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We give results for the Upsilon spectrum from lattice QCD using an improved version of the

nonrelativistic QCD action for b quarks which includes radiative corrections to kinetic terms at Oðv4Þ
in the velocity expansion. We also include for the first time the effect of up, down, strange and charm

quarks in the sea using ‘‘second generation’’ gluon field configurations from the MILC Collaboration.

Using the � 2S� 1S splitting to determine the lattice spacing, we are able to obtain the 1P� 1 �S splitting

to 1.4% and the 3S� 1S splitting to 2.4%. Our improved result for Mð�Þ �Mð�bÞ is 70(9) MeVand we

predict Mð�0Þ �Mð�0
bÞ ¼ 35ð3Þ MeV. We also calculate �, K and �s correlators using the highly

improved staggered quark action and perform a chiral and continuum extrapolation to give values for

M�s
ð0:6893ð12Þ GeVÞ and f�s

ð0:1819ð5Þ GeVÞ that allow us to tune the strange quark mass as well as

providing an independent and consistent determination of the lattice spacing. Combining the non-

relativistic QCD and highly improved staggered quark analyses gives mb=ms ¼ 54:7ð2:5Þ and a value

for the heavy quark potential parameter of r1 ¼ 0:3209ð26Þ fm.
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I. INTRODUCTION

Lattice QCD calculations have developed rapidly both in
accuracy and in scope in the last few years. This growth has
built on the first demonstration that numerical simulations
including u, d and s quarks in the sea with light enough
u=d quarks give results in agreement with experiment for
simple ‘‘gold-plated’’ quantities across the full range of
hadron physics [1]. Errors at the level of a few %make this
highly nontrivial. A key element of those calculations was
the determination of the � spectrum because there are
many gold-plated states below threshold for strong
Zweig-allowed decay. In addition radial and orbital exci-
tation energies are very insensitive to quark masses (in-
cluding that of the b itself) making them useful for
determining the lattice spacing, a, without a complicated
tuning process. A further incentive for lattice � studies is
the importance of testing b quark physics from lattice QCD

so that the same action can be used for results in B physics
required, in conjunction with experiment, for the determi-
nation of elements of the Cabibbo-Kobayashi-Maskawa
matrix. Here we give new results for the � spectrum
improving on those earlier results in several ways to keep
pace with improvements in other areas of lattice QCD. We
have improved statistical errors, improved the nonrelativ-
istic QCD (NRQCD) action and we are also now using
‘‘second generation’’ gluon field configurations that in-
clude charm quarks in the sea.
The b quarks in these first calculations that included the

full effect of sea quarks [2,3] were implemented using
lattice NRQCD with an action accurate through v4 in the
velocity expansion for the b quark [4]. The coefficients of
the v4 terms were matched to full QCD at tree level, having
removed the most significant source of radiative correc-
tions, that of tadpole diagrams generated in lattice QCD
from the form of the lattice gluon field, by the use of
‘‘tadpole-improvement’’ [5]. The gluon field configura-
tions used were generated by the MILC Collaboration [6]
using a Symanzik-improved gluon action in which radia-
tive corrections at Oð�sa

2Þ were included except for ra-
diative corrections from quark loops [7] (Oðnf�sa

2Þwhere
nf is the number of sea quark flavors), which were omitted.

Configurations at three different values of the lattice
spacing were available: ‘‘supercoarse’’ (a � 0:18 fm);
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‘‘coarse’’ (a � 0:12 fm) and ‘‘fine’’ (a � 0:09 fm). u=d
and s sea quarks were included using the improved stag-
gered (asqtad) action [8–10] which is numerically rela-
tively fast. A range of u=d masses (taken to be the same)
were used ranging down to a ratio with the s sea quark mass
of around 0.2. The key mass splittings in the bottomonium
spectrum studied were those between the ground S-wave
states and the first radially excited S-wave states, the
2S� 1S splitting, and that between the first P-wave states
and the ground S-wave states, the 1P� 1S splitting. The
statistical errors from the lattice calculation for these split-
tings were 1–2% (i.e. 5–10 MeV) and systematic errors
were estimated to be similar to this or smaller, depending
on the lattice spacing. Within these errors, agreement with
experiment was confirmed.

More recently the � spectrum has been calculated using
the same NRQCD action on gluon configurations at a
‘‘coarse’’ (a � 0:11 fm) and a ‘‘fine’’ (a � 0:09 fm) lat-
tice spacing generated by the RBC/UKQCD Collaboration
using the Iwasaki gluon action and 2þ 1 flavors of sea
quarks implemented with the domain wall formalism
[11,12]. Results in close agreement and with similar errors
to those found on the MILC configurations are obtained,
confirming the independence of the results from the sea
quark formalism.

The systematic errors in the calculation of the � 2S�
1S and 1P� 1S splittings were studied in some detail in
[2]. Sources of error there were missing radiative correc-
tions to the v4 terms in the lattice NRQCD action (beyond
tadpole-improvement), as well as radiative corrections to
discretization correction terms and from higher order (v6)
missing relativistic corrections. In addition systematic er-
rors from the missing radiative corrections to the improve-
ment terms in the gluon action were estimated. These
errors were typically each of order 1% in the 1P� 1S
splitting on the fine lattices and about half that for the
2S� 1S splitting because of some cancellation between 1S
and 2S states. Errors were similar for the radiative and
relativistic errors on coarser lattices but of course the
discretization errors were larger.

Subsequent to this, we have made estimates of the effect
of missing c quarks in the sea [13,14]. These have negli-
gible effect on mesons apart from bottomonium, where
internal momenta can be large enough to generate c quarks
from the vacuum. We found the shift in the ground-state S
wave masses might be of Oð5 MeVÞ [14] (it is spin inde-
pendent) with approximately half the shift for 2S states
because of a smaller ‘‘wave function at the origin’’ and no
shift for 1P states. This would give rise to systematic errors
of 0.5% for the 2S� 1S splitting and 1% for the 1P� 1S
splitting, similar to the systematic errors from other effects
quoted above.

The conclusion from these results is that the errors in
bottomonium masses and radial and orbital mass splittings
have been pinned down and tested from this NRQCD

action at the level of 5–10 MeV. There is also a contribu-
tion to systematic errors at the same level coming from the
gluon field configurations. The NRQCD systematic errors
also feed in to the calculation of B, Bs and Bc meson
masses using NRQCD b quarks. The state-of-the-art cal-
culation for the masses of these mesons has Oð10 MeVÞ
errors dominated by systematic errors from this NRQCD
action [14,15].
In the last five years, however, other lattice QCD calcu-

lations have become increasingly accurate. For example
the mass of the Ds meson was recently calculated by
HPQCD with combined statistical and systematic errors
of 3 MeV and its decay constant calculated to 1% [13].
These errors are at the level where we must allow for
missing electromagnetism from lattice QCD.
There have been several contributions to this progress.

Advances in computational speed have meant better sta-
tistical errors from calculating many more meson correla-
tors on larger samples of configurations. It has also been
possible to generate lattices with smaller lattice spacing,
so that the Ds calculation includes ‘‘superfine’’ (a �
0:06 fm) and ‘‘ultrafine’’ (a � 0:045 fm) lattices [6].
Significant improvements have been made to relativistic
quark actions too. For example, the Ds meson mass calcu-
lation used the highly improved staggered quark (HISQ)
action for both valence quarks. The HISQ action [16] has
smaller discretization errors than the asqtad action by
about a factor of 3 and can be used for quarks as heavy
as charm on lattices with a lattice spacing of 0.15 fm or
smaller. This has revolutionized charm physics calcula-
tions [17] in lattice QCD and is having an impact also on
calculations for mesons containing a b quark through a
combination of extrapolations in the mass of the heavy
HISQ quark acting as the ‘‘b’’ to the physical point for the
real b quark, combined with extrapolations to the contin-
uum (a ! 0) limit from results at many values of a [18].
The heavy HISQ calculations are computationally much
more expensive than those using NRQCD and this cur-
rently limits their utility. The results for Bs and Bc meson
masses have comparable errors to the existing NRQCD
results, but are dominated by statistical and a ! 0 extrapo-
lation uncertainties. They then provide a complementary
way of testing b physics to that of NRQCD and it is clear
that combining the strengths of both methods will be
optimal in future.
Meanwhile the MILC Collaboration have moved on to

the production of ‘‘second generation’’ gluon field con-
figurations which have a number of improvements over the
earlier ensembles [19]. They include a more highly im-
proved gluon action [20], HISQ quarks in the sea with the
addition of c quarks as well as u, d and s and with lighter u
and d masses than before.
The availability of these configurations along with the

incentives discussed above to improve errors in � and B
physics using NRQCD b quarks has meant that we have
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begun a new programme of improved NRQCD calcula-
tions. Here we present the first results, giving the radial and
orbital splittings in the � spectrum, tuning the lattice b
quark mass and determining the lattice spacing from the
(2S� 1S) splitting. As well as using the second generation
gluon field configurations we have improved the NRQCD
action by adding radiative corrections to the v4 kinetic
terms including discretization errors. We also have im-
proved statistics and improved methods for tuning the b
quark mass. This has meant that we can test the effect of
radiative corrections to the v4 kinetic terms on the meson
dispersion relation. Using both perturbative and nonpertur-
bative methods for determining the radiative corrections to
spin-dependent terms we are able to improve the determi-
nation of the � hyperfine splitting.

A useful complementary method for determining the
lattice spacing was developed in [21]. It uses the fictitious
s�s pseudoscalar particle known as the �s. This particle
does not exist in the real world because of mixing with
light quarks to form the � and �0 but on the lattice this can
be prevented. The mass and decay constant of the�s can be
determined accurately in a lattice QCD calculation using
the HISQ action and their physical values fixed from M�,
MK, f� and fK from a simultaneous chiral and continuum
extrapolation. Here we update the results of [21] for these
2þ 1þ 1 configurations and use these also to give a
determination of the lattice spacing.

The two different methods for determining the lattice
spacing can be combined through the use of a third quan-
tity, r1 [22], which can be derived accurately from deter-
mination of the heavy quark potential [23]. r1=a values
are provided for these configurations by the MILC
Collaboration [24]. r1=a provides a good determinant of
the relative lattice spacing between different sets of gluon
configurations but its physical value must be determined
from other quantities. From the separate determination of
the lattice spacing from the two methods above we have
two sets of results for r1 in fm as a function of lattice
spacing. From this we are able to test that the two methods
give the same result in the continuum and chiral limits
(which they do) and provide a physical value of r1 that
could be used, in the absence of either of the other

methods, to determine the lattice spacing on other ensem-
bles with 2þ 1þ 1 flavors of sea quarks.
We also combine results for tuned b quark masses in

NRQCD and tuned s quark masses from HISQ along with
one-loop renormalization constants to give a value for
mb=ms for comparison to other results obtained purely
from the HISQ action.
The layout of the paper is as follows. Section II discusses

the second generation gluon field ensembles giving more
details of the improvements present there. Section III de-
scribes the improvements to the NRQCD calculations and
results for the � spectrum. Section IV discusses the �, K,
�s analysis on these same configurations and the additional
information that provides to determine the lattice spacing.
This is tied together via the determination of the heavy
quark potential parameter, r1, in Sec. V and mb=ms in
Secs. VI and VII. provides our conclusions.

II. SECOND GENERATION 2þ 1þ 1 GLUON
FIELD ENSEMBLES

The gauge configurations used in this calculation are
listed in Table I [19]. These were generated by the MILC
Collaboration using a tadpole-improved Lüscher-Weisz
gauge action with coefficients corrected perturbatively
through Oð�sÞ including pieces proportional to nf,

the number of quark flavors in the sea [20] (see
Appendix A). The gauge action is then improved com-
pletely throughOð�sa

2Þ, unlike the earlier asqtad configu-
rations. Sea quarks are included with the HISQ action [16]
which also has smaller discretization errors compared to
the asqtad action (see the discussion in Sec. IV). The
configurations include a sea charm quark in addition to
up, down and strange. These configurations are then said to
have 2þ 1þ 1 flavors in the sea, since the u and d quarks
are taken to have the same mass, which is heavier than
average u=dmass in the real world, and the s and cmasses
are tuned as closely as possible to their correct values at
that lattice spacing. The tuning of the sea s quark mass is
much more accurately done—to better than 5%—than on
the previous asqtad configurations. This means that the
u=d quark mass (denoted ml here) can be more accurately

TABLE I. Details of the MILC gluon field ensembles used in this paper. � ¼ 10=g2 is the SUð3Þ gauge coupling and L=a and T=a
are the number of lattice spacings in the space and time directions for each lattice. aml, ams and amc are the light (up and down taken
to have the same mass), strange and charm sea quark masses in lattice units. r1=a is the static-quark potential parameter in lattice units
determined by the MILC Collaboration [19,24]. Note that this has not been ‘‘smoothed’’. The ensembles 1 and 2 will be referred to in
the text as ‘‘very coarse’’, 3 and 4 as ‘‘coarse’’ and 5 as ‘‘fine.’’

Set � r1=a aml ams amc L=a� T=a

1 5.80 2.041(10) 0.013 0.065 0.838 16� 48

2 5.80 2.0621(45) 0.0064 0.064 0.828 24� 48

3 6.00 2.574(5) 0.0102 0.0509 0.635 24� 64

4 6.00 2.623(11) 0.00507 0.0507 0.628 32� 64

5 6.30 3.549(13) 0.0074 0.037 0.440 32� 96
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calibrated in terms of the s quark mass for chiral
extrapolations. Here we use a ratio of ml=ms as low as
one tenth (see Table I) whereas in our previous work on the
asqtad configurations our most chiral ensemble had a ratio
of the ml;sea=ms;physical of one quarter. This means that we

have a much smaller chiral extrapolation to do to reach the
physical u=d mass (where ml ¼ ms=27 [6]) than before.

The sea quarks are included with the standard method of
incorporating the determinant of the quark matrix raised to
the one quarter power for each flavor, in order to imple-
ment the correct counting for sea staggered quarks. The
algorithm used for including the sea quarks has now been
improved by MILC to the exact RHMC algorithm [19], i.e.
all errors in the time step for the updating algorithm have
been removed.

The configurations are separated by 5 trajectories in the
time units of the updating algorithm for the very coarse
and coarse ensembles and by 6 trajectories for the fine
ensemble. In Secs. III B and IVA we will study the auto-
correlations in our meson correlators to show how inde-
pendent the configurations are for different observables.

The r1=a values given in Table I are determined by the
MILC Collaboration after extraction of the potential be-
tween two infinitely heavy (static) quarks at separation r=a
in lattice units. r1=a is defined [22] as the point where the
force FðrÞ derived from the derivative of the potential
satisfies

r2FðrÞ ¼ 1: (1)

The values of r1=a for these ensembles have been chosen
to match approximately those of the previous results in-
cluding 2þ 1 flavors of asqtad quarks and can be used to
determine the lattice spacing if the physical value for r1 is
known. Using the r1 value determined previously on con-
figurations with 2þ 1 flavors of sea quarks, this means that
the lattice spacing values will be approximately 0.15 fm,
0.12 fm and 0.09 fm. The physical spatial size of the
lattices then exceeds 2.5 fm and is as high as 3.8 fm on
the ensembles that correspond to ml=ms ¼ 0:1. In Sec. V
we will derive a physical value for r1 based on the results
from Secs. III and IV to calibrate more accurately the
lattice spacing values for these configurations.

III. THE UPSILON SPECTRUM

A. The NRQCD action

The spectrum of bottomonium mesons is extracted by
computing appropriate correlators constructed from
b-quark propagators on the gluon field ensembles listed
in Table I. We make use of NRQCD, an effective field
theory that gives an expansion of the Dirac action in
powers of the heavy quark velocity, v. This is discretized
onto a space-time lattice as lattice NRQCD [4,25] and is a
good formalism to use for b quarks since they are known to
be very nonrelativistic inside their bound states (v2 � 0:1).

As used on the lattice, NRQCD has the advantage that
propagators can be generated using a simple time evolution
equation rather than having to invert the Dirac matrix. The
quark and antiquark fields are separated in this formalism
as 2-component spinors.
The NRQCD Hamiltonian we use is given by:

aH¼aH0þa�H; aH0¼� �ð2Þ

2amb

;

a�H¼�c1
ð�ð2ÞÞ2
8ðambÞ3

þc2
i

8ðambÞ2
ðr� ~E� ~E �rÞ

�c3
1

8ðambÞ2
� � ð~r� ~E� ~E� ~rÞ

�c4
1

2amb

� � ~Bþc5
�ð4Þ

24amb

�c6
ð�ð2ÞÞ2

16nðambÞ2
: (2)

Herer is the symmetric lattice derivative and�ð2Þ and�ð4Þ
the lattice discretization of the continuum

P
iD

2
i and

P
iD

4
i

respectively. amb is the bare b quark mass. ~E and ~B are the
chromoelectric and chromomagnetic fields calculated from

an improved clover term [2]. The ~B and ~E are made anti-
Hermitian but not explicitly traceless, to match the pertur-
bative calculations done using this action.
In terms of the velocity expansionH0 isOðv2Þ and �H is

Oðv4Þ, including discretization corrections. H0 contains
the bare quark mass parameter which is nonperturbatively
tuned to the correct value for the b quark as discussed
below in Sec. III C. The terms in �H have coefficients ci
whose values are fixed from matching lattice NRQCD to
full QCD. This matching takes account of high momentum
modes that differ between NRQCD and full QCD and so it

can be done perturbatively, giving the ci the expansion 1þ
cð1Þi �s þOð�2

sÞ. In previous calculations [2] we used the
tree level value of 1 for all the ci, after tadpole-improving
the gluon fields. This means dividing all the gluon
fields, U�ðxÞ by a tadpole-parameter, u0, before construct-

ing covariant derivatives or E and B fields for the
Hamiltonian above. The u0 parameter corrects for tadpole
diagrams that arise in a universal way from the way in
which the lattice gluon field is constructed. For u0 we took
the mean trace of the gluon field in Landau gauge, u0L.
With the tadpole-improvement in place we expect the
radiative corrections to the ci coefficients to be of normal
size, i.e. Oð1Þ [26]; without this they can be rather large.
Here, on top of tadpole-improvement with u0L, we use

Oð�sÞ corrected coefficients for the kinetic terms, i.e. c1,
c5 and c6, so improving on the NRQCD action used
previously, and significantly reducing the systematic errors
in the tuning of the b quark mass and in the determination
of the radial and orbital mass splittings. The calculation of

the cð1Þi for i ¼ 1, 5, 6 is discussed in Appendix B [27].
Table II gives the values for c1, c5 and c6 that we use on the
very coarse, coarse and fine lattices as a result. As ex-

pected, after tadpole-improvement, the coefficients cð1Þ1;5;6

R. J. DOWDALL et al. PHYSICAL REVIEW D 85, 054509 (2012)

054509-4



are not large and they are well behaved as a function of the
b quark mass. In Sec. III C we test these coefficients
through a precision study of the dispersion relation for �
and �b mesons.

The other coefficients in the NRQCD action are c2, c3
and c4. c3 and c4 multiply spin-dependent terms that give
rise, respectively, to spin-orbit and spin-spin fine structure
in the spectrum. Most of the splittings we will discuss here
are ‘‘spin averaged’’ to remove the effect of these terms and
so we will generally set c3 and c4 to their tree level values
of 1. However, in Sec. III E 3 we will discuss the hyperfine
splitting (Mð�Þ �Mð�bÞ) and show results for both per-
turbatively improved and nonperturbatively determined c4.

The calculation of the appropriate cð1Þ4 [28] is discussed in

Appendix B, and the nonperturbative determination of c4
and c3 in Appendix C. The nonperturbative studies indicate
that the value of c3 is very close to 1 for this NRQCD
action. c2 multiplies a spin-independent term, the Darwin
term, which can affect spin-independent splittings such as
radial and orbital excitation energies. Because the Darwin
term is field dependent we do not expect it to have such a
large effect as kinetic terms, and therefore do not expect
radiative corrections to c2 to be as important as for c1, c5
and c6. However, in Sec. III C we will investigate the effect
of changing c2 so that we can estimate concretely the
systematic error from not knowing its Oð�sÞ correction.

