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2Université de Lyon, F-69622 Lyon, France; Université Lyon 1, CNRS/IN2P3, UMR5822 IPNL, F-69622 Villeurbanne Cedex, France

(Received 17 October 2011; published 6 March 2012)

We discuss a five-dimensional minimal supersymmetric standard model compactified on a S1=Z2

orbifold, looking at, in particular, the one-loop evolution equations of the Yukawa couplings for the quark

sector and various flavor observables. Different possibilities for the matter fields are discussed; that is,

where they are in the bulk or localized to the brane. The two possibilities give rise to quite different

behaviors. By studying the implications of the evolution with the renormalization group of the Yukawa

couplings and of the flavor observables, we find that, for a theory that is valid up to the unification scale,

the case where fields are localized to the brane, with a large tan�, would be more easily distinguishable

from other scenarios.
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I. INTRODUCTION

The masses of the quarks and charged leptons are de-
termined in the standard model (SM) via Yukawa cou-
plings to the Higgs boson. The origin of their structure
(masses and mixing angles) has no explanation within the
SM and presents as one of the major challenges for physics
beyond the SM. Among these models, those with extra
spatial dimensions offer many possibilities for model
building and TeV-scale physics scenarios which can now
be explored or constrained at the Large Hadron Collider
(LHC). Extra-dimensional models allow, for example, a
way to generate electroweak symmetry breaking or super-
symmetry breaking through the choice of appropriate
boundary conditions (for a review, see Ref. [1]). In addi-
tion, for the case of flat extra dimensions, the presence of
towers of excited Kaluza-Klein (KK) states induces a
power-law enhancement of the gauge couplings, leading
to possible low-scale unification [2,3]. This effect can be
applied to other couplings, such as Yukawa couplings,
giving an original way to generate mass hierarchies [2,4].
The study of the renormalization group equations (RGEs)
provides a way by which partial explorations of the physics
implications at a high-energy scale is possible, as the
theories at asymptotic energies may reveal new symmetries
or other interesting properties which may lead to deeper
insights into the physical content. As such, in order to
understand these as yet unexplained hierarchies of mixing

angles and fermion masses, a great deal of work has gone
into analyzing the RGEs [5–12]. Therefore, the behavior of
the well-known quark sector’s flavor mixings in the
charged current, as described by the Cabibbo-Kobayashi-
Maskawa (CKM) matrix, shall be a focus of this paper.
By using the RGEs, we will study the asymptotic prop-

erties of the Lagrangian parameters like the Yukawa cou-
pling constants and mixing angles and explore the
possibility of a model in which the CKM matrix might
have a simple, special form at asymptotic energies. This
quest will, however, be limited by the fact that extra-
dimensional theories are only effective ones, limited by a
cutoff in their physical description of fundamental phe-
nomena. Therefore, the following study can only be used
as an indication of the behavior of couplings and mixing
parameters at an intermediate scale between the electro-
weak scale (at which these parameters are measured) and
the higher scale at which the effective theory ceases to be
valid. However, in the range of the LHC energies (of the
order of a few TeV) and beyond, one can indeed test if the
departure from the usual behavior of the coupling evolu-
tion can be seen in precision flavor measurements. In order
to discuss the implications of an effective five-dimensional
supersymmetric theory, we first recall the usual formalism
in the SM, where the CKM matrix has four observable
parameters including three mixing angles and one phase. In
the standard parametrization, it has the form:

VCKM ¼
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

0
BB@

1
CCA ¼

c12c13 s12c13 s13e
�i�

�s12c23 � c12s23s13e
i� c12c23 � s12s23s13e

i� s23c13

s12s23 � c12c23s13e
i� �c12s23 � s12c23s13e

i� c23c13

0
BB@

1
CCA; (1)

where s12 ¼ sin�12, c12 ¼ cos�12, etc., are the sines and
cosines of the three mixing angles �12, �23 and �13, and �
is the CP-violating phase.
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The aim of this paper is to therefore study these effects
explicitly in the case of one extra dimension within a
minimal supersymmetric model, which will be referred
to as 5D MSSM. Note that, as pointed out in Ref. [13], a
supersymmetric and extra-dimensional extension to the
SM can be considered simultaneously, with the advantages
that though higher dimensional field theories are nonrenor-
malizable (requiring the existence of a UV completion),
superstring theories (which contain supersymmetry) pro-
vide the main hope in this context. In fact, such a point of
view has already been explored through AdS/CFT corre-
spondences in accounting for both ‘‘little’’ and ‘‘big’’
hierarchies [14]. Also, embedding the SM in an extra-
dimensional space-time does not stabilize instabilities
due to quantum corrections in the scalar potential, while
supersymmetry may ameliorate this. Finally, most
4-dimensional supersymmetric models lack a simple
mechanism for supersymmetry breaking, something the
extra dimensions may offer. To be precise, we will discuss
a five-dimensional N ¼ 1 supersymmetric model com-
pactified on the S1=Z2 orbifold as a simple testing ground
for the effects of the extra dimension on the quark Yukawa
couplings and the CKM matrix observables. We will not
discuss in the present paper the RGE evolution of the
sparticle mixing parameters sector. This interesting ques-
tion will be explored elsewhere as it requires more detailed
assumptions on the sparticle spectrum and corresponding
soft supersymmetry breaking (SSB) parameters, where at
least some SSB parameter matrices can be nondiagonal in
the basis in which quarks are diagonal (this implies flavor-
violating decays, giving rise to the well-known flavor
problem in the MSSM and its extensions; even without
considering the RGE evolution of the SSB parameters).

