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The thick center vortex model, with the idea of using domain structures, is used to calculate the

potentials between two G(2) heavy sources in the fundamental, the adjoint, and the 27-dimensional

representations. The potentials are screened at large distances. This behavior is expected from the thick

center vortex model since G(2) has only a trivial center element which makes no contribution to the

average Wilson loop at the large distance regime. A linear potential is obtained at intermediate distances

for all representations. This behavior can be explained by the thickness of the vortices (domains) and by

defining a flux for the trivial center element of G(2). The role of the SU(3) subgroup of G(2) in the linear

regime is also discussed. The string tensions are in rough agreement with the Casimir operators of the

corresponding representations.
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I. INTRODUCTION

The last candidate for the fundamental theory of had-
ronic force is the quark model. The interaction between
quarks is described by the exchange of the non-Abelian
gauge fields called gluons. Quarks were introduced by
Gellman and Zweig for the first time in 1964. Besides the
successfulness of the quark model, no free quark has been
observed yet. However, the particles in the Lagrangian of
any theory must exist in the physical spectrum. Now that
the quarks appear in the QCD Lagrangian, the main ques-
tion is as follows: Where are the quarks? Are they
permanently confined? In fact, color is confined in QCD
and quarks are not observed in nature because of their
colors. In other words, particles with color degrees of
freedom are confined. Therefore, all free particles are
colorless, and colored particles cannot be found in the
particle spectrum. In addition to the quarks, gluons which
are the particles in the adjoint representation of the gauge
group of QCD have colors and are absent in the spectrum
of the particles, as well.

Let us define confinement from the point of view of the
potential in a quark-antiquark pair. At short distances the
potential in a quark-antiquark pair is Coulombic and can be
explained by the gluon exchange between quarks. Since
the coupling constant is small, perturbative methods work
very well in this region. As the distances between quarks
increase, the coupling constant increases as well and per-
turbative techniques do not work anymore. This happens at
an intermediate regime where the potential between quarks
rises linearly until the energy reaches a point where it is
large enough to create a quark-antiquark pair in the vac-
uum. Then, these secondary pairs couple to the initial ones
and screen them. However, by removing the dynamical

quarks from the theory, the creation of the secondary
quarks does not happen and the potential between the
initial quarks rises linearly with distance. Figure 1 shows
a typical behavior of the potential between static quarks, a
Coulombic potential at short distances, and a linear poten-
tial for intermediate and large distances. For this figure,
dynamical quarks are removed from the theory. The linear
behavior is confirmed by Regge trajectories in the particle
spectrum [1]. The flux tube created at this linear regime
has nonlinear nature, and it is not possible to use
ordinary perturbation methods to study its characteristics.
Therefore, to investigate the quark confinement phe-
nomena, one should use nonperturbative methods. Lattice
gauge theory has been very successful to reproduce the
potential between pairs of colored particles like quarks and
gluons. Other approaches used to study confinement in-
clude phenomenological models. In these models, the
QCD vacuum is filled with some topological configura-
tions confining colored objects. The most popular candi-
dates among these topological fields are monopoles
and vortices. Other candidates include merons, calorons,
etc. There are very strong correlations between these
various objects, though. Therefore, the mechanism of con-
finement has not been understood by a unique procedure
yet, and it is one of the unsolved mysteries of quantum
chromodynamics.
In this paper, we study the center vortex model within

the G(2) gauge group. The center vortex model was ini-
tially introduced by ’t Hooft [2]. It was able to explain the
confinement of quark pairs, but it was not able to explain
the intermediate linear potential, especially for higher
representations. The model has been improved to the thick
center vortex model by M. Faber et al. [3]. Even though it
is a simple model, the thick center vortex model reprodu-
ces the intermediate linear potential qualitatively, in agree-
ment with Casimir scaling and the asymptotic large
distance potential which is proportional to the N-ality of
the gauge group. For intermediate distances, one expects to
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see a linear potential proportional to the distance between
quarks, in agreement with lattice calculations. Based on
lattice results [4,5], the coefficient of the linear part, which
is called the string tension, is proportional to the eigenvalue
of the quadratic Casimir operator of the corresponding
representation. This is called Casimir scaling. The
Casimir scaling regime is expected to extend roughly
from the onset of confinement to the onset of screening.
The N-ality of each representation is given bymodðn�mÞ,
where n is the number of quarks and m is the number of
antiquarks constructing the representation. At large dis-
tances, where the distance between the quark and antiquark
increases, the energy stored in the string increases and
gluon pairs are created from the vacuum. These gluons
screen the initial sources to the lowest dimension with the
same N-ality. In this regime, sources with the same N-ality
obtain the same string tensions. Those with zeroN-ality are
completely screened.

