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We determine the strangeness and light quark fractions of the nucleon mass by computing the quark line

connected and disconnected contributions to the matrix elements mqhNj �qqjNi in lattice QCD, using the

nonperturbatively improved Sheikholeslami-Wohlert Wilson fermionic action. We simulate nF ¼ 2 mass

degenerate sea quarks with a pion mass of about 285 MeV and a lattice spacing a � 0:073 fm. The

renormalization of the matrix elements involves mixing between contributions from different quark

flavors. The pion-nucleon � term is extrapolated to physical quark masses exploiting the sea quark mass

dependence of the nucleon mass. We obtain the renormalized values ��N ¼ ð38� 12Þ MeV at the

physical point and fTs
¼ �s=mN ¼ 0:012ð14Þþ10

�3 for the strangeness contribution at our larger than

physical sea quark mass.
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I. INTRODUCTION

Most of the nucleon’s mass is generated by the sponta-
neous breaking of chiral symmetry and only a small part
can be attributed directly to the masses of its valence and
sea quarks. The quantities

fTq
¼ mqhNj �qqjNi=mN (1)

parametrize the fractions of the nucleon mass mN that are
carried by quarks of flavor q. Almost all visible matter of
the Universe is composed of nucleons and yet little is
known experimentally about these quark contributions to
their mass.

The scalar matrix elements

�q ¼ mqhNj �qqjNi ¼ mNfTq
(2)

also determine the coupling strength of the standard model
(SM) Higgs boson (or of any similar scalar particle) at zero
recoil to the nucleon. This then might couple to heavy
particles that could be discovered in LHC experiments,
some of which are dark matter candidates [1]. The combi-
nationmN

P
qfTq

, q 2 fu; d; sg, will appear quadratically in
this cross section that is proportional to jfNj2 where

fN
mN

¼ X
q2fu;d;sg

fTq

�q

mq

þ 2

27
fTG

X
q2fc;b;tg

�q

mq

; (3)

with the couplings �q / mq=mW . Because of the trace

anomaly of the energy momentum tensor, one obtains [2]

fTG
¼ 1� X

q2fu;d;sg
fTq

: (4)

Note that the coupling fN of Eq. (3) only mildly depends
on the masses of heavy quark flavors [2,3].
The �q terms are also needed for precision measure-

ments of SM parameters in pp collisions at the LHC. For
instance, the resolution of a (hypothetical) mass difference
between the Wþ and W� bosons is limited by our knowl-
edge of the asymmetries between the up and down as well
as between the strange and charm sea quark contents of the
proton [4]. An accurate calculation of these quantities will
help to increase the precision of SM phenomenology and to
shed light on non-SM processes.
The light quark contribution, the pion-nucleon� term, is

defined as

��N ¼ �u þ �d ¼ mu

@mN

@mu

þmd

@mN

@md

� m2
PS

dmN

dm2
PS

��������mPS¼m�

; (5)*gunnar.bali@ur.de
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PHYSICAL REVIEW D 85, 054502 (2012)

1550-7998=2012=85(5)=054502(10) 054502-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.85.054502


where mPS denotes the pseudoscalar mass. Some time ago,
employing dispersive analyses of pion-nucleon scattering
data, the values [5] ��N ¼ 45ð8Þ MeV and [6] ��N ¼
64ð7Þ MeVwere obtained while a calculation in the frame-
work of Oðp4Þ heavy baryon chiral perturbation theory
resulted in [7] ��N ¼ 48ð10Þ MeV. A recent covariant
baryon chiral perturbation theory (B�PT) analysis of
the available pion-nucleon scattering data [8] resulted in
the value ��N ¼ 59ð7Þ MeV. Even less is known about the
strangeness contribution �s. Since no elastic Higgs-
nucleon scattering experiments exist, all phenomenologi-
cal estimates largely depend on modeling. Therefore, input
from lattice simulations is urgently required.

We have witnessed an upsurge of interest in calculating
flavor singlet matrix elements recently, either directly
[9–13], by calculating the corresponding quark line
connected and disconnected terms, or indirectly, via the
Feynman-Hellmann theorem [13–19]. High statistics simu-
lations including light sea quarks mean that reasonable
signals can be obtained for disconnected terms. Similarly,
the small statistical uncertainty on baryon masses as func-
tions of the quark masses enable reasonable fits to be made.
Ideally, the results of both approaches should agree.

Preliminary results of this study were presented at past
lattice conferences [20,21]. This article is organized as
follows. In Sec. II, we detail the gauge configurations,
simulation parameters, and methods used. In Sec. III, we
then explain how the lattice results are renormalized and
finally we present our results in Sec. IV, before we
summarize.

