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We propose an extension to the standard model where three exotic fermion 5-plets and one scalar 6-plet

are added to the particle content. By demanding that all interactions are renormalizable and standard

model gauge invariant, we show that the lightest exotic particle in this model can be a dark matter

candidate as long as the new 6-plet scalar does not develop a nonzero vacuum expectation value.

Furthermore, light neutrino masses are generated radiatively at one-loop while the baryon asymmetry

is produced by the CP-violating decays of the second lightest exotic particle. We have demonstrated using

concrete examples that there is a parameter space where a consistent solution to the problems of baryon

asymmetry, dark matter and neutrino masses can be obtained.
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I. INTRODUCTION

The observation of neutrino oscillations [1], which pro-
vides compelling evidence for nonzero neutrinomasses, has
long indicated to us that the minimal standard model (SM)
is incomplete andmust be extended.Meanwhile, astrophys-
ical and cosmological data have given us ample important
hints regarding the missing mass of the Universe [2,3],
prompting many theorists to build new models for accom-
modating such darkmatter (DM). So, there is no shortage of
motivation for developing physics beyond the SM.

In addition to these, it is well known that the problem of
generating a primordial baryon asymmetry [3,4] must also
bring together the studies of particle physics and cosmol-
ogy. Most notably, in models of thermal leptogenesis [5],
the SM is extended to include lepton violating interactions
so that baryogenesis can be originated from a lepton asym-
metry while neutrino masses are naturally generated via
the type-I seesaw mechanism [6]. In the light of this, it is
perhaps most interesting to explore extensions to the SM
that can address all three issues of baryon asymmetry, dark
matter and neutrino masses simultaneously.

To construct a model that can achieve this, we first note
that a popular candidate for the role of the nonbaryonic
DM is the weakly interacting massive particle (WIMP) [2].
A key feature in the WIMP-like models is that they typi-
cally require an extra symmetry beyond the SM to ensure
the stability of the DM candidate (e.g. R parity in super-
symmetric theories). However, such new symmetries are
often introduced solely for the purpose of stabilizing the
DM and nothing else, making them rather ad hoc. Thus, it
may be better to build up from a ‘‘minimal DM’’ approach
[7] where renormalizability and SM gauge invariance are
the only requirements. It has already been shown that

realistic DM models based on this idea can be built [7,8],
and they involve exotic electroweak multiplets of particles.
Second, it was pointed out in the seminal work of [9] that

there could be a natural link between WIMP DM and
neutrinos if the neutrino masses are generated radiatively.
Such link is possible when there is a symmetry which
forbids any particles except the left-handed (LH) lepton
doublet to couple to the DM candidate, and the Higgs
potential is arranged such that this symmetry remains
unbroken after spontaneous symmetry breaking.
Our primary aim in this work is to present an exotic

multiplet model which can be a consistent solution to
neutrinos, DM and baryon asymmetry by amalgamating
the two observations above. We shall demonstrate in the
subsequent sections that by introducing a set of exotic
multiplets with the appropriate SM transformation proper-
ties, the lightest exotic particle can be the DM candidate;
neutrinos can develop a mass via one-loop diagrams; while
baryogenesis can be achieved via the CP asymmetric
decays of the second lightest exotic particles.

II. THE MODEL

In order to construct a consistent solution to baryon
asymmetry, dark matter and neutrino masses, we extend
the particle content of the minimal SM by adding three
right-handed (RH) fermion multiplets, Nk, (k ¼ 1, 2, 3),
and one scalar multiplet, �, with SM gauge transformation
properties:

Nk � ð1; 5; 0Þ; for all k; and �� ð1; 6;�1=2Þ; (1)

respectively. This is in fact the most minimalist choice one
may choose for Nk and � if one adopts the ‘‘minimal DM’’
idea of [7] and demands that the lightest fermion 5-plet
here be the dark matter. Other smaller multiplet combina-
tions for these new particles will result in unwanted
terms in the scalar potential which can destabilize our
dark matter candidate, or give phenomenologically
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unacceptable component fields that have fractional charges
(see [8] for a good discussion on this point). The main
reason for introducing three (rather than a lesser number
of) Nk’s is because it is the smallest number such that all
allowable light neutrino mass patterns can be accommo-
dated by the model. With the inclusion of the new fields,
the Lagrangian of interest is

Lint ¼ i �NkD 6DNk þ ðD��ÞyðD��Þ
�
�
hjk �Lj�Nk þ 1

2
ðNkÞcMkNk þ H:c:

�
� VS; (2)

where Lj ¼ ð�; ‘ÞTj is the j-flavor LH lepton doublet, D�

denoting the SM covariant derivative, and hjk is the ðj; kÞ
element of the Yukawa coupling matrix which is assumed
to be complex. Without loss of generality, we have chosen
to work in the basis where Mk (the Nk mass matrix) is real
and diagonal. The scalar potential, VS, is given by

VS ¼ �2
��

y�þ�2
��

y�þ ��

2
ð�y�Þ2 þ ���

2
ð�y�Þ2�

þ ����ð�y��y�Þ� þ 1

2
½�0

��ð��Þ2 þ H:c:�; (3)

with � ¼ ð�þ; �0ÞT being the SM Higgs doublet which
transform as (1, 2, 1=2) under the SM gauge group. To
simplify the subsequent discussion on how potential VS can
ensure that there is a dark matter candidate in this model
and the stability of the vacuum solution, we will assume
that all couplings in (3) are real. The subscripts � and � in
(3) denote the many independent ways to contract the
components of the SU(2) multiplets involved, and we
sum over them. For example, the term �y��y�, which
is a tensor product of representations 2� � 2 � 6� � 6 can
be contracted in the following ways (see Appendix A for
the relevant Clebsch-Gordon coefficients)

2� � 2|fflffl{zfflffl}
1þ3

� 6� � 6|fflffl{zfflffl}
1þ3þ...

or 2 � 6|ffl{zffl}
5þ7

� 2� � 6�|fflfflffl{zfflfflffl}
5�þ7�

or

2 � 6�|fflffl{zfflffl}
5�þ7�

� 2� � 6|fflffl{zfflffl}
5þ7

:
(4)

Note, however, that not all possible expansions in (4) are
independent of each other, in the sense that some of the
resulting singlets are actually linear combinations of other
possible singlets. Similar conclusions can also be drawn
for the contraction of the other terms in VS.

A careful analysis of the Lagrangian in (2) will reveal
that the lightest neutral component of the newly introduced
multiplets can be a dark matter candidate as long as the
parameters of VS are such that scalar 6-plet � does not
develop a nonzero vacuum expectation value (VEV). This
is because when h�i ¼ 0, the lightest exotic particle has no
means to decay in this model.1 For the VS depicted, this

vacuum condition can be achieved by choosing all cou-
plings which involve � to be positive. It will become
apparent later that such freedom to tune the parameters
will not be affected by any of the constraints coming from
successful baryogenesis, dark matter or neutrino masses.
We would like to emphasize that this model gives rise to

a dark matter candidate, not because we have imposed a
new symmetry (local or global) by hand which forbids their
decays, but because the Lagrangian in (2) possesses an
accidental Z2 symmetry (Nk ! �Nk and � ! �� while
c SM ! c SM). This Z2 symmetry will remain unbroken
when h�i ¼ 0 is the vacuum solution. One might worry
that higher loop corrections will introduce possible insta-
bilities for the vacuum h�i ¼ 0 at very high energies when
the ‘‘negative’’ running of the couplings changes the profile
of potential VS. While this is a valid concern given that the
term, �Lj �Nk in (2) can lead to fermionic loops running in

the higher-order diagrams for the quartic couplings, the
situation can be placed under control with careful choices
for the tree-level couplings ��� and ���� for a given cutoff

scale. In addition, observe that the quartic terms involving
�0
�� do not get such negative running at the one-loop level.