In the vortex model the QCD vacuum is filled with
linelike (in three dimensions) or surfacelike (in four di-
mensions) objects, which carry magnetic flux quantized in
terms of the center elements of the gauge group. At large
distances between color sources, the interactions between
Wilson loops and center vortices lead to a linear potential
proportional to the N-ality of the given representation.

Besides the successes of the center vortex model, the
relation between confinement and center symmetry has not
been understood very well yet. To study the role of center
elements, one of the attractive methods is studying con-
finement in gauge groups without nontrivial center ele-
ments, like G(2). Lattice calculations in G(2) [6] show
color screening for large distances and a linear potential
for intermediate distances. Since the center is trivial, the

center vortex model predicts color screening. It is not so
clear why a linear potential can be expected at intermediate
distances. Because of these two features—confinement at
intermediate distances and screening at large distances—
G(2) gauge theory resembles SUðNÞ gauge theories with
dynamical quarks. These screen static quarks at large
distances. Therefore, G(2) is considered as a mathematical
laboratory to examine the properties of SUðNÞ gauge theo-
ries, even the ones which cannot be understood in SUðNÞ
gauge theories themselves.
In the next section, we give a brief review of the thin and

thick center vortex models. In Sec. III some general fea-
tures of the G(2) gauge group are discussed, and in Sec. IV
we apply the improved thick center vortex model, called
the domain structure model, to the G(2) gauge group. We
study the possible reasons why confinement is observed in
the G(2) gauge group based on its SU(3) subgroups.
Potentials between static sources of higher representations,
14 and 27, are calculated in Sec. V, and Casimir scaling is
discussed. We end the paper with a conclusion.

II. THICK CENTER VORTEX MODEL

The idea of describing confinement using vortices goes
back to ’t Hooft [2]. In four dimensions vortices are
topological field configurations of the vacuum forming
closed surfaces which can be linked to Wilson loops.
Wilson loops are gauge-invariant observables obtained
from the holonomy of the gauge connection around given
loops. Confinement is obtained from random fluctuations
in the linking number. A vortex piercing a Wilson loop
contributes with a center element Z somewhere between
the group elements U of the gauge group

WðCÞ ¼ Tr½UUU . . .U� ! Tr½UUU . . . ðZÞ . . .U�: (2.1)

Because center elements commute with all the members of
the group, the location of Z in Eq. (2.1) is arbitrary. The
effect of piercings on Wilson loops can be well understood
in the gauge group SU(2), which has �I as the only non-
trivial center element. I is the 2� 2 unit matrix. Vortices
piercing the loop an even number of times or not piercing it
at all do not have any effect onWðCÞ. Odd linking numbers
change the sign of WðCÞ. One can derive a formula for the
string tension � assuming that vortices are thin and pierce
Wilson loops in single plaquettes with independent prob-
abilities f. We get

hWðCÞi ¼ Yfð1� fÞ þ fð�1ÞghW0ðCÞi

¼ exp½��ðcÞA�hW0ðCÞi; (2.2)

assuming that hW0ðCÞi is the expectation value of the loop
when no vortex pierces this loop and the string tension is

� ¼ � 1

A
lnð1� 2fÞ: (2.3)

FIG. 1. Potential between static quarks. At small distances the
coupling constant is small enough to use perturbative methods. A
Coulombic potential is obtained in this regime. At large dis-
tances the coupling constant is large, and nonperturbative effects
lead to a linear potential.
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The vortex model works very well for the fundamental
representation, and it gives the asymptotic string tension
correctly. It also works well for the adjoint representation
at large distances, where one expects a screened potential.
Since we have a trivial center element for the adjoint
representation, the string tension must be zero according
to Eq. (2.1). In other words, Z is unity and it does not
change the Wilson loop. However, lattice calculations
show an intermediate string tension for higher representa-
tions [4,5,7], which cannot be predicted by the thin center
vortex model or Eq. (2.1). M. Faber et al. [3] have im-
proved the model to the thick center vortex model to be
able to reproduce the intermediate string tensions.
They have given a thickness to the ’t Hooft vortex.
Mathematically, they have replaced the center element Z
by an element of the gauge group, G,

WðCÞ ¼ Tr½UUU . . .U� ! Tr½UUU . . .G . . .U�; (2.4)

where G is

Gðx; sÞ ¼ expði�cðxÞ ~n � ~LÞ: (2.5)

Li’s are the generators of the group in the representation j,
~n is a unit vector, and S is an SUðNÞ element of the group in
the representation j. �cðxÞ gives the profile of the vortex,
and it depends on that fraction of the vortex which is
pierced by the loop. It depends on the shape of the loop
C and the position of the center of the vortex relative to the
perimeter of the loop.