Given the NRQCD action above, the time evolution of
the heavy quark propagator is given by:

Gðx; tþ 1Þ ¼
�
1� a�H

2

��
1� aH0

2n

�
n
Uy

t ðxÞ

�
�
1� aH0

2n

�
n
�
1� a�H

2

�
Gðx; tÞ (3)

with starting condition:

Gðx; 0Þ ¼ �ðxÞ1: (4)

The smearing function �ðxÞ is used to improve the pro-
jection onto a particular state in the spectrum. Including a
variety of smearing functions is essential to obtain accurate
results for the splittings between the low lying excited
states. Full details of the smearing functions used will be
given in Sec. III B. The 1 in Eq. (4) is the unit matrix in
color and (2-component) spin space. The parameter n has
no physical significance, but is included for improved

numerical stability of high momentum modes that do not
contribute to bound states [4]. In [2] it was demonstrated
that radial and orbital mass splittings were the same within
the statistical errors available there for n ¼ 2 and n ¼ 4 on
coarse lattices. The minimum value of n for stability
increases as the b quark mass in lattice units falls on finer
lattices. Rather than varying n as we change the quark
mass, here we use n ¼ 4 throughout which is the value
appropriate to the fine lattices. At zero spatial momentum
the antiquark propagator is the complex conjugate of the
quark propagator for a source of the kind given in Eq. (4).
Details of various parameters used in our calculation are

listed in Table III. Tuning of the bare b quark mass will be
discussed in Sec. III C. The tadpole parameters u0L were
calculated by fixing a subset of each ensemble to lattice
Landau gauge using a Fourier-accelerated steepest de-
scents algorithm [29] to maximize the average trace link
(
P

�¼1;4;xTrU�ðxÞ), which value, normalized, then be-

comes u0L. The whole ensemble was then fixed to
Coulomb gauge by using the same algorithm to maximize
the spatial trace link (

P
i¼1;3;xTrUiðxÞ) to allow us to use

‘‘wave-function’’ smearing operators, with parameter asm
as described in Sec. III B. Propagators were calculated
from 16 time sources on each configuration to minimize
statistical errors. Because in NRQCD we operate a simple
time evolution we can choose the time length of each
propagator. This we take to be greater than or equal to
half the time extent of the lattice as detailed in Table III.

B. Smearing functions and multiexponential fits

Quark propagators are generated using three different
smearing functions which we label as local, ground state
and excited state. They are chosen to improve the projec-
tion onto different radially excited states and previous
experience has shown that ‘‘hydrogenlike’’ wave functions
work well [2].

TABLE II. The coefficients c1, c5 and c6 used in the NRQCD
Hamiltonian of Eq. (2) on the very coarse (sets 1 and 2), coarse
(sets 3 and 4) and fine (set 5) ensembles. Other coefficients had
values 1 except for calculations in which we specifically changed
their values to test the effect, as described in the text.

Set c1 c5 c6

very coarse 1.36 1.21 1.36

coarse 1.31 1.16 1.31

fine 1.21 1.12 1.21

TABLE III. Parameters used in the NRQCD action for our
calculations that included a full 5� 5 matrix of correlators.
Other parameters have been used in subsidiary test calculations
as described in the text. amb is the bare b quark mass and u0L the
Landau link tadpole-improvement factor used in the NRQCD
action. The different number of digits given in the u0L column
reflect the precision with which it was determined. ncfg gives the

number of configurations used in each ensemble and nt is the
number of starting time sources per configuration. Tp is the time

length of each propagator in lattice units. asm is the parameter for
the smearing function described in Sec. III B.

Set amb u0L ncfg nt Tp asm

1 3.42 0.8195 1021 16 40 0.79

2 3.39 0.820 15 1000 16 40 0.80

3 2.66 0.834 1053 16 40 1.0

4 2.62 0.8349 1000 16 40 1.0

5 1.91 0.8525 874 16 48 1.37
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�lðrÞ ¼ �r;0 �gsðrÞ ¼ expð�r=asmÞ
�esðrÞ ¼ ð2asm � rÞ expð�r=asmÞ:

(5)

asm is the smearing radius and is chosen to be approxi-
mately the same in physical units for each ensemble.
Values are given in Table III. Since a different smearing
function can be applied separately to the quark and anti-
quark we can make five different combinations as detailed
in Table IV.

A different smearing can also be applied at the source
and the sink making correlator combinations labeled by,
e.g. lg, le, gG. The different smearing combinations allow
the construction of up to a 5� 5 matrix of correlators for
the S-wave states that can be fit simultaneously. The cross-
correlators provide further useful information beyond that
in the diagonal terms that can be used in the fitting to
extract the excited states more precisely. The correlators
with quantum numbers of 3S1 or

1S0 are distinguished by

the insertion of either a � or a 1 in spin space at source and
sink [30].

To make P-wave states we use only the l and g smear-
ings above and apply a symmetric difference operator,� to
the smeared source to give a P-‘‘wave function’’. This
propagator is combined with that from a � function source
and a derivative applied at the sink to make a P-wave
meson correlator. The complete set of combinations of �
matrices with derivatives that are needed for the P-wave
states is given in [30]. On the lattice the five-dimensional
spin 2 representation is split into E and T2 representations
of the lattice rotational group and we fit these representa-
tions separately since differences in mass between them
can arise from discretization errors on the lattice.

For the S-wave states, statistical errors were improved
further by using random wall sources in combination with
the smearings discussed above. The delta function quark
source is replaced with a (pseudo-)random color vector
�að ~xÞ 2 Uð1Þ at each spatial point of the initial time slice.
When the meson correlator is constructed, the white noise

property h�að ~xÞ�y
b ð ~yÞi ¼ �ab�ð ~x� ~yÞ ensures that the ran-

dom noise cancels at all points except those where the
initial spatial sites are the same. This can be combined
with the smearing functions by distributing the random
number associated with the center of each smearing func-
tion along with the smearing function. Then once again the

white noise property will mean that the resultant correlator
averages over the initial time source the effect of having a
smeared source at every point [31]. Previous studies have
found a significant improvement in the precision of the
Upsilon ground state energy using random wall sources
[21]. The improvement is less clear for excited states and
therefore we did not use this technique for the P-wave
states.
Propagators were calculated from 16 time sources on

each configuration but to avoid correlations between time
sources, the correlators were binned over all sources on the
same configuration. Autocorrelations between results on
successive configurations in an ensemble were studied by
calculating the autocorrelation function C�T [32]:

C�T ¼ hxixiþ�Ti � hxiihxiþ�Ti
hx2i i � hxii2

: (6)

Here xi represents a correlator on a given configuration, i.
xiþ�T is the correlator on an ensemble separated by �T
from i in the ordered ensemble, i.e.�T ¼ 1 corresponds to
neighboring configurations in the ensemble. The ensem-
bles have been generated taking into account the fact that
autocorrelations increase on finer lattices. Thus neighbor-
ing configurations are 5 trajectories apart for very coarse
and coarse ensembles but 6 trajectories apart for the fine
ensemble [19]. C�T is plotted against �T in Fig. 1 for the
case where x is an � correlator measured with a time
separation on the lattice of approximately 0.6 fm. This
value was chosen to correspond to a point where correla-
tors were dominated by the ground state. The picture is
qualitatively the same for different time separations, how-
ever. C�T drops to zero very rapidly, within the separation
�T ¼ 1. We therefore do not have to worry about auto-
correlations between configurations but can treat them all
as statistically independent.
Bayesian fitting is used to extract the spectrum from the

correlators [33]. The fit function

Gmesonðnsc; nsk; tÞ ¼
Xnexp
k¼1

aðnsc; kÞa�ðnsk; kÞe�Ekt (7)

is used, where aEk is the energy of the (k� 1)th radial
excitation in lattice units and aðnsc=sk; kÞ are the corre-

sponding amplitudes labeled by the smearing used at the
source and sink of the correlator, i.e. sc, sk 2
fl; g; e; G; Eg. We fit the full range of t values for the
correlator from 1 to Tp, where Tp values are given for S

wave fits in Table III and Tp ¼ 20 for P waves. The

number of terms, nexp, in the fit is varied, however, and

Bayesian model selection criteria are applied to determine
which fit is used. In practice, this means adding additional
terms to the fit until the results and the errors stabilize. An
example is given in Fig. 2.
The Bayesian approach allows the inclusion of prior

data into the fitting procedure. The 	2 test function is
amended to

TABLE IV. Smearing combinations used for either the source
or the sink in the construction of S-wave correlators.

Name Quark smearing Antiquark smearing

l �l �l

g �gs �l

e �es �l

G �gs �gs

E �es �es
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	2
aug ¼ 	2 þ 	2

prior (8)

and the function 	2
aug is minimized. By Bayes’

theorem this corresponds to maximizing the posterior
probability pðparametersjdataÞ as opposed to a standard
	2 test which maximizes only the likelihood function
pðdatajparametersÞ. 	2

prior is taken to be

	2
prior ¼

X
k

ðpk � ~pkÞ2
~�2
pk

(9)

for each fit parameter pk. This assumes that the prior
probability density function for each parameter is a

Gaussian with central value pk and width ~�pk
. The fit

parameters are: the amplitudes, which are taken to have a
prior of 0:1� 1:0; the ground state energies lnðE1Þ which
are estimated from an effective mass plot and given a
suitably wide width; and the splittings lnðEnþ1 � EnÞ
which prior information tells us should be of the order
500 MeV with a width of 250 MeV. Taking the fit parame-
ters to be the logarithms of the energy splittings ensures
that the ordering of the states is respected.
	2
aug is minimized using the singular value decomposi-

tion method. In the larger matrix fits, the correlation matrix
can become ill-conditioned and it can be necessary to
introduce a cutoff, wcut, on the lowest eigenvalues of the
correlation matrix in order to fit the data. Avariation of this
method is used in which, instead of setting eigenvalues
below wcutwmax to zero, they are set to wmax times wcut.
This is a less severe truncation of the correlation matrix and
it improves the fits in some cases. wcut was typically taken
to be 10�4 for the 5� 5 matrix fits.
In order to determine whether the inclusion of five

different smearing operators actually leads to improved
results, the energies of the low lying � states are plotted
in Fig. 3 for a variety of different matrix fits from the fine
ensemble. The effect on the precision of the ground state is
negligible but the full 5� 5 fit has significantly smaller
errors for the first two excited states.
Because NRQCD is a nonrelativistic effective theory,

there is an energy offset. Thus the energies obtained from
correlators at zero momentum do not correspond to meson
masses. Energy differences do correspond to mass differ-
ences, however and so, for example, the mass difference
between the �0 and the � (in lattice units) is given simply
by aE2 � aE1 from Eq. (7). To obtain absolute mass values
requires the study of correlators for mesons at nonzero
spatial momentum as discussed in Sec. III C.
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FIG. 1 (color online). Autocorrelation function C�T for � correlators made from different smearing combinations, from left to
right: ll, gg and ee. Different symbols are given to different ensembles according to the key on the right in the ee plot. The correlators
are evaluated at lattice time separation t=a ¼ 4 on very coarse lattices (sets 1 and 2), t=a ¼ 5 on coarse lattices (sets 3 and 4) and
t=a ¼ 8 on fine lattices (set 5). This corresponds to a t value where the gg correlators have reached the ground-state plateau and the ee
correlators have a short plateau corresponding approximately to the first excited state mass. �T gives the separation at which the
autocorrelation is measured in units of numbers in the ordered ensemble list.
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C. NRQCD systematics in tuning the b quark mass

In this calculation the parameters of QCD that need to be
determined are the b quark mass and�QCD. In practice this

translates into the fact that we need to tune the b quark
mass parameter in the lattice NRQCD Hamiltonian until
we obtain the correct value for one calibration hadron mass
and we need to determine the lattice spacing from another
calibration hadron mass. After that is done all other hadron
masses are determined with no further tuning. The two
calibration hadrons should be chosen with rather different
properties. The mass chosen to fix the b quark mass should
ideally be very sensitive to that value; the mass chosen to
determine the lattice spacing should be as independent of
the b quark mass as possible to avoid a complicated
iterative tuning process. To determine the lattice spacing
we choose the radial excitation energy of the �, i.e.
Mð�0Þ �Mð�Þ. This is known from experiment to be
very insensitive to the heavy quark mass since it changes
by only 4% between the b and the equivalent quantities for
the c quark, which has a mass a factor of 4.5 smaller. The
determination of the lattice spacing from this quantity will
be discussed in Sec. III E. Here we focus on the tuning of
the b quark mass and, in particular, on the effect of the
improvements to the NRQCD action which we have im-
plemented here for the first time.

As discussed in Sec. III B the fitted energy from a zero
momentum hadron correlator made from NRQCD propa-
gators is not the hadron’s mass because there is an energy
offset. Instead we must determine the ‘‘kinetic mass’’ from
the energy-momentum dispersion relation:

aMKin ¼ a2P2 � ða�EÞ2
2a�E

; (10)

where a�E is the energy difference between the meson
with momentum Pa in lattice units and the meson at rest.
Equation (10) assumes a fully relativistic dispersion
relation, i.e.

aEðPÞ ¼ aEð0Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2P2 þ a2M2

Kin

q
: (11)

Systematic errors will then be present in the kinetic mass
for lattice NRQCD both because the action is only accurate
to a specific order in the expansion in v2=c2 and from
lattice discretization errors. Here we study both of these
effects. First it is worth briefly recapitulating a discussion
from the literature (see, for example, [34]) on how the
kinetic mass is built up in a nonrelativistic approach as
successive orders in v2=c2 are added to the nonrelativistic
expansion, because it provides a useful handle on system-
atic errors.
By definition the mass of a meson is given by the sum of

the masses of its constituent quarks plus the binding en-
ergy. The binding energy has contributions from the inter-
nal kinetic energy, i.e. the motion of the constituent quarks
relative to the center of mass, and from the interaction
energy. If we write the meson dispersion relation in the
standard nonrelativistic expansion as

EðPÞ ¼ M1 þ P2

2M2

þ . . . ; (12)

then M1 is known as the static mass and M2 is the kinetic
mass, equal to MKin in Eq. (10) up to relativistic correc-
tions. It should be possible to construct the correct meson
mass from both M1 and M2, i.e. the binding energy con-
tribution needs to feed correctly into both of them.
To see how this works in outline it is sufficient to study

two free particles. The total energy of the two particle
system is the sum of the masses, mi, plus the kinetic
energies, q2

i =2mi for each particle. In the center of mass
frame (P ¼ 0) this is simply m1 þm2 plus the internal
kinetic energy. As is well-known, the internal kinetic en-
ergy can be written to leading nonrelativistic order as
p2=2� where p is the momentum of either particle in
this frame and � is the reduced mass (1=� ¼ 1=m1 þ
1=m2). Thus M1 takes the expected form for this two
particle system. To study M2 we must include the motion
of the center of mass and expand the sum of the two
particle kinetic energies to OðP2Þ. For M2 to have the
correct form including the leading piece of the internal
kinetic energy we need EðPÞ to take the form

EðPÞ ¼ mq1 þmq2 þ p2

2�
þ . . .þ P2

2ðmq1 þmq2Þ

�
�
1� p2

2�ðmq1 þmq2Þ þ . . .

�
; (13)
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i.e. we need to locate a P2p2 term in the sum of the
individual particle kinetic energies. This requires the indi-
vidual kinetic energies to be expanded beyond leading
order in the nonrelativistic expansion to include terms at
fourth order in the momentum. Thus M2 will have the
correct form to leading order in the internal kinetic energy
if the individual kinetic energy terms are correct through
next-to-leading order in momentum. In an interacting the-
ory we also need the interaction terms to be correct through
Oðv4Þ to have the binding energy correctly included in the
kinetic mass.

These issues are discussed in some detail in [34] for
heavy quarks using the clover action since there are im-
portant differences in discretization errors there between
choosing M1 or M2 as the appropriate meson mass against
which to tune the quark mass. In NRQCD we must useM2

(MKin). The quark Hamiltonian given in Eq. (2) has no
quark mass term, so to reconstruct the meson mass from
M1 would require adding back in the zero of energy. This is
perturbatively calculable but we wish the tune the quark
mass fully nonperturbatively. M2 on the other hand ac-
quires its quark mass pieces from the quark kinetic energy
terms and so has no zero of energy problem. As discussed
above, M2 will also correctly include the internal kinetic
energy if the v4 relativistic corrections to the kinetic en-
ergy are included in the quark Hamiltonian, as they are in
Eq. (2). Indeed we are now including the radiative correc-
tions to the v4 kinetic terms through adjustments to c1, c5
and c6, and we will show below the effect that this has.

We can determine the kinetic mass very precisely by use
of propagators made starting with a random wall source
patterned by an expðip � xÞ factor to give the quark mo-
mentum [31]. We use only a �ðxÞ smearing function for
these calculations so they are very fast, but we must evolve
both a quark and an antiquark propagator because the
complex conjugate of a quark propagator of momentum
p is an antiquark of momentum �p. Typically we take
quark and antiquark momenta to be equal so that the meson
momentum, when they are combined, is P ¼ 2p.

We fit the meson correlator of momentum P simulta-
neously with the meson correlator at rest so that the energy
difference a�E between the ground state energies can be
determined directly by the fit taking the correlations into
account. In this way we obtain a�E values with errors
typically in the 5th decimal place. To avoid cluttering the
main body of the text, the detailed tables of values for �
and �b energies as a function of momentum and aMkin are
collected in Appendix D. Propagators were calculated for
the full number of configurations given for each ensemble
in Table III, but in some cases we used fewer time sources
per configuration than is given there.

We can then plot out the kinetic mass for a range of
meson momenta to study systematic effects in Eq. (10)
which would show up as a disagreement between kinetic
masses obtained from different momentum values.

Previous calculations saw no significant differences in
kinetic mass values for momenta up to P2a2 ¼ 9 with
errors of around 1% [2]. This is equivalent to a test, as a
function of momentum, of the constancy of the ‘‘speed of
light’’. Here we are able to achieve errors down to 0.1%,
depending on the momentum. Then systematic variations
of aMKin with momentum can be seen at the 0.5% level.
aMKin values for� and�b mesons on the coarse lattices,

set 3, are plotted in Fig. 4 and show several features. One is
that there is a systematic difference between the values of
aMKin for on-axis (those in one lattice direction only) and
off-axis momenta. This was hinted at in [2] but the errors
were too large for it to be clear. The on-axis kinetic masses
are higher, and this reflects a breaking of rotational invari-
ance on the lattice which is a discretization error. It is
particularly obvious for the momenta with components
along the spatial directions labeled by integers (3,0,0)
and (2,2,1), both of which have P2a2 ¼ 9ð2�a=LÞ2. The
difference is tiny but visible. We will return to this point
below.
Another feature of Fig. 4 is that the kinetic mass for the

�b is above that of the � which is the opposite way round
to the energy difference at zero momentum and to experi-
ment. A similar but somewhat smaller effect is seen on the
fine lattices. The discussion above on the way in which the
meson kinetic mass is built up order by order in the non-
relativistic expansion shows how this has happened. It
results from the fact that the � � B term that gives rise to
the hyperfine splitting is only included at leading order in
our NRQCD action, Eq. (2). Relativistic corrections to this
term would be needed for it to feed correctly into the
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FIG. 4 (color online). Kinetic mass values in lattice units
obtained on the coarse ensemble, set 3, for the amb and ci
values given in Tables II and III. Kinetic mass values are given
separately for the � and �b and plotted against the square of the
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kinetic mass, M2. The effect of the � � B term splitting is
correctly incorporated in the meson energy at zero mo-
mentum (M1), however, and it is from differences inM1 for
� and �b that we determine the hyperfine splitting (see
Sec. III E 3). This small but nonzero systematic error inM2

is simply removed by working instead with the spin-
averaged kinetic mass of the � and �b:

�M Kinð1SÞ ¼ ð3MKinð�Þ þMKinð�bÞÞ
4

(14)

and using this to fix the b quark mass.
The above arguments also allow insight into the effect of

radiative corrections to the v4 kinetic terms in the NRQCD
Hamiltonian that we include here for the first time.
Changing the coefficient of the p4=8m3

b term, c1, from 1

to 1þOð�sÞwill modify the amount of the internal kinetic
energy that is incorporated into the meson kinetic mass,
effectively correcting for an Oð�sÞ mismatch between this
contribution to M1 and M2 from binding energy effects.
The effect of this radiative correction is seen clearly in
Fig. 5 where we compare the spin-averaged kinetic mass
with all ci set to 1 to that from having the radiatively
improved coefficients given in Table II. The difference
would be expected to beOð�s � BÞwhere B is the binding
energy ofOð500 MeVÞ. This could in principle be as large
as 150–200 MeV. From Fig. 5 we see that the effect is
somewhat smaller than this on the coarse ensemble set
3—a shift of kinetic mass of 0.05 in lattice units corre-
sponds to around 80 MeV on these lattices. The shift is
clearly visible, however. The radiative correction acts to
increase the kinetic mass for a given bare b quark mass.
This is because c1 > 1 and the binding energy is positive.