Thus, to a good approximation, we can assume �0
�� to be

unrestricted by the vacuum stability conditions.
With this setup, either Nk or � can play the role of the

dark matter depending on which one has the smallest mass.
Our model building choice here is to make the lightest2 5-
plet Majorana fermion,N1, to be our dark matter candidate,
and hence, we demand thatM1 <M�. It should be pointed

out that, in reality, only the neutral component, N0
1 , of the

5-plet can be the dark matter. This comes about because
one-loop electroweak corrections will introduce a mass
splitting between the different components of the multiplet
which are otherwise mass degenerate at tree-level. The
mass difference induced by SM gauge boson loops for
two different components of Nk ¼ ðNþþ

k ; Nþ
k ; N

0
k ;

N�
k ; N

��
k ÞT having electric charges Q1 and Q2 is given

by [7]

MQ1

k �MQ2

k ¼ g2Mk

16�2

�
sin2	wðQ2

1 �Q2
2Þ~f

�
MZ

Mk

�

þ ðQ1 þQ2 � 2YÞðQ1 �Q2Þ
�
�
~f

�
MW

Mk

�
� ~f

�
MZ

Mk

���
; (5)

where hypercharge Y ¼ 0 for our 5-plet, 	w is the
Weinberg angle and

1When h�i � 0, cross terms such as h�i��� will allow the
lightest exotic particle to decay into SM particles.

2We will use the convention M1 <M2 <M3 throughout the
paper. Whether or not this hierarchy should be strong or quasi-
degenerate shall be discussed in later sections.
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~fðxÞ ¼ x

2

�
3x3 lnx� 2xþ ðx2 þ 2Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 4

p
ln

�
x2 � 2� x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 4

p

2

��
: (6)

Therefore, in the relevant limit3 of Mk � MW;Z, the loop

function ~fðx � 1Þ ’ 2�xþOðx2Þ, and the mass differ-
ence is approximately

MQ1

k �MQ2

k ’ g2MW

4�
ðQ2

1 �Q2
2Þsin2

�
	w
2

�
: (7)

This means that the component N	
k is about 166 MeV

heavier than the N0
k . As a consequence, all the charged

components of Nk are unstable since processes like N
	
k !

N0
k�

	 are kinematically accessible. Similar mass splittings

occur for the 6-plet scalar �. But since we have already
assumed M1 <M�, the exact mass spectrum of all its

components will be inconsequential to our analysis here.
For completeness though, and to display the connection to
the parameters in (3), we have listed the tree-level masses
for the � component fields after spontaneous symmetry
breaking (h�i ¼ ð0; uÞT and u � 0) in Appendix B.

In the following sections, we will demonstrate that there
is a consistent parameter space where this model of exotic
multiplets can solve the problems of baryogenesis, dark
matter and neutrino masses.

III. THE DARK MATTER CANDIDATE

In order to perform the analyzes for baryogenesis and
neutrino masses later on, we must first compute the rele-
vant parameters for our dark matter candidate, N0

1 . In

particular, we need to understand how the mass scale of
N1 (and consequently, the lower bound on all other exotic
particles in the model) is constrained by cosmology.

Like other WIMP models, the ability to reproduce the
observed DM relic density is a crucial ingredient in deter-
mining whether the DM candidate under investigation is a
viable one. Assuming the standard thermal freeze-out of
N1 is solely responsible for the DM relic that we measure,
�CDMh

2 ¼ 0:110	 0:006 [2–4],4 connection between the
N1 annihilation rate and�CDMh

2 will then fix the scale for
M1. The typical condition that one employs is [2]:

�CDMh
2 ’ 3� 10�27 cm3 s�1

h
Avi ; (8)

where 
A is the total annihilation cross section, v is
the relative velocity between the annihilating pair, and
h. . .i denotes thermal averaging. In the model we are

considering, 
A is the cross section for annihilating a
component of N1 with another suitable counterpart of the
multiplet into SM particles.5 Furthermore, we will assume
that these coannihilations happen predominantly via inter-
actions mediated by SM gauge bosons.
The canonical method to compute the DM relic abun-

dance is to solve the Boltzmann evolution equation using
the relevant annihilation cross section. In the notations of
our model, we have

dY1

dz0
¼ � s

Hz0
ðY2

1 � ðYeq
1 Þ2Þh
Avi; z0 
 M1

T
; (9)

where Y1 denotes the N1 number density per entropy, s, per
comoving volume (with Yeq

1 being the corresponding den-

sity at thermal equilibrium),H is the Hubble parameter and
T is the temperature of the Universe. The elements which
govern our cross section h
Avi originate from the first
kinetic term in (2), and it may be expanded in component
form asffiffiffiffiffiffi
10

p
Lkin ¼

ffiffiffi
2

p ðg cos	wZ� � eA�Þð2Nþþ
1 ��Nþþ

1

þ Nþ
1 �

�Nþ
1 � N�

1 �
�N�

1 � 2N��
1 ��N��

1 Þ
þ g½Wþ

� ðNþþ
1 ��Nþ

1 þ Nþ
1 �

�N0
1 þ N0

1�
�N�

1

þ N�
1 �

�N��
1 Þ þ H:c:�; e > 0: (10)

Through these terms, components of N1 can coannihilate
into a pair of SM particles either via a t- or u channel Nk or
a s-channel gauge boson. The computation of the total
cross section was performed in full in the last reference
of [7]. It was found that (in the nonrelativistic limit, i.e.
v � 1):

h
Avi ’ 1

2g2NM
2
1

��
1þ hv2i

4

�
cs þ hv2i

2
cp

�
; (11)

where gN ¼ 2� 5 ¼ 10 is the degrees of freedom for
Majorana 5-plet N1. The s- and p-wave coefficients are,
respectively

cs ¼ 1035g4

8�
; cp ¼ 1215g4

8�
: (12)

The Boltzmann equation (9) may now be solved, taking
into account the nonperturbative corrections from electro-
weak Sommerfeld enhancement [10]. When the dust has
settled, it is determined that the observed DM relic abun-
dance can be explained if [7]

M1 ¼ 9:6	 0:2 TeV: (13)

3We shall show later that, for consistency, Mk will be at least
Oð10Þ TeV.

4Here, h denotes the Hubble constant in units of
100 km s�1 Mpc�1. It is not related to the Yukawa coupling
matrix, h in (2).

5In the hot early Universe (and given the smallness of the mass
splitting), all components of N1 may be treated as degenerate,
and therefore, charged components of N1 should be included in
the analysis here. However, for consistency with later sections,
N2;3 is not included because we shall assume that M1 � M2;3.
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This result is in line with the typical WIMP type models
where TeV scale DM are predicted. The fact that the limit
on M1 turns out to be slightly bigger than the usual WIMP
reflects the extra coannihilation contributions the 5-plet N1

(with almost degenerate components) is providing.6 Note
that any remaining charged components of N1 will even-
tually decay away before nucleosynthesis (due to their
slightly higher mass) with negligible entropy release.

It is worth mentioning that although a DM mass of the
size shown in (13) cannot be tested at the LHC, it has been
shown in [7] that such 5-plet DM may be within the
reach of future DM direct detection experiments like
SuperCDMS [11] and XENON-1T [12].

IV. BARYON ASYMMETRY VIA LEPTOGENESIS

While baryogenesis remains an open problem with
many candidate solutions, one popular way to tackle it is
via leptogenesis, whereby a lepton asymmetry, �L, is first
created by some L-violating processes operating in the
early Universe, and then partially converted to the required
cosmic baryon asymmetry by nonperturbative electroweak
sphaleron interactions.