II. SIMULATION DETAILS AND METHODS

We simulate nF ¼ 2 nonperturbatively improved
Sheikholeslami-Wohlert fermions, using the Wilson gauge
action, at � ¼ 5:29 and � ¼ �ud ¼ 0:136 32. Setting the
scale from the chirally extrapolated nucleon mass, we
obtain [22] the value r0 ¼ 0:508ð13Þ fm for the Sommer
scale, in the physical limit. This results in the lattice
spacing

a�1 ¼ ð6:983� 0:049Þr�1
0 ¼ ð2:71� 0:02� 0:07Þ GeV;

(6)

where the errors are statistical and from the scale setting,
respectively. The r0=a ratio is obtained by chirally extrap-
olating the QCDSF � ¼ 5:29 simulation points [23]. An
extrapolation of the axial Takahashi-Ward identity (AWI)
mass yields the critical hopping parameter value

�c;sea ¼ 0:136 439 6ð84Þ: (7)

In addition to �ud ¼ �sea ¼ 0:136 32, we realize the
valence � values, �m ¼ 0:136 09 and �s ¼ 0:135 50. The
corresponding three pseudoscalar masses read

mPS;ud ¼ ð0:1050� 0:0003Þa�1 ¼ ð285� 3� 7Þ MeV;

(8)

mPS;m ¼ ð449� 3� 11Þ MeV; (9)

mPS;s ¼ ð720� 5� 18Þ MeV: (10)

The strange quark mass was fixed so that the above value
for mPS;s is close to the mass of a hypothetical strange-

antistrange pseudoscalar meson: ðm2
K� þm2

K0 �m2
��Þ1=2�

686:9MeV. We investigate volumes of 32364 and 40364
lattice points, i.e., LmPS ¼ 3:36 and 4.20, respectively,
where the largest spatial lattice extent is L � 2:91 fm.
We analyze 2024 thermalized trajectories on each of the
volumes. To effectively eliminate autocorrelations for the
observables that we are interested in, bin sizes of eight
are found to be sufficient.
The matrix element hNj �qqjNi is extracted from the ratio

of three-point functions, see Fig. 1, to two-point functions
at zero momentum. Defining

Tr tA ¼ X
x

TrAðx; t;x; tÞ; (11)

we can write the disconnected part as

Rdisðtf; tÞ ¼ hTrtðM�11Þi � hC2ptðtfÞTrtðM�11Þi
hC2ptðtfÞi ; (12)

whereM is the lattice Dirac operator for the quark flavor q
of the current and C2ptðtfÞ denotes the two-point function

of the zero momentum projected proton connecting the
source time ti ¼ 0with tf. Note that, unlike its expectation

value, C2pt computed on one configuration will in general

also have an imaginary part. This means that we can reduce
the variance of the above expression by explicitly setting

t tt if

FIG. 1 (color online). Quark line connected (top) and discon-
nected (bottom) three-point functions. We have omitted the
relative minus sign between the diagrams. Note that for scalar
matrix elements, the vacuum expectation value of the current
insertion needs to be subtracted ( �qq � �qq� h �qqi), see Eq. (12).
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this to zero, using the relation ImTrtðM�11Þ ¼ 0 that
follows from the �5 Hermiticity, My ¼ �5M�5.

In the limit of large times, tf � t � 0,

Rdisðtf; tÞ þ Rconðtf; tÞ ! hNj �qqjNi; (13)

where the term Rconðtf; tÞ ¼ C3ptðtf; tÞ=C2ptðtfÞ only con-

tributes for q 2 fu; dg. Quark field smearing (see below) at
the source and the sink significantly enhances the coupling
of the nucleon creation and destruction operators to the
physical ground state. Still, the time distances between the
source and the current insertion t as well as between
the current and the sink tf � t need to be taken sufficiently

large to suppress excited state contributions.
We find the nucleon smeared-smeared effective masses

to be constant for t � 8a. It suffices if excited state effects
are much smaller than the statistical errors. These errors,
however, are expected to be substantially larger for the
disconnected three-point function than for the nucleon
two-point function. Thus, we set the time of the current
insertion to a smaller value t ¼ 4a � 0:29 fm. The method
that we apply requires us to fix t, but tf can be varied. If the

Rdis data were not constant for tf � 2t ¼ 8a, then this

would have implied that our choice of t was too ambitious.
Fortunately, employing sink and source smearing, we find
the asymptotic limit to be effectively reached for tf � 5a

and compute the matrix elements by fitting the above ratios
for tf � 6a � 0:44 fm to constants.

As an example, in Fig. 2 we display the disconnected
ratio for strange valence and current quark masses as a
function of tf for smeared-smeared three- over two-point

functions for 40364 lattices, together with this fit result. In
addition, we show the corresponding smeared-point ratio
that converges toward the same value, giving us additional
confidence that t was chosen sufficiently large to warrant
ground-state dominance within our statistical errors.

