattering amplitude on the left-side of the complex s
plane. With the NðsÞ=DðsÞ representation, which is de-
scribed below, we determine the amplitude over the entire
s plane. Finally, we solve the unitarity relation for the form
factors and write the J=c -decay amplitude in terms of the
denominator functions DðsÞ and production functions
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c	ðsÞ. In the following section, we describe these steps in a
little more detail. All details of the amplitude construction
are given in the Appendixes.

A. Amplitude parametrization

In [11] to describe the high energy limit of the isovector
Pwave, the following hypothesis was made: the Smatrix is
saturated by two channels, �� and K �K, and the elastic-
channel phase shifts asymptotically approach a multiple
of � with elasticity 
 approaching 1. Even though J=c
decays probe only a limited energy range, and are quite
insensitive to details of the asymptotic behavior, we might
as well use a different hypothesis that is better rooted in
high energy phenomenology. It is known that at high
energies, elastic cross sections slowly grow with energy
almost approaching the Froissart bound. This implies that
at an impact parameter larger than the interaction region
Oð1 fmÞ there is no interaction while the low partial
waves are suppressed, as if scattering from a ‘‘gray
disk.’’ The low partial waves correspond to L � L0ðsÞ
where L0ðsÞ �

ffiffiffi
s

p
=2 fm, and while the interaction radius

grows logarithmically with energy, the scattering of the
low partial waves becomes logarithmically suppressed, i.e.

L � 1�Oð1= logsÞ. In the language of Regge ex-
changes, this picture corresponds to the Pomeron exchange
at high energies. Furthermore, since asymptotically the
number of inelastic channels grows rapidly, each individ-
ual inelastic amplitude, e.g. �� ! K �K, is expected to fall
off with energy and is represented by exchange of non-
vacuum quantum numbers, aka meson Regge trajectories.
The hypothesis of two-channel dominance in the high
energy limit is, therefore, not necessarily well justified.
Throughout the rest of the paper, we adopt the Regge
picture of high-energy scattering. Matching the K-matrix
parametrization of the low-energy data with Regge asymp-
totics leads to amplitudes of the form (we drop the angular
momentum label on the partial wave),

t	;�ðsÞ ¼ jt	;�ðsÞjei�	;�ðsÞ ¼
8<
:
tK matrix
	;� ðsÞ s < slow

t
Regge
	� ðsÞ s > shigh;

(11)

with tK matrix
	;� ðsÞ and tRegge	� ðsÞ determined from K matrix fits

to the low-energy data and Regge fits to the high-energy
fixed tdata, respectively. Greek indices denote two-body
channels, i.e. 	 ¼ ði; jÞ ¼ ��, K �K, etc. For energies be-
tween slow and shigh, we smoothly connect both real and

imaginary parts of theKmatrix and Regge amplitudes. The
denominator function in the N=D parametrization

t	�ðsÞ ¼
N	�ðsÞ
D	�ðsÞ (12)

is then obtained from the phase of the scattering amplitude
using the Omnés-Muskhelishvili solution of the unitarity

relation [(sth � minðs	; s�Þ, where s	 is the 	-channel

threshold]

ImD	�ðsÞ
D	�ðsÞ ¼ � sin�	�ðsÞe�2i�	�ðsÞ (13)

and is given by

D	�ðsÞ ¼ e
�ðs=�Þ

R
sth

ds0�	�ðs0Þ=s0ðs0�sÞ
; (14)

where we conveniently normalized D	�ð0Þ ¼ 1. The nu-

merator functionsN	�ðsÞ are given by the largely unknown
discontinuity of the amplitudes on the left-hand cut. For the
purpose of solving the unitarity relation for the J=c -decay
form factors, which will be discussed below [cf. Eq. (16)],
it is convenient to have N	�ðsÞ’s for all intervening 	, �

channels having the same analytical form. This is certainly
a simplifying approximation; nevertheless, we have found
that with a simple parametrization

N	�ðsÞ ¼
�	�

sþ sL
(15)

and with the two-body amplitudes given by Eqs. (12) and
(14), it is indeed possible to obtain good fits to the two-
body scattering data, i.e. phase shifts and elasticity.
Having constructed the two-body amplitudes, the next

step is to relate them to the production form factors. This is
done through the unitarity relations, which relate the
imaginary part of the form factors to the two-body ampli-
tudes

Im F̂	
LðsÞ ¼

X
�

t�	;�ðsÞ��ðsÞF̂�
LðsÞ (16)

with 	�t representing the elastic L-partial wave scattering
amplitude between two-body channels 	 ¼ ðijÞ and � ¼
ði0j0Þ. F̂ is the reduced form factor (with the barrier factor
removed)

Fij
L ðsÞ ¼ qLijðsÞpL

k ðsÞF̂ij
L ðsÞ (17)

with qijðsÞ being the relative momentum between mesons i

and j,

qijðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s� ðmi þmjÞ2�½s� ðmi �mjÞ2�

4s

s
(18)

and

pkðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s� ðMþmkÞ2�½s� ðM�mkÞ2�

4M2

s
(19)

with M being the J=c mass, the relative momentum
between the ðijÞ pair and the spectator meson k. �	ðsÞ ¼
2qij=

ffiffiffi
s

p
describes the two-particle phase space. It is

straightforward to show that if the scattering amplitude is
dominated by a single resonance below inelastic threshold
(� ¼ �	, �� ¼ 0 for � � 	) the solution of the unitarity

condition for F̂ is
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F̂ 	
LðsÞ ¼ cðsÞBWL

RðsÞ ¼
cðsÞ

m2
R � s� imR�LðsÞ

; (20)

where BWL
RðsÞ is the Breit-Wigner amplitude [with an

energy dependent width �LðsÞ] and cðsÞ is a real polyno-
mial in s. In the general multiple-channel case, with the
two-body amplitudes all parametrized by the same nu-
merator function as in Eq. (15), the solution to Eq. (16)
is given by [18]

F̂ 	ðsÞ ¼ X
�

c�ðsÞ
D	�ðsÞ (21)

with c�ðsÞ being analytic functions in the right-hand plane

and Imc	ðsÞ ¼ 0 for s > 0.

B. Results

As discussed in Sec. I, the original BESII analysis was
based on the isobar, resonance parametrization of all three
two-body channels. In the absence of a known isovector
P-wave K �K resonance to describe the low-mass K �K en-
hancement, it was necessary to introduce a new resonance,
the Xð1570Þ. The ��-phase isovector P-wave shift data,
however, points to significant inelasticity above 1.6 GeV,
which following [2] we have attributed to the K �K channel.
The effect of the coupled �� and K �K channels on the
KþK��0-mass distribution which follows from Eq. (21) is
shown in Fig. 2.
In Fig. 3 we show the Dalitz distribution obtained using

the single K�-channel amplitude (details are discussed
in Appendix B). Besides the K�ð892Þ peaks, bands at
MK� ¼ 1:75 GeV are clearly visible in both Kþ�0 and
K��0-mass projections. These are due to the K�ð1680Þ
resonance clearly seen in the K�-phase shift analysis
[19–21] but apparently not so in the K� production from
the J=c decay (cf. Fig. 1). This clear discrepancy indicates
that it is not sufficient to use a single-channel K� ampli-
tude in the parametrization of the corresponding form
factor in the J=c decay. As discussed in Appendix B,
the K� amplitude is indeed inelastic above MK� �
1:5 GeV with a possibility of a large coupling to the
K�ð892Þ� channel.
Finally, in Fig. 4 we show the Dalitz distribution ob-

tained with a combination of three amplitudes,K �K ! K �K,
�� ! K �K, and K� ! K� with relative production coef-
ficients c	ðsÞ chosen to best match the observed distribu-
tion in Fig. 1. While the low-mass K �K region seems to be
fairly well described, the resonance structures in the K�
channel do not match between the elastic tK�!K� and
J=c -decay amplitude. The �� ! K �K and K �K ! K �K
amplitudes behave rather smoothly in the region corre-
sponding to the K� resonances and do not give enough
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FIG. 2 (color online). Dalitz plot distribution obtained using,
in Eq. (21), a single two-body K �K ! K �K amplitude (top panel)
and a single two-body �� ! K �K amplitude (bottom panel)
[i.e. with cK �K ¼ 1 (c�� ¼ 1) for the top (bottom) panel and
c	ðsÞ ¼ 0 for all other waves].
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FIG. 3 (color online). As in Fig. 2 but with a single two-body
K� ! K� amplitude.
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strength to reduce the peak from the second K�-resonance
region. Thus, we anticipate that the discrepancy is due to
inelasticities in the K� channel itself. Since we are only
comparing Dalitz distributions as opposed to fitting data,
we do not attempt to further improve the comparison. It is
worth noting that the K�ð1410Þ listed in the PDG is indeed
quite inelastic with only a 6.6% branching to K�.

IV. DISCUSSION AND CONCLUSION

Based on unitarity and analyticity we have constructed a
set of analytical two-body amplitudes, which implement
the known phase-shift data. These extend our previous
work in coupled channel P-wave �� and K �K systems
and the J=c ! 3� decay [11]. The two-body amplitudes
are only an approximation to the three-body decay; never-
theless, they provide a useful starting point and should
match below-inelastic thresholds. We compared the analy-
sis of the J=c decay with these amplitudes to the original
analysis of the BESII Collaboration, which was based on
the isobar model with coherent Breit-Wigner resonances.
The isobar model with the known, low-mass resonances
only and without inelasticities cannot faithfully produce
the broad structure of low KþK�-invariant mass, which
is why in the BESII analysis an additional P-wave reso-
nance Xð1576Þ coupled to KþK� was introduced. Our
preliminary study indicates that the K �K low-mass region
may be described by the inelasticity in the�� ! ��wave
if attributed to the coupling between �� and K �K channels.
A single K� ! K� amplitude is strongly affected by the
second vector K�ð1680Þ resonance as observed in K�
phase-shift analysis. However, in J=c decay this reso-
nance seems to be suppressed. It is worth noting that a
similar suppression of the first excited isovector-vector
resonance is also observed in the 3� decay of J=c [11].
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APPENDIX A: ANALYTICAL MODEL FOR THE
P-WAVE ISOVECTOR �� ! ��, �� ! K �K, AND