The paper is organized as follows: In Sec. II, we shall
develop our model and calculate the various beta functions
required to determine the evolution equations for the
Yukawa couplings. We shall look at two cases: where the
matter fields are localized on the brane and where they are
free to propagate in the bulk. In Sec. III, we shall then
determine the evolutions of fermion Yukawa couplings and
the CKM matrix which follows from them. In Sec. IV, we
then numerically analyze the evolution behaviors of the
physical observables, including the Yukawa couplings,
quark flavor mixings and the CP-violation Jarlskog pa-
rameter. Our results and conclusions are presented in
Sec. V.

II. THE 5D MSSM AND BETA FUNCTIONS

In this universal extra-dimensional formalism, the com-
pactification S1=Z2 implies that the five-dimensional (5D)
Lorentz invariance is broken to the usual four-dimensional
(4D) one; however, a remnant of momentum conservation
along the fifth coordinate implies that the KK number is
conserved at tree level and that KK parity is conserved
at loop level. The KK-parity invariance has two main

implications in phenomenology: the contributions of the
KK modes to electroweak precision observables arise only
through loops, and the exact KK parity implies that the
lightest KK mode is stable and can be a cold dark matter
candidate.
To begin our calculation, we note that the beta functions

can be derived more easily in the superfield formalism,
where we shall now briefly discussN ¼ 1 supersymmetry
in a five-dimensional Minkowski space and its description
in terms of 4D superfields. Note that more details of this
approach can be found in Refs. [15–19], where, as a matter
of notation, we shall label our space-time coordinates by
(x�, y).
As an introductory example to this formalism, consider

the gauge sector, described by a 5D N ¼ 1 vector super-
multiplet which consists (on-shell) of a 5D vector field AM,
a real scalar S, and two gauginos, � and �0; the action for
which can be given by

Sg ¼
Z

d5x
1

2kg2
Tr

�
� 1

2
FMNFMN �DMSDMS

� i ���MDM�� i ��0�MDM�
0 þ ð ��þ ��0Þ½S; �þ �0�

�
;

(2)

with DM ¼ @M þ iAM and �M ¼ ð��; i�5Þ. FMN ¼
� i

g ½DM;DN� and k normalizes the trace over the gener-

ators of the gauge groups. One can also write these fields in
terms of a N ¼ 2, 4D vector supermultiplet, � ¼ ðV; �Þ,
where V is a N ¼ 1 vector supermultiplet containing A�

and �, and � is a chiral N ¼ 1 supermultiplet containing
�0 and S0 ¼ Sþ iA5. This form of writing the fields fol-
lows from the decomposition of the 5D supercharge (which
is a Dirac spinor) into two Majorana-type supercharges,
which constitute aN ¼ 2 superalgebra in 4D. Both V and
� (and their component fields) are in the adjoint represen-
tation of the gauge groupG. Using the supermultiplets, one
can write the original 5D N ¼ 1 supersymmetric action
Eq. (2) in terms of N ¼ 1 4D superfields and the cova-
riant derivative in the y direction [18]:

Sg ¼
Z

d5xd2�d2 ��
1

4kg2
Tr

�
1

4
ðW�W��ð ��2Þ þ H:cÞ

þ ðe�2gVrye
2gVÞ2

�
; (3)

with W� ¼ � 1
4
�D2e�2gVD�e

2gV . D� is the covariant de-

rivative in the 4D N ¼ 1 superspace (see Refs. [20,21])
and ry ¼ @y þ �. This action can be expanded and quan-

tized to find the Feynman rules to a given order in the
gauge coupling g. The details of this procedure can be
found in Ref. [15]. Because of the nonrenormalization
theorem [22], the beta functions for the couplings of the
operators in the superpotential are governed by the wave-
function renormalization constants Zij ¼ 1þ �Zij. The
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Feynman diagrams related to the wave-function renormal-
ization are given in Fig. 1.

At this point, we can note that Higgs superfields and
gauge superfields will always propagate into the fifth di-
mension in our model. However, different possibilities of
localization for the matter superfields can be studied by
taking the two limiting cases of superfields containing the
SM fermions in the bulk or all superfields containing SM
fermions restricted to the brane, respectively. For the case
where all fields can propagate in the bulk, the action for the
matter fields would be [15]

Smatter ¼
Z

d8zdyf ��i�i þ�c
i
��c
i þ�c

i @5�i�ð ��Þ
� ��i@5 ��

c
i �ð�Þ þ ~gð2 ��iV�i � 2�c

i V
��c
i

þ�c
i ��i�ð ��Þ þ ��i �� ��c

i �ð�ÞÞg: (4)

Again, this action can be expanded and quantized, as de-
tailed in Ref. [15]. Similarly, we can do the same for the
case where all superfields containing SM fermions are
restricted to the brane; in which case the part of the action
involving only gauge and Higgs fields is not modified,
whereas the action for the superfields containing the SM
fermions becomes