Based on Ref. [24], we improve the overlap of our
nucleon creation operator with the ground state by apply-
ing Wuppertal smearing [25]

�ðnÞ
x ¼ 1

1þ 6	

�
�ðn�1Þ

x þ 	
X�3

j¼�1

Ux;j�
ðn�1Þ
xþa|̂

�
(14)

to quark fields �, where we set 	 ¼ 0:25 and use 400
iterations. We replace the spatial links Ux;j above by

APE-smeared [26] links

UðnÞ
x;i ¼ PSUð3Þ

�
�Uðn�1Þ

x;i þ X
jjj�i

Uðn�1Þ
x;j Uðn�1Þ

xþa|̂;iU
ðn�1Þy
xþa{̂;j

�
;

(15)

where i 2 f1; 2; 3g, j 2 f�1;�2;�3g. PSUð3Þ denotes a

projection operator into the SU(3) group and the sum is
over the four spatial ‘‘staples,’’ surrounding Ux;i. We em-

ploy 25 such gauge-covariant smearing iterations and use
the weight factor � ¼ 2:5. For the projector, we somewhat
deviate from Ref. [24] and maximize ReTr½AyPSUð3ÞðAÞ�,
iterating over SU(2) subgroups. The connected part, for
which the statistical accuracy is less of an issue, is obtained
with a less effective smearing at the larger, fixed value
tf ¼ 15a, varying t.

We stochastically estimate TrtM
�1. For this purpose, we

employ N complex Z2 noise vectors, j
iit, i ¼ 1; . . . ; N,
whose spacetime � spin � color components ei� carry
uncorrelated random phases � 2 f��=4;�3�=4g at the
time t and are set to zero elsewhere, to reduce the noise
(partitioning [27]).
Solving the linear systems

Mjsiit ¼ j
iit (16)

for jsiit, we can then substitute,

Tr tM
�1
E ¼ 1

N

XN
i

th
ijsiit ¼ TrtM
�1 þO

�
1ffiffiffiffi
N

p
�
: (17)

The inner product is only taken over three-space, spin, and
color indices. In the case of the scalar matrix element, it is
relatively easy to push the stochastic error below the level
of the inherent error from fluctuations between gauge
configurations1 [28]. Therefore, here we do not need to
employ the truncated solver method [28] and do not exploit
the hopping parameter expansion. Instead, to reduce the
dominant gauge error, we compute the nucleon two-point
functions for four equidistant source times on each gauge
configuration. In addition, we exploit backwardly propa-
gating nucleons, replacing the positive parity projector
1
2 ð1þ �4Þ by 1

2 ð1� �4Þ within the nucleon two-point

function, C2pt. Consequently, the noise vectors are seeded

on 8 time slices simultaneously, reducing the degree of
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f,4
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FIG. 2 (color online). Dependence of Rdis on tf for smeared-
smeared (SS) and smeared-point (SP) two-point functions, to-
gether with the fit result.

1Note that both error sources will scale in proportion to
1=

ffiffiffiffiffiffiffiffiffiffi
nconf

p
.
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time partitioning. We find this not to have any adverse
effect on the stochastic error. In addition to the 48 (4 time
slices times 4 spinor components times 3 colors) point-to-
all sources necessary to compute the two-point functions,
we solve for N ¼ 50 noise vectors per configuration and
current quark mass.

III. RENORMALIZATION

In the continuum, for light quark flavors q, the �q terms

are invariant under renormalization group transformations.
However, Wilson fermions explicitly break chiral symme-
try and this enables mixing not only with gluonic contri-
butions but also with other quark flavors. Note that due to
the use of a quenched strange quark, the renormalization of
the corresponding matrix element is particularly large and
needs to be studied carefully. A consistent OðaÞ improve-
ment of the quark scalar matrix elements requires the
inclusion of the gluonic operator aGG. We have not mea-
sured this as yet. Therefore, we will neither include any
OðaÞ improvement of the renormalization constants nor of
the scalar current. However, we will account for the mixing
between quark flavors.

We follow the procedure outlined in Ref. [29], see also
Sec. 6 of Ref. [30]. The same result can be obtained by
taking derivatives of the nucleon mass with respect to the
sea quark masses [31] via the Feynman-Hellmann theorem.
This also holds for the case of a partially quenched strange
quark [9,15]. In the renormalization, the strangeness ma-
trix element will receive subtractions not only from light
quark disconnected but also from the numerically larger
connected diagrams. This has first been pointed out in
Ref. [32].

For Wilson actions, the vector Takahashi-Ward identity
(VWI) lattice quark mass is given by

mq ¼ 1

2a

�
1

�q

� 1

�c;sea

�
: (18)

In the partially quenched theory, one can define a
�c;valð�; �seaÞ � �c;seað�Þ as the � value at which the va-

lence pseudoscalar mass vanishes.
We distinguish between singlet and nonsinglet quark

masses that will renormalize differently. In the case of
the theory with nF ¼ 2þ 1 (mu ¼ md ¼ mud) sea quarks,
we have a mass term

L m ¼ mudð �uuþ �ddÞ þms �ss ¼ �m �c 1c þmns �c�8c ;

(19)

�m ¼ 1
3ð2mud þmsÞ; (20)

where �c ¼ ð �u; �d; �sÞ; the lattice singlet quark mass �m is
given by the average of the sea quark masses.