K �K ! K �K AMPLITUDES

1. K-matrix parametrization (s < slow)

We use a two-channel K matrix [11] to fit the data on
�� ! �� P-wave phase shift and elasticity 
 from
[2,16,17] (Figs. 5 and 6). With the S matrix saturated by
two channels, the model makes a prediction for the phase
shift in the K �K ! K �K channel. In this section 	, � ¼ �,
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FIG. 5. Phase shift of the P-wave �� amplitude. Data are
taken from [2] (circles), [16] (triangles), and [17] (squares). The
solid line is the result of the fit to �� and 
 with the analytical
K-matrix representation described in the text.
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FIG. 4 (color online). As in Fig. 2 but with three amplitudes
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coefficients satisfying cK�ðsÞ: cK �KðsÞ: c��ðsÞ ¼ 1: 0:3: � 0:7.
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K correspond to the two-body channels �� and K �K,
respectively. The two-channel K-matrix representation is
given by

½t̂�1ðsÞ�	� ¼ ½K�1ðsÞ�	� þ �	�ðs� s	ÞI	ðsÞ; (A1)

where

I	ðsÞ ¼ I	ð0Þ � s

�

Z 1

s	

ds0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s	

s0

r
1

ðs0 � sÞs0 : (A2)

A convenient choice for the subtraction constant I	ð0Þ is to
take ReI	ðM2

�Þ ¼ 0 so that one of the poles of K�� corre-

sponds to the Breit-Wigner mass squared M2
� ¼

ð0:77 GeVÞ2 of the � meson. Using the general two-pole
parametrization of the K matrix

K�� ¼ 	2
�

M2
� � s

þ �2
�

s2 � s
þ ���;

KKK ¼ �2
K

s2 � s
þ �KK;

K�K ¼ KK� ¼ ���K

s2 � s
þ ��K;

(A3)

where 	2
� ¼ ��M

2
�=ðM2

� � s�Þ3=2, and fitting the P-wave

�� phase shift �� and the elasticity 
, we obtain
�� ¼ 0:140 GeV and

3 ffiffiffiffiffi
s2

p ¼1:4708GeV; ��¼0:199; �K ¼0:899;

���¼5:62	10�2; ��K¼0:104; �KK¼1:525;

(A4)

with the �’s in units of GeV�2. The comparison of
the phase shift and the inelasticity obtained with this
parametrization and with the data is shown in Figs. 5
and 6. To illustrate unphysical features of the K-matrix
parametrization, we rewrite Eq. (A1) using the standard
N=D representation for t̂	� ¼ t	�=ð4q	q�Þ. With the

normalization D	�ð0Þ ¼ 1 we obtain

3

N��ðsÞ ¼ ���

s� z��
ðs� sL;1Þðs� sL;2Þ ;

D��ðsÞ ¼ exp

�
� s

�

Z
s�

ds0
���ðs0Þ
s0ðs0 � sÞ

�
;

N�KðsÞ ¼ ��K

ðs� sL;1Þðs� sL;2Þ ;

D�KðsÞ ¼ s1;�Ks2;�K
ðs� s1;�KÞðs� s2;�KÞ
	 exp

�
� s

�

Z
s�

ds0
��Kðs0Þ
s0ðs0 � sÞ

�
;

NKKðsÞ ¼ �KK

s� zKK

ðs� sL;1Þðs� sL;2Þ ;

DKKðsÞ ¼ exp

�
� s

�

Z
s�

ds0
�KKðs0Þ
s0ðs0 � sÞ

�
(A5)

with ��� ¼ 5:649, �KK ¼ 2:271, and ��K ¼
3:048 GeV2. In this K matrix model, the left-hand cut
of N is reduced to two poles at sL;1¼�13:87GeV2 and

sL;2 ¼ �0:787 GeV2, respectively. There are also first-

order zeros in N	� at z�� ¼ �0:867 GeV2 and zKK ¼
�13:78 GeV2. Above the K �K threshold the phase of the
inelastic amplitude ��K is given by ��K ¼ �� þ �K.
From the K matrix we find that, asymptotically,
��Kð1Þ ¼ 2�, which corresponds to two CDD [22]
poles: one at the � mass s1;�K ¼ M2

�, and the other at

s2;�K ¼ s2 þ ���K=��K ¼ 3:884 GeV2. Thus, while the

K-matrix parametrization faithfully reproduces the ��
phase shift and elasticity in the whole available energy
range, from �� threshold up to 1.9 GeV, extrapolation
beyond this range is problematic. The rapid decrease
of ��� around s� 6 GeV2 seems unphysical. In the
�� ! K �K channel, the two CDD poles at m2