Smatter ¼
Z

d8zdy�ðyÞf ��i�i þ 2~g ��iV�ig: (5)

Before proceeding further, we shall recall that the
Yukawa couplings in the bulk are forbidden by the 5D
N ¼ 1 supersymmetry. However, they can be introduced
on the branes, which are 4D subspaces with reduced su-
persymmetry [15]:

Sbrane ¼
Z

d8zdy�ðyÞ
�
1
6
~�ijk�i�j�k�ð ��Þ þ H:c:

�
; (6)

Returning to Figs. 1(a)–1(e), these lead to the usual
minimal supersymmetric standard model if all the extra-
dimensional effects were excluded; that is, where
the zero modes in Fig. 1(a) and 1(c) give the beta functions
of the usual 4D MSSM. Figure 1(b) is a new

extra-dimensional effect related to the coupling to the
chiral superfield originating from the fifth component of
the gauge fields and where the higher KK modes in
Figs. 1(a)–1(e) are also contributing additional extra-
dimensional effects. Note that the mass dimension for the
Yukawa couplings in 5D is � 1

2 . Therefore, the power-law

dependence of their evolution, which results from these
radiative corrections, becomes significantly important.
Also, it should be noted at this point that though the matter
fields do not normally receive a wave-function renormal-
ization in N ¼ 2 supersymmetry, that is the KK con-
served diagrams would not contribute to the Yukawa
evolution, N ¼ 2 supersymmetry has been explicitly
broken by the compactification [15].
As such, following the procedures outlined in Ref. [15],

the RGEs for the Yukawa couplings in the 5D MSSM,
for all three generations propagating in the bulk, are ex-
pressed as

16	2 dYd

dt
¼ Ydð3TrðYy

d YdÞ þ TrðYy
e YeÞ

þ 3Yy
d Yd þ Yy

u YuÞ	SðtÞ2

� Yd

�
7

15
g21 þ 3g22 þ

16

3
g23

�
SðtÞ;

16	2 dYu

dt
¼ Yuð3TrðYy

u YuÞ þ 3Yy
u Yu þ Yy

d YdÞ	SðtÞ2

� Yu

�
13

15
g21 þ 3g22 þ

16

3
g23

�
SðtÞ;

16	2 dYe

dt
¼ Yeð3TrðYy

d YdÞ þ TrðYy
e YeÞ þ 3Yy

e YeÞ	SðtÞ2

� Ye

�
9

5
g21 þ 3g22

�
SðtÞ: (7)

That is, when the energy scale �> 1=R or when the
energy scale parameter t ¼ lnð�=MZÞ> lnð 1

MZR
Þ (where

we have setMZ as the renormalization point and use SðtÞ ¼
etMZR), the beta functions become as above, replacing the
usual 4D MSSM RGEs. Note that, since we compactify
with the symmetry y ! �y (S1=Z2 symmetry), the integral

FIG. 1. The one-loop diagrams related to the wave-function renormalization of the matter superfields, in which diagrams 1(a)–1(e)
refer to the case where all the matter fields are in the bulk, and the excited KK states are labeled by the number without the bracket;
whereas diagrams a), c), and d) are related to the brane-localized matter fields case, in which the KK states are labeled by the number
inside the bracket [15].
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of the extra dimension is from 0 ! 	R, not from 0 !
2	R. As such, the X� parameter is, in our case, only half
of the volume of the �-dimensional unit sphere (see
Ref. [2]), i.e. X1 ¼ 1, and this leads to a factor of 2
difference (due to the compactification) with respect to
other Refs. [2,15].

Furthermore, when 0< t < lnð 1
MZR

Þ (that is, MZ <�<

1=R), the Yukawa evolution equations at low energy are
dictated by the usual MSSM, where the above equations
reduce to the 4D MSSM equations:

16	2 dYd

dt
¼ Ydð3TrðYy

d YdÞ þ TrðYy
e YeÞ þ 3Yy

d Yd þ Yy
u YuÞ

� Yd

�
7

15
g21 þ 3g22 þ

16

3
g23

�
;

16	2 dYu

dt
¼ Yuð3TrðYy

u YuÞ þ 3Yy
u Yu þ Yy

d YdÞ

� Yu

�
13

15
g21 þ 3g22 þ

16

3
g23

�
;

16	2 dYe

dt
¼ Yeð3TrðYy

d YdÞ þ TrðYy
e YeÞ þ 3Yy

e YeÞ

� Ye

�
9

5
g21 þ 3g22

�
:

(8)

Note also that from the KK-number conserved one-loop
diagram in Fig. 1(a), at each KK level, the new excited
states exactly mirror the zero-mode ground state, where
their contributions to the anomalous dimensions are ex-
actly the same as those in the usual 4-dimensional MSSM.
As a result, when the energy � ¼ 1=R, or SðtÞ ¼ 1, the
part in the beta function associated with the gauge fields in
Eqs. (7) reduce to the normal 4D MSSM formalism in
Eqs. (8).