If the Wilson loop is linked by m vortices, centered at
positions x1; x2; . . . ; xm, then

WðCÞ ! W½C; fxi; Sig�
¼ Tr½UUU . . .UGfxa; SagU . . .UGfxb; SbgU . . .

UGfxm; SmgU�: (2.6)

To obtain the average Wilson loop,WðCÞmust be averaged
over different gauge group orientations Si. For simplicity,
we first look at the SU(2) case. Equation (2.5) for SU(2) is

Gðx; sÞ ¼ expði�cðxÞ ~n � ~LÞ ¼ S expði�cðxÞL3ÞSy: (2.7)

L3 is the element of the Cartan subalgebra. Independently
averaging every Gfxa; Sag over orientations in the group
manifold specified by Sa, we get

�GðaÞ ¼
Z

S exp½i�L3�SydS ¼ gj½�c�I2jþ1; (2.8)

where

gj½�c� ¼ 1

2jþ 1
Trðexp½i�L3�Þ: (2.9)

Thus, averaging the Wilson loop over all Sa leads to [3]

hWðCÞi ¼ Y
x

fð1� fÞ þ fgj½�c�ghW0ðCÞi (2.10)

¼ exp

�X
x

lnfð1� fÞ þ fgj½�c�g
�
hW0ðCÞi (2.11)

¼ exp½��cA�hW0ðCÞi; (2.12)

where �c is

�c ¼ �1

A

X
x

lnfð1� fÞ þ fgj½�c�g: (2.13)

For large loops, the center element is located completely
inside the loop; thus gj½�c� ¼ �1, and the string tension is

�c ¼ � 1

A
lnð1� f� fÞ ¼ � lnð1� 2fÞ: (2.14)

This string tension is the same for all half integer
representations j. For integer representations for which a
flat potential is expected at large distances, the center
element is trivial and gj½�c� ¼ 1; thus �c ¼ 0 according

to Eq. (2.13).
At intermediate distances where the loop is not large

enough to contain the whole vortex, �c is [3]

�c ¼ f

6
��2
cjðjþ 1Þ; (2.15)

where

�� 2
c ¼ 1

A

X
x2A0

�2
cðxÞ: (2.16)

Thus, for small f and small loops, the string tension is
proportional to the eigenvalue of the second order Casimir
operator.
Equation (2.10) can be generalized to the SUðNÞ gauge

theory

hWðCÞi¼Y
x

�
1�XN

n¼1

fnð1�gr½ ~�n
cðxÞ�Þ

�
hW0ðCÞi (2.17)

with

gr½ ~�� ¼ 1

dr
Trðexp½i ~� � ~H�Þ: (2.18)

x is the location of the center of the vortex, dr the dimension
of the representation r, fn the probability that any given unit
is pierced by a vortex of type n, and fHi;i¼1;2; . . . ;N�1g
are the generators spanning the Cartan subalgebra. ~�n

cðxÞ
shows the flux profile for the vortex of type n. We have
ðN � 1Þ types of vortices for any SUðNÞ gauge theory. The
potential and the string tension are given by [3]

VðRÞ ¼ X
x

ln

�
1� XN�1

n¼1

fnð1� Regr½ ~�n
CðxÞ�Þ

�
(2.19)

and

�C ¼ � 1

A

X
x

ln

�
1� XN�1

n¼1

fnð1� Regr½ ~�n
CðxÞ�Þ

�
: (2.20)

CONFINEMENT IN G(2) GAUGE THEORIES USING . . . PHYSICAL REVIEW D 85, 054501 (2012)

054501-3



To reproduce the potential or the string tension, one has to
find the Cartan subalgebra and describe the profile function
~�n
CðxÞ. The flux profile should have the following proper-

ties: It should go to zero for a Wilson loop of length R as
x ! �1; if the center of a vortex is completely inside the
loop, it will lead to a maximal multiplicative factor
expð2�inN Þ 2 Zn (n ¼ 1; 2; . . . ; N � 1) corresponding to the

center elements of the group; and finally, as R ! 0 the
contribution of the vortex to the loop also goes to zero, so
�RðxÞ ! 0.

Various vortex profiles ~�n
CðxÞ may be chosen. M. Faber

et al. used, for the SU(2) case,

~� n
CðxÞ ¼ ~Nn

�
1� tanh

�
ayðxÞ þ b

R

��
; (2.21)

where n indicates the vortex type, a, b are arbitrary con-
stants, and yðxÞ is

yðxÞ ¼
��x jR� xj> x

x� R jR� xj � x:
(2.22)

yðxÞ is the nearest distance of x from the timelike side of

the loop. The normalization constant ~Nn is obtained from
the maximum flux condition, where the loop contains the
vortex completely,

expði ~�n � ~HÞ ¼ znI (2.23)

with

zn ¼ eð2�inÞ=N 2 ZN (2.24)