The classic scenario of leptogenesis [5] (and many sub-
sequent extensions) is based upon the type-I seesaw [6]
Lagrangian where (at least two) RH electroweak singlet
neutrinos, �R, are introduced to the lepton sector with
Yukawa couplings, �L��R. As a result, the heavy
Majorana �R can decay into L�y during the primordial
times and give rise to an excess in �L. A major advantage
of this setup over many other baryogenesis models is that
the type-I seesaw Lagrangian automatically solves the light
neutrino mass problem, providing a link (albeit indirect)
between the parameters of neutrino physics and cosmol-
ogy. Other variations to the general scheme exist,7 and they
provide interesting alternative solutions that can lead to
other implications.8

Over the years, the sophistication in the quantitative
analysis of leptogenesis has improved dramatically. Most
notably, the careful treatment of the different washout [14]
and its generalization to include flavor effects [15–20] have
been pivotal to the understanding of the workable parame-
ter space for many interesting leptogenesis scenarios. One
such scenario that is particularly relevant to our discussion
here is the so-called ‘‘N2 leptogenesis’’ [19–21], where the
lepton asymmetry is predominantly produced by the de-
cays of the next-to-lightest RH neutrinos (rather than by
the lightest one as in the conventional setup). We shall
show that there is a strong resemblance between the model
presented in this paper and the typical N2-leptogenesis

setup. As a result, the constraints on the leptogenesis
parameter space for them will be markedly similar, which
will ultimately allow us to construct an existence proof of
successful leptogenesis for our exotic multiplet model.

A. Our model in detail

To begin with, let us recall that we have M� >M1 ’
10 TeV being established from the dark matter constraints
in the previous section. Therefore, in order for our 5-plet
fermion, N2 to be eligible for N2 leptogenesis, we must
now further assume that

M3 � M2 >M� >M1 ’ 10 TeV: (14)

Hence, it will be natural for the decay, N2 ! Lj�
y, to

proceed via the Yukawa term in Lagrangian (2). Note
that at this temperature scale, the mass splittings of the
component fields in the multiplets can be safely ignored
and we will treat all components on an equal footing in our
analysis. The choice of M3 � M2 is for convenience, so
that the decay and washout ofN3 may be treated separately
from theN2 stage (or indeed, to a very good approximation
ignored), as well as ensuring that the resulting CP asym-
metry due to N2 decays is not suppressed by ðM1=M2Þ2 for
certain choices of parameters. At this point, we shall not
demand that M2 � M� (or M� � M1) in (14) although

this choice remains a valid (and often favored) possibility.
Suppose our N2 is indeed providing the main ingredient

for baryogenesis, then the general relation between the
predicted baryon-to-photon ratio, �B and the final B� L
asymmetry, N f

B�L is given by

�B ’ 0:76� 10�2 N f
B�L; (15)

where we have used the notationN X to denote the number
of particle in quantity X (in this case X 
 B� L) per
comoving volume which contains exactly one photon at
some temperature much greater than the leptogenesis tem-
perature.9 The normalization for this volume is such that in
thermal equilibrium (T � M2), there is N

eq
N2

¼ 1 particle

for each component of N2. Our prefactor of 0:76� 10�2,
which takes into account the dilution from sphaleron con-
version and the expansion of the Universe, differs (very
slightly) from the 0:96� 10�2 by other authors because we
have an increased number of relativistic degrees of free-
dom coming from the multiplets � and N1;2.

Successful leptogenesis simply means that the result in
(15) must match the corresponding measured valued from
WMAP: �CMB

B ¼ ð6:19	 0:15Þ � 10�10 [4]. In the
N2-leptogenesis scenario, this roughly translates into two
basic requirements. Firstly, the CP asymmetry due to the
out-of-equilibrium decays of N2 (denoted "2) must be

6Sommerfeld effects have increased the final result in (13) by a
factor of about 2 as well [7].

7See [13]for an incomplete list of examples.
8In fact, the model presented in this paper is one such

variation.

9This is an alternative way [c.f. quantity Y1 in (9)] to keep
track of the number density of a particle species during the
evolution of the early Universe.
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sufficient (and preferably with "1 from N1 decays sup-
pressed). Secondly, the N2 generated asymmetry must
(partially) evade the washout interactions involving the
N1’s after production. Usually, the first condition is easily
satisfied with plenty of parameter space freedom while the
second condition is more subtle and, as recently pointed

out in [19,20], flavor effects in leptogenesis play a vital
role.
To enunciate how our model fits inside the grand picture,

let us recall the interaction Lagrangian in (2) and expand
out the relevant terms in component form:

�2
ffiffiffi
5

p
L0

int ¼ Mk½ðNþþ
k ÞcN��

k � ðNþ
k ÞcN�

k þ ðN0
kÞcN0

k � ðN�
k ÞcNþ

k þ ðN��
k ÞcNþþ

k � þ ffiffiffi
2

p
hjk ��

0
j

�
1ffiffiffi
3

p ���Nþþ
k

�
ffiffiffi
2

3

s
��Nþ

k þ �0N0
k �

2ffiffiffi
3

p �þN�
k þ

ffiffiffi
5

3

s
�þþN��

k

�
þ ffiffiffi

2
p

hjk �‘
�
j

� ffiffiffi
5

3

s
����Nþþ

k � 2ffiffiffi
3

p ���Nþ
k þ ��N0

k

�
ffiffiffi
2

3

s
�0N�

k þ 1ffiffiffi
3

p �þN��
k

�
þ H:c:: (16)

The second and third lines will induce the necessary lepton
number violating processes that are needed for leptogene-
sis. Each component of Nk (for k � 1) can decay into
a lepton plus a corresponding component of � [see
Fig. 1(a)]. After summing (incoherently) the contributions
from each component, one obtains the following total rate
at tree-level

�ðNk ! Lj�
yÞ 
 �ð �Nk ! �Lj�Þ ¼

h�jkhjk
16�

Mk

�
1�M2

�

M2
k

�
2
;

k � 1: (17)

The CP asymmetry for the decay of Nk�1 into � and a
lepton of flavor j is defined as

"kj 

�ðNk ! Lj�

yÞ � �ð �Nk ! �Lj�ÞP
j �ðNk ! Lj�

yÞ þP
j �ð �Nk ! �Lj�Þ

: (18)

The leading contribution to "kj is obtained from the inter-
ference between the tree-level [Fig. 1(a)] and one-loop
correction graphs [Figs. 1(b) and 1(c)], and we get

"kj ¼ 1

8�ðhyhÞkk
X
m�k

Im½h�jkhjmðhyhÞkm�f1ðMk;Mm;M�Þ þ Im½h�jkhjmðhyhÞmk�f2ðMk;Mm;M�Þ
M3

kðM2
k �M2

mÞðM2
k �M2

�Þ2
; (19)

where

f1ðMk;Mm;M�Þ ¼ MmðM2
k �M2

�Þ2½2M4
k �M2

kðM2
m þ 2M2

�Þ þM4
�� þM4

kMmðM2
m �M2

kÞðM2
k þM2

m � 2M2
�Þ

� ln

�
M2

kðM2
k þM2

m � 2M2
�Þ

M2
kM

2
m �M2

�

�
; (20)

f2ðMk;Mm;M�Þ ¼ MkðM2
k �M2

�Þ2ðM4
k � 2M2

kM
2
� þM4

�Þ: (21)

Note that in the limit of Mk � M�, both (17) and (19) reduce to the form that is identical to the results of standard
leptogenesis [22].

An important observation about this model is that although N1 cannot decay via coupling hj1 �Lj�N1, hence "1j ¼ 0

automatically, 6-plet �may undergo the L-violating process � ! Lj
�N1 instead. The corresponding decay rate would be in

the same form as (17) but with the replacements: Mk ! M� and M� ! M1. Therefore, the role of ‘‘N1 washout’’ (in

standard N2 leptogenesis) has essentially been taken up by field � in our scenario.

FIG. 1. The lepton number violating (a) tree-level, (b) one-loop vertex and (c) one-loop self-energy diagrams for Nk multiplet decays
(k � 1). For k ¼ 1, these processes are kinematically forbidden.
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However, there can be noCP asymmetry generated from
the decay of 6-plet �. It is because there is only one copy of
� in the model, and thus the internal � running in a loop
diagram, similar to those depicted in Figs. 1(b) and 1(c),
must be the same as the external one. Consequently, the
interference term will have a vanishing absorptive part.
This means, the total B� L asymmetry must originate
from our 5-plet N2 decays entirely,

10 making this a classic
N2-leptogenesis-like scenario.