For the second case, we shall consider, that of the matter
fields localized on the brane, we have (in the Feynman
diagrams, only Fig. 1(a), 1(c), and 1(d) will contribute to
the wave function of the matter fields, while the nonzero
integer numbers inside the bracket labeling the KK states
of the gauge and Higgs superfields, respectively)

16	2 dYd

dt
¼ Ydð3TrðYy

d YdÞ þ TrðYy
e YeÞ

þ ð6Yy
d Yd þ 2Yy

u YuÞSðtÞÞ
� Yd

�
19

30
g21 þ

9

2
g22 þ

32

3
g23

�
SðtÞ;

16	2 dYu

dt
¼ Yuð3TrðYy

u YuÞ þ ð6Yy
u Yu þ 2Yy

d YdÞSðtÞÞ

� Yu

�
43

30
g21 þ

9

2
g22 þ

32

3
g23

�
SðtÞ;

16	2 dYe

dt
¼ Yeð3TrðYy

d YdÞ þ TrðYy
e YeÞ þ 6Yy

e YeSðtÞÞ

� Ye

�
33

10
g21 þ

9

2
g22

�
SðtÞ:

(9)

As such, if we write the evolution of the gauge couplings
in 4-dimensions as

16	2 dgi
dt

¼ big
3
i ; (10)

where in the 4D MSSM, the parameters bi read
ðb1; b2; b3Þ ¼ ð335 ; 1;�3Þ [7], using an SUð5Þ normaliza-

tion. If we consider our 5D theory as effective up to a scale
�, then between the scale R�1 (the compactification scale
of the single flat extra dimension), where the first KK states
are excited, and the cutoff scale�, there are finite quantum
corrections from the�R number of KK states for the gauge
couplings. As a result, once the KK states are excited, these
couplings exhibit power-law dependencies on �. This can
be illustrated if �R � 1, to a very good accuracy, with the
generic 4D beta function of the gauge couplings with the
power-law evolution behavior [4,5]

�4D ! �4D þ ðSð�Þ � 1Þ ~�; (11)

where ~� is a generic contribution from a single KK level,
and where its coefficient is not a constant but instead
Sð�Þ ¼ �R, with�max ¼ �, reflecting the power-law run-
ning behavior. Therefore, in terms of the scale parameter t,
the evolution of the gauge couplings can be written as

16	2 dgi
dt

¼ ½bi þ ðSðtÞ � 1Þ~bi�g3i : (12)

Next, we consider the beta functions of the gauge cou-
plings in the 5D MSSM. In fact, after compactification of
the 5D MSSM, we have two 4D N ¼ 1 chiral super-
multiplets, � and �c, where the zero modes of � give
us the normal matter fields and Higgs fields as well as their
super partners, while �c is a new supermultiplet. In the
component field formalism, at each KK level, aside from
the quantum corrections that mirror those of the 4D
MSSM, the only new one-loop contributions to the A�

Feynman diagrams are from the wave-function renormal-
ization of A� (which contribute via the coupling of A� to

the complex scalar field and its superpartner in the super-
field � and the coupling of A� with the new fermion field

and its superpartner in the superfield �c associated with
the two doublets of the Higgs fields and the matter fields,
respectively, in the bulk). This then gives rise to the master
beta functions of the gauge couplings in the 5D MSSM as
follows:

ð~b1; ~b2; ~b3Þ ¼ ð65;�2;�6Þ þ 4
; (13)

where 
 represents the number of generations of fermions
which propagate in the bulk. So, in the two cases we shall
consider, that of all fields propagating in the bulk, i.e.

 ¼ 3, we have [4]

~b i ¼ ð665 ; 10; 6Þ: (14)

Similarly, for all our matter fields localized to the 3-brane
(that is, 
 ¼ 0), we have
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~b i ¼
�
6

5
;�2;�6

�
: (15)

In Fig. 2, we have plotted the evolutions of the brane
localized and bulk field cases for several choices of com-
pactification scales for the extra-dimension (R). From these
plots and the discussion given in Ref. [4], we find that for
the three gauge coupling constants to approach a small
region at some value of t requires an extremely large value
of 1=R, which is of no phenomenological interest at
present. For the case of our fields being brane-localized,
the extra dimensions naturally lead to gauge coupling
unification at an intermediate mass scale for the compacti-
fication radii considered here.

III. SCALING OF THE CKM MATRIX

The RGEs are an important tool for investigating the
properties of the quark masses and the CKM matrix at
different energy scales. This, therefore, strongly constrains
the possible symmetries or textures at the grand unification
scale. Having derived a set of equations for the evolutions
of the Yukawa and gauge couplings in the previous section,
we now develop the evolutions of the CKM matrix in the
5D MSSM for our two cases. Consider first the case of all
the matter fields propagating in the bulk. From the Yukawa
evolution equations [Eqs. (7)], we can convert them to the
following form:

16	2 dYd

dt
¼ YdfTd	S

2 �Gd þ ð3Yy
d Yd þ Yy

u YuÞ	S2g;

16	2 dYu

dt
¼ YufTu	S

2 �Gu þ ð3Yy
u Yu þ Yy

d YdÞ	S2g;