Thus the correctly tuned quark mass will be lower (by the
same percentage shift as that for the kinetic mass) when
radiative corrections are included. A similar shift is ob-
served on the fine lattices as shown in Fig. 6.
Remaining systematic errors from higher order radiative

corrections to v4 terms in the NRQCD action will be
suppressed by a further power of �s beyond the shift
seen here. We therefore expect the remaining error in the
kinetic mass from this source to be Oð0:3%Þ. Systematic
errors from missing higher order, v6, terms at tree level in
the NRQCD action are a factor of v2, or 10%, smaller than
the size of the effect of v4 terms, and therefore of similar
size to missing �2

sv
4 terms. They will also have the effect

of correcting for momentum dependence in MKin. From
Fig. 5 we can see that there is a sign of an upward drift of
MKin with momentum but the effect is smaller than the shift
of MKin with the radiative correction to the ci coefficients.
We now return to the issue of discretization errors in the

kinetic mass. These arise from the replacement of time and
space derivatives in the NRQCD action with finite differ-
ences on the lattice. The terms with coefficients c5 and c6
contain a2v4 and av4 correction terms to remove these
errors. With the inclusion of radiative corrections to c5 and
c6, the remaining errors are at Oð�2

sa
2v4Þ in this calcula-

tion. The term with coefficient c5, i.e. the term proportional

to �ð4Þ is of interest because this is rotationally noninvar-
iant. The signal for a lack of continuum rotational invari-
ance in our results is a disagreement between the kinetic
mass for on-axis momenta, that typically have a high value
for P4

i , and off-axis momenta. This was seen in Fig. 4 for
the coarse lattices. Less variation is evident on the fine
lattices (Fig. 6), as expected for a discretization effect.
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FIG. 5 (color online). Spin-averaged values for the kinetic
mass in lattice units obtained on the coarse ensemble, set 3,
for amb ¼ 2:66 (as in Table III). Results for the ci values given
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FIG. 6 (color online). Spin-averaged values for the kinetic
mass in lattice units obtained on the fine ensemble, set 5, for
the amb and ci values given in Tables II and III, compared to the
results for ci ¼ 1. The kinetic mass is plotted against the square
of the lattice momentum in units of 2�a=L.
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To make clearer the way in which the rotationally non-
invariant discretization errors depend on the lattice spacing
Fig. 7 plots the energy difference in physical units between
mesons with momentum (3, 0, 0) and (2, 2, 1) as a function
of a2 using results from all three values of the lattice
spacing. P2a2 ¼ 9ð2�a=LÞ2 corresponds to approximately
the same physical momentum at all three lattice spacing
values, so the results should be a good test of how rota-
tional invariance is restored as a ! 0. In fact the energy
difference is tiny on all except the very coarse lattices,
where it reaches 1 MeV. The case in which the c1;5;6
coefficients are set to their tree level values of 1 is plotted
as well as the case with the c1;5;6 coefficients taking the

radiatively improved values that we have used for the rest
of our calculation here. The radiatively improved values
give very slightly smaller energy splittings, since they have
improved the a2 contribution to this error by one order in
�s to �

2
sa

2v4. The energy difference between mesons with
momentum (3, 0, 0) and (2, 2, 1) also has contributions at
Oða4v6Þ, however, and both the effect of radiative im-
provement and the shape of the curve in Fig. 7 tend to
imply that these a4 terms dominate over any remaining a2

terms.
Rotationally invariant discretization errors would give

rise to a kinetic mass that varied with P2. This is the same
effect as that of relativistic errors, because the correcting
operators are the same. Discretization errors require an
a-dependent coefficient to correct them. However, as dis-
cussed above under relativistic corrections, there is no sign
in our results of such errors to better than 0.5%.

The conclusion from this section is that, to minimize
systematic errors, we should tune the b quark mass by
calculating the spin-averaged kinetic mass �MKinð1SÞ and
matching that to experiment. We do this from the compari-
son of meson energies at zero momentum and the
‘‘maximally off-axis’’ momentum (1, 1, 1) to minimize
discretization errors. Table V gives results for this kinetic
mass on all ensembles for the given values of the b quark
mass and coefficients, ci. To convert these results to physi-
cal units we need a value for the lattice spacing to be
determined in Sec. III E. Table V gives statistical/fitting
errors on the values. As discussed above, remaining sys-
tematic errors from missing radiative, relativistic and dis-
cretization errors amount to a total of 0.5%. We are able to
pin down the size of these systematic errors by using the
improved methods described here to study the dispersion at
this level of detail.
Figure 8 compares the results for the spin-averaged

kinetic mass on the coarse ensemble, set 3 for a variety
of different choices for the coefficients in the NRQCD
action to show the size of variations in the kinetic mass.
The figure shows that we can see the difference between
taking tree-level values for c1;5;6 and radiatively improved

values. Changing c2 (the coefficient of the Darwin term)
has very little effect. The effect of changing c4 (the coef-
ficient of the � �B term which should be spin averaged
away at leading order in this kinetic mass) is also not large.
Another check of this is given in Table V on set 1.
The experimental result for the�mass is 9.4603(3) GeV

and that of the�b, 9.391(3) GeV, [35] giving a spin average
of 9.443(1) GeV. The real world includes effects that are
missing from our lattice calculation, however, and so we
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TABLE V. Summary of the kinetic masses obtained on differ-
ent ensembles for a variety of parameter values. We use the
energy difference between lattice momentum zero and momen-
tum ap ¼ ð1; 1; 1Þ in units of 2�a=L. The column c1;5;6 denotes
whether the Oð�sÞ improved coefficients were used in the action
and the columns c2, c4 indicate additional values of those
coefficients that were run on coarse set 3 and very coarse set 1
to estimate systematic errors.

Set amb c1;5;6 c2 c4 aMKinð�Þ aMKinð�bÞ a �MKinð1SÞ
1 3.42 �s 1 1 7.269(18) 7.405(10) 7.303(15)

1 3.42 �s 1 1.22 7.271(22) 7.472(10) 7.321(18)

2 3.39 �s 1 1 7.228(10) 7.345(4) 7.257(8)

2 3.42 �s 1 1 7.310(14) 7.423(7) 7.338(13)

3 2.66 1 1 1 5.703(17) 5.767(7) 5.719(14)

3 2.66 �s 1 1 5.742(17) 5.817(7) 5.761(14)

3 2.66 �s 1.25 1 5.748(8) 5.823(4) 5.766(7)

3 2.66 �s 1 1.25 5.767(10) 5.889(4) 5.798(8)

4 2.62 �s 1 1 5.706(9) 5.761(4) 5.719(7)

4 2.66 �s 1 1 5.778(11) 5.833(5) 5.792(10)

5 1.91 1 1 1 4.230(13) 4.252(6) 4.236(11)

5 1.91 �s 1 1 4.256(14) 4.287(6) 4.264(11)

5 2.0 �s 1 1 4.431(11) 4.466(5) 4.439(10)
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must correct for this. Electromagnetism affects the � and
�b approximately equally and, from a potential model we
estimate that it reduces their masses by 1.6 MeV [14]. In
addition the �b can annihilate to gluons and we estimate
that this effect also reduces its mass by 2.4 MeV, taking the
same value as that estimated for the �c [16]. The ‘‘experi-
mental’’ mass that we should compare our results to is then
increased from above to 9.445(2) GeV where we allow
for a 100% error in our estimate of the shifts in the
masses [36].

D. NRQCD systematics in radial and orbital splittings

Here we discuss the remaining sources of systematic
error in our calculation of the radial and orbital excitation
energies. These systematic errors will feed subsequently
into the determination of the lattice spacing from the �
2S� 1S splitting.

Radial and orbital excitation energies arise at leading
order from the time derivative and H0 in the NRQCD

action [Eq. (2)]. The relativistic corrections at v4 in �H
thus provide relative Oðv2Þ � 10% corrections to these
splittings. Missing radiative corrections to the v4 terms
dominated the errors in earlier calculations [2,11], since
�sv

2 � 2� 3% is larger than v4 � 1% from missing
higher order relativistic corrections. We now include for
the first time the radiative corrections to most of the v4

terms in �H. The remaining errors are then largely at
relative Oð�2

sv
2Þ, i.e. less than 1%.

Table VI lists the remaining systematic errors from spin-
independent terms in the 2S� 1S and 1P� 1S splittings
in more detail following [2]. The errors were determined
using a potential model to make estimates of the energy
shifts in each of the 1S, 2S and 1P states. For example,
radiative corrections at Oð�2

sÞ to the p4=ð8m3
bÞ term in the

NRQCD action give shifts of size �2
s < p4 > =4m3

b where

<p4> is the expectation value of p4 in that state.
The effects of the Darwin term appear at Oð�sv

4Þ since
we have not included a radiative correction to c2. However,
since this term vanishes in the free theory it is already
suppressed by an additional power of �s. Its effects are
proportional to the square of the wave function at the origin
so it does not affect P-wave states. A very similar term
arises from missing spin-independent 4-quark operators.
The spin-dependent 4-quark operators are discussed in
Appendix B along with the coefficients they have in order
to match NRQCD to QCD. The spin-independent ones
arise from the same diagrams and the calculation of their
coefficients is in progress. Here we take an error from
missing these 4-quark operators which is of the same size
as the error from radiative corrections to the Darwin term.
Note that errors cancel to a significant extent between

the 2S and 1S states because of their similarities [2]. This is
the reason for focussing on the 2S� 1S splitting to deter-
mine the lattice spacing, because it has the smallest sys-
tematic error.
We see from Table VI that the largest remaining system-

atic error is now that from missing v6 terms. The key
kinetic term at v6 that would appear in a higher order

NRQCD action is �ð�ð2ÞÞ3=ð16ðambÞ5Þ at tree level. This

FIG. 8 (color online). Comparison of values obtained for the
kinetic mass from a variety of different parameter values on
coarse set 3.

TABLE VI. An estimate of systematic errors in the 2S� 1S and 1P� 1S splittings in the � in our lattice QCD calculation arising
from missing higher order relativistic and radiative corrections to the NRQCD action that we use (Eq. (2)).

Correction Relativistic

Radiative

kinetic

Radiative

Darwin

4-quark

spin-independent

Total

relativistic + radiative

Form �p6=ðmbÞ5 �2
s�p

4=4ðmbÞ3 4��2
sc ð0Þ2=ð3m2

bÞ �2
sc ð0Þ2=m2

b

Est. percentage in 2S� 1S
Very coarse 0.5 0.2 0.4 0.4 0.8

Coarse 0.5 0.15 0.3 0.3 0.7

Fine 0.5 0.1 0.2 0.2 0.6

Est. percentage in 1P� 1S
Very coarse 1.0 0.7 0.9 0.9 1.8

Coarse 1.0 0.5 0.7 0.7 1.5

Fine 1.0 0.3 0.4 0.4 1.2
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term is proportional toþðv2Þ3 and so, if it dominates the v6

errors, they will have the same sign at every value of the
lattice spacing. Including this v6 term would act in the
direction of reducing both the 2S� 1S and 1P� 1S split-
ting but the 1P� 1S splitting would be reduced the most.

Table VII similarly quantifies remaining systematic er-
rors from missing �2

s radiative corrections to the discreti-
zation correction terms with coefficients c5 and c6. These
are significantly reduced over our earlier calculations [2]
now that the �s radiative corrections are included. In
addition the gluon action is now improved completely
through Oð�2

sa
2Þ [20] and this means that the discretiza-

tion errors coming from the gluon action are similarly
reduced.

We can estimate the size of a4 errors from the analysis in
Sec. III C where we study discretization errors in the
kinetic mass. The energy difference between mesons of
momenta (3, 0, 0) and (2, 2, 1) in units of 2�a=L can be
taken as a measure of at least the rotationally noninvariant
a4 errors, as discussed there. The energy difference (Fig. 7)
is barely visible except on the very coarse lattices where it
amounts to 1 MeV, or 0.2% of the 2S� 1S splitting. This is
much less than the estimate of remaining a2 errors in that
case so we do not include it in Table VII.

E. Results

1. Radial and orbital excitation energies

Our main results for the fitted energies for the ground-
state and first two radial excitations of the � and �b are
given in Table VIII. The values come from multi-
exponential fits to a 5� 5 matrix of correlators for each
meson as described in Sec. III B. We take 9 exponentials on
sets 1, 2 and 3; 11 exponentials on set 4 and 12 on set 5. We
also give the fitted ground-state energy for the hbð1PÞ state
on sets 3 and 5 from a 5 exponential fit to 2� 2 matrix of
correlators. The b quark masses and coefficients, ci, used
in the NRQCD action are those of Tables II and III. Errors
are very small on the ground-state S-wave masses but
increase rapidly with the radial excitation number. The

table also includes energy splittings in lattice units for
radial and orbital excitations.
As explained earlier we can use the radial excitation

energy, Mð�0Þ �Mð�Þ, to fix the lattice spacing, by
setting

a�1ðGeVÞ ¼ 0:5630ð9Þ
aEð23S1Þ � aEð13S1Þ

: (15)

0.5630(4) GeV is the experimental mass difference and we
have increased the error to allow for a possible relative
shift in the two masses as a result of the electromagnetic
attraction between quark and antiquark missing in our
calculation. As discussed earlier, a potential model esti-
mate would give a shift of 1.6 MeV to the � from the
electrostatic attraction between quark and antiquark, and
somewhat less for the�0 since typical separations between
quark and antiquark are larger. We do not shift the result
but allow for an error of 0.8 MeV.
As long as we deal with spin-averaged splittings we do

not have to consider errors in spin-dependent terms.
However, for the 2S� 1S splitting the match to experiment
cannot be spin averaged since no experimental information
is available for the �bð2SÞ. In that case we have to consider
sources of systematic error in the hyperfine splitting that
will induce errors in the � and �0 energies. This will
discussed further in Sec. III E 3.
The main source of error is from missing radiative

corrections when we take the coefficient of the � � B
term, c4, to be 1. In Sec. III E 3 we compare results for
c4 ¼ 1 to those from c4 corrected perturbatively through
Oð�sÞ and nonperturbatively, to give the correct 13P fine
structure. Both methods for correcting c4 give values above
1 and increase the lattice result for the hyperfine splitting
(which is proportional to c24 at leading order). Thus with
c4 ¼ 1 the � energy is too low. Since Mð�Þ ¼ Mð1 �SÞ þ
ðMð�Þ �Mð�bÞÞ=4, the shift from c4 in the � mass is one
quarter of the change in the hyperfine splitting. In
Sec. III E 3 we also determine the ratio of the 2S hyperfine
splitting to that of the 1S hyperfine splitting and find a
result close to 0.5, independent of c4. Thus the shift from a

TABLE VII. An estimate of systematic errors in the 2S� 1S and 1P� 1S splittings in the � in our lattice QCD calculation arising
from discretization errors in the NRQCD and gluon actions.

Correction Discretization in Discretization in Discretization in Total

NRQCD action (i) NRQCD action (ii) Gluon action Discretization

Form �2
sa�p

4=8nðmbÞ2 �2
sa

2�p4
i =12mb 4��2

sa
2c ð0Þ2=15

Est. percentage in 2S� 1S
Very coarse 0.2 0.4 0.3 0.5

Coarse 0.1 0.2 0.15 0.3

fine 0.05 0.06 0.05 0.1

Est. percentage in 1P� 1S
Very coarse 0.7 2.0 1.0 2.3

Coarse 0.4 1.0 0.5 1.2

Fine 0.2 0.3 0.1 0.4
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change in c4 to the 2S� 1S splitting is one eighth of
change in the 1S hyperfine splitting. An increase in c4
above 1 reduces the 2S� 1S splitting. From Table XIV
we can compare results for the 1S hyperfine splitting for
c4 ¼ 1 to the value obtained for c4 improved through
Oð�sÞ for sets 1, 3 and 5. Dividing by 8 then gives shifts
in lattice units that can be applied to correct the 2S� 1S
splitting on very coarse, coarse and fine lattices. These
shifts are denoted by a� in Table VIII, and are to be
subtracted from the 2S� 1S splitting to give the corrected
lattice result. It can be seen that a� is not much larger than
the statistical errors on the 2S� 1S splitting. The statistical
error in a� is negligible, but there is a systematic error
which is taken as 0:5� a�. This accounts for the errors in
the hyperfine splitting from 4-quark operators, higher order
radiative corrections to c4 and relativistic corrections to the
� �B term. This error is then included in the systematic
error for the corrected 2S� 1S splitting.

Note that we do not expect the spin-orbit term with
coefficient c3 to have significant effect on the S-wave
states. In any case our nonperturbative determination of
c3 discussed in Appendix C gives a result consistent with
the value of 1.0 that we are using. Possible errors from
radiative corrections to c2 are included in our systematic
error budget for NRQCD (Table VI).

Table X gives the values of the lattice spacing in fm
obtained from the 2S� 1S splitting on each ensemble,
along with their associated statistical/fitting error and sys-
tematic error. The systematic errors are combined in quad-
rature from Tables VI and VII and from a� in Table VIII.
The systematic errors are dominated by those frommissing

higher order relativistic corrections to the NRQCD action
and these will be correlated to some extent between en-
sembles. There is an additional overall systematic error of
0.2% coming from the experimental value for the splitting
and electromagnetic effects missing from our calculation.
In Table IX we give results for cases where c4 is set to its

nonperturbatively tuned value on sets 3, 4 and a test value
of 1.10 on set 5 (the nonperturbatively tuned value is in fact
1.18, see Appendix C). Changing c4 shifts the fitted ener-
gies of all the states but this is simply because the zero of
energy has changed. As expected, changing c4 has very
little effect on splittings between spin-averaged S wave
states or between the 1P1 mass and the spin-averaged 1S
state.
An important test of the results is whether, using these

values for the lattice spacing, we get results in agreement
with experiment for other mass differences, i.e. whether
ratios of splittings are correct. In our previous work on
2þ 1 flavor gluon configurations [2] agreement with ex-
periment was found within 3% statistical/systematic errors.
Here we have substantially improved errors, including
improved statistical errors, so we can improve on our ear-
lier analysis.
Table VIII gives values for the ratios of the � 3S� 1S

and 11P1 � 1 �S splittings to the � 2S� 1S splitting from

our results for c4 ¼ 1. Table IX gives the same ratios for
the case where c4 takes its nonperturbatively tuned value.
In forming the ratio RP ¼ ð11P1 � 1 �SÞ=ð23S1 � 13S1Þ for
the case c4 ¼ 1 we correct the denominator for c4 errors
using the a� values in Table VIII. The numerator should
not be sensitive to c4 because the S-state energies have

TABLE VIII. Radial, orbital and S-wave fine structure splittings in lattice units for sets 1 to 5 for the NRQCD parameters and
coefficients given in Tables II and III. c3 ¼ c4 ¼ 1:0. Errors are statistical/fitting only. RS, RP and RH are defined in the text.

1 2 3 4 5

aEð11S0Þ 0.25080(5) 0.25361(3) 0.26096(3) 0.26524(2) 0.25851(2)

aEð21S0Þ 0.6898(16) 0.6909(8) 0.6235(8) 0.6246(6) 0.5248(7)

aEð31S0Þ 0.975(14) 0.940(22) 0.849(9) 0.854(4) 0.677(11)

aEð13S1Þ 0.28532(6) 0.28809(3) 0.29245(3) 0.29681(2) 0.28405(2)

aEð23S1Þ 0.7078(14) 0.7074(8) 0.6416(7) 0.6393(9) 0.5370(9)

aEð33S1Þ 0.988(16) 0.975(8) 0.855(11) 0.867(10) 0.693(10)

aEð2 �S� 1 �SÞ 0.4266(11) 0.4238(7) 0.3525(6) 0.3467(7) 0.2563(7)

aEð3 �S� 1 �SÞ 0.708(12) 0.687(8) 0.569(9) 0.575(8) 0.411(8)

aEð21S0 � 11S0Þ 0.4390(16) 0.4373(8) 0.3626(8) 0.3594(6) 0.2663(7)

aEð31S0 � 11S0Þ 0.724(14) 0.687(22) 0.588(9) 0.588(4) 0.418(11)

aEð23S1 � 13S1Þ 0.4225(14) 0.4193(8) 0.3492(7) 0.3425(9) 0.2530(9)

aEð33S1 � 13S1Þ 0.703(16) 0.687(8) 0.563(11) 0.570(10) 0.409(10)

RS 1.664(38) 1.638(19) 1.611(32) 1.665(31) 1.617(40)

a� 0.001 90(1) 0.001 90(1) 0.001 51(1) 0.001 51(1) 0.000 91(1)

aEð11P1Þ � � � � � � 0.5654(23) � � � 0.4833(10)

aEð11P1 � 1 �SÞ � � � � � � 0.2809(22) � � � 0.2056(10)

RP � � � � � � 0.808(7) � � � 0.816(5)

aEð13S1 � 11S0Þ 0.034 52(8) 0.034 48(4) 0.031 49(4) 0.031 57(3) 0.025 54(3)

aEð23S1 � 21S0Þ 0.0180(21) 0.0165(11) 0.0181(11) 0.0147(10) 0.0122(11)

RH 0.521(62) 0.479(33) 0.575(35) 0.465(34) 0.478(45)
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been spin averaged and the 1P1 state is unaffected by c4, as
discussed in Appendix C. Both the� 3S� 1S and 2S� 1S
splittings will have some sensitivity to c4. However, any
shifts will cancel between the two splittings up to an
amount equal to one quarter of the difference in the 3S
and 2S hyperfine splittings. This is negligible compared to
statistical errors in this ratio. The ratio RS ¼ ð33S1 �
13S1Þ=ð23S1 � 13S1Þ in Table VIII is therefore not cor-

rected for c4.
The ratio RS from Table VIII, where we have results for

all five sets, is plotted against the square of the lattice
spacing in Fig. 9. We see very little dependence on lattice
spacing and on the u=d sea quark mass (the s and c sea
quark masses are already well-tuned to their physical
values, see Sec. IV). Figure 9 also shows results for RP,
combining results from Tables VIII and IX since we have
results for only 2 ensembles in each table. The results
change very little between the ensembles, however, as
Fig. 9 shows.