To make our following illustration more definite, let us
specialize to a hierarchical mass spectrum for our exotic
particles, namely, M3 � M2 � M� � M1 ’ 10 TeV. In

addition to this, we will assume

M3 � 1012 GeV; 1012 GeV � M2 � 109 GeV;

109 GeV � M� � M1: (22)

These restrictions are chosen so that flavor effects [15–20]
in leptogenesis can be treated in a more straight forward
manner and it is in no way a model building requirement.

After disregarding the unimportant effects from M3

decays at very high temperatures, there are basically two
major stages of interest in this kind of setup. The first is the
asymmetry production stage at T �M2 where N2 decays
and related washout processes are active while the second
is the washout stage at T �M� where effects from M�

inverse decays become prominent. We will discuss them
in turn.

B. Asymmetry production stage at T�M2

In general, at T � 1012 GeV, flavor effects become
important as the charged lepton Yukawa interactions in
equilibrium essentially introduce a source of decoherence
whereby the lepton state jLðkÞi, generated by the decays of

Nk’s,
11 are projected onto one of the three-flavor eigen-

states, jLji, j ¼ e, �, 
 with probability jhLðkÞjLjij2.
Therefore, at our asymmetry production stage, T �M2,
this effect must be properly accounted for.

However, sinceM2 � 109 GeV, only the tauon Yukawa
interaction (from �L
�eR
) is in equilibrium. As a result, we
effectively has a two-flavor situation where jLð2Þi will

either be projected onto jL
i or its orthogonal state jL?i
(which is a coherent linear combination of the e and �
flavor states).12 To track the evolution of the lepton asym-
metry for each flavor state, it is convenient to introduce the
flavor projectors

P2j 

�2j

�2

¼ jhLð2ÞjLjij2; �P2j 

��2j

��2

¼ jh �Lð2Þj �Ljij2;
(23)

where �2j ¼ �ðN2 ! Lj�
yÞ, ��2j ¼ �ð �N2 ! �Lj�Þ and �2,

��2 are the corresponding rates with j summed over. Note
that states jLð2Þi and j �Lð2Þi are not CP conjugates of each

other in general. In the current case, flavor j ¼ 
 or ? .
The tree-level contribution to the quantities in (23) is
given by

P0
2j 
 �P0

2j ¼
h�j2hj2
ðhyhÞ22

; (24)

where h is the Yukawa coupling in (2). With this, we may
write down the set of evolution equations for N2 and lepton
asymmetry �j in flavor j as

dN N2

dz
¼ �D2ðN N2

�N eq
N2
Þ; (25)

dN �?
dz

¼ �"2?D2ðN N2
�N eq

N2
Þ

� P0
2?W2

X
j¼?;


Cf¼2
?j N �? ; (26)

dN �


dz
¼ �"2
D2ðN N2

�N eq
N2
Þ

� P0
2
W2

X
j¼?;


Cf¼2

j N �


; (27)

where z ¼ M2=T. The decay (D2) and washout (W2) terms
are given by

D2 ¼ ð�2 þ ��2Þ
zHðzÞ

K1ðzÞ
K2ðzÞ ; W2 ¼ 1

2
D2

N eq
N2

N eq
L N

eq
�
;

(28)

with KnðzÞ denoting the nth order modified Bessel func-
tion of the second kind and HðzÞ being the Hubble expan-
sion rate at z. For our particular normalization,
N eq

N2
¼ z2K2ðzÞ=2, while N eq

L ¼ 1. Note that as in the

typical analysis for leptogenesis, only the dominant con-
tribution to washout W2, namely, the N2 inverse decay
process, has been included in (28).13

The flavor coupling matrix Cf¼2 which links N �? and

N �

is given by [16,18,19]

10We will neglect the suppressed contribution from "3j.
11The use of the subscript (k) is to remind us that the flavor
decomposition of LðkÞ can be different for each k.
12Note that the mass ranges in (22) was carefully selected such
that these lepton decoherence interactions are either fully in-
equilibrium or out-of-equilibrium but not in between. This
makes the handling of flavor effects a lot more transparent.

13It is worth pointing out that in our model, scattering processes
that are mediated by 6-plet � do not exist as � does not couple to
quarks, whereas you can still have interactions like �� $ LiLj

mediated by 5-plet Nk that can contribute to washout. But as
usual, their effects are subdominant.
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Cf¼2 
 Cf¼2
?? Cf¼2

?


Cf¼2

? Cf¼2





 !
¼ 417=589 �120=589

�30=589 390=589

� �
:

(29)

Unlike [19], our flavor coupling matrix contains only the
part related to the asymmetry stored in the lepton sector
(like the one used in [18]), and not the part involving the
effects from Higgs�. This is simply because scalar� does
not participate in the N2 ! Lj�

y process. But, as noted in

[19], neglecting the � part will not change the qualitative
result since what is essential here is that the off-diagonal
terms in (29) are nonzero. Consequently, enhancement to
the final lepton asymmetry after this stage (which is simply

given by N Tz

B�L ¼ N Tz

�?
þN Tz

�

, where Tz denotes the

temperature at the end of this period) becomes possible
just like in regular N2 leptogenesis with flavor effects
turned on.

Explicitly, the quantities N Tz

�?
and N Tz

�

can be calcu-

lated by first applying the transformation

~N �?
~N �


 !
¼ U2

N �?
N �


� �
;

~"2?
~"2


� �
¼ U2

"2?
"2


� �
;

(30)

to make them decoupled in Eqs. (26) and (27). In other
words, U2 diagonalizes

U2
P0
2?C

f¼2
?? P0

2?C
f¼2
?


P0
2
C

f¼2

? P0

2
C
f¼2




 !
U�1

2 ¼ ~P0
2? 0
0 ~P0

2


 !
; (31)

and we obtain

d ~N �j

dz
¼ �~"2jD2ðN N2

�N eq
N2
Þ � ~P0

2jW2
~N �j

;

j ¼?; 
:

(32)

Subsequently, (32) together with (25) can be solved as per
usual [14–19] and one eventually gets14

~N
Tz

B�L ¼ X
j¼?;


~N Tz

�j
’ X

j¼?;


~"2j�ð ~P0
2jKzÞ; (33)

where the final efficiency factor (for an initial thermal
abundance of N2) has the form

�ðXÞ ’ 2

zBX
ð1� e�zBðXÞ=ð2ÞÞ;

zB ’ 2þ 4X0:13e�ð2:5Þ=ðXÞ ’ Oð1Þ to Oð10Þ:
(34)

The total decay parameter, Kz, for the N2 process is
defined as

Kz 
 ð�2 þ ��2Þ
Hðz ¼ 1Þ ; (35)

and the corresponding flavored version is given by Kzj 

P0
2jKz such that

P
jKzj ¼ Kz.

Since result (33) is written in terms of the U2-rotated
quantities, one must carefully reverse the procedure to

obtain the desired N Tz

B�L. However, we will not show
these steps explicitly. The main point is to see how the
parameters of our multiplet model enter into the theory of
N2 leptogenesis for the production stage.

C. Washout stage at T�M�

As aforementioned, no new lepton asymmetry will be
produced at this stage, and thus the total asymmetry can
only decrease from here on. However, owing to flavor
effects, such suppression may not always be effective.
This is because the asymmetry stored in each flavor are
washed out differently when flavor effects are considered,
and as a consequence, some part of the asymmetry may
evade the washout entirely, making it possible to have
successful N2 leptogenesis.
Since we have assumed that M� � 109 GeV, it is in-

evitable that the lepton asymmetry, N Tz

�?
, will eventually

decohere into the �- and e-flavor components as muon
Yukawa interactions come into equilibrium at T &
109 GeV. With the tauon Yukawa processes already in
equilibrium at this temperature, we therefore have the
full three-flavor case [15–17].