16	2 dYe

dt
¼ YefTe	S

2 �Ge þ ð3Yy
e YeÞ	S2g; (16)

where Td¼3TrðYy
d YdÞþTrðYy

e YeÞ, Gd¼ð 715g21þ3g22þ
16
3 g

2
3ÞSðtÞ, Tu ¼ 3TrðYy

u YuÞ, Gu¼ð1315g21þ3g22þ 16
3 g

2
3ÞSðtÞ,

Te ¼ 3TrðYy
d YdÞ þ TrðYy

e YeÞ, and Ge ¼ ð95g21 þ 3g22ÞSðtÞ.
Further, the evolution of the square of the Yukawa coupling
matrices becomes

16	2 dðYy
d YdÞ
dt

¼ 2ðTd	S
2 �GdÞðYy

d YdÞ þ 6ðYy
d YdÞ2	S2

þ ½ðYy
u YuÞðYy

d YdÞ þ ðYy
d YdÞðYy

u YuÞ�	S2;

16	2 dðYy
u YuÞ
dt

¼ 2ðTu	S
2 �GuÞðYy

u YuÞ þ 6ðYy
u YuÞ2	S2

þ ½ðYy
u YuÞðYy

d YdÞ þ ðYy
d YdÞðYy

u YuÞ�	S2;

16	2 dðYy
e YeÞ
dt

¼ 2ðTe	S
2 �GeÞðYy

e YeÞ þ 6ðYy
e YeÞ2	S2:

(17)

The square of the quark Yukawa coupling matrices can
be diagonalized by using two unitary matrices U and V,

diagðf2u; f2c; f2t Þ ¼ UYy
u YuU

y;

diagðh2d; h2s ; h2bÞ ¼ VYy
d YdV

y;
(18)

in which f2u, f
2
c , f

2
t , and h2d, h

2
s , h

2
b are the eigenvalues of

Yy
u Yu and Yy

d Yd, respectively. It follows that the CKM

matrix appears as a result of the transition from the quark
flavor eigenstates to the quark mass eigenstates upon this
diagonalization of the quark mass matrices:

VCKM ¼ UVy: (19)

By imposing the unitary transformation Eq. (18), on both

sides of the evolution equations of Yy
u Yu and Yy

d Yd, and

taking the diagonal elements, we obtain the following two
relations:

3 4 5 6 7 8 9
0.0

0.5

1.0

1.5

2.0

2.5

3.0

t

G
au

ge
C

ou
pl

in
gs

3 4 5 6 7 8 9 10

0.4

0.6

0.8

1.0

1.2

t

G
au

ge
C

ou
pl

in
gs

FIG. 2 (color online). Gauge couplings g1 (red), g2 (blue), g3 (green) with: in the left panel, all matter fields in the bulk; and the right
panel for all matter fields on the brane; for three different values of the compactification scales [2 TeV (solid line), 8 TeV (dot-dashed
line), 15 TeV (dashed line)] as a function of the scale parameter t.
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16	2 df
2
i

dt
¼ f2i

�
2ðTu	S

2 �GuÞ þ 6	S2f2i

þ 2	S2
X
j

h2j jVijj2
�
;

16	2
dh2j
dt

¼ h2j

�
2ðTd	S

2 �GdÞ þ 6	S2h2j

þ 2	S2
X
i

f2i jVijj2
�
;

(20)

where Vij are the elements of VCKM. These, along with the

equation

16	2 dy
2
e

dt
¼ y2e½2ðTe	S

2 �GeÞ þ 6	S2y2e�; (21)

for the lepton sector, constitute a complete set of coupled

differential equations for the three families, in which y2e ¼
diagðy2e; y2�; y2�Þ ¼ Yy

e Ye.

Considering the variation of the square of the quark
Yukawa couplings, we may impose two new unitary ma-
trices to make them diagonal. Thus, by applying Eq. (19),
we are led to the variation of the CKM matrix, and thus its
evolution equation when the energy scale is beyond the
threshold R�1:

16	2 dVik

dt
¼ 	S2

� X
m;j�i

f2i þ f2j

f2i � f2j
h2mVimV

�
jmVjk

þ X
j;m�k

h2k þ h2m
h2k � h2m

f2jV
�
jmVjkVim

�
: (22)

Likewise, for the case where the matter fields are local-
ized to the brane, Eq. (9) gives us the following:

16	2 dYd

dt
¼ YdfTd �Gd þ ð6Yy

d Yd þ 2Yy
u YuÞSg;

16	2 dYu

dt
¼ YufTu �Gu þ ð6Yy

u Yu þ 2Yy
d YdÞSg;

16	2 dYe

dt
¼ YefTe �Ge þ ð6Yy

e YeÞSg;

(23)

where Td ¼ 3TrðYy
d YdÞ þ TrðYy

e YeÞ, Gd ¼ ð1930 g21 þ 9
2 g

2
2 þ

32
3 g

2
3ÞSðtÞ, Tu ¼ 3TrYy

u Yu, Gu ¼ ð4330 g21 þ 9
2g

2
2 þ 32

3 g
2
3ÞSðtÞ,

Te ¼ 3TrðYy
d YdÞ þ TrðYy

e YeÞ, and Ge ¼ ð3310 g21 þ 9
2 g

2
2ÞSðtÞ.