To derive a physical value for each ratio we can use the
results to fit for the dependence on these two quantities and
then determine the result at physical sea quark mass and at
a ¼ 0 to compare to experiment. For the sea u=d quark
mass dependence a simple polynomial in ml=ms (values in
Table I) suffices because the ml values are already very

close to the physical point with ml=ms ¼ 0:1 and 0.2. The
dependence on the lattice spacing is more complicated
because in NRQCD we must allow for unphysical a de-
pendence coming from amb-dependent radiative correc-
tions to discretization errors. This amb dependence is mild
when amb is sufficiently large, as here, and this is seen
explicitly in the radiative corrections that are included in
our calculation for c5 and c6 (Table II).

TABLE IX. Radial, orbital and S-wave fine structure splittings
in lattice units for sets 3, 4 and 5 with NRQCD coefficients and
parameters as in Tables II and III. In addition c4 is nonperturba-
tively tuned taking values from Table XIII. c3 ¼ 1 for all results.
Errors are statistical/fitting only. Reduced statistics of 400 con-
figurations were used for the S-wave states from set 5. RS, RP

and RH are defined in the text.

3 4 5

c3 1.0 1.0 1.0

c4 1.25 1.25 1.10

aEð11S0Þ 0.209 43(3) 0.212 89(2) 0.232 04(2)

aEð21S0Þ 0.5796(6) 0.5777(7) 0.5021(12)

aEð31S0Þ 0.788(12) 0.802(6) 0.660(12)

aEð13S1Þ 0.256 28(4) 0.259 78(2) 0.262 06(3)

aEð23S1Þ 0.6022(7) 0.5999(7) 0.5170(18)

aEð33S1Þ 0.827(7) 0.821(5) 0.663(24)

aEð2 �S� 1 �SÞ 0.3520(6) 0.3463(6) 0.2584(13)

aEð3 �S� 1 �SÞ 0.573(6) 0.568(4) 0.405(18)

aEð21S0 � 11S0Þ 0.3702(6) 0.3648(7) 0.2701(12)

aEð31S0 � 11S0Þ 0.579(12) 0.589(6) 0.428(12)

aEð23S1 � 13S1Þ 0.3460(7) 0.3401(7) 0.2549(18)

aEð33S1 � 13S1Þ 0.571(7) 0.561(5) 0.401(24)

RS 1.651(20) 1.650(15) 1.573(95)

aEð11P1Þ 0.5247(22) 0.5253(20) � � �
aEð11P1 � 1 �SÞ 0.2801(22) 0.2773(20) � � �
RP 0.810(7) 0.815(6) � � �
aEð13S1 � 11S0Þ 0.046 84(5) 0.046 89(3) 0.030 03(4)

aEð23S1 � 21S0Þ 0.0226(9) 0.0222(10) 0.0149(22)

RH 0.482(19) 0.473(21) 0.496(73)

TABLE X. Lattice spacing values in fm determined from
several methods. The first column gives results from the � 2S�
1S splitting. The first error is from statistics/fitting, the second
from remaining systematic errors from the NRQCD action (from
Tables VI and VII) and the third is a correlated 0.2% error from
experiment and electromagnetic corrections. The second column
gives lattice spacing values from the decay constant of the �s

meson as described in Sec. IV. The first error is from statistics/
fitting and the second is a correlated 0.3% error from the
uncertainty in the physical value of f�s

as discussed in

Sec. IV. The third column gives lattice spacing values deter-
mined from r1=a values in Table I. The first error is from
statistics/fitting and the second is a correlated 0.8% error from
the uncertainty in the physical value of r1 as discussed in Sec. V.

Set a� (fm) a�s
(fm) ar1=a (fm)

1 0.1474(5)(14)(2) 0.1546(10)(5) 0.1569(8)(13)

2 0.1463(3)(14)(2) 0.1526(6)(5) 0.1553(3)(13)

3 0.1219(2)(9)(2) 0.1234(7)(4) 0.1244(2)(10)

4 0.1195(3)(9)(2) 0.1218(5)(4) 0.1221(5)(10)

5 0.0884(3)(5)(1) 0.0899(6)(3) 0.0902(3)(7)
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FIG. 9 (color online). Results for the ratio of the 3S� 1S and
1P� 1S splittings to the 2S� 1S in the � system plotted
against the square of the lattice spacing determined from the
2S� 1S splitting. The grey shaded bands give the physical result
obtained from a fit to the data as described in the text. The black
open circles slightly offset from a ¼ 0 are from experiment [35].
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We therefore fit each ratio, R, to the following functional
form:

R ¼ Rphys½1þ
X
j¼1;2

cjða�Þ2jð1þ cjb�xm þ cjbbð�xmÞ2Þ

þ 2bl�xlð1þ clða�Þ2Þ�: (16)

Here �xl is ðaml=amsÞ � ðml=msÞphys for each ensemble.

ðml=msÞphys is taken from lattice QCD as 27.2(3) [6]. The

strange sea quark mass is tuned to better than 3% with the
lattice spacing taken from the � 2S� 1S splitting so we
can ignore any effects from this mistuning since sea quark
mass effects are so small. �xm allows for variation in the
value of amb over the range we are using and therefore a
change in the NRQCD radiative corrections to discretiza-
tion errors. We choose �xm to vary from�0:5 toþ0:5 over
our full range of masses by setting �xm ¼ ðamb �
2:65Þ=1:5. � sets the scale for physical a dependence.
We take it to be 500 MeV.

The fit prior on Rphys is taken to be 0:8� 0:1 for RP and

1:6� 0:2 for RS. Since tree-level a2 errors have been
removed in this calculation we take the prior on a2 terms
to be 0:0� 0:3; we take 0:0� 1:0 for higher order terms in
a. cl allows for Oð�sa

2Þ staggered quark taste-changing
discretization errors. For bl we take 0:0� 0:015 allowing
for a 3% shift if the u=d quarks were as heavy as strange.
Previous results [2] saw a 10% shift in results in the
quenched approximation.

Good fits using the form in Eq. (17) are easily obtained
for both RP and RS. For 	

2=doffdofg we obtain 0:2f4g and
0:4f5g for RP and RS, respectively. The physical results we
obtain are

11P1 � 1 �S

ð2S� 1SÞ�
¼ 0:820ð12Þ ð3S� 1SÞ�

ð2S� 1SÞ� ¼ 1:625ð39Þ:
(17)

These values are plotted along with the lattice results in
Fig. 9.

The complete error budget for the two ratios is given in
Table XI. Most of the errors are obtained directly from our
fit. The NRQCD systematic error in RP is taken from
combining results in Tables VI and VII. Since these errors
are correlated between the numerator and denominator of
RP we take the systematic error in RP to be the difference
between them. The total NRQCD systematic error at each
lattice spacing is then included in our fit as a correlated
error on the data. In fact we find no significant difference
whether we include it as a correlated or uncorrelated error.
We obtain the error in our final result from this systematic
error by observing the change in the final answer from
including it or not including it. Variation in the NRQCD
systematic errors as a function of amb is included in our fit
form and the error from this estimated from the variation of
	2 in the fit. We use the same approach for RS and take the
NRQCD systematic error to be the same as for RP. We

might expect some further cancellation of errors within RS

because of the similarity between the S-wave states.
However, this is less true when comparing 3S to 1S than
for 2S and 1S so we ignore that possibility to be
conservative.
We believe that errors from any mistuning of mb are

completely negligible. RP and RS change experimentally
very little between b and c and we have very well-tuned b
masses except on the very coarse lattices where our mis-
tuning amounts to 4%.
We also believe that finite volume errors are negligible.

A study using the heavy quark potential derived from a
quenched lattice QCD calculation in [37] calculated wave
functions for radially excited � states. None of the wave
functions for the states being considered here extended
beyond a radius of 1.5 fm and the 2S and 1P extended
little beyond 1.0 fm. When sea quarks are included, as
here, the size of the states will be smaller because the
Coulomb coefficient in the heavy quark potential is larger.
Thus 1.5 fm is an overestimate for the size of the states.
The physical extent of our lattices range from 2.3 fm for set
1 to 3.8 fm for set 4, so should be large enough to contain
the � states without any finite-volume errors from their
being squeezed.
In Table XI we include a 0.2% error from electromag-

netic effects and the possibility of �b annihilation, neither
of which is included in our calculation. Electromagnetic
effects we estimated earlier at 1.6 MeV in the 1S mass and
0.8 MeV (correlated) in the 2S mass. If we take the effects
on the 1P and 3Smasses to be much smaller then we arrive
at a possible error in RS and RP of the order of 0.1% to
0.2%. �b annihilation affects the spin-averaged 1S mass,
shifting it by approximately 0.5 MeV. This amounts to a
possible 0.1% effect in RP, whereas RS is unaffected.
Our result for the ratio RP of 0.820(12) is to be compared

with the experimental result 0.8088(23). Agreement is
good within our 1.4% errors. Similarly we obtain 1.625
(39) for RS to be compared with the experimental result

TABLE XI. Complete error budget for the ratios of mass
splittings, RP ¼ ð11P1 � 1 �SÞ=ð2S� 1SÞ� and RS ¼
ð3S� 1SÞ�=ð2S� 1SÞ�. Errors are given as a percentage of
the ratio. Errors which are negligible compared to the others
are indicated by ‘‘0’’.

RP RS

Stats/fitting 1.0 1.8

a dependence 0.6 1.2

ml dependence 0.6 0.5

NRQCD amb dependence 0.1 0.2

NRQCD systematics 0.5 1.0

Finite volume 0 0

mb tuning 0 0

Electromagnetism/�b annihilation 0.2 0.2

Total 1.4 2.4
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1.5896(12). Again agreement is good, but now with 2.4%
errors, dominated by our statistical/fitting error because the
3S state is a doubly excited state. The fact that our central
value is slightly higher than experiment for both RS and RP

is consistent with the expected effect of missing v6 terms,
included in our errors, as discussed in Sec. III D.

Our result for RP can be converted to a result for
MðhbÞ �Mð1 �SÞ ¼ 0:461ð7Þ GeV. This can be compared
to the result 0:440� 17þ10

�0 GeV with over double the

error obtained on configurations including 2þ 1 flavors
of sea quarks using the Fermilab heavy quark action [38].
The experimental result for MðhbÞ �Mð1 �SÞ is 0.4553
(17) GeV [35,39].

Our result for RS gives Mð�00Þ �Mð�Þ ¼
0:914ð23Þ GeV compared to an experimental result of
0.8949(6) GeV [35]. We have not included in our error
budget any effect from coupling of the �00 to virtual decay
channels. The �00 is 200 MeV below threshold for real
decay to a pair of B mesons. This is considered large
enough for the �00 to be ’’gold-plated’’ and for the decay
channel to have no impact on the mass.

2. Tuned b quark masses

We now return to the tuning of the b quark mass.
Although not an issue for the mass splittings just discussed,
it is an important source of systematic error for spin-
dependent mass splittings. We use our determination of
the lattice spacing from the � ð2S� 1SÞ splitting, given in
Table X to convert the kinetic mass values given in
Sec. III C to physical units. As described in Sec. III C
the appropriate experimental value for comparison is
9.445(2) GeV.

When this is done we see that the masses are very well-
tuned except on the very coarse lattices where they are 4%
high. For small changes in the b quark mass the change in
kinetic mass is approximately twice the change in quark
mass, as can be seen from Table V. For the slight changes
that we need to make this is a sufficiently good approxi-
mation. We simply adjust the quark mass by one half the
error in the kinetic mass to obtain the tuned quark mass
values in lattice units given in Table XII.

Three errors are given in Table XII. The first is from the
statistical error in the kinetic mass determined on each
ensemble. The second error comes from the total error in
the determination of the lattice spacing in Table X. This
includes both statistical and systematic errors in determin-
ing the 2S� 1S splitting. The third error is a 0.5% system-
atic error from NRQCD in the kinetic mass obtained from
analysis of the dispersion relation in Sec. III C.

3. The hyperfine splitting

The mass difference between the 3S1 and
1S0 states is an

important test of our calculations because it is statistically
very precise for the ground-state mesons. Controlling sys-
tematic errors is the key issue, and the main one is that of

radiative corrections to c4, the coefficient of the � � B term
in the NRQCD action. At leading order the hyperfine
splitting is proportional to c24. Our previous calculation

[2], with c4 ¼ 1, gave a prediction for Mð�Þ �Mð�bÞ of
61(14) MeV with the error dominated by the then-
unknown radiative corrections to c4.
For this calculation we have results for c4 including

Oð�sÞ corrections as well as c4 tuned nonperturbatively.
These determinations of c4 are described in Appendix B
and C, respectively. The values obtained by the two meth-
ods for c4 are given in Table XIII. The nonperturbative
values are slightly larger than the perturbative ones, but the
differences are well within the expectations from addi-
tional �2

s corrections to the perturbative values and/or
systematic errors in the nonperturbative values. Both sets
of values get closer to 1 on the finer lattices, as expected,
because they are functions of the strong coupling constant
at a scale related to the inverse of the lattice spacing.
Table XIV gives results for the energies of the � and �b

for various combinations of values of coefficients in the
NRQCD action. We also give the mass difference between
the � and �b which is the hyperfine splitting. This can be
more precise than either mass separately because we fit
both meson correlators together and extract the difference
directly from the fit taking into account the correlations.
Where we have fits to a 5� 5 matrix of correlators, as in
Tables VIII and IX, we give those results. In other cases we
calculated only a single local correlator for each of the �
and �b which is quite sufficient to extract a splitting
between the ground state masses. Results are not as precise
for splittings between radially excited states in those cases,
however, and we do not give them.
We see from Table XIV that changing c4 does have a

large effect on the hyperfine splitting, approximately in

TABLE XII. Tuned b and s quark masses in lattice units on
each set of configurations. The second column gives amb and the
third ams using the � 2S� 1S splitting to determine the lattice
spacing. The first two errors in these two columns come from
statistical errors and systematic errors, respectively, in the lattice
spacing determination. The third and fourth errors in the amb

case are the statistical and systematic errors in determining the
kinetic mass. Statistical errors in the determination of ams mass
are negligible. The third error in the ams case is a correlated
0.3% error from the square of the physical value of the �s mass.
The fourth column gives ams using the �s decay constant to
determine the lattice spacing. The first error is from statistics/
fitting and the second is a correlated 0.6% error from the square
of the physical value of the �s decay constant.

Set ambða�Þ amsða�Þ amsða�s
Þ

1 3.297(11)(35)(7)(16) 0.0641(4)(12)(2) 0.0705(9)(4)

2 3.263(7)(35)(4)(16) 0.0636(3)(12)(2) 0.0692(5)(4)

3 2.696(4)(22)(7)(13) 0.0528(2)(8)(2) 0.0541(6)(3)

4 2.623(7)(22)(7)(13) 0.0512(3)(8)(2) 0.0531(4)(3)

5 1.893(6)(12)(5)(9) 0.0364(2)(4)(1) 0.0376(5)(2)
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line with the expectation of variation as c24. We also see
that, on sets 3 and 5 where we have data for comparison,
changing c1;5;6 to their Oð�sÞ improved values does in-

crease the hyperfine splitting slightly. It is a small effect,
however, of order 2%. Changing the coefficient of the
Darwin term, c2 also has a small effect of order 1(1)%.

We conclude from this that we have controlled all of the
coefficients of v4 terms in our NRQCD action at a level
required to give few percent errors in the hyperfine splitting
from these sources. We have not, however, included
4-quark operators in our NRQCD Hamiltonian and they
can have an impact on the hyperfine splitting at an order
equivalent to that of �s corrections to c4 [28].

In Appendix C we give coefficients for the 4-quark
operators and a formula in Eq. (B14) for the correction
that they would induce in the hyperfine splitting. Table XV
gives values for this correction, to be added to the results
from Table XIV, on the very coarse, coarse and fine en-
sembles based on using a spin-averaged value of the ‘‘wave
function-at-the-origin’’, c ð0Þ, for the � and �b from our
fits. This varies only very little with c4, falling by at most
2% from c4 ¼ 1 to our nonperturbative c4 values, so we
ignore this variation. Our correlators are normalized by
dividing by 6 after summing over 2 spins and 3 colors.
Then c ð0Þ is given by the amplitude of our correlator fits;
aðl; 1Þ for the 1S and aðl; 2Þ for the 2S from Eq. (7).

TABLE XV. Corrections to the 1S and 2S hyperfine splittings
from spin-dependent 4-quark operators missing from our
NRQCD action. We use Eq. (B14) inserting values for c ð0Þ
from our fitted results and values for �Vð�=aÞ from Table XXII.
We convert to physical units using lattice spacing values from
Table X.

Sets

Correction to

1S hyperfine (MeV)

Correction to

2S hyperfine (MeV)

Fine �1:7 �1:0
Coarse 5.2 3.4

Very coarse 12.9 8.3

TABLE XIII. Values for the coefficient of the � � B term, c4,
for different lattice spacing values. The error on the perturbative
values is 1� �2

s . The errors on the nonperturbative values are
statistics, experiment and NRQCD systematics, respectively. We
did not extract a nonperturbative value on the very coarse
lattices.

Sets c
pert
4 c

nonpert
4

Fine 1.16(5) 1.18(2)(1)(5)

Coarse 1.20(7) 1.28(7)(1)(5)

Very coarse 1.22(8) -

TABLE XIV. Fitted energies for ground state � and �b mesons on all configuration sets. The column c1;5;6 denotes whether the
Oð�sÞ improved coefficients were used in the action. Various values of c2 and c4 have also been used as indicated. c3 ¼ 1 except for
the case indicated by � in which c3 ¼ 0:96. Where possible the result from the full 5� 5 matrix fit was taken. Otherwise, the values
from the kinetic mass fits were used. In those cases a smaller number of configurations and/or time sources was sometimes used and
this is reflected in the statistical errors.

Set amb c1;5;6 c2 c4 aE�b
aE� aE� � aE�b

1 3.42 �s 1 1 0.250 80(5) 0.285 32(6) 0.034 52(8)

1 3.42 �s 1 1.22 0.214 32(5) 0.264 00(6) 0.049 68(7)

1 3.5 �s 1 1 0.250 15(6) 0.283 92(9) 0.033 77(10)

2 3.39 �s 1 1 0.253 61(3) 0.288 09(3) 0.034 48(4)

2 3.42 �s 1 1 0.253 44(5) 0.287 59(5) 0.034 16(6)

3 2.66 1 1 1 0.255 29(4) 0.286 26(6) 0.030 97(7)

3 2.66 �s 1 1 0.260 96(3) 0.292 45(3) 0.031 49(4)

3 2.66 �s 1.25 1 0.256 27(24) 0.287 28(33) 0.031 01(41)

3 2.66 �s 1 1.25 0.209 43(3) 0.256 28(3) 0.046 84(5)

3 2.66 �s 1 1.20 0.220 40(5) 0.263 94(7) 0.043 54(4)

3 2.68 �s 1 1 0.261 08(7) 0.292 49(9) 0.031 41(11)

3 2.7 1 1 1 0.243 75(8) 0.274 83(11) 0.031 08(13)

4 2.62 �s 1 1 0.265 24(2) 0.296 81(2) 0.031 57(3)

4 2.62 �s 1 1.25 0.212 89(2) 0.259 78(2) 0.046 89(2)

4 2.66 �s 1 1 0.265 46(3) 0.296 62(4) 0.031 16(5)

5 1.91 1 1 1 0.246 52(3) 0.271 53(5) 0.025 01(6)

5 1.91 �s 1 1 0.258 51(2) 0.284 05(2) 0.025 54(3)

5 1.91 �s 1 1.10 0.232 04(2) 0.262 06(3) 0.030 03(4)

5 1.91 �s 1 1:15� 0.217 72(22) 0.249 84(40) 0.032 13(30)

5 1.91 �s 1 1.16 0.215 19(2) 0.248 02(4) 0.032 83(2)

5 2.0 �s 1 1 0.259 35(3) 0.283 97(4) 0.024 62(5)
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We see from Table XV that the correction is substantial
on the very coarse lattices and very small on the fine
lattices, because of the variation of the coefficients d1
and d2 with amb. The corrected results are shown in
Fig. 10 along with the uncorrected results for c4 ¼ 1. We
see that there is a substantial difference between the results
coming from the change in c4 and, to a lesser extent, from
the correction for the 4-quark operator. The strong depen-
dence on the lattice spacing seen in the c4 ¼ 1 results is
reduced, in line with the expectation that improving an
effective theory should reduce the cutoff dependence.