Suppose N Tz

�?
breaks into the � and e components

before the M� related washout effects become prominent,

so the situation is more clear-cut. In other words, let us
assume there exists a temperature T0 such that M� �
T0 � 109 GeV, and for which the decoherent effect men-
tioned can begin to happen. It is not hard to see that there is
a plenty of parameter space freedom in our model to
allow for this. With this assumption, one can estimate the
individual lepton asymmetry for the �- and e-flavor
at T0 [19]15:

N T0
�i

’
�
"2i � P0

2i

P0
2?

"2?
�
N T�Tz

N2
þ P0

2i

P0
2?

N Tz

�?
;

i ¼ e;�;

(36)

where the expression in the first term is highly sensitive to
initial conditions.
Subsequently, when the � ( ! L �N1) inverse decay

dominated washout16 kicks in at T �M�, we have the

following set of evolution equations for the asymmetry in
flavor j:

14We do not dwell on the subtleties related to initial conditions
here as it is a grander issue in standard leptogenesis with flavor
effects. See for example [20].

15Note that N T0
�


’ N Tz

�

.

16Scattering interactions mediated by N1 (e.g. �� $ LiLj)
have been ignored.
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dN �j

dx
¼ �P0

�jW�

X
i¼e;�;


Cf¼3
ji N �j

; j ¼ e;�; 
;

(37)

where x ¼ M�=T and

P0
�j 
 �P0

�j ¼
h�j1hj1
ðhyhÞ11

;

W� ¼ �ID
�

xHðxÞ
K1ðxÞ
K2ðxÞ

N eq
�

N eq
L N

eq
N1

;

(38)

with �ID
� denoting the tree-level inverse decay rate

(L �N1 ! �), which is given by ðhyhÞ11M�=ð16�Þ when

M� � M1. The 3-flavor coupling matrix is [16,18,19]

Cf¼3 

Cf¼3
ee Cf¼3

e� Cf¼3
e


Cf¼3
�e Cf¼3

�� Cf¼3
�


Cf¼3

e Cf¼3


� Cf¼3




0
B@

1
CA

¼
151=179 �20=179 �20=179
�25=358 344=537 �14=537
�25=358 �14=537 344=537

0
@

1
A; (39)

where again it contains only the lepton part but not the �
part. Analogous to the previous section, one may define the
transformation U3 so that

U3

P0
�eC

f¼3
ee P0

�eC
f¼3
e� P0

�eC
f¼3
e


P0
��C

f¼3
�e P0

��C
f¼3
�� P0

��C
f¼3
�


P0
�
C

f¼3

e P0

�
C
f¼3

� P0

�
C
f¼3




0
BB@

1
CCAU�1

3

¼
P̂0
�e 0 0

0 P̂0
�� 0

0 0 P̂0
�


0
B@

1
CA: (40)

Then, the general solution for (37) in the U3-rotated vari-
ables (denoted with a ‘‘hat’’) is

N̂ f
�j

’ N̂ T0
�j
e�ð3=8�ÞP̂0

�jKx ; j ¼ e;�; 
; (41)

where the total decay parameter,Kx 
 2��=Hðx ¼ 1Þ, and
the j-flavored case is defined as Kxj 
 P0

�jKx. The total

B� L asymmetry can be obtained by summing the con-
tributions from all flavors after carefully transforming the
U3-rotated variables back into the proper basis.

At this point, it is obvious that our multiplet model is
effectively a carbon copy of the standard flavored
N2-leptogenesis scenario as far as solving the baryogenesis
problem is concerned. However, the only constraint we
have used so far is the lower mass bound from DM con-
siderations. It remains to be confirmed if the elements of
the Yukawa matrix h can be chosen such that they are also
compatible with neutrino masses and mixings. In the next
section, we will focus on the constraints coming from
neutrino phenomenologies.

V. NEUTRINO MASSES FROM
RADIATIVE SEESAW

Recall from the discussion in Sec. II that in order to have
a DM candidate in this model, 6-plet � must not develop a
nonzero VEV. Consequently, Yukawa coupling �Lj�Nk

cannot give rise to a Dirac mass term after spontaneous
symmetry breaking, and light neutrinos will remain mass-
less at tree-level. However, as hinted earlier, neutrino mass
terms can be generated radiatively in this model via the
one-loop diagrams as depicted in Fig. 2.
The three relevant interaction terms from Lagrangian (2)

that enter into Fig. 2 are the Yukawa, hjk �Lj�Nk, the

Majorana term, ðNkÞcMkNk, and the quartic coupling,
�0
��ð��Þ2 (plus their hermitian conjugate). Since Nk and

� are multiplets, there are several combinations of compo-
nent fields which are allowed in the loop for each k. For
instance in Fig. 2, the pair ðNm

k ; N
n
k Þ could be ðNþþ

k ; N��
k Þ,

ðNþ
k ; N

�
k Þ or ðN0

k ; N
0
kÞ, and the cases with the order for m

and n swapped. But because of the requirement of electric
charge conservation, once the pair ðNm

k ; N
n
k Þ is chosen,

there is only one combination of ð�a; �bÞ that is compatible
(see Fig. 2).
To calculate all these contributions, one must again work

in the component form for (2). The expansion for the
relevant Yukawa and Majorana terms was presented in
the first two lines of (16) while for the quartic term
�0
��ð��Þ2, it is (after spontaneous symmetry breaking)

L ���� ¼
ffiffiffi
5

p
12

�0
��

�
2ffiffiffi
5

p �þþ��� � 4
ffiffiffi
2

p
5

�þ��

þ 3

5
�0�0

�
h�0i2 þ H:c:: (42)

Neglecting the tiny mass splittings between the compo-
nents in each multiplet (hence letting MNm

k
¼ MNn

k
¼ Mk

and M�a ¼ M�b ¼ M�), and after summing over all con-

tributions, the light neutrino mass matrix is found to be

FIG. 2. The one-loop diagram for generating light neutrino
mass term ðM�Þij. ðNm

k ; N
n
k Þ and ð�a; �bÞ are pairs of components

from multiplets Nk and �, respectively. They are chosen such
that charge conservation is obeyed at all vertices. As a result, the
combined electric charge within each pair must be zero, i.e.
QðNm

k Þ ¼ �QðNn
k Þ and Qð�aÞ ¼ �Qð�bÞ. For example, one

possible set of choices is ðNm
k ; N

n
k Þ ¼ ðNþ

k ; N
�
k Þ and ð�a; �bÞ ¼

ð�þ; ��Þ.
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ðM�Þij ¼ 7

5760�2
�0
��h�0i2X

k

hikhjk
Mk

yk
1� yk

�
1þ yk lnyk

1� yk

�
;

where yk 
 M2
k

M2
�

: (43)

Specializing in the mass spectrum of (22) where M1 �
M� � M2;3, we have y1 � 1 and y2;3 � 1. So, (43) may

be approximated as

ðM�Þij ’ 7

5760�2
�0
��h�0i2

�
hi1hj1
M1

y1

þ X
k¼2;3

hikhjk
Mk

ðlnyk � 1Þ
�
: (44)

The individual light neutrino mass is obtained by diago-
nalizing M� with the neutrino mixing matrix, UPMNS:

m�
n ¼ X

i;j

ðUy
PMNSÞniðM�ÞijðU�

PMNSÞjn; n ¼ 1; 2; 3:

(45)

An important observation here is that the light neutrino
mass scale will be dependent on the size of �0

��, as well as

the seesaw factors of hikhjkh�0i2=Mk. Moreover, recall

that �0
�� is not constrained by the vacuum stability issue

discussed in Sec. II and thus it is essentially a free parame-
ter. This fact will allow a very interesting situation where
for a given Mk scale, the size of the Yukawas h’s can be
large so that observable lepton flavor violating effects in
processes such as� ! e� and�� e conversion in atomic
nuclei are possible without spoiling the light neutrino
mass predictions. A recent analysis on this point can be
found in [8].