As was done earlier, these can be manipulated to

16	2 dðYy
d YdÞ
dt

¼ 2ðTd �GdÞðYy
d YdÞ þ 12ðYy

d YdÞ2S
þ 2½ðYy

u YuÞðYy
d YdÞ þ ðYy

d YdÞðYy
u YuÞ�S;

16	2 dðYy
u YuÞ
dt

¼ 2ðTu �GuÞðYy
u YuÞ þ 12ðYy

u YuÞ2S
þ 2½ðYy

u YuÞðYy
d YdÞ þ ðYy

d YdÞðYy
u YuÞ�S;

16	2 dðYy
e YeÞ
dt

¼ 2ðTe �GeÞðYy
e YeÞ þ 12ðYy

e YeÞ2S: (24)

This gives us

16	2 df
2
i

dt
¼ f2i

�
2ðTu �GuÞ þ 12Sf2i þ 4S

X
j

h2j jVijj2
�
;

16	2
dh2j
dt

¼ h2j

�
2ðTd �GdÞ þ 12Sh2j þ 4S

X
i

f2i jVijj2
�
;

16	2 dy
2
e

dt
¼ y2e½2ðTe �GeÞ þ 12Sy2e�; (25)

as well as the evolution equation of the CKM matrix
elements

16	2 dVik

dt
¼ 2S

� X
m;j�i

f2i þ f2j

f2i � f2j
h2mVimV

�
jmVjk

þ X
j;m�k

h2k þ h2m
h2k � h2m

f2jV
�
jmVjkVim

�
; (26)

in which the f2i , h
2
j , y

2
e are the eigenvalues of Y

y
u Yu, Y

y
d Yd,

Yy
e Ye as defined earlier.
However, when the energy is below the compactification

scale, we have the usual 4DMSSM evolution equations for
the Yukawa couplings and the CKM matrix:

16	2 df
2
i

dt
¼ f2i

�
2ðTu �GuÞ þ 6f2i þ 2

X
j

h2j jVijj2
�
;

16	2
dh2j
dt

¼ h2j

�
2ðTd �GdÞ þ 6h2j þ 2

X
i

f2i jVijj2
�
;

16	2 dy
2
e

dt
¼ y2e½2ðTe �GeÞ þ 6y2e�;

(27)

and

16	2 dVik

dt
¼

� X
m;j�i

f2i þ f2j

f2i � f2j
h2mVimV

�
jmVjk

þ X
j;m�k

h2k þ h2m
h2k � h2m

f2jV
�
jmVjkVim

�
; (28)

where Tu ¼ 3TrðYy
u YuÞ, Gu ¼ 13

15 g
2
1 þ 3g22 þ 16

3 g
2
3, Td ¼

3TrðYy
d YdÞ þ TrðYy

e YeÞ, Gd ¼ 7
15 g

2
1 þ 3g22 þ 16

3 g
2
3, Te ¼

3TrðYy
d YdÞ þ TrðYy

e YeÞ, and Ge ¼ 9
5g

2
1 þ 3g22.
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Before proceeding to numerically solve these systems of
equations, we choose the initial input values for the gauge
couplings, fermion masses, and CKM elements at the MZ

scale (as in Ref. [5]). The 4D MSSM contains the particle
spectrum of a two-Higgs doublet model extension of the
SM and the corresponding supersymmetric partners. After
the spontaneous breaking of the electroweak symmetry,
five physical Higgs particles are left in the spectrum. The
two-Higgs doublets Hu and Hd, with opposite hyper-
charges, are responsible for the generation of the up-type
and down-type quarks, respectively. The vacuum expecta-
tion values of the neutral components of the two-Higgs
fields satisfy the relation v2

u þ v2
d ¼ ð246ffiffi

2
p Þ2 ¼ ð174 GeVÞ2.

The fermion mass matrices appear after the spontaneous
symmetry breaking from the fermion-Higgs Yukawa cou-
plings. As a result, the initial Yukawa couplings are given
by the ratios of the fermion masses to the appropriate
Higgs vacuum expectation values as follows:

fu;c;t¼mu;c;t

vu

; hd;s;b¼md;s;b

vd

; ye;�;�¼
me;�;�

vd

; (29)

where we define tan� ¼ vu=vd, which is the ratio of
vacuum expectation values of the two-Higgs fields Hu

and Hd.

IV. DISCUSSION OF THE RESULTS

In the previous section, we derived the full set of one-
loop coupled RGEs for the Yukawa and gauge couplings,
together with the CKM matrix elements for both the uni-
versal 5D MSSM and brane-localized matter field scenar-
ios. From these complete sets of the RGEs, we can obtain
the renormalization group flow of all observables related to
up- and down-quark masses and the quark flavor mixings.
For our numerical analysis, we assume the fundamental

scale is not far from the range of LHC scale and set the
compactification scale to be R�1 ¼ 2 TeV, 8 TeV, and
15 TeV, respectively.
Actually, below the supersymmetric breaking scale, the