and I is the unit matrix.
The thick center vortex model has worked well for the

SU(2), SU(3), and SU(4) gauge theories [3,8]. A linear
potential in rough agreement with Casimir scaling is ob-
served for all representations, and the asymptotic string
tension proportional to the N-ality of the given representa-
tion has been reported. To increase the length of the linear
regime at intermediate distances, J. Greensite et al. [9] have
suggested postulating a kind of domain structure in the
vacuum, with magnetic flux in each domain quantized in
units corresponding to the elements of the center subgroup,
including the identity element. They have applied this idea
to the SU(2) gauge group which has one trivial and one
nontrivial center element. Thus, instead of one vortex, they
use two kinds of domain structures corresponding to the
center elements, the trivial and nontrivial elements. To
obtain the Wilson loop, Eq. (2.10) should be changed to

hWðCÞi ¼ Y
x

fð1� f1 � f0Þ þ f0gj½�0
C�

þ f1gj½�1
C�ghW0ðCÞi: (2.25)

f1 and f0 are the probabilities of plaquettes that belong to
domains corresponding to the nontrivial and trivial center
elements, respectively. �0

C and �1
C define the profile func-

tion for domain structures associated with the trivial and

nontrivial center elements. To apply the domain structure
model to the SUðNÞ gauge group, one has to change n in
Eqs. (2.17), (2.19), and (2.20) from zero to the number of
nontrivial center elements, where zero corresponds to the
trivial center element.
G(2) lattice gauge calculations show confinement for

intermediate distances [6]. The center vortex model can
predict correctly the screening of the potentials at large
distances since the center of the G(2) gauge group is trivial.
But, what accounts for the intermediate string tensions?
We apply the domain structure model, which includes the
trivial center element, to the G(2) gauge group in Sec. IV
and discuss the possible reasons for the linear potential at
large distances. But first, in Sec. III, we present some
general features of the gauge group G(2).

III. GENERAL PROPERTIES OF
G(2) GAUGE THEORIES

G(2) is one of the exceptional Lie groups which is its
own covering group [10]. The rank of G(2) is 2, and it has
14 generators, two of which are simultaneously diagonal.
Its fundamental representation is seven dimensional, and
the dimension of the adjoint representation is 14. The
group G(2) is real, and it is a subgroup of SO(7) with
rank 3 and 21 generators. The determinant of the 7� 7
real orthogonal matrices U of the group SO(7) is 1, and

UUy ¼ 1: (3.1)

G(2) elements satisfy a constraint called the cubic
constraint,

Tabc ¼ TdefUdaUebUfc: (3.2)

T is a totally antisymmetric tensor, and its nonzero ele-
ments are

T127¼T154¼T163¼T235¼T264¼T374¼T576¼1: (3.3)

Because of these constraints the number of generators
of G(2) is reduced to 14.
A quark in the fundamental representation f7g of G(2)

can be color screened by gluons [10],

f7g � f14g � f14g � f14g ¼ f1g � . . . (3.4)

Therefore, in G(2) gauge theories, the string tension be-
tween static quarks can be broken by gluons without the
presence of dynamical quarks, as is necessary in SUðNÞ
gauge theories.
SU(3) is a subgroup of G(2). Under SU(3) subgroup

transformations, the seven- and 14-dimensional represen-
tations of G(2) decompose into the SU(3) fundamental and
adjoint representations

f7g ¼ f3g � f�3g � f1g; (3.5)

f14g ¼ f8g � f3g � f�3g: (3.6)
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The second equation may be interpreted in such a way
that the 14 gluons of G(2) consist of the usual eight gluons
of SU(3) plus six additional gluons which transform like
the SU(3) fundamental quark and antiquark. One of the
differences between these six gluons and the SU(3) quarks
is that the former are bosons while the latter are fermions.
Because all G(2) representations are real, the fundamental
representation is equivalent to its complex conjugate;
therefore quarks and antiquarks are identical.

Simultaneous diagonal generators of this representation
are [10]

H3 ¼ 1ffiffiffi
8

p ðP11 � P22 � P55 þ P66Þ; (3.7)

H8¼ 1ffiffiffiffiffiffi
24

p ðP11þP22�2P33�P55�P66þ2P77Þ; (3.8)

where ðPijÞ�� ¼ �i��j�, and �, � indicate the row and the

column of the matrices, respectively. From Eqs. (3.7) and
(3.8), it can be shown that these generators have SU(3)
Cartan generators, and they can be written as

Ha ¼ 1ffiffiffi
2

p
�a 0 0
0 0 0
0 0 �ð�aÞ	

0
@

1
A: (3.9)

�a (a ¼ 3, 8) are the two diagonal SU(3) generators. Since
SU(3) is a subgroup of the G(2) gauge group, the G(2)
weight diagram can be obtained by a superposition of 3, 1,
and �3. Therefore, in the SU(3) subgroup of G(2), the center
elements of G(2) can be constructed from the Zð3Þ group
which is the center of SU(3).