VI. DISCUSSION ON THE PARAMETER SPACE

The stage is now set for us to combine the results of
the last three sections and explicitly show that there exists a
parameter space for our exotic multiplet model to

simultaneously solve the problems of dark matter, baryon
asymmetry and neutrino masses.
Firstly, as far as the dark matter condition goes, the key

constraint is coming from Eq. (13) which sets the lower
bound for the dark matter candidate,N1 atM1 ’ 10 TeV.17

Note that all our subsequent discussions in the previous
two sections were based on this assumption, therefore, our
model will automatically satisfy the DM condition regard-
less of how we may choose the parameters in other sectors
of the theory.
Next, observe that (17), (19), (24), and (38), and the

definition for Kz;x are the most important quantities which

govern the leptogenesis sector, while (43) is the main result
for neutrinos. The common features of all of them is that
they are highly dependent on the Yukawa matrix elements,
hjk and masses, Mk;�. For the neutrino sector, �0

�� is also

essential. Thus, the task is basically to select a set of hjk,

Mk;� and �0
�� that can produce successful baryogenesis

while giving realistic neutrino masses and mixing.
To see that there is a compatible set of choices, we begin

by following condition (22) and take

M1 ’ 104 GeV; M� ’ 107 GeV;

M2 ’ 1010 GeV; M3 ’ 1013 GeV:
(46)

For the light neutrino sector, we pick the mass scale to be at

m0 � 0:002 eV (normal or inverted hierarchy) andmQD
0 �

0:16 eV (quasidegenerate). Appealing to the best fit values
from neutrino oscillation experiments [23],

�m2
12 � 7:59� 10�5 eV2;

j�m2
23j � 2:40� 10�3 eV2;

(47)

sin 2	12 � 0:318; sin2	23 � 0:50;

sin2	13 � 0:013;
(48)

one then has the following light neutrino mass spectra
(in eV):

normal hierarchy : m1 � 0:002; m2 � 0:0089; m3 � 0:0498; (49)

inverted hierarchy : m1 � 0:0482; m2 � 0:0490; m3 � 0:002; (50)

quasi-degenerate : m1 � 0:1600; m2 � 0:1602; m3 � 0:1676: (51)

We shall use these numbers for our analysis below.

17Strictly speaking, the vacuum stability conditions of the scalar potential (as discussed in Sec. II) provides further constraints on the
DM parameter space (albeit for ��� and ���� only which do not directly affect other sectors of the theory). However, since these are
higher-order effects, we do not incorporate them in our analysis explicitly, and shall assume that they can be properly fine-tuned if
required.
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A. Normal hierarchy case

To begin with, we take the spectrum of (49) and reverse
the diagonalization procedure in (45) using (48) as the
inputs for UPMNS (ignoring the phases). So, we have for
�0
�� ¼ 0:1

5760�2

7�0
��h�0i2 M

NH
� ’

1:287 1:588 �0:3707

1:588 7:404 �5:697

�0:3707 �5:697 7:601

0
BB@

1
CCA

� 10�20 eV�1; (52)

where h�0i ¼ 174 GeV. To reproduce the entries in matrix
(52), one must find a set of hjk’s such that Eq. (44) is

satisfied for the given exotic masses in (46). But it is not
hard to see that there are actually more parameters than
constraints coming from matching (44) with (52). This
extra parameter space freedom is crucial because the con-
ditions for successful N2 leptogenesis with flavor effects
necessarily restrict the pattern of hjk that one can choose.

Recall from earlier that flavor effect is the vital ingre-
dient which opens up new parameter space for N2 lepto-
genesis. It hinges on the fact that asymmetry produced in a
certain flavor may evade (sometimes completely) the
washout at the ‘‘N1 stage’’ (in our case, N1’s role is played
by 6-plet �). Therefore, to ensure successful leptogenesis
in our particular setup, we must control the size of the
flavor projectors, P0

2j and P
0
�j in (24) and (38), respectively.

This is usually done through the language of the flavored
decay parameters Kzj and Kxj, which have an one-to-one

correspondence with (24) and (38).
Using the insights gained from some recent analyses of

standard flavored leptogenesis [18–20], we will demand
that the final lepton asymmetry is mainly due to the effects
in the 
 flavor. In other words, we require Kz
 * 1 to
be relatively big so that during the production stage at
T �M2, asymmetry �
 can be effectively produced,18

whereas at the � washout stage, we need Kx
 � 1 to be
small so that the �
 produced from the previous stage can
largely avoid washout and survive to make up the observed
baryon asymmetry.

With this in mind, we solve our set of constraint equa-
tions from (52) after setting

Kz
 ’ 65; Kx
 ’ 0:1: (53)

Note that these fix the magnitudes for h2
 and h1
 imme-
diately after substituting in the value for Hðz ¼ 1Þ and

Hðx ¼ 1Þ, respectively. The Hubble parameters themselves
are determined by

HðwÞ ’ 1:66
ffiffiffiffiffi
g�s

p M2
w

Mpl

1

w2
; (54)

where Mw ¼ M2 and g�s � 127:5 for the Hðz ¼ 1Þ case,
while Mw ¼ M� and g�s � 115:5 for the Hðx ¼ 1Þ case.
Mpl � 1:22� 1019 GeV is the Planck mass. The rest of the

hjk entries may now be solved simultaneously, and one

possible set of solutions for the complex Yukawas is

he1 ¼ 1:23þ 0:359i; he2 ¼ 0:104� 0:329i;

he3 ¼ �0:344þ 0:263i;
(55)

h�1 ¼ 1:71� 1:02i; h�2 ¼ �0:304� 0:468i;

h�3 ¼ �3:76þ 0:367i;
(56)

h
1 ¼ 1:07� 10�5; h
2 ¼ 8:88� 10�3;

h
3 ¼ 5:34:
(57)

Using these in the calculations as outlined in Sec. IV, one
will eventually find that �B ’ 6:3� 10�10 which agrees
with the cosmic microwave background data. It is interest-
ing to point out that the inclusion of the nondiagonal flavor
couplings Cf¼2 and Cf¼3 has increased the final asymme-
try by about a factor of 2 in this particular example.

B. Inverted hierarchy case

One may repeat a similar analysis for the inverted hier-
archical light neutrino spectrum of (50). With the benefit of
hindsight, we must choose a larger �0

�� ¼ 1 than before so

that the resultant Yukawa couplings, hjk will at most be of

Oð1Þ. The light neutrino mass matrix in this case is

5760�2

7�0
��h�0i2 M

IH
� ’

12:8 �0:931 1:07
�0:931 6:88 6:19
1:07 6:19 6:90

0
@

1
A

� 10�21 eV�1: (58)

Like before, we will restrict the 
-flavor decay parameters
to obey Kz
 * 1 and Kx
 � 1. One suitable choice for
this is

Kz
 ’ 2; Kx
 ’ 0:01: (59)

Subsequently, the Yukawas may be chosen as

he1 ¼ 2:73� 2:63i; he2 ¼ �0:737� 0:758i;

he3 ¼ 0:592þ 0:353i;
(60)

h�1 ¼ 0:351þ 1:17i; h�2 ¼ 0:329� 0:098i;

h�3 ¼ 1:29þ 0:045i;
(61)

18A largeKz
 also means a stronger 
 washout at the production
stage. But at the same time, a large Kz
 (meaning large Kz)
allows more N2 to be produced thermally. So, the interplay
between decay and washout is rather convoluted and one must
explicitly solve the evolution equations in order to get a real
feeling of what is large or small enough.
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h
1 ¼ 3:40� 10�6; h
2 ¼ 1:56� 10�3;

h
3 ¼ 1:61:
(62)

This set of parameters will then lead to an asymmetry of
�B ’ 1:5� 10�10, which means baryogenesis is margin-
ally successful in this case.19