Yukawa and gauge couplings run in the usual logarithmic
fashion, giving a rather slow change for their values.
Therefore, for supersymmetric breaking theories around
TeV scales, for simplicity, we take the supersymmetric
breaking scale MSUSY ¼ MZ in the present numerical
study and run the RGEs from MZ up to the high-energy
scales for our three different compactification scales. In
Fig. 2, we find the evolution of the gauge couplings have
different properties for these two 5D MSSM scenarios.
Additionally, as illustrated in Fig. 3, for the case of

universal 5DMSSM, once the first KK threshold is crossed
at � ¼ R�1, the power-law running of the various beta
functions causes the Yukawa coupling to rapidly increase
following the rapid increase in the gauge coupling con-
stants in the left panel of Fig. 2. From Eq. (20), we can find
the quadratic term of SðtÞ, providing a positive contribution
to the Yukawa beta functions, which is in contrast to beta
functions of the gauge couplings (which include terms only
linear in SðtÞ). Therefore, from Eq. (20), the positive con-
tribution from SðtÞ terms will dominate the negative con-
tributions from the gauge couplings and cause the Yukawa
couplings to increase rapidly. This behavior can be ob-
served for both small and large tan� cases. However, as
illustrated in the first graph of Fig. 3, for small tan�, the
Yukawa coupling has a large initial value; therefore, it
blows up at a relatively low energy as compared with the
case for large tan�. As a result, as one evolves upward in
the scale, the top Yukawa coupling is rising with a fast rate
and is pushed up against the Landau pole, where it be-
comes divergent and blows up. In the vicinity of this
singular point, the perturbative calculation becomes

0 2 4 6 8
0

2

4

6

8

10

t

f t

Runnings of ft for tan 1

0 2 4 6 8
0

2

4

6

8

10

t

f t

Runnings of ft for tan 30

FIG. 3 (color online). The Yukawa coupling ft for the top quark (in the bulk) as a function of the scale parameter t, for (left panel)
tan� ¼ 1 and (right panel) tan� ¼ 30 for different compactification scales: R�1 ¼ 2 TeV (red, dotted line), 8 TeV (blue, dotted-
dashed line), and 15 TeV (green, dashed line).
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invalid, and the higher-order corrections become signifi-
cant. The Landau pole also indicates that there is an upper
limit on the value of the gauge couplings where new
physics must emerge before the Yukawa couplings diverge.

In the brane-localized matter field scenario, the beta
function has only linear terms in SðtÞ, which is comparable
with the SðtÞ term in the beta function for the gauge
couplings. As depicted in Fig. 4, for a small value of

3 4 5 6 7 8 9
0

2
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6

8

10

t

f t
Runnings of ft for tan 1

3 4 5 6 7 8 9
0.0
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0.8
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t

f t

Runnings of ft for tan 30

FIG. 4 (color online). The Yukawa coupling ft for the top quark (on the brane) as a function of the scale parameter t, for (left panel)
tan� ¼ 1 and (right panel) tan� ¼ 30 for different compactification scales: R�1 ¼ 2 TeV (red, dotted line), 8 TeV (blue, dotted-
dashed line), and 15 TeV (green, dashed line).
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FIG. 5 (color online). The CMK matrix elements jVusj (top left), jVubj (top right), jVcbj (bottom left), and the Jarlskog parameter J
(bottom right) as functions of the scale parameter t for tan� ¼ 1. All matter fields are in the bulk for a variety of compactification
scales: R�1 ¼ 2 TeV (red, dotted line), 8 TeV (blue, dotted-dashed line), and 15 TeV (green, dashed line).
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tan�, we have a large initial value of ft, and the gauge
coupling contribution to the Yukawa beta function is sub-
dominant only. Therefore, as discussed previously, the
Yukawa coupling ft increases rapidly as one crosses the
KK threshold at � ¼ R�1, resulting in a rapid approach of
the singularity before the unification scale is reached.
However, for an intermediate value of tan�, we have a
relative smaller initial condition for the top Yukawa cou-
pling, and the Yukawa terms in the beta function become
less important. The contributions from the gauge couplings
may then become significant, which leads to a net negative
contribution to the beta functions. Therefore, the curvature
of the trajectory of the top Yukawa evolution might change
direction, and the Yukawa evolution will decrease instead
of increasing. This behavior would become more obvious
for a large value of tan�. As observed in Fig. 4, for
tan� ¼ 30, we indeed observe the decreasing behavior of
the top Yukawa couplings. This behavior provides a very
clear phenomenological signature, especially for scenarios
with a larger tan� and that are valid up to the unification
scale where the gauge couplings converge.

We next turn our attention to the quark flavor mixing
matrix, especially the complex phase of the CKM matrix

which characterizes CP-violating phenomena. This phe-
nomena has been unambiguously verified in a number of
K � �K and B� �B systems. Because of the arbitrariness in
choice of phases of the quark fields, the phases of individ-
ual matrix elements of the VCKM are not themselves
directly observable. Among these, we therefore use the
absolute values of the matrix element jVijj as the indepen-
dent set of rephasing invariant variables. Of the nine ele-
ments of the CKM matrix, only four of them are
independent, which is consistent with the four independent
variables of the standard parametrization of the CKM
matrix. For definiteness, we choose the jVubj, jVcbj,
jVusj, and the Jarlskog rephasing invariant parameter J ¼
ImVudVcsV