A renormalized quark mass for the flavor q at a scale �
is given by

mren
q ð�Þ ¼ Zs

mð�Þ �mþ Zns
m ð�Þðmq � �mÞ; (21)

where singlet quark masses renormalize with a renormal-
ization constant Zs

mð�Þ and nonsinglet combinations with
Zns
m ð�Þ. Notice that the ratio Zs

m=Z
ns
m is independent of the

scale � but depends on the lattice spacing a, through the
coupling �sða�1Þ.
In the partially quenched theory with mass degenerate

sea quarks, Eq. (21) results in

�m renð�Þ ¼ Zs
mð�Þ �m; (22)

�m renð�Þ �mval;renð�Þ ¼ Zns
m ð�Þð �m�mvalÞ; (23)

where we introduce a VWI valence quark mass through

mval ¼ 1

2a

�
1

�val

� 1

�c;sea

�
: (24)

At �val ¼ �c;val, m
val;ren vanishes so that we obtain

Zs
m

Zns
m

¼ mns

�m
¼ �m�mval

�m

���������val¼�c;val

¼ ��1
sea � ��1

;cval

��1
sea � ��1

c;sea

¼: 1þ �Z: (25)

The nonsinglet mass above can also be obtained from the
bare AWI mass,

mns;ren ¼ Zns
m mns ¼ Zns

A

Zns
P

mAWI; (26)

that renormalizes with the ratio of the renormalization
constants Zns

A over Zns
P of the nonsinglet axial and pseudo-

scalar currents. This results in the alternative prescription
to Eq. (25),

Zs
m

Zns
m

¼ Zns
A

Zns
m Zns

P

2amAWI

��1
sea � ��1

c;sea

; (27)

wheremAWI is calculated at �sea. The required combination
of scalar, pseudoscalar, and axial nonisosinglet renormal-
ization factors for our simulation with nF ¼ 2 sea quarks at
� ¼ 5:29 reads [33]

Zns
A =ðZns

m Zns
P Þ ¼ 0:988� 0:031: (28)

The two methods that differ by terms of OðaÞ are illus-
trated in Fig. 3 for our configurations with nF ¼ 2 mass
degenerate sea quark flavors.
The results read

�Z ¼
�
0:411ð13Þ; VWI
0:369ð22Þ; AWI:

(29)

Corrections to these values at a nonzero quark mass m will
be of OðmaÞ; the differences between the two definitions
are indicative of OðaÞ effects. We remark that �Z is of
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leading order �2
s in the strong coupling parameter and it

will therefore decrease with the lattice spacing a.
For nF ¼ 2þ 1 sea quarks, Eq. (21) amounts to

mren
q ð�Þ ¼ Zns

m ð�Þmq þ ðZs
mð�Þ � Zns

m ð�ÞÞ �m
¼ Zns

m ð�Þðmq þ �Z �mÞ; (30)

where �Z is defined in Eq. (25). This can be written as

muð�Þ
mdð�Þ
msð�Þ

0
BB@

1
CCA

ren

¼ Zns
m ð�;aÞ

1þ �ZðaÞ
3

�ZðaÞ
3

�ZðaÞ
3

�ZðaÞ
3 1þ �ZðaÞ

3
�ZðaÞ
3

�ZðaÞ
3

�ZðaÞ
3 1þ �ZðaÞ

3

0
BBB@

1
CCCA

�
muðaÞ
mdðaÞ
msðaÞ

0
BB@

1
CCA

lat

; (31)

where the lattice quark masses on the right-hand side are
defined by the VWI, Eq. (18). For clarity, we have included
the lattice spacing dependence above, which below we will
drop again. The sum

P
qm

ren
q ð�ÞhNj �qqjNirenð�Þ is invari-

ant under renormalization group transformations.2

Therefore, the scalar lattice matrix elements will renormal-
ize with the inverse matrix above: the different quark
contributions will mix in the mass nondegenerate case.

We now turn to the situation of interest of nF ¼ 2 light
sea quarks, with a quenched strange quark. This means that
the singlet mass �mlat ¼ ðmlat

u þmlat
d Þ=2 will not depend on

the strange quark mass anymore. (The superscript ‘‘lat’’
has been added for clarity.) Eq. (30) can now be written as

muð�Þ
mdð�Þ
msð�Þ

0
BB@

1
CCA ren ¼ Zns

m ð�Þ
1þ �Z

2
�Z

2 0
�Z

2 1þ �Z

2 0
�Z

2
�Z

2 1

0
B@

1
CA

mu

md

ms

0
@

1
A

lat

;

(32)

where the presence of the strange quark is not felt by the
sea quarks. However, the definition of ms involves �c;sea.