C. Quasidegenerate case

Next, we address the case with quasidegenerate mass
spectrum depicted in (51). Again, in order to ensure that
the sizes of the Yukawas are within the perturbative re-
gime, we pick �0

�� ¼ 1. This gives

5760�2

7�0
��h�0i2 M

QD
� ’

429:65 1:8158 �1:3998

1:8158 439:38 �9:7904

�1:3998 �9:7904 439:44

0
BB@

1
CCA

� 10�22 eV�1: (63)

However, given this restriction on �0
��, it turns out that

the resultant baryon asymmetry here is at best around
6� 10�11. For example, if we impose

Kz
 ’ 1:2; Kx
 ’ 0:01; (64)

and select

he1 ¼ 3:25� 1:91i; he2 ¼ 0:541þ 0:895i;

he3 ¼ �0:090� 0:128i;
(65)

h�1 ¼ 1:972þ 3:23i; h�2 ¼ �0:916þ 0:543i;

h�3 ¼ 0:040� 0:078i;

(66)

h
1 ¼ 3:40� 10�6; h
2 ¼ 1:21� 10�3;

h
3 ¼ 4:06:
(67)

Then, the final baryon asymmetry is worked out to be �B ’
4:3� 10�11, which is about an order of magnitude below
the expected value. As a result, this case is actually the
least favored of the three within the specific scenario of
leptogenesis discussed here.

Overall, it appears that a normal hierarchical light neu-
trino mass spectrum is the most natural choice. This is
because during our parameter space search for successful
leptogenesis (given the theoretical errors), we have found
more leeway when fitting the normal hierarchical case than
the other two. However, this does not automatically imply
that the inverted case is disfavored (or the quasidegenerate
case is ruled out) in general since we have assumed a very

specific exotic mass spectrum of (46). Furthermore, our
leptogenesis analysis in Sec. IV was based on a hierarch-
ical mass spectrum with the special mass relations given in
(22), hence, there is a potentially larger parameter space
that is viable for our model than suggested by our specific
scenario shown in this paper.
Finally, we point out that when compared with standard

leptogenesis, this model contains one extra type of field,
namely, the new 6-plet scalar �, which then effectively
gives rise to an additional tunable parameter (�0

��) when

fitting the leptogenesis and neutrino parameters. But this
increase in parameters and fields (with no new symmetries
imposed) resulted in a model that also provides a DM
candidate, something standard seesaw models do not au-
tomatically allow. Thus, in a sense, this model is almost on
a similar footing with standard seesaw as far as new input
parameters beyond the SM versus new predictions that it
generates. As a result, we believe it is a very interesting
alternative solution for baryogenesis, dark matter and neu-
trino masses.

VII. CONCLUSION

In this work, we have analyzed an exotic multiplet
model where three RH fermion 5-plets and one scalar 6-
plet with quantum numbers (1, 5, 0) and (1, 6, �1=2),
respectively, are added to the minimal SM. Such selection
of new particles is motivated by the ‘‘minimal dark matter’’
idea [7] where the DM candidate can be made stable in the
relevant cosmological timescale without any extra symme-
tries (local or global) being imposed. For our particular
setup where the lightest 5-plet particle (N0

1) is the DM, the
SM gauge symmetries automatically forbid any unwanted
interaction terms as long as the scalar potential is such that
6-plet � does not develop a nonzero VEV. The observed
relic density then demands that such DM candidate must
have a mass of around 10 TeV.
With this in mind, we have subsequently demonstrated

that, by tuning the mass spectrum of the exotic multiplets
in the model, the correct baryon asymmetry may be gen-
erated via leptogenesis. Specifically, when the masses are
chosen as M3 � M2 � M� � M1 ’ 10 TeV, this model

possesses all the essential features from the standard
N2-leptogenesis scenario (with flavor effects). So, it is
quite natural for it to accommodate the requirements of
successful baryogenesis.
Moreover, light neutrino masses for all types of hier-

archy schemes can be generated radiatively via one-loop
diagrams containing the multiplet particles. By adjusting
the elements of the Yukawa matrix, we have shown with
concrete examples that all experimental neutrino mass and
mixing parameters can be fitted. In addition, for most cases
(ie. hierarchical light neutrino spectra), these choices of
parameters are fully compatible with the conditions for
N2-flavored leptogenesis, and hence, proving that this
relatively modest extension of the SM can indeed

19We have tested many other sets of parameters for this, and the
example shown here is one of those more promising ones.
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simultaneously tackle the problems of baryon asymmetry,
dark matter and neutrino masses.
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APPENDIX A: SELECTED CLEBSCH-GORDON
COEFFICIENTS FOR SU(2)

For the convenience of the reader, we have collected
together some of the Clebsch-Gordon coefficients for con-
tracting the various SU(2) multiplets which appeared in
this paper.

In the following, the SU(2) n-plets are denoted by nx ¼
ðx1; x2; . . . ; xnÞT , where the convention is to order the ele-
ments according to their isospin values such that mx1 ¼
mx2 þ 1 ¼ mx3 þ 2 ¼ � � � ¼ mxn þ n� 1. Note that

n�-plets are related to their n-plets counterparts via unitary
transformation20

n �
x 
 Un�n

x�1
x�2
..
.

x�n

0
BBBB@

1
CCCCA: (A1)

Examples of these unitary transformation matrices for n ¼
2, 6 are included below:

U2�2 ¼ 0 1
�1 0

� �
;

U6�6 ¼

0 0 0 0 0 1
0 0 0 0 �1 0
0 0 0 1 0 0
0 0 �1 0 0 0
0 1 0 0 0 0
�1 0 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA
:

(A2)

Clebsch-Gordon expansions for 2 � 2 ¼ 1 
 3:

ð2a � 2bÞ1 ¼ a1b2ffiffiffi
2

p � a2b1ffiffiffi
2

p ;

ð2a � 2bÞ3 ¼
a1b1

a1b2ffiffi
2

p þ a2b1ffiffi
2

p
a2b2

0
B@

1
CA:

(A3)

For 5 � 5 ¼ 1 
 3 
 5 
 7 
 9:

ð5a � 5bÞ1 ¼ a1b5ffiffiffi
5

p � a2b4ffiffiffi
5

p þ a3b3ffiffiffi
5

p � a4b2ffiffiffi
5

p þ a5b1ffiffiffi
5

p ;

ð5a � 5bÞ3 ¼
a1b4ffiffi

5
p � a2b3

ffiffi
3

pffiffiffiffi
10

p þ a3b2
ffiffi
3

pffiffiffiffi
10

p � a4b1ffiffi
5

p
a1b5

ffiffi
2

pffiffi
5

p � a2b4ffiffiffiffi
10

p þ a4b2ffiffiffiffi
10

p � a5b1
ffiffi
2

pffiffi
5

p
a2b5ffiffi

5
p � a3b4

ffiffi
3

pffiffiffiffi
10

p þ a4b3
ffiffi
3

pffiffiffiffi
10

p � a5b2ffiffi
5

p

0
BBBB@

1
CCCCA:

(A4)

ð5a � 5bÞ5;7;9 are not shown.
For 6 � 6 ¼ 1 
 3 
 5 
 7 
 9 
 11:

ð6a � 6bÞ1 ¼ a1b6ffiffiffi
6

p � a2b5ffiffiffi
6

p þ a3b4ffiffiffi
6

p � a4b3ffiffiffi
6

p

þ a5b2ffiffiffi
6

p � a6b1ffiffiffi
6

p ; (A5)