Z ¼
zI3�3 0 0
0 1 0
0 0 z	I3�3

0
@

1
A: (3.10)

I3�3 is a 3� 3 unit matrix and z 2 f1; e�ð2�iÞ=3g are ele-
ments of Zð3Þ. The three Zmatrices of Eq. (3.10) commute
with the eight generators of the SU(3) subgroup of G(2) but
not with the remaining six generators. This is why the
centers Z given by Eq. (3.10) are not the center elements
of G(2). The center elements should commute with all the
generators. Therefore, the center of G(2) should be trivial
and contains only the identity. This is true for higher repre-
sentations of G(2) as well. Since the center element of G(2)
is trivial for all representations, at large distances the po-
tentials between objects in all representations are flat and
screening happens. Equation (3.4) shows this fact for the
seven-dimensional representation. Another consequence is
that the concept ofN-ality does not apply to the G(2) gauge
group, in contrast to the SUðNÞ gauge groups.

In the next section, we calculate the potential between
two G(2) quarks using the domain structure model.

IV. G(2) AND VACUUM DOMAIN STRUCTURES

Numerical calculations [6] show a linear behavior at
intermediate distances and a flat potential at large distances

for the potential between two quarks in the fundamental and
higher representations of the G(2) gauge theory. Even
though G(2) does not have any nontrivial center element,
its trivial center element can explain the flat potential ac-
cording to the thick center vortex model. Based on this
model no vortex means no string tension at large distances,
and this is in agreement with the flat potential for the G(2)
quarks at large distances. In this section we reproduce the
potential in a G(2) quark-antiquark pair using the idea of
domain structures of the vacuum in the thick center vortex
model.
Greensite et al. have introduced domain structures to

increase the length of the linear regime in the thick center
vortex model [9]. They have suggested that the domain
structure idea can be applied to the G(2) gauge group
which has only a trivial center. With this motivation, we
apply the idea to calculate the G(2) potentials explicitly. In
SUðNÞ, zero N-ality representations have zero string ten-
sions at large distances, while they have linear potentials at
intermediate distances. The thick center vortex model has
been able to reproduce this behavior, and we have been
motivated to use this model to reproduce G(2) potentials
which show the same behavior according to the lattice
results but with the idea of domain structures instead of
center vortices. Thickening the vortices leads to the con-
finement for higher SUðNÞ representations. Since G(2) has
only a trivial center element, we apply the thick center
vortex model to this group with the constraint that the total
magnetic flux measured by the Wilson loop holonomy is
quantized in terms of its trivial center element.
In the domain structure model, the vacuum of the Yang-

Mills theory is filled with field configurations called do-
main structures, corresponding to trivial and nontrivial
center elements. For example, for SU(2) there exist two
types of domains, one associated with the trivial one, I, and
one associated with the nontrivial one, �I. The main
difference between the trivial domain and other domains
is the lack of a Dirac-3 volume for trivial domains.
Equation (2.19) can be used in the SUðNÞ gauge group

for the modified thick center vortex model, if n starts from
zero instead of 1, where n ¼ 0 corresponds to the trivial
center element. For the G(2) case with only a trivial center
element and no other nontrivial center elements, VðRÞ is
given by

VðRÞ ¼ X
x

lnf1� f0ð1� Regr½ ~�0
CðxÞ�Þg; (4.1)

where f0 is the probability that any given unit is pierced by a
trivial vacuumdomain.gr has the same formas inEq. (2.18),

gr½ ~�� ¼ 1

dr
Trðexp½i ~� � ~H�Þ: (4.2)

We use the flux profile

�0
i ðxÞ ¼ N0

i

�
1� tanh

�
ayðxÞ þ b

R

��
: (4.3)
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The zero index indicates the trivial domain of G(2), and the
index i is the index of the Cartan generators. a and b are free
parameters of the model. The normalization factor is
obtained by using the maximum flux condition of
Eq. (2.23). For G(2), the equation is changed to

expði ~�n � ~HÞ ¼ I: (4.4)

Therefore,

expð�max
1 H1 þ �max

2 H2Þ ¼ I ¼ expð2�iÞ: (4.5)

Using the Cartan subalgebra of G(2) from Eq. (3.9), �max
1

and �max
2 are obtained,

2� ¼ �max
1ffiffi
8

p þ �max
2ffiffiffiffi
24

p

2� ¼ ��max
1ffiffi
8

p þ �max
2ffiffiffiffi
24

p

9=
; ) �max

1 ¼ 0; �max
2 ¼ 2�

ffiffiffiffiffiffi
24

p
:

(4.6)

Thus, �0
1ðxÞ and �0

2ðxÞ are
�0
1ðxÞ ¼ 0; (4.7)

�0
2ðxÞ ¼

�ffiffiffiffiffiffi
24

p
�
1� tanh

�
ayðxÞ þ b

R

��
: (4.8)

Putting everything together, the potential between two G(2)
static quarks is obtained from Eqs. (4.1), (4.2), and (4.3) and
is plotted in Fig. 2. The free parameters a, b, and f are
chosen to be 0.05, 4, and 0.1, respectively. The potential is
screened at large distances as expected from the model. At
large distances the domains are contained completely inside

the loops, and the corresponding contribution, which is the
trivial center element, does not change the Wilson loop;
therefore, the string tension is zero. At intermediate dis-
tances a linear regime is observed. For this regime, some
fraction of the trivial domain is located inside the loop.
Therefore, it can make a nontrivial contribution to the
Wilson loop and lead to a nonzero string tension.
To study the possible reasons for the linear part, we plot

Reðgr½�0
2ðxÞ�Þ versus x for the Wilson loop, with various

spatial dimensions of R. Figure 3 plots Reðgr½�0
2ðxÞ�Þ

versus x for R ¼ 100. x shows the location of the center
of the vortex. The left leg of the Wilson loop is located at
zero, and the right leg is located at x ¼ R. The maximum
of ReðgrÞ is equal to 1 and indicates either the situation
where the domain does not link to the Wilson loop or the
one where it is located completely inside the loop. For the
profile we are using, the size of the domain is proportional
to the inverse of the parameter a, and it is about 20.
Therefore, when the Wilson loop spatial length is equal
to 100, we are sure that a complete link is established
between the Wilson loop and the vortex. This fact is
observed from the figure, since ReðgrÞ reaches 1 when
the center of the vortex is located at x 
 50.
ReðgrÞ reaches a value of 1 when the vortex is com-

pletely inside a Wilson loop. In SUðNÞ the result would be
different, and a nontrivial center element is obtained.
Another interesting feature of the figure is the minimum
of ReðgrÞ, which is around �0:28. In general, for the
SUðNÞ cases ReðgrÞ varies from 1, corresponding to the
trivial center element, to the values corresponding to

FIG. 2. Potentials between two G(2) static quarks obtained
from the domain structure model. The potential is screened at
large distances, in agreement with the fact that the gluons of the
G(2) gauge group can couple to the quarks in the fundamental
representation and give a singlet. A linear potential is observed
for the intermediate distances.

FIG. 3. Reðgr½�0
2ðxÞ�Þ versus x is plotted for the fundamental

representation of the G(2) gauge group. It varies between 1 and
�0:28. The value of 1 indicates the situation where the Wilson
loop either does not link the vortex or it links the vortex
completely. Reðgr½�0

2ðxÞ�Þ ¼ �0:28 can be explained by the

SU(3) subgroup of G(2), as explained in the text.
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the nontrivial center elements. Since G(2) does not have
any nontrivial center element, predicting the amount of the
lower limit is not clear. The minimum of ReðgrÞ can be
interpreted using the SU(3) subgroup of G(2). SU(3) has

three center elements (domains): eðn�iÞ=3, where n changes
from zero to 2. Reðgr½�0

2ðxÞ�Þ, corresponding to these
center elements, varies between 1 and �0:5 since

eð2�iÞ=3 ¼ �0:5þ
ffiffiffi
3

p
2

i: (4.9)

Now, calculating Reðgr½�0
2ðxÞ�Þ of the G(2) gauge group

using its SU(3) subgroup and normalizing it with the
dimension of the subgroup, we get the minimum of
Reðgr½�0

2ðxÞ�Þ,
Re grð½�0

2ðxÞ�Þmin¼1

7
ðTrðei��HÞminÞ

¼1

7
Tr

�gRð�Þmin�dr 0 0
0 1 0
0 0 �gRð�Þmin�dr

0
@

1
A;

(4.10)

where �gRð�Þmin is the minimum of ReðgrÞ for the SU(3)
subgroup, and it is equal to�0:5 as mentioned above. dr is
the dimension of the subalgebra, which is equal to 3. Thus,
the minimum of ReðgrÞ for the group G(2) is obtained as

Re ðgrÞmin¼ 1
7ðTrðei��HÞminÞ¼ 1

7ð�1:5þ1�1:5Þ¼�0:28:

(4.11)

Some other local minimums are observed for ReðgrÞ in
Fig. 3 which may be interpreted by the SU(2) subgroups of
G(2). Reaching the minimum of �0:28 happens for the
intermediate distances R as well. Figure 4 shows
Reðgr½�0

2ðxÞ�Þ for R ¼ 20.