Inverting the above matrix yields3

h �uuið�Þ
h �ddið�Þ
h �ssið�Þ

0
BB@

1
CCA

ren

¼ 1

ð1þ�ZÞZns
m ð�Þ

�
1þ �Z

2 ��Z

2 0

��Z

2 1þ �Z

2 0

��Z

2 ��Z

2 1þ�Z

0
BB@

1
CCA

h �uui
h �ddi
h �ssi

0
BB@

1
CCA

lat

:

(33)

For the light quark matrix element (i.e., the ��N term), this
means that

mren
u ð�Þ þmren

d ð�Þ
2

hNj �uuþ �ddjNirenð�Þ

¼ mlat
u þmlat

d

2
hNj �uuþ �ddjNilat; (34)

while for the strangeness matrix element we obtain

½mshNj�ssjNi�ren ¼ ½mlat
s þ �Z

2
ðmlat

u þmlat
d Þ�

�
hNj�ssjNilat

� �Z

2ð1þ �ZÞ hNj �uuþ �ddjNilat
�
: (35)

Again, the lattice strange quark mass is defined as mlat
s ¼

ð��1
s � ��1

c;seaÞ=ð2aÞ. The same renormalization pattern

can also be derived, employing the Feynman-Hellmann
theorem [9,15].
It is evident from Eq. (33) that the so-called y ratio

renormalizes as follows,

y :¼ 2hNj�ssjNiren
hNj �uuþ �ddjNiren

¼ ð1þ �ZÞ 2hNj�ssjNilat
hNj �uuþ �ddjNilat � �Z: (36)

IV. RESULTS

As discussed in Sec. II above, we employ three hopping
parameter values, �ud ¼ �sea ¼ 0:136 32, �m ¼ 0:136 09,
and �s ¼ 0:135 50, that correspond to the pseudoscalar

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0  0.01  0.02  0.03  0.04

m
ns

a

ma

VWI
AWI

FIG. 3 (color online). Determination of the slope Zs
m=Z

ns
m ¼

1þ �Z, see Eqs. (25) and (27).

2Note that these scalar matrix elements are differences of
scalar currents �qq within the nucleon, relative to their vacuum
expectation values. Therefore, unlike the chiral condensates
alone, they do not undergo any additive renormalization and
do not mix with an a�31 term.

3Here and occasionally below, we omit specifying the external
state (in our case jNi) in cases where identities between hadronic
matrix elements are independent of this state.
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masses mPS � 285 MeV, 450 MeV, and 720 MeV,
respectively, see Eqs. (8)–(10). We use all these � values
for the valence quarks (�val) as well as for the current
insertions �qq (�cur). This amounts to nine combinations
for the disconnected ratios Rdis while for the connected part
�cur ¼ �val.

We will explore the dependence of the lattice matrix
elements on the current quark mass and investigate finite
size effects, using a partial summation method.
Subsequently, unrenormalized and renormalized valence
and sea quark contributions are studied. Finally, we com-
pute the light � term, the mass contributions fTs

and fTG
,

and the y ratio.

A. Dependence of the lattice matrix elements on the
current quark mass

From the heavy quark expansion, it is evident that
fTq

/ hNjGGjNi=mN / fTG
for mq ! 1. This can also

be seen on the lattice where the leading nonvanishing
contribution in the hopping parameter expansion is pro-
portional to the plaquette. To confirm this expected satu-
ration, we compute the scalar matrix element for three
additional current quark masses up to and above the charm
quark mass mc on a subset of 576 32

364 lattices, using our
smallest valence quark mass. We remark that for an OðaÞ
improvement of the operator �qq, mixing with aGG needs
to be considered. These improvement terms will become
large if mqa is big. In fact, the renormalized fTq

becomes

negative at about twice the strange quark mass if we
neglect such effects. We have not investigated gluonic
contributions as yet and therefore the behavior at large
masses is beyond the scope of the present study. For very
small quark masses, we would expect fTq

/ mq. Indeed,

these expectations are confirmed for the unrenormalized
flatTq

, as can be seen in Fig. 4. Note that the third data point

from the left corresponds to the strange quark mass while

the charm quark can be found at the value m2
PS �

8:9 GeV2. The arctan-curve is drawn to guide the eye.

B. Finite size effects: Partial sums

In order to investigate finite size effects, we find it
worthwhile to replace the numerator of Eq. (12) by a
partial sum:

� X
jxj	xmax

hC2ptðtfÞTr½M�1ðx; t;x; tÞ�ic
hC2ptðtfÞi : (37)

The subscript c (connected part) indicates that we subtract
the product of the two individual vacuum expectation
values from the numerator. Since no zero-momentum pro-
jection is performed at the source of the two-point func-
tion, that resides at the spatial position x ¼ 0, the result
will depend on the cutoff xmax. We expect the summand at
large jxj to fall off exponentially in jxj so that these values
will eventually not contribute to the signal anymore but just
increase the statistical noise. At very large spatial volumes,
one may therefore consider to perform such a partial sum
only, thereby reducing the statistical error, and to estimate
the induced bias by parametrizing the asymptotic falloff.
We display the partial sums for the L ¼ 32a and