� and s2 þ
���K=��K are clearly an artifact of the pole parametri-
zation of the K matrix. A CDD pole in the inelastic
channel above threshold (cf. the pole at s2;�K ¼
3:884 GeV2) leads to a discontinuity in a phase shift
and is unphysical. It also implies vanishing inelasticity

 ¼ 1 at this energy. A pole between �� and K �K thresh-
olds is admissible, e.g. the pole at s1;�K ¼ m2

�, but its

strict overlap with the � mass is also an artifact of the
parametrization. Since the phase space available in J=c
decay extends up to s�� � 9 GeV2 we need to remove
these unphysical features of the K-matrix amplitude. As
discussed in Sec. III we do this by using the K-matrix
amplitudes below slow, and above shigh we will use Regge

parametrization.

2. Regge parametrization (s > shigh)

Regge analysis of�� ! �� scattering has been studied
recently in [23–25], and here we use the results of [25].
Parameters in Regge amplitudes were constrained by ana-
lyzingNN,�N, and�� scattering data. For completeness,
we give the following relevant formulas:
(i) �� ! ��

Regge parametrization involves the Regge poles cor-
responding to t-channel exchange of the Pomeron
(P), the P0 [associated with the f2ð1270Þ trajectory],
and the �. The t-channel isospin amplitudes are
given by

FðIt¼0Þ
�� ðt; s; uÞ ¼ � 1þ e�i�	PðtÞ

sin�	PðtÞ Pðs; tÞ

� 1þ e�i�	P0 ðtÞ

sin�	P0 ðtÞ P0ðs; tÞ; (A6)

FðIt¼1Þ
�� ðt;s;uÞ¼1�e�i�	�ðtÞ

sin�	�ðtÞ ��

1þ	�ðtÞ
1þ	�ð0Þ½1þd�t�

	ebtðs=ŝÞ	�ðtÞ; (A7)
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ImFðIt¼2Þ
�� ðt;s;uÞ¼�2e

btðs=ŝÞ	�ðtÞþ	�ð0Þ�1; (A8)

where (ŝ ¼ 1 GeV)

Pðs; tÞ ¼ �P	PðtÞ 1þ 	PðtÞ
2

ebtðs=ŝÞ	PðtÞ; (A9)

P0ðs;tÞ¼�P0
	P0 ðtÞ½1þ	P0 ðtÞ�
	P0 ð0Þ½1þ	P0 ð0Þ�e

btðs=ŝÞ	P0 ðtÞ (A10)

and the trajectories are given by

	PðtÞ ¼ 	Pð0Þ þ t	0
P;

	P0 ðtÞ ¼ 	�ðtÞ ¼ 	�ð0Þ þ t	0
� þ 1

2
t2	00

�:

(A11)

Numerical values of all parameters are given in
Eqs. (B5), (B6) of [25]. The s-channel isospin, par-
tial wave amplitudes are normalized according to

F
ðIsÞ
	;�ðs; t; uÞ ¼ ð ffiffiffi

2
p Þ
 4

�

X
L

ð2Lþ 1ÞtðLIsÞ	;� ðsÞPLðcos�Þ;

(A12)

where ð ffiffiffi
2

p Þ
 is the identical particle symmetry fac-
tor: 
 ¼ 2 for �� $ ��, 
 ¼ 1 for �� $ K �K,
and
 ¼ 0 forK �K $ K �K. The s-channel amplitudes
with Is ¼ 0, 2 are symmetric under t $ u exchange;
the Is ¼ 1 amplitude is antisymmetric and s $ t
crossing leads to the following relation between the
s and the t-channel isospin amplitudes

F
ðIs¼1Þ
�� ðs; t; uÞ ¼ 1

3F
ðIt¼0Þ
�� ðt; s; uÞ þ 1

2F
ðIt¼1Þ
�� ðt; s; uÞ

� 5
6F

ðIt¼2Þ
�� ðt; s; uÞ � ðt ! uÞ:

(A13)

The (t $ u) exchange brings in the u-channel Regge
poles (these were ignored in [25] where only the
forward t ¼ 0 limit was considered). Finally, pro-
jecting out the P-wave amplitude yields

t
Regge
�� ðsÞ ¼ �

16

Z 1

�1
ðd cos�Þ cos�

�
1
3F

ðIt¼0Þ
�� ðt; s; uÞ

þ 1
2F

ðIt¼1Þ
�� ðt; s; uÞ � 5

6F
ðIt¼2Þ
�� ðt; s; uÞ

� ðt ! uÞ
�
: (A14)

The angular integration is done numerically. The
leading asymptotic behavior due to Pomeron ex-
change can be calculated analytically and is given by

tRegge�� ðsÞ ’ i
�

16

1

3

Z 1

�1
ðdcos�Þcos�½Pðs; tÞ �Pðs;uÞ�

’ i
�

24
�P

�3	0
P þ 2ðbþ	0

P lnsÞ
ðbþ	0

P lnsÞ2
s	Pð0Þ�1:

(A15)

To combine the K matrix (s < slow) with the Regge
projected (s > shigh) amplitudes into the full P-wave

�� ! �� amplitude

t��ðsÞ ¼
� tK matrix

�� ðsÞ s < slow

tRegge�� ðsÞ s > shigh
; (A16)

we choose
ffiffiffiffiffiffiffiffi
slow

p ¼ 2:20 GeV and
ffiffiffiffiffiffiffiffiffi
shigh

p ¼
2:56 GeV, and use a simple analytical formula to
smoothly join the two amplitudes between slow and
shigh. The result is shown in Fig. 7.

(ii) �� ! K �K
Asymptotically the t-channel amplitude is domi-
nated by the K� trajectory

FðIt¼ð1=2ÞÞ
�K ðt; s; uÞ ¼ 1� e�i�	K� ðtÞ

sin�	K� ðtÞ �K�
2	K� ðtÞ þ 1

2	K� ð0Þ þ 1

	 ebtð	0
K�sÞ	K� ðtÞ: (A17)

Following [26] we use b ¼ 2:4 GeV�2, and
	K� ðtÞ ¼ 0:352þ 	0

K� t with 	0
K� ¼ 0:882 GeV�2.
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FIG. 7. Real (top panel) and imaginary (bottom panel) parts of
the isovector, P-wave amplitude, t��ðsÞ (solid lines). The dashed
line is the result of the K-matrix parametrization.
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The s-channel Is ¼ 1=2 amplitude is antisymmetric
under t $ u exchange

FðIs¼1Þ
�K ðs; t; uÞ ¼ �FðIs¼1Þ

�K ðs; u; tÞ: (A18)

From s $ t crossing we obtain

FðIs¼1Þ
�K ðs; t; uÞ ¼ 2

3F
ðIt¼ð1=2ÞÞ
�K ðt; s; uÞ

� 2
3F

ðIt¼ð3=2ÞÞ
�K ðt; s; uÞ � ðt ! uÞ:

(A19)

In terms of F
ðIs¼1Þ
�K ðs; t; uÞ, the properly normalized

P wave in �� ! K �K is finally given by

tRegge�K ðsÞ¼ �

8
ffiffiffi
2

p
Z 1

�1
ðdcos�Þ

	cos�

�
2

3
FðIt¼ð1=2ÞÞ
�K ðt;s;uÞ�ðt!uÞ

�
:

(A20)

We can fix �K� by matching our formula in
Eq. (A17) to Eq. (81) in [26] in the limit of t ! 0
(forward direction). Taking into account differences
in normalization employed here and used in [26],
we find

ImFðIt¼ð1=2ÞÞ
�K ðt;s;uÞjs!1;t!0

¼�K� ð	0
K�sÞ	K� ð0Þ

¼ 3

4�

�

�½	K� ð0Þ�ð	
0
K�sÞ	K� ð0Þ (A21)

with � ¼ 1:82 taken from [26] and

�K� ¼ 3

4�

�

�½	K� ð0Þ� ¼ 0:172: (A22)

Asymptotically, tRegge�K ðsÞ approaches

tRegge�K ðsÞ ’ 1� e�i�	K� ð0Þ

sin�	K� ð0Þ �K�
�

8
ffiffiffi
2

p 2

3

Z 1

�1
ðd cos�Þ cos�

�
2	K� ðtÞ þ 1

2	K� ð0Þ þ 1
ebtð	0

K�sÞ	K� ðtÞ � ðt ! uÞ
�

’ 1� e�i�	K� ð0Þ

sin�	K� ð0Þ
�

3
ffiffiffi
2

p �K�	0
K�

2	K� ð0Þ þ 1

ð1þ 2	K� ð0ÞÞ½bþ 	0
K� lnð	0

K�sÞ� � 2	0
K�

½bþ 	0
K� lnð	0

K�sÞ�2 ð	0
K�sÞ	K� ð0Þ�1: (A23)

The complete amplitude is given by

t�KðsÞ ¼
8<
: tK matrix

�K ðsÞ s < slow

tRegge�K ðsÞ s > shigh
; (A24)

where we choose
ffiffiffiffiffiffiffiffi
slow

p ¼ 2:5 GeV and
ffiffiffiffiffiffiffiffiffi
shigh

p ¼ 3 GeV
as shown in Fig. 8.

(iii) K �K ! K �K
Asymptotically we only retain the Pomeron ex-
change

FðIt¼0Þ
K �K

ðt; s; uÞ ¼ � 1þ e�i�	PðtÞ

sin�	PðtÞ �K �K
P 	PðtÞ

	 1þ 	PðtÞ
2

ebtðs=ŝÞ	PðtÞ

(A25)

with 	PðtÞ ¼ 	Pð0Þ þ t	0
P and all other parame-

ters, except �K �K
P , taken from [23,25], while for

the Pomeron coupling to K �K we use relation

�K �K
P ¼

	
fðPÞK

fðPÞ�



2ðfðPÞ� Þ2 ¼ 1:15, where the values of

fðPÞK

fðPÞ�

and �P ¼ ðfðPÞ� Þ2 are taken from [23,25].