An additional small factor in Fig. 10 is that we have
corrected results for slight mistuning of the b quark mass
and we have included the error from the quark mass tuning
in the hyperfine splitting error. The hyperfine splitting is
expected to be approximately inversely proportional to the
quark mass and this is seen in Table XIV. We assume this
relationship to make small adjustments based on the tuned
b masses from Table XII. The largest effect is a 4% one on
the very coarse lattices. The lattice spacing error from the
quark mass tuning is correlated with the lattice spacing
error on the hyperfine splitting because of this inverse

relationship. The lattice spacing error therefore appears
with a factor of 2 in the hyperfine splitting.
To obtain a physical result for the hyperfine splitting we

then combine results with perturbative and nonperturbative
values of c4 allowing for systematic differences between
them from uncertainties in the determination of c4. We
must also allow for uncertainties from higher-order 4-
quark operator effects and for lattice spacing and sea quark
mass dependence. The nonperturbative c4 results are given
a correlated systematic error corresponding to the second
and third errors in Table XIII and remembering that the
hyperfine splitting is related to c24. Similarly the results for
perturbative c4 are given a separate correlated systematic
error corresponding to the �2

s errors given in Table XIII.
We allow for higher order 4-quark operator effects with a
correlated systematic error of size 6�3

s jc ð0Þj2=m2
b with a

coefficient of possible size �1� lnðambÞ. This does not
assume that the small coefficient seen at Oð�2

sÞ on the fine
lattices is repeated at higher order.
We allow for lattice spacing and sea quark mass effects

as in the fit function of Eq. (17). The prior on sea quark
mass effects is now taken to allow 15% effects for ml �
ms. This reflects the fact that a 40% difference was seen
between quenched and dynamical results in [2]. In fact sea
quark mass effects in our data are small. Figure 11 shows a
comparison of the hyperfine splitting as a function of the
light sea quark mass for the case c4 ¼ 1 where we have a
complete set of data. Although these results are not used to
determine our final answer for the hyperfine splitting they
do provide a useful comparison between ensembles at the
same lattice spacing and different light quark mass since
the effects of c4 are independent of sea quark mass. The
results are adjusted for b quark mass mistuning and include
errors from the b quark mass and the lattice spacing.
Variation with light quark mass is at most 2 MeV. Note
that we are using much lighter sea quark masses than in
previous calculations [2,12]; indeedml is within a factor of
3 of its physical value.
We obtain a physical value for the hyperfine splitting

from the above fit of 70(6) MeV. Fitting the results for
perturbative c4 on their own gives a consistent 67(7) MeV
and the results for nonperturbative c4 alone gives 75
(9) MeV. Our best result therefore comes from combining
the two. An additional 10% error must be allowed for
higher order (v6) spin-dependent terms in the NRQCD
action, giving a final result of:

Mð�Þ �Mð�bÞ ¼ 70ð9Þ MeV: (18)

Our complete error budget is given in Table XVI. The shift
for the effect of �b annihilation is included in our 4-quark
operator correction (as discussed in Appendix C) but we
separate out an error for that from the rest of the 4-quark
operator error.
In Fig. 12 we compare our new result for the hyperfine

splitting to earlier full lattice QCD results and to
experiment [35]. Earlier results using NRQCD are:
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FIG. 10 (color online). Results for the hyperfine splitting,
Mð�Þ �Mð�bÞ plotted against the square of the lattice spacing.
We show results for c4 ¼ 1 (cyan squares) as well as results for
c4 set equal to its perturbatively improved (red crosses) and
nonperturbatively improved values (blue stars). The c4 ¼ 1
results include statistical errors only and are shown purely for
comparison purposes—they are not included in the fit. The
results for perturbative and nonperturbative c4 include a correc-
tion for missing 4-quark operators and mb mistuning. The errors
on these points are from statistics, the lattice spacing and the
tuning of mb. The results for nonperturbative c4 also include
statistical errors in the determination of c4. Our final physical
result including our full error budget is given by the grey shaded
band. The full error budget includes errors from systematic
uncertainties in setting c4 and from missing v6 terms in the
NRQCD action.
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61(14) MeV from [2] with a tree-level v4 NRQCD action
and 60.3(7.7) MeV from [12] using an NRQCD with v6

spin-dependent terms and c4 determined from P-wave
splittings but with no 4-quark operator corrections, which
are potentially more significant than v6 terms, or errors
from them. The result obtained from the Fermilab heavy
quark action [38] is 54.0(12.4) MeV. For this action the
hyperfine splitting is sensitive to the coefficient of theOðaÞ
improvement term known as the clover term. In principle

this coefficient does not have to be tuned but the approach
to the continuum limit is slow. Here it was taken to have its
tree-level value after tadpole-improvement and the quark
mass was tuned using the spin-averaged kinetic mass of the
Bs and B�

s mesons.
All four lattice QCD results agree well with the current

experimental average of 69.3(2.8) MeV [35] obtained from
averaging results from experiments on radiative transitions
to �b from �0 and �00 [40–42]. Preliminary experimental
results using radiative transitions from the hb indicate a
somewhat lower value [43].
Our new result above contains the most complete analy-

sis at Oðv4Þ in the NRQCD action. To improve it would
require the inclusion of spin-dependent operators atOðv6Þ.
The effect of spin-dependent v6 operators was studied in
[12], taking ratios of the hyperfine splitting to P-wave spin
splittings to cancel the effect of c4. Those results indicate
that spin-dependent v6 terms tend to reduce the hyperfine
splitting by about 10%. We have included a (symmetric)
10% error in our results to account for missing v6 terms.
The hyperfine splitting has also been calculated using

continuum QCD perturbation theory [44]. A considerably
smaller result is obtained of 41(14) MeV. This is not in
disagreement with the nonperturbative lattice QCD results
given the size of the errors. It has been suggested, however,

TABLE XVI. Complete error budget for the 1S hyperfine
splitting and the ratio of the 2S to the 1S hyperfine splittings.
Errors are given as a percentage of the final result.

Mð�Þ �Mð�bÞ RH

Stats/fitting 0.1 4

a dependence 1.5 5

a uncertainty 0.5 0

ml dependence 3 3.5

NRQCD amb dependence 2 0.5

NRQCD v6 10 5

NRQCD c4 uncertainty 7 0

NRQCD 4-quark uncertainty 2 1

mb tuninga 0.1 0

�b annihilation 1 0.5

Total 13 9

aNote that the mb tuning uncertainty does not include the lattice
spacing uncertainty in mb. Since that is correlated with the a
uncertainty on converting the hyperfine splitting from lattice to
physical units, they must be handled together and both are
included in the a uncertainty.
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FIG. 11 (color online). Results for the hyperfine splitting ob-
tained for c4 ¼ 1 (not used in our fit for the physical hyperfine
splitting) compared as a function of sea light quark mass in units
of the strange quark mass. Results are given for two values of
ml=ms on very coarse (sets 1 and 2) and coarse (sets 3 and 4)
lattices. The errors on the points include statistical/fitting errors,
lattice spacing errors and mb tuning errors.
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FIG. 12 (color online). Comparison of results for the hyperfine
splittings, Mð�Þ �Mð�bÞ and Mð�0Þ �Mð�0

bÞ, from different

full lattice QCD calculations. Filled symbols indicate the 1S
hyperfine and open symbols, the 2S hyperfine. Circles indicate
predictions and triangles postdictions. The top (red) points are
the new results from this paper, and the points below that (pink)
are from [2], when the 1S hyperfine was a prediction. The third
line gives results from [12]. Two results are given for the 2S
hyperfine; that from a ratio to the 1S hyperfine, as here, and that
from a ratio to the combination of P-wave spin splittings
sensitive to c4 (see Appendix C). The top three results use the
NRQCD formalism for b quarks; the bottom (cyan) result uses
the Fermilab heavy quark action [38]. The black dashed lines
mark the current experimental average [35].
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that the inclusion of radiative corrections to c4 in the lattice
NRQCD calculation would reduce the value of the hyper-
fine splitting obtained [45]. That expectation was based on
an incorrect analysis of the form of c4 in the lattice
NRQCD calculation and we see indeed from the results
given here that the inclusion of radiative corrections to c4
has had the opposite effect and increased our value for the
hyperfine splitting.

The best way to study the 2S hyperfine splitting,
Mð�0Þ �Mð�0

bÞ is through the ratio to the 1S hyperfine

splitting. We define:

RH ¼ Mð�0Þ �Mð�0
bÞ

Mð�Þ �Mð�bÞ : (19)

Then c4 effects cancel as can be seen in the numbers in
Tables VIII and IX and plotted in Fig. 13. In the Figure we
have corrected the results for missing 4-quark operator
effects which are slightly different in the 1S and 2S states
and so have an effect on the ratio. This is at most 4%, on the
very coarse lattices. We have made no correction for the
slight mistunings of mb since they should largely cancel in
this ratio.

Again we extract a physical result for RH by allowing for
ml and a dependence as in Eq. (17). Here we relaxed the
priors on the a dependence so that they all had the form
0:0� 1:0. The prior onml dependence (in units ofms) was
taken as 0:0� 0:15 as for the 1S hyperfine, allowing a 15%
change from ml ¼ ms down to the physical point.

Our final physical value is

RH ¼ 0:499ð42Þ: (20)

The full error budget is given in Table XVI where we allow
a 5% error for missing spin-dependent v6 terms, allowing

for some cancellation of v6 effects between the 1S and 2S
hyperfine splittings.
Combining our result for RH with the current experi-

mental average for the 1S hyperfine splitting gives a result
for the 2S hyperfine splitting of 35(3)(1) MeV, where the
second error comes from the experimental 1S splitting. We
predict the mass for the �0

b to be 9.988(3) GeV.

Figure 12 compares our result for the 2S hyperfine
splitting to earlier predictions. Meinel [12] gives 23.5
(4.7) MeV from a ratio to P-wave spin splittings and 28.0
(4.7) from a ratio to the 1S hyperfine splitting, as used here.
He includes the effect of spin-dependent v6 operators but
without such a complete analysis as we have done here of
v4 operators. The conclusion from Fig. 12 is that lattice
QCD results give a fairly clear prediction of the 2S hyper-
fine splitting around 30 MeV, half the result for the 1S
hyperfine splitting.
Figure 13 compares our result for the bottomonium ratio

of 2S to 1S hyperfine splittings to the experimental char-
monium ratio of 0.421(35). Our bottomonium result is
somewhat higher, but not in disagreement with this value.
This indicates that the heavy quark mass dependence in the
1S and 2S hyperfine splittings is very similar over the wide
range of quark masses from c to b so that the ratio remains
the same.
The S-wave hyperfine splittings can be compared to the

much smaller result for the P-wave states. In Appendix C
we determine the P-wave hyperfine splitting to be 2
(2) MeV, consistent with zero.

IV. THE �s MASS AND DECAY CONSTANT

To complement the computation in the previous section,
the lattice spacing was also determined using the decay
constant of the fictitious �s meson, f�s

. This is a pseudo-

scalar particle consisting of an s�s pair whose properties can
easily be computed in lattice QCD. It is particularly suit-
able for fixing the lattice spacing since there are no u=d
valence quarks meaning that the error coming from the
chiral extrapolation to physical u=d masses is small. The
‘‘physical’’ values of the M�s

and f�s
have to be fixed by

comparison toM�,MK, f� and fK as in [21]. This requires
a simultaneous chiral and continuum extrapolation for the
masses and decay constants of the �, K and �s. Previously
we found, on ensembles including 2þ 1 flavors of sea
quarks, that properties of the �s were very close to those
expected from leading order chiral perturbation theory, i.e.
M2

�s
� 2M2

K �M2
� and f�s

� 2fK � f�. We reexamine

that issue here on these ensembles containing 2þ 1þ 1
sea quarks.

A. Simulation details and fitting

s and u=d valence quark propagators were calculated on
the ensembles given in Table I using the same HISQ action
as used for the sea quarks. The HISQ action [16] is a
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FIG. 13 (color online). The ratio of hyperfine splittings for 2S
and 1S states, ðMð�0Þ �Mð�0

bÞÞ=ðMð�Þ �Mð�bÞÞ, plotted

against the square of the lattice spacing. Points have been cor-
rected for missing 4-quark operator effects. The shaded band
shows our final physical result including our full error budget.
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further improved version of the improved staggered
(asqtad) action that reduces discretization errors coming
from staggered taste effects for that action by about a factor
of 3. The improved staggered action smears the gluon fields
that appear in the quark action in a very specific way to
reduce high-momentum taste-exchange interactions but
without increasing discretization errors [10]. The HISQ
action takes this one step further by performing two smear-
ing steps. The original version of the HISQ action used an
SU(3) projection of the smeared links between the two
smearing steps. However, this caused difficulties for the
updating algorithm when these quarks were included as sea
quarks [19]. Instead the sea quarks here use the HISQ
action but with only a U(3) projection between the smear-
ing steps. Whether U(3) or SU(3) projection it makes very
little difference to the spectrum of mesons from HISQ
quarks and so all the good features of the HISQ action
demonstrated in [16] remain essentially unaltered. Note
that the HISQ action does not use tadpole-improvement—
the U(3) (or SU(3)) projection effectively takes care of
large tadpole contributions in the same way that the use of
the u0 parameter does in the NRQCD and gluon actions.

The parameters of the valence quark propagators are
listed in Table XVII. We took the light quark mass to be
the same as that in the sea (except for a small difference on
set 3), but we retuned the valence strange quark masses
slightly to allow for mistuning of the strange sea quark
mass (of course the final well-tuned s quark mass values
cannot be decided until a value for the lattice spacing is
determined so we will revisit this issue at the end of this
section). We used delta function randomwall sources as for
the l-smeared b quark propagators discussed in Sec. III. We
also used 16 evenly-spaced time sources per configuration
to increase statistics. The starting position of these time
sources was shifted from configuration to configuration in
the ensemble.

The light meson pseudoscalar correlators are calculated
by combining the light and strange quark propagators.
Here we use the Goldstone mesons, made with the local


5 operator. Then the correlators are simply given by the
squared modulus of the propagators summed over a time-
slice to project onto zero momentum. The correlators were
binned over all time sources on a configuration.
To study the autocorrelations between configurations we

proceed as in Sec. III B to calculate the autocorrelation
functionC�T . Figure 14 showsC�T against�T for both the
� and�s correlators at a source-sink lattice time separation
appropriate to our fits. This time separation is increased as
the lattice spacing decreases to remain approximately
physical. We see from the Figure that the �s shows little
autocorrelation, although more than was visible for the �
in Fig. 1. We expect longer autocorrelation times for lighter
mesons because they have a larger spatial extent and there-
fore decorrelation of the gluon field configuration on rele-
vant spatial scales takes longer in Monte Carlo time. The �
correlators on the coarse and very coarse lattices show a
similar autocorrelation function to the �s. However, on the
fine lattices where autocorrelations might be expected to be
worst, there are clear signs that neighboring configurations
in time are correlated. Note the difference between our
result and that of [19]. There very little autocorrelation was
seen in the � meson correlator, but fewer time sources
were used per configuration (typically 4). Both here and in
[19] the time sources are moved randomly from one con-
figuration to the next. However, with 16 time sources there
is not much scope for a large shift in time between con-
figurations. To reduce autocorrelations we bin all of our
fine light meson correlators by a factor of 8 in configura-
tion number before fitting. From Fig. 14 this can be seen to
reduce the autocorrelation function well below e�1.
The fitting method used for the correlators was the same

as for the Upsilon correlators but with only a single source
and sink smearing. For meson correlators made from rela-
tivistic quarks the fit function takes a ‘‘cosh’’ form rather
than simple exponentials because of propagation in both
time directions. For staggered quarks in general we have to
include an additional oscillating term from opposite parity
mesons that couple through the time-doubler quark. The fit
function then becomes:

GmesonðtÞ ¼
Xnexp
k¼0

akðe�Ekt þ e�EkðT�tÞÞ � ð�1Þt=a

� Xnexp
ko¼0

akoðe�Ekot þ e�EkoðT�tÞÞ: (21)

The oscillating piece is absent for the� and �s because the
valence quark and antiquark have equal mass and the
oscillation cancels. It is necessary to include it for the K
meson. For each ensemble a simultaneous fit to all three
correlators was performed using the appropriate form for
each. This allowed us to take into account the correlations
between the fit results for each meson in our subsequent
chiral extrapolations. We use the full range of t values in
the fit apart from the first 3–5 time-slices. Priors for

TABLE XVII. Valence light and strange quark mass parame-
ters on each ensemble. The valence light quark masses are the
same as in the sea (given in Table I), except for a slight
difference on set 3. The valence strange quark masses have
been retuned slightly to be closer to the physical values.
Columns 4 and 5 give the number of configurations used from
each ensemble and the number of time sources for propagators
per configuration.

Set amval
l amval

s ncfg nt

1 0.013 0.0688 1021 16

2 0.0064 0.0679 1000 16

3 0.010 44 0.0522 1053 16

4 0.005 07 0.0505 1000 16

5 0.0074 0.0364 1008 16
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energies and amplitudes are chosen as for the � fits de-
scribed in Sec. III B. We take results from 4 exponential
fits, where ground-state masses and their errors have
clearly stabilized.

The results that we use are the ground-state meson
masses and amplitudes, i.e. k ¼ 0 in Eq. (21). The meson
masses are given by the parameter E0 from each fit, since
there is no energy offset for staggered quarks as there is for
NRQCD. The decay constants are extracted from the fit
using

fab ¼ ðma þmbÞ
ffiffiffiffiffiffiffiffi
2a0
E3
0

s
(22)

for a meson containing quarks a and bwith massesma,mb,
ground state mass E0 and ground state amplitude, a0, from
the fit form above. Equation (22) uses the partially con-
served axial current relation, valid for staggered quarks, to
relate the matrix element of the pseudoscalar density to
that of the temporal axial current and therefore the decay
constant. The existence of the partially conserved axial
current relation means that the temporal axial current is
absolutely normalized and there is no uncertainty from

lattice to continuum current matching factors as there can
be in some other quark formalisms.

B. Results and chiral extrapolations

Our results for the�,K, and�s meson masses and decay
constants are listed in Tables XVIII and XIX. We also give
various ratios that are useful indicators of the sensitivity of
the �s parameters to the chiral extrapolation in the u=d sea
quark mass, and to the lattice spacing.
We fit the three decay constants and meson masses

simultaneously using SU(3) chiral perturbation theory,
adapted to include discretization effects. The usual ap-
proach is to use values for the decay constant and meson
mass in GeV, having chosen a value of the lattice spacing
on each ensemble. Extrapolation to the point where M�

and MK take their physical values then allows comparison
to experiment of the resulting values for f� and fK. Here
instead we use values for r1=a to fix the relative lattice
spacing between ensembles and keep the physical value of
r1 as a parameter to be obtained from the fit. The value for
r1 is determined by the requirement to match f� and fK
from experiment in the chiral limit where the experimental
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FIG. 14 (color online). Autocorrelation function C�T for � (left) and �s (right) correlators. These are made with a � function random
wall as described in the text. The key to the results from different ensembles is set 1, green plus; set 2, orange cross; set 3 blue star; set
4 pink open square; set 5, red open circle. The correlators are evaluated at lattice time separation t=a ¼ 6 on very coarse lattices (sets 1
and 2), t=a ¼ 8 on coarse lattices (sets 3 and 4) and t=a ¼ 10 on fine lattices (set 5). This corresponds to a t value, approximately
constant in physical units across the lattice spacing values, where the � and �s correlators have reached the ground-state plateau.�T is
given in units of configuration number in the ordered list for each ensemble.

TABLE XVIII. Values for the ground state masses in lattice units (E0 from Eq. (21)) for �, K and �s mesons. The fourth row gives
the ratio of the square of the �s mass to a combination of � and K masses that would be 1 in leading order chiral perturbation theory.

Set 1 2 3 4 5

aM� 0.236 37(15) 0.166 15(7) 0.191 53(9) 0.134 13(5) 0.140 70(9)

aMK 0.411 95(17) 0.390 82(9) 0.327 81(10) 0.307 57(7) 0.239 33(11)

aM�s
0.533 61(14) 0.527 97(8) 0.423 51(9) 0.414 76(6) 0.308 84(11)

M2
�s
=ð2M2

K �M2
�Þ 1.004 26(43) 1.003 17(28) 1.006 36(34) 1.004 74(26) 1.006 60(27)
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values are included as extra pieces of ‘‘data’’ for the fit.
The experimental values for f� and fK come from experi-
mental measurement of the leptonic decay rate and values
of Vud and Vus taken from elsewhere. We use [35]

f� ¼ 0:1304ð2Þ GeV fK ¼ 0:1561ð9Þ GeV: (23)

The meson mass values that go with these decay constants
in a world appropriate to lattice QCD without electromag-
netism and in which mu ¼ md are [46]

M2
� ¼ M2

�0

M2
K ¼ 1

2ðM2
K0 þM2

Kþ � ð1þ�EÞðM2
�þ �M2

�0ÞÞ:
(24)

We take �E, which parameterizes the violations of
Dashen’s theorem, to have the value 1� 1. The decay
constants are already defined to be results in pure QCD,
provided electromagnetic effects have been removed from
the experimental leptonic decay rates [35]. The residual
error in fK from the fact that it is the decay constant of the
Kþ whereas theK mass in Eq. (25) is the isospin average is
less than 0.1% [46], so we ignore it here.