L¼40a lattices for the strangeness current at �val ¼ �sea

in Fig. 5. We do not detect any statistically significant
dependence of the curves on the value of tf and show the

results obtained at tf ¼ 6a. At small xmax, we see the

naively expected x3max volume scaling. This becomes flatter
around xmax � 8a but only saturates to a constant once the
boundary of the L ¼ 32a box is hit at xmax ¼ 16a.
Increasing xmax beyond this value means that in the case
of this smaller lattice only the lattice ‘‘corners’’ are
summed up. However, the L ¼ 40a data saturate at the
same distance, rather than at 20a, indicating that indeed the
nucleon is well accommodated within this box size and that
finite size effects are small.
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C. Sea and valence quark contributions

The results of the bare disconnected scalar matrix
elements for the two volumes (and three quark masses
mq 	 ms) are displayed in Table I. For disconnected terms,

�cur can differ not only from �sea but also from the �val of
the nucleon’s valence quarks. In Fig. 6, we display the
dependence of the unrenormalized flatTs

values on the va-

lence quark mass of the proton for both volumes, together
with linear chiral extrapolations. The rightmost data points
correspond to the strange quark mass and the leftmost
points to the present sea quark mass. The volume depen-
dence is not significant and neither are the differences
between the values obtained at the smallest mass point
and the chirally extrapolated numbers. The results need

to be renormalized and this is possible at �val ¼ �sea ¼
0:136 32.
To enable the calculation of the light � term and the

renormalization of the strangeness matrix element, we also
compute the connected contribution for �cur ¼ �val ¼
�sea ¼ 0:136 32, using the traditional sequential propaga-
tor method. We obtain hNj �uuþ �ddjNilatcon ¼ 8:43ð73Þ and
8.35(43) for the L ¼ 32a and L ¼ 40a lattices, respec-
tively. This means that at the pseudoscalar mass mPS �
285 MeV the relative contribution of the disconnected
matrix element reads

rlat ¼ hNj �uuþ �ddjNilatdis
hNj �uuþ �ddjNilat ¼

8<
:
0:284ð36Þ; L ¼ 32a

0:308ð37Þ; L ¼ 40a:
(38)

The unrenormalized values of Table I seem to be fairly
independent of the current quark mass. The ratio of the
strangeness matrix element over a light sea quark contri-
bution undergoes the renormalization

2h �ssiren
h �uuþ �ddirendis

¼ 2h�ssilat � �Z

1þ�Z
h �uuþ �ddilat

h �uuþ �ddilatdis � �Z

1þ�Z
h �uuþ �ddilat : (39)

The renormalization of the numerator is obtained from
Eq. (33) while the denominator can be split into two
parts that renormalize with Zs

m and with Zns
m , respectively:

h �uuþ �ddi � h �uuþ �ddicon. The SUð3ÞF flavor symmetry
of the unrenormalized sea obviously cannot disappear
when subtracting the same (large) terms from the numera-
tor and the denominator. However, this subtraction results
in large statistical uncertainties. For instance, on the large
volume the above ratio reads 1:7� 5:5 with an additional
systematic uncertainty of 0.5 from the value of the renor-
malization parameter �Z, Eq. (29). We conclude that the
renormalized sea is SUð3ÞF symmetric within a factor of
about five.
The disconnected fraction r of Eq. (38) will undergo the

renormalization

rren ¼ ð1þ �ZÞrlat � �Z ¼ 0:024ð5Þþ29
�9 : (40)

The value quoted is obtained on the L ¼ 40a volume using
the VWI prescription, with a systematic error that incor-
porates the difference between the two determinations of
the renormalization constant ratios Eq. (29) and their re-
spective uncertainties. For the renormalized y parameter
that is defined in Eq. (36), this implies that

y ¼ rren
2h �ssiren

h �uuþ �ddirendis

� rren; (41)

where the approximation holds within a factor of 5, see
also Eq. (47) below.

D. The light and strange � terms

Combining all information results in the renormalized
values for the pion-nucleon � term at the simulated sea
quark mass

TABLE I. The disconnected contribution to the scalar lattice
matrix elements for different � combinations.

�val �cur V hNj �qqjNilatdis
0.135 50 32364 2.01(21)

40364 2.17(25)

0.135 50 0.136 09 32364 2.27(22)

40364 2.43(27)

0.136 32 32364 2.38(23)

40364 2.55(29)

0.135 50 32364 1.97(20)

40364 2.06(25)

0.136 09 0.136 09 32364 2.19(22)

40364 2.28(26)

0.136 32 32364 2.21(23)

40364 2.36(28)

0.135 50 32364 1.96(23)

40364 1.93(27)

0.136 32 0.136 09 32364 2.06(24)

40364 2.05(29)

0.136 32 32364 1.67(26)

40364 1.86(31)
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fraction flatTs
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�PS N ¼
�
0:0378ð39Þa�1 ¼ 0:264ð26Þð2Þr�1