ð6a � 6bÞ3

¼
a1b5ffiffi

7
p � a2b4

ffiffi
8

pffiffiffiffi
35

p þ 3a3b3ffiffiffiffi
35

p � a4b2
ffiffi
8

pffiffiffiffi
35

p þ a5b1ffiffi
7

p
a1b6

ffiffi
5

pffiffiffiffi
14

p � 3a2b5ffiffiffiffi
70

p þ a3b4ffiffiffiffi
70

p þ a4b3ffiffiffiffi
70

p � 3a5b2ffiffiffiffi
70

p þ a6b1
ffiffi
5

pffiffiffiffi
14

p
a2b6ffiffi

7
p � a3b5

ffiffi
8

pffiffiffiffi
35

p þ 3a4b4ffiffiffiffi
35

p � a5b3
ffiffi
8

pffiffiffiffi
35

p þ a6b2ffiffi
7

p

0
BBBB@

1
CCCCA;

(A6)

ð6a � 6bÞ5

¼

a1b4
ffiffi
5

pffiffiffiffi
28

p � 3a2b3ffiffiffiffi
28

p þ 3a3b2ffiffiffiffi
28

p � a4b1
ffiffi
5

pffiffiffiffi
28

p
a1b5

ffiffi
5

pffiffiffiffi
14

p � a2b4ffiffi
7

p þ a4b2ffiffi
7

p � a5b1
ffiffi
5

pffiffiffiffi
14

p
5a1b6ffiffiffiffi

84
p þ a2b5ffiffiffiffi

84
p � 2a3b4ffiffiffiffi

21
p þ 2a4b3ffiffiffiffi

21
p � a5b2ffiffiffiffi

84
p � 5a6b1ffiffiffiffi

84
p

a2b6
ffiffi
5

pffiffiffiffi
14

p � a3b5ffiffi
7

p þ a5b3ffiffi
7

p � a6b2
ffiffi
5

pffiffiffiffi
14

p
a3b6

ffiffi
5

pffiffiffiffi
28

p � 3a4b5ffiffiffiffi
28

p þ 3a5b4ffiffiffiffi
28

p � a6b3
ffiffi
5

pffiffiffiffi
28

p

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:
(A7)

ð6a � 6bÞ7;9;11 are not shown. And

ð7a � 7bÞ1 ¼ a1b7ffiffiffi
7

p � a2b6ffiffiffi
7

p þ a3b5ffiffiffi
7

p � a4b4ffiffiffi
7

p

þ a5b3ffiffiffi
7

p � a6b2ffiffiffi
7

p þ a7b1ffiffiffi
7

p : (A8)

For 2 � 5 ¼ 4 
 6:

ð2a � 5bÞ6 ¼

a1b1
2a1b2

ffiffi
2

pffiffi
5

p þ a2b1ffiffi
5

p
2a1b3

ffiffi
3

pffiffi
5

p þ a2b2
ffiffi
2

pffiffi
5

p
2a1b4

ffiffi
2

pffiffi
5

p þ a2b3
ffiffi
3

pffiffi
5

p
a1b5

ffiffi
2

pffiffi
5

p þ 2a2b4ffiffi
5

p
a2b5

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
: (A9)

ð2a � 5bÞ4 is not shown.
20The same unitary transformation that takes 
a ! �
�a, where

a’s are the generators of SU(2).
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For 2 � 6 ¼ 5 
 7:

ð2a � 6bÞ5 ¼

a1b2ffiffi
6

p � a2b1
ffiffi
5

pffiffi
6

p
a1b3ffiffi

3
p � a2b2

ffiffi
2

pffiffi
3

p
a1b4ffiffi

2
p � a2b3ffiffi

2
p

a1b5
ffiffi
2

pffiffi
3

p � a2b4ffiffi
3

p
a1b6

ffiffi
5

pffiffi
6

p � a2b5ffiffi
6

p

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

ð2a � 6bÞ7 ¼

a1b1
a1b2

ffiffi
5

pffiffi
6

p þ a2b1ffiffi
6

p
a1b3

ffiffi
2

pffiffi
3

p þ a2b2ffiffi
3

p
a1b4ffiffi

2
p þ a2b3ffiffi

2
p

a1b5ffiffi
3

p þ a2b4
ffiffi
2

pffiffi
3

p
a1b6ffiffi

6
p þ a2b5

ffiffi
5

pffiffi
6

p
a2b6

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA
:

(A10)

APPENDIX B: MASS RELATIONS FOR
THE 6-PLET SCALAR

In this section, we list the tree-level mass relations for all
components of 6-plet scalar � in terms of the parameters in
potential VS and where h�i ¼ ð0; uÞT with u � 0.

M2
���� :

�2
�ffiffiffi
6

p þ 7� ffiffiffiffiffiffi
35

p

14
ffiffiffi
3

p u2���1 þ 1ffiffiffi
7

p u2���2

� 7
ffiffiffi
5

p þ ffiffiffi
7

p
42

u2���3; (B1)

M2
Re½�0�:

�2
�ffiffiffi
6

p þ 35þ ffiffiffiffiffiffi
35

p

70
ffiffiffi
3

p u2���1 þ 7
ffiffiffi
5

p þ 5
ffiffiffi
7

p
70

u2���2

� 7
ffiffiffi
5

p þ 10
ffiffiffi
7

p
105

u2���3 þ 7
ffiffiffi
5

p � 5
ffiffiffi
7

p þ 2
ffiffiffiffiffiffiffiffi
105

p
35

u2�0
��;

(B2)

M2
Im½�0�:

�2
�ffiffiffi
6

p þ 35þ ffiffiffiffiffiffi
35

p

70
ffiffiffi
3

p u2���1 þ 7
ffiffiffi
5

p þ 5
ffiffiffi
7

p
70

u2���2

� 7
ffiffiffi
5

p þ 10
ffiffiffi
7

p
105

u2���3 � 7
ffiffiffi
5

p � 5
ffiffiffi
7

p þ 2
ffiffiffiffiffiffiffiffi
105

p
35

u2�0
��;

(B3)

and for the components �þþ, �þ, ��, ���, the mass
matrix is nondiagonal:

ðð�þþÞy;ð�þÞy;��;���Þ
C1 0 0 C6

0 C2 C5 0
0 C5 C3 0
C6 0 0 C4

0
BBB@

1
CCCA

�þþ
�þ

ð��Þy
ð���Þy

0
BBB@

1
CCCA;
(B4)

where

C1 ¼
�2

�ffiffiffi
6

p þ 7þ ffiffiffiffiffiffi
35

p

14
ffiffiffi
3

p u2���1 þ 7
ffiffiffi
5

p þ ffiffiffi
7

p
42

u2���2

� 1ffiffiffi
7

p u2���3; (B5)

C2 ¼
�2

�ffiffiffi
6

p þ 35þ 3
ffiffiffiffiffiffi
35

p

70
ffiffiffi
3

p u2���1 þ 14
ffiffiffi
5

p þ 5
ffiffiffi
7

p
105

u2���2

� 7
ffiffiffi
5

p þ 25
ffiffiffi
7

p
210

u2���3; (B6)

C3 ¼
�2

�ffiffiffi
6

p þ 35� ffiffiffiffiffiffi
35

p

70
ffiffiffi
3

p u2���1 þ 7
ffiffiffi
5

p þ 10
ffiffiffi
7

p
105

u2���2

� 7
ffiffiffi
5

p þ 5
ffiffiffi
7

p
70

u2���3; (B7)

C4 ¼
�2

�ffiffiffi
6

p þ 35� 3
ffiffiffiffiffiffi
35

p

70
ffiffiffi
3

p u2���1 þ 7
ffiffiffi
5

p þ 25
ffiffiffi
7

p
210

u2���2

� 14
ffiffiffi
5

p þ 5
ffiffiffi
7

p
105

u2���3; (B8)

C5 ¼ 2ð5 ffiffiffiffiffiffi
14

p � 7
ffiffiffiffiffiffi
10

p � 2
ffiffiffiffiffiffiffiffi
210

p Þ
105

u2�0
��; (B9)

C6 ¼ 7þ 2
ffiffiffiffiffiffi
21

p � ffiffiffiffiffiffi
35

p
21

u2�0
��: (B10)

Note that only the quartic coupling �0
�� contributes to the

mixing terms C5 and C6.
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