Our fit also returns a physical value for f�s
and M�s

.

This can be used in subsequent analyses to tune the s quark
mass and to fix the lattice spacing. It is a good meson to
use for this purpose because its parameters are very in-
sensitive to the sea quark masses, as we see in Tables XVIII
and XIX.

The analysis is the same as that used in [21] except for
two improvements. The first is that the fit is simplified
because HISQ quarks are used in both the valence and sea
sectors. The second is that we include correlations between
all of the decay constants and meson masses on each
ensemble by feeding into the fit the covariance matrix
that resulted from the simultaneous fit to all three meson
correlation functions. Below we provide a brief description
of the chiral/continuum extrapolations following [21].

On each ensemble the decay constants and meson
masses are a function of the masses of the valence quarks
for that meson and of the masses of the sea quarks for that
ensemble, with the coefficients of the mass dependence
constrained to be the same for the �, K and �s mesons.
Because the quark masses run with energy scale it

simplifies the fits to use a dependent variable related to
the square of appropriate Goldstone meson masses instead
the quark mass. Thus we write

xl ¼ M2
�=2

�2
	

; (25)

where�	 provides the cutoff scale of the chiral expansion,

�	 ¼ 4�f�=
ffiffiffi
2

p
: (26)

Similarly

xs ¼ M2
K �M2

�=2

�2
	

: (27)

In the cases where the sea and valence quark masses differ,
the x parameters for the sea quark masses are obtained
from those of the valence masses by rescaling in proportion
to the quark mass. Then the decay constant made from
valence quarks a and b takes the functional form

fðxa; xb; xseal ; xseas ; aÞ ¼ fNLO þ �f	 þ �flat; (28)

where fNLO is the full partially quenched chiral perturba-
tion theory formula at next-to-leading order [47] and �f	
and �flat include possible correction terms coming from
higher order terms in the quark mass and finite lattice
spacing corrections. Each of the terms contains a set of
unknown coefficients which are given prior constraints in
our fit allowing us to test their effect on our final result.
fNLO [47] includes terms proportional to the squares of

the appropriate meson masses as well as logarithmic terms
that appear in combinations such as, for example, ðxa þ
xseal Þ logðxa þ xseal Þ. The logarithmic terms are corrected

for finite volume effects through the use of finite volume
chiral perturbation theory. The finite volume correction is
significant for f�, particularly on set 1 where M�L ¼ 3:8
and the finite volume correction is 1.8%. For the other sets,
with M�L> 4, the correction ranges from 0.4% to 0.7%.
For fK and f�s

the correction is much smaller. It is at its

largest on set 1 with 0.7% for fK and 0.2% for f�s
.

�f	 includes polynomial dependence on various combi-

nations of the xi up to and including x
4
i terms [21]. Most of

TABLE XIX. Values for the ground state decay constants in lattice units (derived from a0 in Eq. (21) as described in the text) for �,
K and �s mesons. We also give various ratios of decay constants obtained from the simultaneous fit. The sixth row gives the ratio of the
�s decay constant to a combination of � and K decay constants that would be 1 in leading order chiral perturbation theory.

Set 1 2 3 4 5

af� 0.111 83(9) 0.105 11(5) 0.090 75(5) 0.084 51(4) 0.066 21(5)

afK 0.126 89(8) 0.122 68(4) 0.101 85(5) 0.097 88(3) 0.074 27(4)

af�s
0.141 99(6) 0.140 26(3) 0.113 12(4) 0.111 19(2) 0.082 38(4)

fK=f� 1.134 67(58) 1.167 17(38) 1.122 31(38) 1.158 19(35) 1.121 70(39)

f�s
=f� 1.269 74(80) 1.334 42(59) 1.246 53(68) 1.315 68(53) 1.244 16(69)

f�s
=ð2fK � f�Þ 1.000 31(62) 1.000 07(27) 1.001 54(45) 0.999 48(26) 1.000 61(32)

f�s
=M�s

0.266 09(11) 0.265 66(6) 0.267 11(10) 0.268 09(6) 0.266 74(12)

R. J. DOWDALL et al. PHYSICAL REVIEW D 85, 054509 (2012)

054509-24



these terms only matter for the s quark and they allow for
differences between the s and l sectors within SU(3) chiral
perturbation theory. Since xs ¼ 0:17 including x4i terms

means that missing terms at x5s are Oð10�4Þ, smaller than
our statistical errors. It is sufficient to include polynomials
because we cannot distinguish high-order logarithms from
polynomials over this range in xi.

�flat allows for dependence on powers of the square of
the lattice spacing, since this is the form that discretization
errors take for staggered quarks. We include terms up to
ða�QCDÞ8 where �QCD is taken to be Oð0:6 GeVÞ. The
coefficients of the a dependence are also allowed to have
dependence on valence and sea mass dependence. This
includes dependence on logðxlÞ to model discretization
errors coming from staggered taste-changing effects [21].

The terms in the chiral expansion are generally written
so that the coefficients are expected to be Oð1Þ. For these
coefficients we take the prior in our fit to be 0� 1. This is
true for the higher order terms in the chiral expansion that
relate to a dependence and mass dependence, except where
the masses involved are sea-quark masses and then the
prior is taken as 0� 0:3, simply because sea-quark effects
are typically suppressed over valence quark effects by this
amount. The prior on the bare decay constant parameter in
chiral perturbation theory, f0, is taken as 0:11� 0:02. In
fact the parameter that is tuned by the fit is logðf0Þ in order
to keep f0 positive. The prior on logðf0Þ is then taken as
�2:2� 0:18. The priors for the coefficients L4;5;6;8 that

multiply analytic terms at next-to-leading order in chiral
perturbation theory are taken as 0� 0:01.

The meson masses are fitted simultaneously with the
decay constants feeding in the 6� 6 covariance matrix on
each ensemble. The leading behavior in chiral perturbation
theory for the meson masses is now trivial. However the
chiral fit, which shares some of the same coefficients as
that of the decay constants [47], allows us to fix the higher
order behavior as a function of sea and valence masses. In
particular it allows us to fix the behavior of the �s mass as
the � and K masses vary, so that we can obtain its value at
the physical point. The priors in the chiral fit for the meson
masses take the same form as described above for the
decay constant.

The fitting forms above were extensively tested for
robustness against both real and fake data in [17,21].

The results of our fit are shown in Fig. 15. The data points,
adjusted for finite volume effects and for the slight mistun-
ing of the valence and sea strange quark masses, are plotted
as a function of xl=xs. The fit lines at each value of the lattice
spacing are shown alongwith thea ¼ 0 line.At the physical
value for xl=xs we give the experimental values for f� and
fK. This plot should be compared with Fig. 4 in [21]. It is
evident that these ‘‘second generation’’ configurations have
significantly smaller discretization errors [19].

The fit has a 	2=dof value of 0.3 for 36 degrees of
freedom. The fitted value of f0 is expð�2:174� 0:028Þ,

in agreement with SU(3) chiral fits using asqtad improved
staggered quarks [48]. The resulting physical values for f�s

and M�s
are

f�s
¼ 0:1819ð5Þ GeV M�s

¼ 0:6893ð12ÞGeV
f�s

=M�s
¼ 0:2638ð8Þ: (29)

These are in agreement with the results obtained on nf ¼
2þ 1 dynamical asqtad configurations [21] but consider-
ably more accurate because our statistical precision is
improved, and we have smaller continuum and chiral
extrapolation errors. These last two are reduced because
of the improvements in the gluon field configurations and
because we are working closer to the chiral limit. Complete
error budgets for f�s

, M�s
and their ratio are given in

Table XX.
The results in Eq. (29) are very close, but in fact differ

significantly from the expected result from leading order
chiral perturbation theory. This is illustrated in Figs. 16 and
17 in which the ratios f�s

=ð2fK � f�Þ and M2
�s
=ð2M2

K �
M2

�Þ are plotted against xl=xs. Both ratios are very flat in
xl=xs, never differing by as much as 1% from 1. We
determine the physical values for the ratios to differ sig-
nificantly from 1, however, with results:

f�s
=ð2fK � f�Þ ¼ 0:9977ð6Þ

M2
�s
=ð2M2

K �M2
�Þ ¼ 1:0070ð18Þ: (30)

Since our fit uses r1=a to set the relative lattice spacing
we can determine a value for r1 from the final match with
experiment for f� and fK. We obtain

FIG. 15 (color online). The pseudoscalar decay constants plot-
ted against the ratio of squared pseudoscalar masses that is
approximately equal to ml=ms. The points have been adjusted
for finite-volume effects and for mistuning of the strange quark
mass. The lines are from the tuned fit function at each lattice
spacing, with results increasing in value from very coarse (blue)
to fine (red). The top (black) line is the a ¼ 0 curve and the black
leftmost data points give the experimental value for f� and fK
given values for Vud and Vus [35].
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r1ðf�s
Þ ¼ 0:3209ð29Þ fm: (31)

The error budget for r1 is given in Table XX. This physical
result for r1 agrees with the value obtained from the same
analysis on nf ¼ 2þ 1 dynamical asqtad lattices [21], but

is almost twice as accurate.
We can use f�s

and M�s
to determine the s quark mass

and lattice spacing on each ensemble. This is done by
tuning the s quark mass so that f�s

=M�s
takes the value

in Eq. (29) and then the lattice spacing is read from the
value of f�s

. We do this here retrospectively by using our

chiral fits to tune the s quark mass and work out the
corresponding changes in f�s

and M�s
. For simplicity the

sea light quark masses were also retuned to the physical
value. The values of a obtained are given in Table X.

In Table XII we give tuned values of ams on each
ensemble as a result of tuning the �s to the physical value

given in Eq. (29). Over the short range needed for the
retuning the relationship ms / M2

�s
works very well. We

give results for both the case of using the �s decay constant
to fix the lattice spacing and of using the � 2S� 1S
splitting. The values of ams obtained from the two methods
differ substantially on the very coarse lattices but come into
agreement on the fine lattices as expected.
The errors in the tuned values of ams are dominated by

the errors in the lattice spacing. The relative error in a is
doubled in ams because the quark mass is proportional to
the square of the meson mass. When the quark mass is
converted to physical units one factor of the lattice spacing
error disappears.

V. r1

The values of the heavy quark potential parameter, r1,
can be determined by combining the values for r1=a from
MILC given in Table I with the values for the lattice
spacing given from our two different methods in
Table X. We use ‘‘unsmoothed’’ values of r1=a which are
the results of an independent fit to the heavy quark poten-
tial on each ensemble. Figure 18 shows the results for r1
from each method as a function of the lattice spacing.
Differences are evident on the very coarse lattices as a
result of discretization errors but there is clear convergence
as a ! 0. The results are plotted against ða=r1Þ4 since the
leading tree-level discretization errors are at a4. Note that
the behavior of this plot is rather different from that ob-
tained previously on the 2þ 1 flavor configurations (Fig. 3
of [21]). There is a little less variation with a, to be
expected because of the various improvements to the dis-
cretization of QCD. The main difference however is the

TABLE XX. Complete error budget for r1, f�s
, M�s

and
f�s

=M�s
. Errors are given as a percentage of the physical value.

Errors which are negligible compared to the others are indicated
by ‘‘0’’.

r1 f�s
M�s

f�s
=M�s

Stats/fitting 0.24 0.16 0.07 0.18

a extrapolation 0.46 0.14 0.03 0.16

ml extrapolation 0.09 0.12 0.04 0.11

Finite volume 0.04 0 0 0

r1=a 0.73 0.12 0.02 0.12

Initial r1 uncertainty 0.26 0.02 0 0.02

M�, MK 0 0.05 0.14 0.09

Total 0.90 0.28 0.17 0.30

FIG. 16 (color online). The ratio of f�s
to 2fK � f�, which

would be 1 in leading order chiral perturbation theory. The ratio
of squared meson masses on the x axis corresponds approxi-
mately to ml=ms. The blue, green and red points and fit curves
correspond to very coarse, coarse and fine lattices, respectively.
The black line is the continuum, a ¼ 0, fit curve.

FIG. 17 (color online). The ratio of M2
�s

to 2M2
K �M2

�, which
would be 1 in leading order chiral perturbation theory. The ratio
of squared meson masses on the x axis corresponds approxi-
mately to ml=ms. The blue, green and red points and fit curves
correspond to very coarse, coarse and fine lattices, respectively.
The black line is the continuum, a ¼ 0, fit curve.
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direction of approach to a ¼ 0. The results for r1 from f�s

are now very flat and the results from the � approach
a ¼ 0 from below. This reflects a change in the relative
discretization errors of the quantities involved.

As discussed above, the chiral fits involving the �s give
a result for r1 of 0.3209(29) fm. We can fit the results from
using the � method to test if they are consistent with this.
Using the �s result as a prior for the� fit then enables us to
extract an improved result for r1 which combines both
methods.

To extract a physical value for r1 using the � results we
use the same functional form for the fit as was used earlier
for RS and RP, Eq. (17). This includes an allowance for
variations as a function of the sea light quark
masses, although it is clear from the results that any such
dependence is very small. Indeed the quantities being used
were chosen for their insensitivity to such effects. We also
include an allowance for discretization errors, both of the
standard type, varying as ða�Þn and the from various
amb-dependent type coming from radiative corrections in
NRQCD. We also allow for the NRQCD systematic error
from Tables VI and VII as a correlated error for all 5
ensembles.

The fit to the � values using a large width prior for the
physical value (0.32(10) fm) gives 	2=dof ¼ 0:79 for 5
degrees of freedom and r1ð�Þ ¼ 0:310ð6Þ fm. This shows
the required consistency in the determination of the lattice
spacing from the two methods as a ! 0. The fit including
the prior value from the �s analysis gives 	

2=dof ¼ 0:76
and result:

r1 ¼ 0:3209ð26Þ fm: (32)

This is slightly improved over the �s value on its own.
This final value for r1 can now be used to determine a on

other ensembles if values of r1=a are available. We include
in Table X the lattice spacing values on sets 1 to 5 from
using r1.
Our result for r1 can be compared to our previous result

of 0.3133(23) fm on the MILC 2þ 1 flavor dynamical
asqtad lattices [21]. This is 2% lower than our current
result with a combined uncertainty of 1% and so is not
significant. In principle the two results do not have to agree
because we are now including c quarks in the sea. However
we expect this to have a small effect and then only in
short-distance quantities [14]. We can obtain estimates
for the effect on the � 2S� 1S splitting from the fact
that it is proportional to the hyperfine splitting. Missing c
quarks in the sea increases the � mass by approximately
5 MeV with a smaller amount for excited states. It there-
fore reduces the 2S� 1S splitting by approximately
2.5 MeV or 0.4%. This could have led previously to a
0.4% underestimate of r1 from the � 2S� 1S splitting if
r1=a itself was not affected. This effect is no larger than
other sources of systematic error in the earlier calculation
[2] coming from radiative corrections to v4 terms that are
also now included. Thus we cannot claim to see any strong
evidence of an effect from c quarks in the sea. Indeed if we
compare the r1 values coming from the � analysis alone
there is a change of 2(2)%, in which a 0.4% effect from c in
the sea would be invisible. Any allowance for an effect on
r1 itself, also a fairly short distance quantity, would reduce
this expected variation further. The �s analysis would be
expected to be very insensitive to sea charm because of the
low internal momenta inside these light hadrons. For that
case we see only a 0.5% change in the value of r1 obtained,
again with a 2% error.

VI. mb=ms

From Table XII we can determine the ratio of the bare
NRQCD b quark mass to the bare HISQ s quark mass on
each ensemble. To do this we must use the same determi-
nation of the lattice spacing for the tuning of each mass,
and so we use the lattice spacing determined from the �
2S� 1S splitting (columns 2 and 3). The lattice spacing
error appears doubled in ms and once in mb because of
their different dependence on the meson masses used to fix
them. These errors are correlated in the ratiomb=ms so one
factor of the lattice spacing error cancels between numera-
tor and denominator.
The ratio of masses in different schemes (NRQCD and

HISQ) is not particularly useful. However, we can convert
this using perturbation theory to a ratio of masses in the

same mass-independent scheme, such as MS, at the same
scale, �. The ratio then becomes scale-independent and

the same in any scheme related to MS by a simple

r 1
 (

fm
)

(a/r1)4

(2S-1S)
f

s 0.29

 0.295

 0.3

 0.305

 0.31

 0.315

 0.32

 0.325

 0.33

 0  0.01  0.02  0.03  0.04  0.05  0.06

FIG. 18 (color online). Values for the heavy quark potential
parameter r1 obtained by combining values for r1=a from MILC
with either of our two methods for determining the lattice
spacing. The red plus symbols correspond to using the �s and
the blue stars to using the � 2S� 1S splitting (these points do
not include the NRQCD systematic error which is correlated
between the points). The black line with light red error band
corresponds to the final value for r1 from the combined fit to the
results from both methods and includes the total error.
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renormalization. For both the NRQCD and the HISQ ac-
tions the mass renormalization is known to Oð�sÞ.

The lattice to MS mass renormalization constant is
calculated by multiplying the lattice bare mass to pole

mass renormalization by the continuum pole mass to MS
renormalization. This latter renormalization is given by:

mMS
q ð�Þ ¼ mq;pole

�
1þ �s

�
� 4

3�
� 2

�
ln

�

mq;pole

�
þ . . .

�
:

(33)

The lattice bare mass to pole mass renormalization for
HISQ quarks is given for small quark masses by [49–51]:

ms;pole ¼ ams

a

�
1þ �s

�
� 2

�
ln ams þ 0:5387

�
. . .

�
;

(34)

where we have written the equation explicitly for the
strange quark mass. When Eqs. (33) and (34) are combined
to obtain the conversion factor from the lattice bare mass to

the MS mass at scale � and Oð�sÞ the logarithm multi-
plying �s becomes lnða�Þ, and there is a constant given by
0:5387–4=ð3�Þ.

We can also write the NRQCD mass renormalization in
the form

mb;pole ¼ amb

a

�
1þ �s

�
� 2

�
lnamb þ ANRQCD

�
. . .

�
:

(35)

although no lnðamÞ term is explicit in that calculation. On
doing this we find that the remainder term, ANRQCD given in
Table XXIII, has very little amb dependence.

Combining Eqs. (33)–(35) it is then clear that the ratio of

MS masses for b and s is given to Oð�sÞ by:

mMS
b ð�Þ

mMS
s ð�Þ

¼ amb

ams

½1þ �sðANRQCD � 0:5387Þ þ . . .� (36)

where the � dependence cancels out. The ratio of bare
lattice masses from columns 2 and 3 of Table XII varies
very little with lattice spacing with values between 51 and
52. The renormalization in Eq. (36) is a relatively mild one,
with �s coefficient varying between 0.31 and 0.39 with
amb value. We apply this one-loop renormalization with
�s values taken as �Vð1:8=aÞ from Table XXII. The energy
scale for�s is then in agreement with the Brodsky-Lepage-
Mackenzie scale calculated for the light quark (asqtad)
mass renormalization in [49]. This gives the values for

the MS mb=ms ratio plotted in Fig. 19.
The results in Fig. 19 show very little dependence on

lattice spacing or sea quark mass within the 1% statistical
and systematic errors from the lattice calculation. A much
larger error is that from missing higher order powers of �s

in Eq. (36). We take account of this error by allowing a
correlated error between the points of 1� �Vð1:8=aÞ2

along with a possible variation with amb of the form
�Vð1:8=aÞ2 � �xm=4 (see Eq. (17) for a definition of
�xm). This allows the �2

s term to have both a coefficient
and a mass dependence which is 3 times that of the known
�s term. We allow for possible dependence on sea quark
masses and the lattice spacing by using a fit of the same
form as that in Eq. (17). The final fit result is then:

mMS
b ð�Þ

mMS
s ð�Þ

¼ 54:7ð2:5Þ; (37)

plotted as the shaded blue band in Fig. 19. The error is
dominated, not surprisingly, by the error from the unknown
�2
s term.
We can compare this new result to a combination of our

earlier results for mb=mc (4.51(4)) from [52] and mc=ms

(11.85(16)) from [53]. These results were obtained entirely
nonperturbatively by using the HISQ action for all the
quarks. Then the ratio of lattice bare quark masses in the

continuum limit is the ratio of MS masses at a given
scale—the renormalization factor cancels completely.
From the numbers above we have mb=ms ¼ 53:4ð9Þwhich
is plotted as the black point at a ¼ 0 on Fig. 19. Our new,
completely independent, result agrees well with this earlier
value although it is much less accurate.

a2 (fm2)

mb( )/ms( )

45

50

55

60

65

 0  0.005  0.01  0.015  0.02  0.025

FIG. 19 (color online). Values for the ratio of the b quark mass
to the s quark mass in the MS scheme at a given scale plotted
against the square of the lattice spacing. Results are obtained
from combining NRQCD b quark masses and HISQ s quark
masses with an Oð�sÞ perturbative renormalization. The errors
on the points include statistical/fitting errors, lattice spacing
errors and NRQCD systematic errors. The final result, including
the Oð�2

sÞ perturbative error is plotted as the shaded blue band.
The result from our previous fully nonperturbative calculation on
ensembles including 2þ 1 flavors of sea quarks [52,53] is given
by the black filled circle at a ¼ 0.
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VII. CONCLUSIONS

In this paper we have determined the � spectrum using
the NRQCD formalism for the b quarks in lattice QCD. We
include several improvements over our earlier work. The
key improvements are:

(i) we use gluon field configurations with a fully
Oð�sa

2Þ improved gluon action and HISQ quarks
in the sea, provided by the MILC Collaboration;

(ii) c quarks are now included in the sea;
(iii) we take the NRQCD action to a new level of

accuracy by including radiative corrections to the
terms at next-to-leading relativistic order (v4);

(iv) we improve the method for tuning the b quark mass
so that systematic errors are reduced to 0.5%.