0 ; L ¼ 32a
0:0389ð36Þa�1 ¼ 0:272ð25Þð2Þr�1

0 ; L ¼ 40a

(42)

at the two different volumes, where the second error is
due to the uncertainty of the chirally extrapolated r0 value.
The above � term can also be obtained from the derivative
of the nucleon mass with respect to the logarithm of the
light quark mass. Using the fact that at small mPS, mu þ
md / m2

PS, we can write

�PS N ¼ mu

@mN

@mu

þmd

@mN

@md

� m2
PS

dmN

dm2
PS

: (43)

To leading order in chiral perturbation theory,
dmN=dm

2
PS ¼ const. This linear assumption suggests to

multiply the result Eq. (42) with the ratio m2
�;phys=m

2
PS to

obtain the physical � term �phys;0
�N ¼ 0:064ð6Þr�1

0 ¼
25ð3Þð1Þ MeV. In general, however, higher-order correc-
tions will lead to some curvature.

Fortunately, we do not only know the � term at � ¼
0:136 32 but also the nucleon mass [22] at other values of
�val ¼ �sea, at � ¼ 5:29 (a�1 � 2:71 GeV) and at � ¼
5:4 (a�1 � 3:22 GeV), see Table II. A combined Oðp4Þ
covariant B�PT [34] fit to these data within the window
250 MeV<mPS < 430 MeV, imposing our directly ob-
tained value of �PS N as an additional constraint, results
in the preliminary number [22]

�phys
�N ¼ ð38� 12Þ MeV (44)

at the physical point. The error includes both the statistical
uncertainty of the fit and the systematics from varying the
low energy parameters c2, c3, and l3 within their phenom-
enologically allowed ranges [34–36]. A detailed analysis
will be presented in Ref. [22]. We display the result of this
extrapolation in Fig. 7 for the ratio �PS N=m

2
PS in units of

r0, together with our direct determinations. The broad error
band indicates the result of the same fit, without using our
constraint at mPS � 285 MeV.

We now use Eq. (35) with �Z given in Eq. (29) to obtain
the renormalized strangeness matrix element from the
values given above. This amounts to subtracting numbers
of similar sizes from each other. There is no noticeable

finite size effect between the 323 and 403 volumes. For our
simulation point at a low pion mass mPS � 285 MeV,
we obtain the values a½mshNj�ssjNi�ren ¼ 0:005ð6Þ and
0.008(6) for the two determinations of the renormalization
parameter �Z from the VWI and AWI, respectively.
Of particular phenomenological interest is the dimen-

sionless strange quark contribution to the nucleon mass

fTs
¼ ½mshNj�ssjNi�ren

mN

¼ 0:012ð14Þþ10
�3 : (45)

Again, we quote the value obtained from the VWI pre-
scription, with a systematic error that incorporates the
difference between the two determinations of the renor-
malization constant ratios and their respective uncertain-
ties. This may be indicative of OðaÞ effects. The problem
of large cancellations cannot be overcome easily. One
needs to get closer to the continuum limit so that �Z

approaches zero. For instance, at � ¼ 5:40, �Z � 0:2
[29], significantly reducing the subtraction of the con-
nected diagram (and probably the value of hNj�ssjNilat
that will contain a smaller light quark contribution).
The result obtained is interesting insofar as it suggests a

scalar strangeness of less than 4% of the nucleon mass,
�s ¼ 12þ23

�16 MeV. In spite of the relative enhancement by

the ratio ms=mud > 25, this is not bigger than the pion-
nucleon � term above. This is quite consistent with the
finding of Eq. (40) of a tiny renormalized light sea quark
participation in �PS N. We remark that taking the combi-
nation mlat

s hNj�ssjNilat without the proper subtraction
would have resulted in fTs

� 0:12, even bigger than the

light quark mass contribution of about 0.09, at our light
quark mass value that exceeds the physical one by a factor
of about four. Neglecting the mixing with light quarks in
the renormalization is probably the main reason why this
contribution was overestimated in the pioneering lattice

TABLE II. QCDSF pseudoscalar and nucleon masses [22] at
� ¼ 5:29 (a�1 � 2:7 GeV) and � ¼ 5:40 (a�1 � 3:2 GeV).

� � V amPS amN r0mPS r0MN

5.29 0.136 20 24348 0.1552(6) 0.467(5) 1.084(9) 3.26(4)

5.29 0.136 32 24348 0.1112(9) 0.425(6) 0.776(8) 2.97(5)

5.29 0.136 32 32364 0.1070(4) 0.390(5) 0.747(6) 2.72(4)

5.29 0.136 32 40364 0.1050(3) 0.381(3) 0.733(6) 2.66(3)

5.40 0.136 60 32364 0.0845(6) 0.353(7) 0.700(8) 2.92(7)

5.40 0.136 60 48364 0.0797(3) 0.314(5) 0.660(7) 2.60(5)

FIG. 7 (color online). Extrapolation of �PS N=m
2
PS to the physi-

cal point [22] using covariant B�PT. The open symbols corre-
spond to the values that we directly obtain at mPSr0 � 0:73 on
the L ¼ 40a volume (left) and for L ¼ 32a (right). The broad
error band is obtained when ignoring this constraint. The hori-
zontal line denotes the (constant) leading-order expectation.
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studies, see, e.g., Ref. [37] and references therein. Early
results are also summarized in Ref. [19].