From s $ t crossing

FðIs¼1Þ
K �K

ðs; t; uÞ ¼ 1
2F

ðIt¼0Þ
K �K

ðt; s; uÞ � 1
2F

ðIt¼1Þ
K �K

ðt; s; uÞ:
(A26)

For the Pomeron contribution to the s-channel P
wave we thus find

t
Regge

K �K
ðsÞ ¼ �

8

Z 1

�1
ðd cos�Þ cos� 1

2
FIt¼0

K �K
ðt; s; uÞ:

(A27)

Asymptotically, tRegge
K �K

ðsÞ is given by

t
Regge

K �K
ðsÞ ’ i

�

16
�K �K

P

Z 1

�1
ðdcos�Þcos�	PðtÞ

	 1þ	PðtÞ
2

ebts	PðtÞ

’ i
�

16
�K �K

P

�3	0
P þ 2ðbþ	0

P lnsÞ
ðbþ	0

P lnsÞ2
s	Pð0Þ�1:

(A28)

In the full amplitude

tK �KðsÞ ¼
8<
: tK matrix

K �K
ðsÞ s < slow

t
Regge

K �K
ðsÞ s > shigh

; (A29)

we take
ffiffiffiffiffiffiffiffi
slow

p ¼ 1:62 GeV and
ffiffiffiffiffiffiffiffiffi
shigh

p ¼ 3 GeV

for real parts of amplitudes and
ffiffiffiffiffiffiffiffi
slow

p ¼
1:64 GeV and

ffiffiffiffiffiffiffiffiffi
shigh

p ¼ 1:8 GeV for imaginary
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parts of amplitudes. The different choice for the
real and imaginary parts allows for a smoother
connection with the Regge asymptotics. The phase

of tRegge
K �K

ðsÞ asymptotically approaches �=2, but the

phase of tK matrix
K �K

ðsÞ has a sharp drop above 1.65

GeV (see right plot in Fig. 10). Therefore, choosingffiffiffiffiffiffiffiffi
slow

p � 1:64 GeV allows for a continuous match

between the phases of tK �KðsÞ, as show in Fig. 9.

3. Phases of amplitudes and D functions

From Regge parametrizations, we find the following
asymptotic behavior for the phases�	�ðsÞ of the complete

amplitudes:

��� ! arctan

�
� sin�	Pð0Þ

1þ cos�	Pð0Þ
�
¼ �

2
; (A30)

��K ! 2�þ arctan

�
sin�	K� ð0Þ

1� cos�	K� ð0Þ
�
’ 2�þ �

3
;

(A31)

�K �K ! arctan

�
� sin�	Pð0Þ
1þ cos�	Pð0Þ

�
¼ �

2
: (A32)

These are shown in Fig. 10. For the D function, the Regge
parametrization leads to the following asymptotic limits
[cf. Eq. (14)]

1

D��ðsÞ !
i

sð1=2Þ
;

1

D�KðsÞ !
1� e�i�	K� ð0Þ

sin�	K� ð0Þ
1

s2þð1=3Þ ;

1

DK �KðsÞ
! i

sð1=2Þ
:

(A33)

APPENDIX B: ANALYTICAL MODEL FOR THE
P-WAVE �K ! �K AMPLITUDE

1. K-matrix parametrization (s < slow)

To fit the phase shift data on �K scattering, we use a
two-channel K matrix model, with the two channels
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FIG. 8. Real (top panel) and imaginary (bottom panel) parts of
the isovector, P-wave amplitude, t�KðsÞ=ðq�qKÞ (solid lines).
The dashed line is the result of the K-matrix parametrization.
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FIG. 9. Real (top panel) and imaginary (bottom panel) parts of
the isovector, P-wave amplitude, tK �KðsÞ (solid lines). The dashed
line is the result of the K-matrix parametrization.
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being K� and K�ð892Þ�; in the second channel we
treat K� as a stable particle (i.e. we ignore cuts on
the third sheet). Similarly to the ��, K �K case for the
K-matrix representation of K� and K�ð892Þ� ampli-
tudes we write

½t̂�1ðsÞ�	� ¼ ½K�1ðsÞ�	� þ �	�

ðs� sþ	 Þðs� s�	 Þ
s

I	ðsÞ;
(B1)

where t̂	� � t	�=ð4q	q�Þ,

q	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� sþ	 Þðs� s�	 Þ

4s

s
; s�	 ¼ ðm	 �m�Þ2;

m1 ¼ mK; m2 ¼ MK�ð892Þ; (B2)

and

I	ðsÞ ¼ I	ð0Þ � s

�

Z 1

sþ	
ds0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� sþ	

s0 Þð1� s�	
s0 Þ

q
s0ðs0 � sÞ : (B3)