With significantly improved systematic errors from
NRQCD we are then able to determine the lattice spacing
to better than 1% from the 2S� 1S splitting. Using this we
obtain MðhbÞ �Mð1 �SÞ to 1.4% and Mð�00Þ �Mð�Þ to
2.4% which is a strong test of NRQCD. This gives
MðhbÞ ¼ 9905ð7Þ MeV to be compared with the experi-
mental result of 9898.3(1.5) MeV [39] and Mð�00Þ ¼
10375ð22Þ MeV to be compared to the experimental result
of 10355.2(5) MeV [35].

We have examined the � and �b dispersion relations in
much more detail than before, so that we can quantify the
effect of the radiative corrections to the v4 kinetic terms in
the action. We are also able to show how small are the
deviations from continuum rotational invariance. This en-
ables us to tune the b quark mass to 0.5%.

Our result for the hyperfine splitting between the � and
�b states is much more accurate than in our earlier work
because we have included the critical renormalization of c4
(the coefficient of the � � B term) in our analysis. We
obtain Mð�Þ �Mð�bÞ ¼ 70ð9Þ MeV now with a 13% er-
ror. This gives Mð�bÞ of 9390(9) MeV to be compared to
the experimental result of 9390.9(2.8) MeV.

Our result for Mð�0Þ �Mð�0
bÞ is also much more accu-

rate largely because of a huge improvement in the statis-
tical error. We find a 2S hyperfine splitting that is half as
big as the 1S hyperfine splitting at 35(3) MeV, predicting
Mð�0

bÞ ¼ 9988ð3Þ MeV.
These new results are collected together in a plot of the

� spectrum from improved lattice NRQCD in Fig. 20. We
mark with different symbols those results used to tune
parameters, those which correspond to masses already
known from experiment, and those (the �0

b) which are

predictions. We include the P-wave fine structure from
our results for c4 ¼ 1:15 on the fine lattices, set 5, since
this c4 is close to the perturbative value on those lattices.
We include an additional 10% error for missing v6 terms in
our NRQCD action. D-wave � masses from our calcula-
tion will be reported elsewhere.

Light meson (�, K and �s) masses and decay constants
are also given here that enable us to determine the

properties of the �s meson and give a complementary
determination of the lattice spacing to better than 1%.
The calculation shows significantly improved discretiza-
tion errors over our earlier results on ensembles including
2þ 1 flavors of asqtad quarks [21]. The results on the
properties of the �s are in agreement with our earlier
work. However, our earlier result was not able to distin-
guish the mass and decay constant of the �s from that
would be obtained in leading order chiral perturbation
theory. We now obtain Mð�sÞ ¼ 0:6893ð12Þ GeV and
f�s

¼ 0:1819ð5Þ GeV. In both cases these values disagree

significantly, but by less than 1%, from the leading order
expectation. The �s particle is relatively insensitive to sea
u=d quark masses and so it is very useful to have accurate
results for its properties for tuning the s quark mass and
determining the lattice spacing on other lattice ensembles.
The � 2S� 1S and �s determinations of the lattice

spacing can be compared through a third parameter, r1,
from the heavy quark potential. We show that both deter-
minations agree in the continuum and chiral limits and give
a physical value for r1 of 0.3209(26) fm. This can also be
used to determine the lattice spacing on other lattice
ensembles.
We also combine � and �s calculations through a

determination of the ratio ofMS b quark to s quark masses
ofmb=ms ¼ 54:7ð2:5Þ, in agreement with our earlier result
from HISQ quarks alone of 53.4(9) [52,53].
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FIG. 20 (color online). The spectrum of bottomonium states
from lattice NRQCD (colored symbols with error bars) com-
pared to experiment (black lines). Blue crosses denote results
used to tune parameters, pink open squares results to be com-
pared to experiment and red circles predictions ahead of experi-
ment. For simplicity we mark the�with a blue cross although in
fact we use the spin average of � and �b to tune the b quark
mass.
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Finally we comment on the effect of including c quarks
in the sea. We have seen no significant effect on any of
the observables that we have calculated compared to
results obtained with 2þ 1 flavors of sea quarks. The
results cannot be compared lattice spacing by lattice
spacing because of changes to the lattice QCD action
that reduce the size of discretization errors in our new
results. Final physical results can be compared, however,
with and without sea c quarks to see if there is a differ-
ence. In our earlier 2þ 1 flavor calculations [14] we
estimated that the presence of sea c quarks would shift
the � and �b masses downwards by 5 MeV through an
induced additional local potential which was proportional
to �2

s�
3ðrÞ=m2

c. This would have a smaller effect on radial
excitations of the � than on the ground state masses and
very little effect on P-wave states. We then estimate the
effect on, for example, the � 1P� 1S splitting to be
Oð1%Þ. This would barely be visible above the errors in
our current calculation and the errors in the earlier cal-
culation were somewhat larger, so any comparison cer-
tainly has an error of greater than 1%. However, it is clear
from our results that no unexpectedly large effect has
appeared. For light hadrons we expect even smaller ef-
fects and there we can limit any differences in M�s

and

f�s
to smaller than 1%, with the main error coming from

our earlier calculation [21].
We are now combining b quark propagators from our

improved NRQCD action with l, s and c propagators on
these ensembles to study B, Bs and Bc meson masses and
matrix elements. Significantly improved systematic errors
should be possible both from the NRQCD action and
because we are working much closer to physical light sea
quark masses than before with an improved gluon and sea
quark action.
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APPENDIX A: GAUGE ACTION

For clarity, the gauge action SG used in the generation of
the MILC ensembles will be summarized in this section.
See [19]. The action is a tadpole and one-loop improved
Lüscher-Weisz action,

SG¼�

�
cP
X
P

�
1�1

3
ReTrðPÞ

�

þcR
X
R

�
1�1

3
ReTrðRÞ

�
þcT

X
T

�
1�1

3
ReTrðTÞ

��
;

(A1)

where the sums are over plaquettes P, rectangles R and
twisted loops (or parallelograms) T. The coefficients are
calculated perturbatively through Oð�sÞ including both
gluonic loops [54] and contributions from HISQ sea quarks
[20]. The tadpole improvement parameter was chosen to be

the fourth root of the plaquette u0P ¼
�
1
3 Re TrhPi

�
1=4

and,

via a perturbative calculation of the plaquette, gives
an expression for the strong coupling constant
�s ¼ �1:303615 logu0P. u0P also appears in the gauge
coupling as � ¼ 10=ðg2u40PÞ. The coefficients used are

CP ¼ 1:0

CR ¼ �1

20u20P
ð1� ð0:6264� 1:1746NfÞ logðu20PÞÞ

CT ¼ 1

u20P
ð0:0433� 0:0156NfÞ logðu20PÞ:

(A2)

The inclusion of these terms mean that the gauge action is
improved completely through order Oð�sa

2Þ. As men-
tioned in the text, sea quarks are included using the
HISQ action [16] with a Uð3Þ projection (only) for the
intermediate re-unitarization step.

APPENDIX B: PERTURBATIVE DETERMINATION
OF RADIATIVE CORRECTIONS TO ci

COEFFICIENTS IN THE NRQCD ACTION AND
THE MASS RENORMALIZATION

Spin-independent coefficients. The ci coefficients ap-

pearing in the NRQCD action, Eq. (2), have expansion 1þ
cð1Þi �s þOð�2

sÞ. The cð1Þi for the kinetic terms, i ¼ 1, 5, 6,
are determined following the method of [26,55]. The
NRQCD quark self-energy is calculated through Oð�sÞ
and the cð1Þi are given by the requirement that the correct
energy-momentum relationship be obtained through

Oð�sv
4Þ. The terms proportional to ð�ð2ÞÞ2 in Eq. (2) can

be merged together so that this term in �H appears as

~c 1

�
1þ amb

2n

� ð�ð2ÞÞ2
8ðambÞ3

: (B1)

Thus only two radiative corrections need to be calculated
for the complete set of kinetic terms at Oðv4Þ, i.e. for ~c1
and c5. The radiative correction for ~c1 then applies equally
to c1 and c6.
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The full inverse NRQCD quark propagator at Oð�sÞ is
aG�1ðpÞ ¼ Q�1ðpÞ � �sa�ðpÞ; (B2)

where ap ¼ ðap; ap4Þ is a 4-vector in lattice Euclidean
space. The pole in the propagator is identified as a!ðpÞ ¼
ip4a. The expansion of !ðpÞ in powers of the spatial
momentum can be used to identify the quark mass renor-
malization factor Zm and wave-function renormalization

factor Z2 but also to tune ~c
ð1Þ
1 and cð1Þ5 to appropriate values.

Q�1ðpÞ is the quark propagator obtained at tree level from
the NRQCD action, including the (as yet unknown) radia-
tive corrections to ~c1 and c5. Its pole is then given by:

a!0ðpÞ ¼ a2p2

2amb

� ða2p2Þ2
8ðambÞ3

þ �s

�
cð1Þ5

a4p4

24amb

� ~cð1Þ1

�
1

2n
þ 1

amb

� ða2p2Þ2
8ðambÞ3

�
: (B3)

�ðpÞ is the one-loop self-energy and consists, as shown
in Fig. 21, of rainbow and tadpole diagrams as well as
diagrams containing insertions of the one-loop piece of the

tadpole-improvement factor, u0. Writing u0 ¼ 1þ �su
ð1Þ
0 ,

we have uð1Þ0 ¼ 0:750 for the Landau link tadpole parame-

ter, u0L [56]. We have

!ðpÞ ¼ !0ðpÞ � �s�ð!0ðpÞ;pÞ (B4)

and can expand � to v4 as

a�ðpÞ ¼ �0ð!Þ þ�1ð!Þ a
2p2

2amb

þ�2ð!Þ ða
2p2Þ2

8ðambÞ3
þ �3ð!Þa4p4: (B5)

The �i are extracted from suitable combinations of partial
derivatives of �:

�0 ¼ a�ðp ¼ 0Þ �1 ¼ amb

@2a�

@a2p2
z

��������p¼0

�2 ¼ ðambÞ3 @4a�

@a2p2
z@a

2p2
y

��������p¼0

�3 ¼ 1

24

�
@4a�

@a4p4
z

� 3
@4�

@a2p2
y@a

2p2
z

�
p¼0

:

(B6)

Each of the �i also has an expansion in powers of ! as

�i ¼ �1
l¼0�

ðlÞ
i !l. Then

a!ðpÞ ¼ a2p2

2amb;r

� ða2p2Þ2
8ðamb;rÞ3

� �sa�!ðpÞ; (B7)

where mb;r ¼ Zmmb and

Zm ¼ 1þ �sZ
ð1Þ
m ¼ 1þ �sð�ð1Þ

0 þ�ð0Þ
1 Þ (B8)

to this order. The correction term �! is given by:

a�! ¼ W0 þ
�
W1 þ ~cð1Þ1

�
1

2n
þ 1

amb

�� ða2p2Þ2
8ðambÞ3

þ
�
W2 � cð1Þ5

24amb

�
a4p4; (B9)

with

W0 ¼ �ð0Þ
0

W1 ¼ 2�ð1Þ
0

amb

þ 2�ð2Þ
0 þ 3�ð0Þ

1

amb

þ 2�ð1Þ
1 þ�ð0Þ

2

W2 ¼ �ð0Þ
3 :

(B10)

The requirement that lattice NRQCD reproduce the low-
energy physics of full QCD means that �! can only be a
pure energy shift independent of spatial momentum, i.e.
the coefficients of ðp2Þ2 and p4 in Eq. (B10) must be zero.
Thus

~c ð1Þ
1 ¼ �

�
1

2n
þ 1

amb

��1
W1 cð1Þ5 ¼ 24ambW2:

(B11)

The Feynman rules were generated automatically using
the HIPPY package and the Feynman lattice integrals for �
and its derivatives were constructed and evaluated numeri-
cally using the HPSRC package and VEGAS contained
therein [57,58]. We use analytic differentiation using the
TAYLUR package in the HPSRC Fortran code together with

numerical differentiation which, for sufficiently smooth
functions, can be up to an order of magnitude faster than
analytic differentiation.
Because the kinetic ða2p2Þ2 term is included at tree level

both W1 and W2 are infrared (IR) finite and so no IR
regulation is needed although a gluon mass was used to
regularize intermediate divergences. However, the inte-
grals arising from the rainbow diagram still have large

FIG. 21. The Feynman diagrams needed for the calculation of
Oð�sÞ corrections to the heavy quark self-energy. From top to
bottom, rainbow, tadpole and u0 counterterm diagrams.
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peaks in the IR region. These peaks arise because the
differentiation generates extra powers of the heavy quark
NRQCD propagator in the integrand. In this case to use
numerical differentiation alone proves to be unstable and it
is imperative to use a mixture of analytic and numerical
approaches and also to introduce a suitable subtraction
function to remove the most severe behavior of the inte-
grand. In contrast, the integrals arising from the tadpole
diagram are well behaved because they contain no quark
propagators but they are expensive to evaluate since the
two-gluon vertex contains a large number of terms. In this
case, numerical differentiation proved to be the most effi-
cient for the higher order mixed derivatives without com-
promising accuracy. In all cases the temporal derivatives
were done using the analytic method.

We checked that the results agree well with those of
Morningstar [26,55] for his gluon and NRQCD actions. For
the simplest gluon and NRQCD actions the results agree
with the analytic calculation of Monahan [59].

The contribution to the cð1Þi from the uð1Þ0 insertions of

Fig. 21 can be calculated analytically. This gives:

~cð1Þ1

uð1Þ0

¼ � 1

8

�
1þ amb

2n

��1
�
12

n2
� 1

n
þ 1

2amb

�
3

n2
� 4

�

þ 6

ðambÞ2
�
1

n
� 12

�
þ 6

ðambÞ3
�
cð1Þ5

uð1Þ0

¼ � 4

3
þ 1

4amb

þ 3

ðambÞ2
� 3

8nðambÞ2
� 3

4ðambÞ3
:

(B12)

These contributions are sizeable and act to cancel contri-
butions coming from the other diagrams, as part of the ’’-
tadpole-improvement’’ mechanism [5,26]. This is

particularly true for cð1Þ5 ; less so for ~cð1Þ1 , as in [26]. The

cð1Þi values will then change depending on the tadpole-
improvement parameter chosen, for example u0P or u0L,
because the ci must compensate perturbatively for changes
in u0. Here we use u0L in the NRQCD action and this is the
only u0 that affects the ci toOð�sÞ. u0P is used in the gluon
action and counterterms from this will appear in the ci at
higher order.

Table XXI gives the results for ~cð1Þ1 and cð1Þ5 for 3 differ-

ent values of amb and stability parameter n ¼ 4. The mass

values are not exactly the amb values used for the numeri-

cal work in this paper but the cð1Þi show very mild depen-
dence on amb, so we can simply interpolate to the amb

values we are using. The results are different from those of
[26] because both the gluon action and the NRQCD action
have changed. However, qualitative features are the same
in that the values are not large and only mild dependence

on amb is seen for amb larger than 1. We note that the cð1Þi

coefficients will change if higher order terms are added to
the NRQCD action. For example [27] tests were done with
an NRQCD action which included a term in �H of

��ð6Þ=ð180ambÞ, removing Oða6Þ discretization errors

from H0. This changes cð1Þ5 to 0.017(4) for amb ¼ 1:95
and n ¼ 4 to be compared with the result of 0.392(17) in
Table XXI.
The coefficients in Table XXI need to be combined with

a value for �s to give final results for c1, c5 and c6. The
scale, q�, used for �s was taken as that calculated for the
Brodsky-Lepage-Mackenzie scheme in Fig. 10 of [26],
assuming that this does not change significantly with the
changes in the action used. This gives q� � 1:4=a for c5
and q� � 1:8=a for ~c1. We take �s from [52], specifically
the value �MSðMz; nf ¼ 5Þ ¼ 0:1183. We convert this to

�V [60] and run perturbatively to values using nf ¼ 4 and

appropriate scales q�. The q� values are calculated for the
very coarse, coarse and fine ensembles using a�1 � 1:3,
1.6 and 2.2 GeV, respectively, from Table X. The �V values
obtained are listed in Table XXII. These are combined with
the coefficients in Table XXI to give the values used in

Table II. The coefficient ~cð1Þ1 was reduced slightly on the

fine lattices (to 0.766) to account for the fact that the value

TABLE XXI. Coefficients ~cð1Þ1 and cð1Þ5 that multiply �s in the
one-loop correction to the kinetic terms in the NRQCD action
used here in conjunction with the improved gluon action de-
scribed in Appendix A.

amb n ~cð1Þ1 cð1Þ5

1.95 4 0.774(21) 0.392(17)

2.8 4 0.951(26) 0.406(11)

3.4 4 0.952(30) 0.445(10)

TABLE XXII. Values for �V used in calculating the
Oð�sÞ-corrected coefficients c1, c5, c6 and c4.

Sets 1=a GeV �ð4Þ
V ð1:4=aÞ �ð4Þ

V ð1:8=aÞ �ð4Þ
V ð�=aÞ

Fine 2.2 0.32 0.28 0.225

Coarse 1.6 0.39 0.33 0.255

Very coarse 1.3 0.46 0.38 0.275

TABLE XXIII. Coefficients Zð1Þ
m and cð1Þ4 that multiply �s in

the one-loop correction to the mass renormalization and the � �
B term in the NRQCD action, respectively. These are calculated
with the NRQCD action used here and the improved gluon

action described in Appendix A. ANRQCD in column 4 is Zð1Þ
m þ

2 lnðambÞ=�, as described in the text.

amb n Zð1Þ
m ANRQCD cð1Þ4

1.9 4 0.439(3) 0.848(3) 0.691(7)

2.65 4 0.263(5) 0.883(5) 0.775(8)

3.4 4 0.150(3) 0.929(3) 0.818(4)
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of amb used was slightly smaller than that for which the
coefficient was calculated.

The remaining errors in the kinetic ci coefficients after
this one-loop correction has been made will be Oð�2

sÞ.
From Table XXII we can see that 0:5�2

V ranges from 0.1
on the very coarse ensembles to 0.05 on fine. The impact of
these errors can then be estimated from the size of the
effect that we see on physical observables from the Oð�sÞ
corrections.

We have not corrected the coefficient of the Darwin
term, c2, in our NRQCD Hamiltonian. We have however
assessed the effect of taking c2 to be as large as 1.25 on the
meson kinetic mass and on the hyperfine splitting and we
find the effects to be small.

Mass renormalization. In Table XXIII we give values for

Zð1Þ
m , the coefficient of �s in the mass renormalization of

Eq. (B8). Zm was calculated previously for different pa-
rameter values in [61]. We also show the result of adding

2 lnðambÞ=� to Zð1Þ
m as ANRQCD. ANRQCD will be used in

Sec. VI to derive the ratio mb=ms in the MS scheme. Only
mild dependence on amb is seen in ANRQCD.

Spin-dependent terms. The perturbative renormalization
of field-dependent terms has to be done in a different way
and this includes all the spin-dependent terms. Recently the
radiative corrections to c4 have become available [28].
They were calculated by matching the effective action in
NRQCD to continuum QCD using the background field

method. We give values for cð1Þ4 in Table XXIII appropriate

to the amb and n values we are using here.