We can constrain the scale-independent y ratio of
Eq. (36),

y ¼
� ð1þ �ZÞ0:333ð36Þ � �Z; L ¼ 32a
ð1þ �ZÞ0:320ð33Þ � �Z; L ¼ 40a

(46)

¼
�
0:059ð37Þð28Þ; L ¼ 32a

0:041ð37Þð29Þ; L ¼ 40a;
(47)

where the errors are statistical and the difference between
the two determinations of �Z, respectively. Again, as the
central value, we have taken the result from the VWI
renormalization factor. From our determination of the
pion-nucleon � term, we know that the denominator
of Eq. (36) will increase by a factor 1.4–1.5 when extrapo-
lated to the chiral limit. Based on the weak observed
dependence of hNj�ssjNilat on the valence quark mass, see
Fig. 6, we would expect the numerator to exhibit a less
pronounced quark mass dependence. Thus, a 95%
confidence-level upper limit on the y parameter y < 0:14
should also apply at physically light sea quark masses.

Finally, we also predict the gluonic and heavy sea quark
contribution fTG

of Eq. (4),

fTG
¼ 1� ��N þ �s

mN

¼ 0:951þ20
�27: (48)

This means that the light and strange quark flavors con-
tribute a fraction between 3% and 8% to the nucleon mass.

V. SUMMARY

We directly calculate the light quark and strangeness �
terms on lattices with spatial extents up to LmPS � 4:2, a
lattice spacing a�1 � 2:71 GeV, and a pseudoscalar mass
mPS � 285 MeV. At this mass point and lattice spacing,
the quark line disconnected contribution amounts to a
fraction of rlat � 0:3 of the full result. After renormaliza-
tion, however, we find this number to drop below the 5%
level, see Eq. (40).

At our fixed mass point, we obtain the renormalized
values, �s ¼ 12þ23

�16 MeV and �PSN ¼ 106ð11Þð3Þ MeV,
for the strangeness and light quark � terms. Assuming
the latter value to depend linearly on m2

PS, as predicted

by leading-order chiral perturbation theory, this corre-
sponds to 25(3) MeV at the physical point. However,
from nucleon mass data obtained at pseudoscalar masses,
250 MeV<mPS < 430 MeV, it is clear that there exists a
nonvanishing curvature. Our direct determination can be
used to strongly constrain anOðp4Þ covariant baryon chiral

perturbation theory extrapolation of the nucleon mass [22].

The combined fit yields the preliminary value �
phys
�N ¼

ð38� 12Þ MeV at the physical point. Without the direct
information on the slope at one point the statistical and
systematic uncertainties would have been much larger, see
Fig. 7. It would be difficult to significantly reduce this large
error, without nucleon mass data at physical and, possibly,
smaller than physical quark masses.
We are also able to exclude values y > 0:14 of the y

parameter, with a confidence level of 95%. This means that
the strangeness contribution to the scalar coupling of the
nucleon is much smaller than that due to the light quark �
term. To determine the strangeness � term using the in-
direct method, i.e., the Feynman-Hellmann theorem, re-
quires nF ¼ 2þ 1 sea quark flavors. Even then the
dependence of the nucleon mass on the strange quark
mass will be very weak and the tiny slope (and its error)
will be amplified by the mass ratio ms=mud > 25.
Therefore, for an accurate prediction of fTs

, and, in par-

ticular, for a nonvanishing lower bound on its value, an
additional direct determination at one or a few mass points
will be crucial.
We remark that the results presented here have not been

extrapolated to the continuum limit. Neither has the effect
of quenching the strange quark been addressed, except
within the renormalization of the strangeness � term.
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[14] S. Dürr et al., Phys. Rev. D 85, 014509 (2012); Proc. Sci.,
LATTICE2010 (2010) 102 [arXiv:1012.1208].

[15] R. Horsley et al. (QCDSF and UKQCD Collaborations),
Phys. Rev. D 85, 034506 (2012).

[16] R. Horsley et al. (QCDSF and UKQCD Collaborations),
Phys. Rev. D 83, 051501 (2011).

[17] D. Toussaint and W. Freeman (MILC Collaboration),
Phys. Rev. Lett. 103, 122002 (2009).

[18] R. D. Young and A.W. Thomas, Phys. Rev. D 81, 014503
(2010).

[19] R. D. Young and A.W. Thomas, Nucl. Phys. A844, 266c
(2010).

[20] G. S. Bali, S. Collins, and A. Schäfer (QCDSF
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[33] M. Göckeler et al. (QCDSF Collaboration), Phys.
Rev. D 82, 114511 (2010); M. Göckeler (private
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