�
usV

�
cd as the four independent parameters of

VCKM. In Figs. 5 and 6, we plot the energy dependence
of these four variables from the weak scale all the way up
to the high-energy scales for different values of compacti-
fication radii R�1 for the universal 5D MSSM case, and in
Figs. 7 and 8, for the brane-localized matter fields case. In
these sets of pictures, we consider two indicative choices of
tan�, that of tan� ¼ 1 and tan� ¼ 30.
The running of the CKMmatrix is governed by the terms

related to the Yukawa couplings. These Yukawa couplings
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FIG. 6 (color online). The CMK matrix elements jVusj (top left), jVubj (top right), jVcbj (bottom left), and the Jarlskog parameter J
(bottom right) as functions of the scale parameter t for tan� ¼ 30. All matter fields are in the bulk for a variety of compactification
scales: R�1 ¼ 2 TeV (red, dotted line), 8 TeV (blue, dotted-dashed line), and 15 TeV (green, dashed line).
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are usually very small, except for the top Yukawa coupling
(which could give a sizeable contribution). The CKM
matrix elements Vus ’ �12, Vub ’ �13e

�i�, Vcb ’ �23, can
be used to observe the Cabibbo angle, �13 and �23. For the
universal 5D MSSM scenario, we plot their evolution in
Figs. 5 and 6 and find that they decrease with the energy
scale in a similar manner regardless of whether tan� is
small or large. However, for a large initial value of ft
(small tan�), the mixing angles have a more rapid evolu-
tion and end in the regime where the top Yukawa diverges
and develops a singularity. Similarly, the Jarlskog parame-
ter also decreases quite rapidly once the initial KK thresh-
old is passed. However, when tan� is large, we have a
relatively longer distance between the initial and terminat-
ing energy track, and the evolution of J can be driven
towards zero or even further. Besides, as can be seen
explicitly in Ref. [7], the beta functions of the evolution
equations of the CKM elements are up to the third order in
the CKM elements, which are comparably smaller than
that of Jarlskog parameter’s quadratic dependence on the
CKM elements. This fact then leads to the relatively large
variation of J with the increase of energy. Quantitatively,

we observe from these plots the following: the decrease in
the values of Vus is not sizeable, while for Vub and Vcb,
their variations change by more than 50%. Furthermore,
for tan� ¼ 30, the Jarlskog parameter drops almost to
zero, which sets the effect of the SM CP violation to being
very small. Note, however, that in a supersymmetric the-
ory, other sources of CP violation beyond the SM ones are
typically present. Therefore, only a complete and detailed
study of a specific model would allow us to establish the
strength of the CP-violating effects.
For the case of the matter fields being constrained to the

brane, in Figs. 7 and 8, we observe that the evolutions of
these mixing angles and CP-violation parameter are de-
creasing irrespective of whether the top Yukawa coupling
grows or not. For small tan�, we see similar evolution
behaviors for these parameters as in the bulk case. The
decreases in the values of Vus, Vub, Vcb, and J are much
steeper, due to rapid growth of the top Yukawa coupling
near the singular point. However, as tan� becomes larger,
e.g. tan� ¼ 30, the top Yukawa coupling evolves down-
ward instead of upward. The decreases in these CKM
parameters then become much milder towards the
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FIG. 7 (color online). The CMK matrix elements jVusj (top left), jVubj (top right), jVcbj (bottom left), and the Jarlskog parameter J
(bottom right) as functions of the scale parameter t for tan� ¼ 1. All matter fields are on the brane for a variety of compactification
scales: R�1 ¼ 2 TeV (red, dotted line), 8 TeV (blue, dotted-dashed line), and 15 TeV (green, dashed line).
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unification scale; though the reduction to effectively zero
in the Jarlskog parameter persists. As a result, for the
brane-localized matter field scenario, it is more desirable
to have a large tan� for theories that are valid up to the
gauge coupling unification scale.

V. CONCLUSIONS

In summary, for the two 5D MSSM scenarios with
matter fields in the bulk or on the brane, we have performed
the numerical analysis of the evolution of the various
parameters of the CKM matrix, and both cases give us a
scenario with small or no quark flavor mixings at high
energies, especially for the mixings with the heavy gen-
eration. The evolution equations which relate various ob-
servables at different energies, and also allow the study of

their asymptotic behaviors, are particularly important in
view of testing the evolution of the Yukawa couplings. In
the universal 5D MSSM model, the evolution of these
CKM parameters have a rapid variation prior to reaching
a cutoff scale where the top Yukawa coupling develops a
singularity point and the model breaks down. For the
brane-localized matter fields model, we can only observe
similar behaviors for small values of tan�, while for large
tan�, the initial top Yukawa coupling becomes smaller, the
gauge couplings then play a dominant role during
the evolution of the Yukawa couplings, which cause the
Yukawa couplings to decrease instead of increasing. As
such, the variations of these CKM parameters have a
relatively milder behavior, and the theory is valid up the
gauge coupling unification scale.
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FIG. 8 (color online). The CMK matrix elements jVusj (top left), jVubj (top right), jVcbj (bottom left), and the Jarlskog parameter J
(bottom right) as functions of the scale parameter t for tan� ¼ 30. All matter fields are on the brane for a variety of compactification
scales: R�1 ¼ 2 TeV (red, dotted line), 8 TeV (blue, dotted-dashed line), and 15 TeV (green, dashed line).
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