A number of pieces go in to the calculation of cð1Þ4 . These

include renormalization of the chromomagnetic moment,
renormalization of the wave function and, because c4
multiplies a term in the bare lattice NRQCD Hamiltonian
which includes the bare lattice quark mass, the mass re-

normalization. cð1Þ4 is the sum of two pieces, one of which

has polynomial dependence on the bare quark mass amb

and the other is proportional to logðambÞ. The logarithmic
term has coefficient �3=ð2�Þ [28]. Both terms are in-
cluded in the total result given in Table XXIII—the loga-
rithmic term is of similar size to the polynomial term over

the range of amb that we are using. The cð1Þ4 values are

combined with values for �ð4Þ
V ð�=aÞ (given in Table XXII)

to give the results for the 1-loop corrected c4 coefficients
given in Table XIII.

Figure 22 gives a more complete picture of cð1Þ4 by

plotting values as a function of amb. We see relatively
little amb dependence until amb becomes smaller than 1

when cð1Þ4 starts to diverge. This is typical of the behavior of

radiative corrections to coefficients in the NRQCD action.
Finally we give results for the coefficients of the spin-

dependent 4-quark operators that contribute to the hyper-
fine splitting. These terms have coefficients d1 and d2 that
multiply terms that would appear in the NRQCD action at
order Oð�2

sv
3Þ:

S4q ¼ d1
�2
s

ðambÞ2
ðc y	�Þð	Tc Þ

þ d2
�2
s

ðambÞ2
ðc y�	�Þ � ð	T�c Þ: (B13)

These terms are subleading compared to tree-level v4

operators but contribute to the hyperfine splitting at the
same order as �s corrections to c4 [28]. We do not include
these 4-quark terms in our NRQCD action but we can
estimate their effect because they give rise a shift in the
relative energies of the � and �b which is proportional to
the ‘‘wave-function-at-the-origin’’, and given by:

�Ehyp ¼ 6�2
sðd2 � d1Þ
m2

b

jc ð0Þj2: (B14)

The relevant coefficients, d1 and d2 are given in
Table XXIV. They were calculated previously for a slightly
different NRQCD action in [28]. The coefficients are re-
lated by:

d1 ¼ �3d2 � 4
9ð1� lnð2ÞÞ; (B15)

where the term proportional to ðln2� 1Þ is from �b anni-
hilation to 2 gluons. This term increases the hyperfine
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FIG. 22 (color online). The Oð�sÞ coefficient in the perturba-
tive expansion of c4, coefficient of the � � B term, plotted
against the bare b quark mass.

TABLE XXIV. Coefficients d1 and d2 of spin-dependent 4-
quark operators that give rise to a correction to the hyperfine
splitting. These are calculated with the NRQCD action used here
with the parameters given in columns 1 and 2 and the improved
gluon action described in Appendix A.

amb n d1 d2

1.9 4 � lnð1:9Þ þ 0:796ð4Þ lnð1:9Þ=3� 0:311ð1Þ
2.65 4 � lnð2:65Þ þ 0:448ð6Þ lnð2:65Þ=3� 0:195ð2Þ
3.4 4 � lnð3:4Þ þ 0:038ð8Þ lnð3:4Þ=3� 0:058ð2Þ
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splitting from Eq. (B14) since it pushes the �b mass down.
When Eq. (B14) is applied for just this piece we obtain an
estimate of its size of about 1 MeV. This is smaller, but in
agreement with, the earlier estimate of 2.4(2.4) MeV ap-
plied in Sec. III C in deriving an appropriate spin-averaged
1S meson mass to tune the b quark mass against. For that
purpose the shift is completely negligible, representing a
tiny fraction of the �b mass. For the hyperfine splitting it is
a more important issue. For this we take the results from
Eq. (B14) because that provides a consistent treatment of
all the 4-quark operator effects.

d1 and d2 are separated into logarithmic and nonlogar-
ithmic pieces in Table XXIV. The nonlogarithmic piece has
significant mass dependence here, becoming small at large
ma. The logarithmic and nonlogarithmic terms in fact
cancel for ma around 1.9. In assessing the error in the
hyperfine splitting from missing higher order terms multi-
plying the 4-quark operators we are careful not to assume
that this is generic behavior.

We combine the d1 and d2 coefficients with �Vð�=aÞ
values from Table XXII and values for jc ð0Þj2 from our fits
to obtain corrections to the hyperfine splitting that are
applied in Sec. III E 3.

APPENDIX C: NONPERTURBATIVE
DETERMINATION OF RADIATIVE

CORRECTIONS TO c3 AND c4 COEFFICIENTS IN
THE NRQCD ACTION

An alternative approach to tuning the spin-dependent
coefficients c3 and c4 is from matching fine structure in the
spectrum to experiment. Here we use the P-wave fine
structure in the � spectrum to do this [2,12]. The P-wave
masses are shifted from the spin average by amounts that
depend on spin-spin coupling terms proportional to S � S or
Sij and spin-orbit terms proportional to L � S. The spin-

spin terms are proportional to c24 and the spin-orbit terms to
c3. We can make a combinations of the 3P state masses in
which the eigenvalues of Sij and S � S cancel, and a sepa-

rate combination in which the eigenvalues of S � S and L �
S cancel. Thus each of these combinations gives a result
which should depend on only one of the spin-dependent
couplings in our current NRQCD action. Comparing these
combinations to experiment allows us to tune c3 and c4.
Note that 4-quark operators, discussed in Appendix B with
reference to their effect on S-wave hyperfine splittings,
have negligible effect on P-wave states, and they therefore
give a very clean determination of c3 and c4.

The eigenvalues forL � S, Sij and S � S for 2Sþ1LJ states

f3P0;
3P1;

3P2;
1P1g (i.e. f	b0; 	b1; 	b2; hbg) are

L � S: f�2;�1; 1; 0g; Sij: f�4; 2;�2=5; 0g;
S � S: f1=4; 1=4; 1=4;�3=4g: (C1)

We see that the S � S terms affect the splitting between the
1P1 and the spin average of the 3P states. We expect this

splitting to be small because, in a potential model ap-
proach, the accompanying spin-dependent potential would
be a delta function at the origin with very little overlap for
P-wave states. Both Sij andL � S terms affect the splittings

within the 3P sector but not the splitting between 1P1 and
3 �P. The L � S terms give the conventional ordering of 3P0,
3P1 and

3P2, but with the 3P2 splitting from the 3P1 larger
than that between the 3P1 and

3P0. The Sij terms will push

down the 3P2 relative to the others. Thus the final splittings
depend on the relative strength of the accompanying po-
tentials for these terms and, in NRQCD language, the
coefficients c3 and c4.
The combination of spin-splittings that depends on c24

(through Sij) and is independent of c3 is [2]
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FIG. 23 (color online). The masses of the lowest-lying P-wave
states in the� spectrum plotted relative to the spin average of the
3P states for the coarse lattices, sets 3 and 4 (top plot) and the
fine lattices, set 5 (lower plot). In each plot we compare mass
splittings for c4 ¼ 1 with a nonperturbatively tuned value for c4
chosen to match a combination of mass splittings to experiment
(see text). c3 ¼ 1 in all cases. For the 3P2 states the 3PE is

plotted to the left of the 3PT2
.
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TABLE XXV. Fitted energies for P-wave states on sets 3, 4 and 5 for the NRQCD parameters given. The last two rows give the
combination of energies used to determine c3 and c4. Errors are from statistics/fitting only.

Set 3 Set 3 Set 4 Set 5 Set 5

amb ¼ 2:66 amb ¼ 2:66 amb ¼ 2:62 amb ¼ 1:91 amb ¼ 1:91
c4 ¼ 1:0 c4 ¼ 1:25 c4 ¼ 1:25 c4 ¼ 1:0 c4 ¼ 1:15
c3 ¼ 1:0 c3 ¼ 1:0 c3 ¼ 1:0 c3 ¼ 1:0 c3 ¼ 0:96

aEð11P1Þ 0.5655(23) 0.5247(22) 0.5253(20) 0.4833(10) 0.4478(11)

aEð13P0Þ 0.5460(20) 0.5017(20) 0.5034(18) 0.4678(9) 0.4312(9)

aEð13P1Þ 0.5611(24) 0.5213(26) 0.5218(24) 0.4802(10) 0.4454(11)

aEð13PEÞ 0.5747(30) 0.5359(28) 0.5354(25) 0.4903(11) 0.4549(12)

aEð13PT2
Þ 0.5732(28) 0.5331(28) 0.5328(27) 0.4893(11) 0.4538(12)

aEð11P1Þ � aEð3 �PÞ �0:0010ð7Þ �0:0016ð10Þ �0:0011ð9Þ �0:0008ð2Þ �0:0009ð2Þ
aEð13P0Þ � aEð3 �PÞ �0:0204ð13Þ �0:0246ð14Þ �0:0231ð13Þ �0:0163ð4Þ �0:0176ð5Þ
aEð13P1Þ � aEð3 �PÞ �0:0053ð8Þ �0:0050ð10Þ �0:0046ð9Þ �0:0039ð2Þ �0:0033ð3Þ
aEð13PEÞ � aEð3 �PÞ 0.0082(12) 0.0096(12) 0.0089(11) 0.0062(3) 0.0062(4)

aEð13PT2
Þ � aEð3 �PÞ 0.0067(8) 0.0068(10) 0.0064(10) 0.0052(3) 0.0051(3)

2aEð13P2EÞ þ 3aEð13P2T2Þ 0.093(8) 0.104(9) 0.097(8) 0.072(3) 0.073(3)

�3aEð13P1Þ � 2aEð13P0Þ
0:4aEð13P2EÞ þ 0:6aEð13P2T2Þ �0:018ð2Þ �0:026ð4Þ �0:025ð3Þ �0:0153ð7Þ �0:0198ð9Þ
�3aEð13P1Þ þ 2aEð13P0Þ

TABLE XXVI. Combinations of P-wave energies needed to fix c3 and c4 in GeV. Lattice spacing values are taken from Table X.
Errors are statistical/fitting only.

3 3 4 5 5

c4 ¼ 1 c4 ¼ 1:25 c4 ¼ 1:25 c4 ¼ 1 c4 ¼ 1:15
c3 ¼ 1:0 c3 ¼ 1:0 c3 ¼ 1:0 c3 ¼ 1:0 c3 ¼ 0:96

5Eð13P2Þ � 3Eð13P1Þ � 2Eð13P0Þ 0.151(13) 0.168(14) 0.160(13) 0.161(6) 0.162(7)

Eð13P2Þ � 3Eð13P1Þ þ 2Eð13P0Þ �0:028ð4Þ �0:042ð6Þ �0:041ð5Þ �0:0342ð16Þ �0:0442ð20Þ

TABLE XXVII. � and �b energies and kinetic masses in lattice units for various lattice momenta on coarse set 3 for b quark mass
amb ¼ 2:66 and c1;5;6 set to 1.

(0, 0, 0) (1, 0, 0) (1, 1, 1) (2, 0, 0) (2, 2, 1) (3, 0, 0)

aEð1S0;PÞ 0.255 29(4) 0.261 19(4) 0.273 09(4) 0.278 90(4) 0.308 30(8) 0.308 14(6)

aEð3S1;PÞ 0.286 26(6) 0.292 20(7) 0.304 26(7) 0.310 07(9) 0.339 77(17) 0.339 57(14)

aMKinð�bÞ � � � 5.773(10) 5.767(7) 5.788(2) 5.787(7) 5.805(3)

aMKinð�Þ � � � 5.716(25) 5.703(17) 5.739(7) 5.732(15) 5.753(11)

a �MKinð1SÞ � � � 5.730(20) 5.719(14) 5.751(6) 5.746(12) 5.766(8)

TABLE XXVIII. � and �b energies and kinetic masses in lattice units for various lattice momenta on coarse set 3 for b quark mass
amb ¼ 2:66 and c1;5;6 set to theirOð�sÞ improved values. Slight differences with Table VIII for zero momentum energies arise because

we fit a single zero momentum correlator rather than a 5� 5 matrix.

(0, 0, 0) (1, 0, 0) (1, 1, 0) (1, 1, 1) (2, 0, 0) (2, 1, 1) (2, 2, 1) (3, 0, 0)

aEð1S0;PÞ 0.260 96(4) 0.266 84(4) 0.272 73(4) 0.278 60(4) 0.284 38(4) 0.296 10(4) 0.313 48(6) 0.313 35(6)

aEð3S1;PÞ 0.292 43(6) 0.298 38(6) 0.304 34(6) 0.310 30(7) 0.316 11(8) 0.327 99(8) 0.345 55(14) 0.345 36(14)

aMKinð�bÞ � � � 5.818(7) 5.819(7) 5.817(7) 5.839(3) 5.834(4) 5.844(7) 5.859(4)

aMKinð�Þ � � � 5.747(18) 5.748(17) 5.742(17) 5.778(7) 5.764(9) 5.778(13) 5.798(12)

a �MKinð1SÞ � � � 5.764(15) 5.766(14) 5.761(14) 5.793(5) 5.782(8) 5.795(11) 5.813(10)
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Mð	b2Þ � 3Mð	b1Þ þ 2Mð	b0Þ (C2)

with experimental value: �47:4ð1:3Þ MeV [35], determin-
ing the errors on mass differences by adding the errors on
the masses in quadrature. Likewise the combination that
depends on c3 only

5Mð	b2Þ � 3Mð	b1Þ � 2Mð	b0Þ (C3)

with experimental value: 163.8(3.2) MeV [35].
Comparison of our results with experiment for these com-
binations then allows us to fix c3 and c4.

Table XXV gives the results for the energies in lattice
units of the lowest-lying P-wave states for the amb values
given in Table III on the coarse (sets 3 and 4) and fine (set
5) lattices. The results were obtained from 5 exponential
fits of the form given in Eq. (7) to the 2� 2 matrix of
correlators for each P-wave meson done as a single simul-
taneous fit. This enables us to extract mass differences
more precisely from the fit than the individual masses
and the splitting between each state and the spin average
of all the 3P states is also given. Note that we give separate
values for 3P2E and 3P2T2 lattice representations of the
J ¼ 2 state. Differences between the values obtained for T2

and E would be a sign of discretization errors. We do not
have a significant signal for this but the E state is higher
than the T2 in all of our fits. The difference is about 3
(2) MeV on the coarse lattices and 2(1) MeV on the fine
lattices.

Results are given for the case c4 ¼ 1 and a nonzero
value of c4 chosen to give reasonable agreement with the
experimental value of the combination in Eq. (C2). Results
in GeV for the two combinations tested are given in
Table XXVI using values of the lattice spacing from the

ð2S� 1SÞ splitting in Table X, and combining the E and T2

representations for the 3P2 state with the appropriate num-
ber of spin states. We see that c3 ¼ 1 within our errors, but
c4 needs to be larger than 1, more so on the coarse lattices
than the fine. We take the same value of c4 on both coarse
sets since the tuning should not depend on the sea quark
masses and indeed our results demonstrate that it does not.
Figure 23 shows the spectrum of P-wave states relative

to the 3P spin average (5Mð	b2Þ þ 3Mð	b1Þ þMð	b0Þ).
The results with c4 > 1 clearly agree better with experi-
ment than for c4 ¼ 1. The main effect of increasing c4 is to
push the 	b0 state down relative to the spin average. Very
little else changes. In particular we see that the splitting
between the 1P1 and the 3P spin average is very small and
negative in all cases. It increases with increasing c4 but,
because the splitting itself is so small, this is not signifi-
cant. We obtain a P-wave hyperfine splitting of 2(2) MeV
on both coarse and fine lattices, where the experimental
result is 1:6� 1:5 MeV [39].
On the fine lattices we took c4 ¼ 1:15, based on initial

calculations. From Table XXVI and Fig. 23 this appears to
be an underestimate and an improved value would be 1.18.
We also used c3 ¼ 0:96 but that value is indistinguishable
within our errors from c3 ¼ 1:0. On the coarse lattices,
c4 ¼ 1:25 is also a slight underestimate, although it agrees
within statistical errors with the correct answer.
The final nonperturbatively tuned values for c3 and c4

that we obtain are then: c3 ¼ 1:00ð9Þð2Þð10Þ on coarse
lattices and 1.00(4)(2)(10) on fine lattices. Our best esti-
mates for c4 are

c4ðcoarseÞ ¼ 1:28ð7Þð1Þð5Þ c4ðfineÞ ¼ 1:18ð2Þð1Þð5Þ:
(C4)

TABLE XXIX. � and �b energies and kinetic masses in lattice units for various lattice momenta on fine set 5 for b quark mass
amb ¼ 1:91 and c1;5;6 set to 1.

(0, 0, 0) (1, 0, 0) (1, 1, 1) (2, 0, 0) (2, 2, 1) (3, 0, 0)

aEð1S0;PÞ 0.246 52(3) 0.251 07(3) 0.260 10(3) 0.264 61(3) 0.287 13(4) 0.287 12(4)

aEð3S1;PÞ 0.271 53(5) 0.276 10(4) 0.285 18(5) 0.289 74(5) 0.312 44(6) 0.312 46(7)

aMKinð�bÞ � � � 4.244(6) 4.252(6) 4.2548(14) 4.2516(23) 4.251(3)

aMKinð�Þ � � � 4.222(14) 4.230(13) 4.225(3) 4.223(4) 4.215(6)

a �MKinð1SÞ � � � 4.228(12) 4.236(11) 4.2327(24) 4.230(4) 4.224(5)

TABLE XXX. � and �b energies and kinetic masses in lattice units for various lattice momenta on fine set 5 for b quark mass
amb ¼ 1:91 and c1;5;6 set to their Oð�sÞ improved values. Slight differences in zero momentum energies are seen compared to

Table VIII because we used u0L ¼ 0:85246 rather than 0.8525 and are fitting to single correlators rather than a 5� 5 matrix.

(0, 0, 0) (1, 0, 0) (1, 1, 0) (1, 1, 1) (2, 0, 0) (2, 2, 1) (3, 0, 0)

aEð1S0;PÞ 0.258 27(3) 0.262 78(3) 0.267 27(4) 0.271 73(3) 0.276 20(3) 0.298 50(4) 0.298 47(3)

aEð3S1;PÞ 0.283 90(5) 0.288 44(4) 0.292 99(6) 0.297 47(5) 0.301 99(5) 0.324 51(6) 0.324 47(6)

aMKinð�bÞ � � � 4.278(7) 4.286(9) 4.287(6) 4.2914(14) 4.2920(23) 4.2951(19)

aMKinð�Þ � � � 4.245(15) 4.251(17) 4.256(14) 4.2515(29) 4.2523(44) 4.2538(41)

a �MKinð1SÞ � � � 4.253(12) 4.260(15) 4.264(11) 4.2615(24) 4.2622(37) 4.2641(35)
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The first error is from the statistical/fitting error on the
P-wave masses along with the lattice spacing error. The
second error is from experiment. The third error is a
systematic error from v6 terms in NRQCD that are
missing from our calculation but that have effectively
been absorbed into the value of c3=c4 from matching to
experiment. The spin splittings could change by Oð10%Þ
from v6 terms. Note that c4 gets closer to 1 as the
lattice gets finer as we expect. Note also that the rela-
tionship between c3 and c4 that holds in potential mod-
els or NRQCD in the continuum because of Lorentz
covariance [37] is not applicable to lattice NRQCD in
this formulation.

The agreement between the c4 coefficients obtained
nonperturbatively and the c4 coefficients obtained at
Oð�sÞ in Appendix B is good, and certainly within possible
�2
s variation of the perturbative coefficients (see

Table XIII).
Our nonperturbative results for c4 and c3 agree well

with those derived for the same NRQCD action on
different gluon configurations at similar lattice spacing
in [12]. There spin-dependent terms at v6

b are also

included in a separate calculation and then the values
derived for the v4 coefficients c3 and c4 change (both
increasing). Note that in that paper the calculations were

done with tree-level coefficients for all ci and the results
rescaled for the derived values of c4.

APPENDIX D: RESULTS FOR THE KINETIC MASS

Tables XXVII, XXVIII, XXIX, and XXX give the results
for the ground-state energies and kinetic masses [as defined
in Eq. (10)] of the � and �b mesons for different lattice
meson momenta in units of 2�a=L. We also give the spin-
averaged 1S kinetic mass. Results are taken from simulta-
neous fits to local correlators with the givenmomentum and
with momentum zero using the fit form in Eq. (7). The
energies for each momentum and the energy difference
which yields the kinetic mass are given directly by the fit.
Correlations between the correlators mean that the error on
the energy difference is typically smaller than the combined
errors from the separate energies. This is particularly true of
the ‘‘on-axis’’ momenta which have only one nonzero
component. So, for example, the kinetic mass for momen-
tum (2, 0, 0) is more precise than that for (1, 1, 1).
The results are given for coarse ensemble set 3 and fine

ensemble set 5 with separate results for the case where
c1;5;6 are taken to be 1 and the case where c1;5;6 are �s

improved. We take 9 exponential fits on set 3 and 7
exponential fits on set 5.
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