A convenient choice for the subtraction constant I	ð0Þ
is to take ReI	ðM2

K�ð892ÞÞ ¼ 0 so that one of the poles of

K11 is located at mass squared of the K�ð892Þ, m2
2. In

terms of phase shift and inelasticity, the K� and
K�ð892Þ� amplitudes are given by

t11 ¼ 
e2i�11 � 1

2i�1

; t22 ¼ 
e2i�22 � 1

2i�2

;

t12 ¼ t21 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
2

p
eið�11þ�22Þ

2
ffiffiffiffiffiffiffiffiffiffiffi
�1�2

p ;

(B4)

where �	ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� sþ	

s Þð1� s�	
s Þ

q
. The denominators

D	� of the K� and K�ð892Þ� amplitudes are defined

by the Omnés-Muskhelishvili function

D	�ðsÞ ¼ exp

�
� s

�

Z 1

ðmKþm�Þ2
ds0

�	�ðs0Þ
s0ðs0 � sÞ

�
: (B5)

To fit the P-wave phase shift data [19–21] we use a
three-pole parametrization of the K matrix

K11 ¼ 	2
1

M2
K�ð892Þ � s

þ �2
1

s2 � s
þ �2

1

s3 � s
þ �ð0Þ

11 þ �ð1Þ
11 s;

K22 ¼ �2
2

s2 � s
þ �2

2

s3 � s
þ �ð0Þ

22 þ �ð1Þ
22 s;

K12 ¼ K21 ¼ �1�2

s2 � s
þ �1�2

s3 � s
þ �ð0Þ

12 þ �ð1Þ
12 s;

(B6)

where

	2
1 ¼

�K�ð892ÞM5
K�ð892Þ

½ðM2
K�ð892Þ � sþ1 ÞðM2

K�ð892Þ � s�1 Þ�3=2
: (B7)

And, for the parameters of the K matrix we obtain
�K�ð892Þ ¼ 0:0504 GeV,
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FIG. 10. Phase of the �� (top panel), �K (middle panel), and
K �K (bottom panel) P-wave amplitude. The dashed line is the
result of the K-matrix parametrization from Eq. (5).
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ffiffiffiffiffi
s2

p ¼ 1:35 GeV;
ffiffiffiffiffi
s3

p ¼ 1:75 GeV;

�1 ¼ 0:110; �2 ¼ �0:685;

�1 ¼ 0:142; �2 ¼ 1:089:

�ð0Þ
11 ¼ 0:204; �ð0Þ

12 ¼ �0:983;

�ð0Þ
22 ¼ 8:329; �ð1Þ

11 ¼ �0:052;

�ð1Þ
12 ¼ 0:426; �ð1Þ

22 ¼ �3:834

(B8)

with the �ð0Þ’s in units of GeV�2 and �ð1Þ’s in units of
GeV�4. The phase �11 and magnitude jt11j of the
K� ! K�-scattering amplitude is compared to the
data in Fig. 11. We can express t̂	� ¼ t	�=ð4q	q�Þ in

terms of a product of poles, zeros, and the Omnés-
Muskhelishvili function

t̂	� ¼ N	�

Q
l¼1;Nz;	�

ðs� sð	�Þz;l ÞQ
l¼1;8ðs� sP;lÞ

	 exp

�
s

�

Z 1

ðmKþm�Þ2
ds0

�	�ðs0Þ
s0ðs0 � sÞ

�
; (B9)

where Nz;	� is the number of zeros of t̂	� for which we

find Nz;11 ¼ Nz;22 ¼ 7, Nz;12 ¼ Nz;21 ¼ 6. The normal-

ization factors are given by N11 ¼ 7:075, N12 ¼
�421:989, N22 ¼ 2:808. The positions of the poles
and zeros are given by (in units of GeV2)

sP;1=2 ¼ 0:3573� i0:4055;

sP;3=4 ¼ 2:4912� i0:5762;

sP;5=6 ¼ 20:3504� i3:3856;

sP;7 ¼ �0:00489;

sP;8 ¼ �6:2666;

(B10)

and

sð11Þz;1=2 ¼ 0:3428� i0:4470;

sð11Þz;3=4 ¼ 2:2188� i0:6175;

sð11Þz;5=6 ¼ 12:8061� i0:2470;

sð11Þz;7 ¼ 0:sð12Þz;1=2 ¼ 1:9181� i0:3669;

sð12Þz;3 ¼ 3:3956; sð12Þz;4 ¼M2
K�ð892Þ;

sð11Þz;5=6 ¼ 0: sð22Þz;1=2 ¼ 2:2704� i0:2273;

sð22Þz;3=4 ¼ 20:2775� i3:3479; sð22Þz;5 ¼�0:00489;

sð22Þz;6 ¼�6:1874; sð22Þz;7 ¼ 0;