Going back to Fig. 2, because of the trivial center of the
G(2) gauge group, at large distances a screened potential
is expected from thin or thick center vortex models.
However, the linear regime is observed as a result of using
thick vortices, as seen for the SUðNÞ higher representations
with zero N-ality. On the other hand, studying the flux
profile, Reðgr½�0

2ðxÞ�Þ, the role of the SU(3) subgroup

of G(2) must be considered as another possible reason to
interpret the linear behavior. One may claim that, at
intermediate distances, the SU(3) subgroup of G(2) has a
dominant role, and this fact leads to the observation of a
linear potential at this regime.
Pepe et al. [10] have studied the role of the SU(3)

subgroup with a Higgs mechanism. They have exploited
a scalar Higgs field in representation 7 of G(2), which
breaks G(2) to SU(3). This allows for an interpolation
between theories with exceptional confinement like G(2)
and theories with ordinary confinement like SU(3). An
interpretation of G(2) confinement via its SU(3) subgroup
and using the domain structure model needs more inves-
tigation, and the present paper may be considered as one of
the starting points.
In the next section, we find the potentials between heavy

sources for the higher representations 14 and 27, and we
discuss Casimir scaling of the string tension.

V. POTENTIALS BETWEEN STATIC G(2)
SOURCES OF HIGHER REPRESENTATIONS

Sources with dimensions 14 and 27 are obtained by

f7g � f7g ¼ f1g � f7g � f14g � f27g: (5.1)

To calculate the potentials with the domain structure
model, one has to use Eqs. (4.1) and (4.2). As Eq. (4.2)
demands, the elements of H, which is the Cartan subalge-
bra of G(2), must be calculated for the 14- and 27-
dimensional representations. We use the weight diagrams
of the SU(3) gauge group, and we decompose each repre-
sentation of the G(2) gauge group to its SU(3) subgroups to
obtain the weight diagrams for G(2) representations. It is
clear from Eq. (3.9) that the weight diagram of the G(2)
fundamental representation can be obtained by Fig. 5. This
is because the fundamental representation of G(2) can be
decomposed into its SU(3) subgroup representations

f7g ¼ f3g � f�3g � f1g; (5.2)

FIG. 4. The same as Fig. 3 but for R ¼ 20. The minimum of
Reðgr½�0

2ðxÞ�Þ reaches �0:28 for this intermediate R as well.
FIG. 5. Weight diagram of the fundamental representation
of G(2) decomposed into its SU(3) subgroups.
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where 3 and �3 show the fundamental representations of the
SU(3) group.

For the adjoint representation of G(2) with dimension
14, the decomposition is as follows:

f14g ¼ f3g � f�3g � f8g: (5.3)

The 8 indicates the adjoint representation of SU(3). Thus,
the Cartan subalgebra of the adjoint representation can be
calculated from theweight diagrams of Fig. 6 and Eq. (5.3),

H14 ¼ 1ffiffiffi
8

p
�3 0 0
0 ��	

�3
0

0 0 �8

0
@

1
A; (5.4)

where �3, ��3, and �8 are the Cartan subgroups of SU(3) for
the representations 3, �3, and 8, respectively.

Representation 27 of the G(2) gauge group is obtained
from Eq. (5.1). But like the fundamental and adjoint rep-
resentations of G(2), the weight diagram of representation
27 can be obtained by decomposition to its SU(3) sub-
groups. Figure 7 shows this decomposition, where 6 and �6
are the six-dimensional representations of SU(3). In fact,

f27g ¼ f8g � f6g � f�6g � f3g � f�3g � f1g: (5.5)

Therefore, the Cartan subalgebra of representation 27 is

H27 ¼ 1ffiffiffiffiffiffi
18

p

�8 0 0 0 0 0
0 �6 0 0 0 0
0 0 ��	

�6
0 0 0

0 0 0 �3 0 0
0 0 0 0 ��	

�3
0

0 0 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA
: (5.6)

We recall that for all representations of G(2) we use the
normalization condition

Tr ½TaTb� ¼ 1
2�ab: (5.7)

The next step is to find the normalization factors in Eq. (4.3)

for these two new representations. We use Eq. (4.4), with ~H

the Cartan subgroups of representations 14 and 27. For both

representations�max
1 ¼ 0 and�max

2 is equal to�
ffiffiffiffiffiffi
24

p
for the

adjoint and 6�
ffiffiffiffiffiffi
24

p
for the 27 representation. Now, we are

ready to calculate the potentials from Eq. (4.1) with the
profile function of Eq. (4.3). Figure 8 plots the potentials
for the fundamental, adjoint, and 27 representations. The
free parameters a, b, and f are chosen to be 0.05, 4, and 0.1,
respectively. The potentials are screened at large distances,
as expected from the fact that G(2) has only a trivial center.
In fact, the representations 14 and 27 lead to a singlet after
they combine with gluons that popped out of the vacuum.
This happens when the distance between static sources is
large enough and the potential between sources is big
enough to create a pair of heavy gluons.

f7g � f14g � f14g � f14g ¼ f1g � . . . ; (5.8)

f14g � f14g ¼ f1g � . . . ; (5.9)

f27g � f14g ¼ f7g � f14g � f27g � . . . : (5.10)

One of the interesting points of the figure is that the sources
in the fundamental representation are screened at higher
energy than the adjoint sources. This can be explained by
the above equationswhich indicate that a fundamental quark
interacting with three gluons leads to a singlet, while adjoint
sources are screened by interacting with one gluon.
Therefore, screening happens at higher energies for the
fundamental representation compared to the adjoint repre-
sentation. The sources of the 27-dimensional representation
do not give a singlet after combining with a pair of gluons.

FIG. 6. Weight diagram of the adjoint (14-dimensional) repre-
sentation of G(2) decomposed into its SU(3) subgroups.

FIG. 7. Weight diagram of representation 27 of G(2) decom-
posed into its SU(3) subgroups.

FIG. 8. Potentials between two G(2) static sources in the
fundamental, 14-, and 27-dimensional representations. The po-
tentials are screened at large distances, in agreement with the
fact that gluons of the G(2) gauge group can couple to the initial
sources and a singlet is produced. For each representation, a
linear potential is observed at intermediate distances.
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Screening happens if the adjoint sources produced from
Eq. (5.10) interact with the adjoint sources again and a
singlet is produced according to Eq. (5.9).

It is observed from Fig. 8 that the potentials are concave
at intermediate distances. It is worse for representation 14.
To get a nonconcave potential and to be able to calculate
the string tensions more accurately, we use the method of
Ref. [11] which considers some random fluctuations for the
vortex profiles. Figure 9 shows the potentials at intermedi-
ate distances. A linear regime is observed for all three
representations. However, the length of this area is very
small. The Casimir scaling regime is expected to extend
roughly from the onset of confinement to the onset of
screening. String tensions are calculated for R between 5
and 12. From Fig. 9, the string tension ratios are

K14

Kf
¼ 1:48;

K27

Kf

¼ 1:65; (5.11)

while the Casimir ratios are

C14

Cf
¼ 2;

C27

Cf

¼ 7

3
: (5.12)

The string tension ratios are qualitatively in rough agree-
ment with Casimir ratios. The agreement between Casimir
ratios and string tension ratios obtained from the lattice

calculations is very good [6]. However, we recall that the
thick center vortex model predictions for proportionality
with Casimir scaling for SU(2), SU(3), and SU(4) have also
been very rough [3,8]. The Casimir ratios of representations
27 to 14 is 1.16, which is in good agreement with the string
tension ratios obtained from the model, about 1.12, in
Eq. (5.11). It is also possible to find the potentials between
static sources in other higher representations of the G(2)
gauge group, but finding the Cartan subalgebra from the
weight diagrams would be a little bit harder. However,
studying these three representations of the G(2) gauge
group shows that the thick center vortex model, with the
idea of the domain structure, works rather well even in the
G(2) gauge group which has only a trivial center.

VI. CONCLUSION

Studying confinement in gauge groups without nontri-
vial center elements is an attractive subject. G(2) is one of
these exceptional groups which has only a trivial center.
Lattice calculations show some evidence for the confine-
ment of quarks at intermediate distances. On the other
hand, the thick center vortex model is a phenomenological
model which gives potentials between quarks in gauge
groups with nontrivial center elements. In this paper, to
reproduce the lattice results, the idea of the vacuum domain
structure has been used in the thick center vortex model. A
flux has been assigned to the trivial center of the G(2)
gauge group, and the potential between two static G(2)
quarks is obtained. The potential is screened at large
distances, as expected from the thick center vortex model.
In other words, the trivial center does not affect the Wilson
loop, where a complete link is established between them at
large distances. In this regime, the vortex (domain) is
located completely inside the minimal area of the loop.
A linear potential at intermediate distances is observed.
The thickness of the domains and possibly the SU(3)
subgroups of the G(2) gauge group are responsible for
this linear behavior at intermediate distances.
In addition, potentials between static sources of the

adjoint and the 27-dimensional representations are calcu-
lated by the model. In both cases, the potentials are linear
at intermediate distances, and the string tensions are quali-
tatively in rough agreement with Casimir scaling.
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FIG. 9. Potentials between two G(2) static sources in the
fundamental, 14-, and 27-dimensional representations at inter-
mediate distances. The ratio of the string tension of each
representation to the string tension of the fundamental represen-
tation is qualitatively in rough agreement with the Casimir ratio.
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