(B11)

respectively. As can be seen from Fig. 12, this K
matrix leads to a dramatic, most likely unphysical,
drop in the phase �11 (dashed line) around 6 GeV2

and results in both �11 and �11 vanishing asymptoti-
cally. Furthermore, the resulting t matrix has complex
poles and zeros on the physical sheet [see Eqs. (B11)
and (B11)]. The origin of these unphysical poles can be
illustrated by considering a single channel K11 only,
with a single pole and constant background term. The
resulting t-matrix element is then given by

t̂ 11 ¼ 1

8

	2
1 þ �0

11ðM2
K�ð892Þ � sÞ

ðM2
K�ð892Þ � sÞ � ½s�ðmK�m�Þ2�½s�ðmKþm�Þ2�

s I1ðsÞ½	2
1 þ �0

11ðM2
K�ð892Þ � sÞ�

: (B12)

If, for simplicity, we replace mK by m� and keep only the imaginary of I1ðsÞ, in the limit jsj ! 1 and �0
11 ! 0 with

j�0
11jjsj 
 	2

1 one finds
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FIG. 11. �11 (top panel) and jt11j (bottom panel) of K� ! K�
scattering amplitude vs data from [20] (squares), [21] (circles),
and [19] (triangles).
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t̂ 11 ! 1

8

�0
11

1� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

�

s

q
�0
11s

: (B13)

In the limit �0
11 ! 0 the pole is on the first sheet and

approaches s ! � i
�0
11

. Even though the K matrix itself

has unphysical singularities and zeros it still faithfully
reproduces the phase and magnitude of the amplitude of
K�-scattering data up to 1.8 GeV. Similarly to the cases in
�� and K �K scattering presented in previous sections, we
will truncate theK matrix solution at slow and match it with
Regge parametrization at shigh.

2. Regge parametrization for
�0K� ! �0K� (s > shigh)

Asymptotically we only retain the Pomeron (P) in the t
channel and the K� trajectory in the u channel

FIt¼0
�K!�Kðt; s; uÞ ¼ � 1þ e�i�	PðtÞ

sin�	PðtÞ ��K
P 	PðtÞ

	 1þ 	PðtÞ
2

ebtðs=ŝÞ	PðtÞ; (B14)

FIu¼ð1=2Þ
�K!�Kðu; t; sÞ ¼

1� e�i�	K� ðuÞ

sin�	K� ðuÞ �K�
2	K� ðuÞ þ 1

2	K� ð0Þ þ 1

	 ebuð	0
K�sÞ	K� ðuÞ: (B15)

The Pomeron trajectory is given in Eq. (A11) with parame-
ters in Pomeron parametrization taken from [23,25], except

for the coupling constant��K
P ¼fðPÞ� fðPÞK ¼½���

P �K �K
P �1=2¼

1:709. The K� trajectory is given by 	K� ðuÞ ¼ 0:352þ
0:882u as in Appendix A. From s–t and s–u channel
crossings, we obtain

FIs¼ð1=2Þ
�K!�Kðs; t; uÞ ¼

1ffiffiffi
6

p FIt¼0
�K!�Kðt; s;uÞþFIt¼1

�K!�Kðt; s;uÞ

þ 1

3
FIu¼ð1=2Þ
�K!�Kðu; t; sÞþ

4

3
FIu¼ð3=2Þ
�K!�Kðu; t; sÞ:

(B16)

The P-wave projection of the Regge amplitude in
�K ! �K scattering is given by

t
Regge
�K!�KðsÞ ¼

�

8

Z 1

�1
ðd cosÞ cos�

�
1ffiffiffi
6

p FIt¼0
�K!�Kðt; s; uÞ

þ 1

3
FIu¼ð1=2Þ
�K!�Kðu; t; sÞ

�
: (B17)

The complete amplitude for the �K ! �K amplitude is
given by

t�K!�KðsÞ ¼
8<
: tK matrix

11 ðsÞ s < slow

tRegge�K!�KðsÞ s > shigh
; (B18)
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FIG. 12. Real (top panel) and imaginary (middle panel) parts
of the isovector, P-wave amplitude, t�K!�KðsÞ and phase �11

(solid curves). The dashed curves are the result of the K-matrix
parametrization.
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where we choose
ffiffiffiffiffiffiffiffi
slow

p ¼ 2:3 GeV,
ffiffiffiffiffiffiffiffiffi
shigh

p ¼ 2:5 GeV

for the real part of the amplitude and
ffiffiffiffiffiffiffiffiffi
shigh

p ¼
2:7 GeV for the imaginary part of the amplitude as
shown in Fig. 12. From the P-wave projection of the
Regge amplitude we find the following asymptotic be-
havior for the phase �11ðsÞ and denominator function of
the complete amplitudes,

�11 ! arctan

�
� sin�	Pð0Þ

1þ cos�	Pð0Þ
�
¼ �

2
;

1

D�K!�KðsÞ !
i

sð1=2Þ :
(B19)

The phase is shown in Fig. 12.
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