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The extension of the concept of generalized parton distributions leads to the introduction of baryon to

meson transition distribution amplitudes (TDAs), nondiagonal matrix elements of the nonlocal three quark

operator between a nucleon and a meson state. We present a general framework for modeling nucleon to

pion (�N) TDAs. Our main tool is the spectral representation for �N TDAs in terms of quadruple

distributions. We propose a factorized Ansatz for quadruple distributions with input from the soft-pion

theorem for �N TDAs. The spectral representation is complemented with aD-term like contribution from

the nucleon exchange in the cross channel. We then study backward pion electroproduction in the QCD

collinear factorization approach in which the nonperturbative part of the amplitude involves �N TDAs.

Within our two component model for �N TDAs, we update previous leading-twist estimates of the

unpolarized cross section. Finally, we compute the transverse target single spin asymmetry as a function of

skewness. We find it to be sizable in the valence region and sensitive to the phenomenological input of our

�N TDA model.
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I. INTRODUCTION

The familiar collinear factorization theorem [1,2] for
exclusive electroproduction of pions off nucleons

eðkÞ þ Nðp1Þ ! ð��ðqÞ þ Nðp1ÞÞ þ eðk0Þ
! eðk0Þ þ �ðp�Þ þ N0ðp2Þ; (1)

valid in the generalized Bjorken limit (large Q2 ¼ �q2

and s � ðp1 þ qÞ2; xB ¼ Q2

2p1�q and skewness variable

� ¼ � ðp2�p1Þ�n
ðp1þp2Þ�n being fixed1; and small �t � ðp2 � p1Þ2)

gives rise to the description of this reaction in terms of the
generalized parton distributions (GPDs) (see left panel of
Fig. 1).

According to a conjecture made in [3,4], a similar col-
linear factorization theorem for the reaction (1) should be
valid in the following complementary kinematical regime:

(i) large Q2 and s;
(ii) fixed xB and skewness variable �, which is now

defined with respect to the u-channel momentum
transfer:

� ¼ �ðp� � p1Þ � n
ðp� þ p1Þ � n ; (2)

(iii) the u-channel momentum transfer squared u �
ðp� � p1Þ2 (rather than t) is small compared to
Q2 and s.

Under these assumptions, the amplitude of the reaction
(1) factorizes as it is shown on the right panel of Fig. 1.
This requires the introduction of supplementary nonpertur-
bative objects in addition to GPDs—nucleon to pion tran-
sition distribution amplitudes (�N TDAs). Technically,
�N TDAs are defined through the �N matrix element of
the trilocal three quark operator on the light-cone [5–9]:

Ô���
��� ð	1n; 	2n; 	3nÞ
¼ "c1c2c3�

c1�
� ð	1nÞ½	1n;	0n��c2�

� ð	2nÞ½	2n;	0n�
��

c3�
� ð	3nÞ½	3n;	0n�: (3)

Here �, �, � stand for quark flavor indices and �, �, �
denote the Dirac spinor indices. Antisymmetrization stands
over the color group indices c1;2;3. Gauge links may be

omitted in the lightlike gauge A � n ¼ 0.
The detailed account of this approach is presented in

Refs. [10–12]. Apart from the description of hard exclusive
pion electroproduction off a nucleon in the backward
region, the same nonperturbative objects appear in the
collinear factorized description of different exclusive re-
actions. Prominent examples are baryon-antibaryon anni-
hilation into a pion and a lepton pair in the forward and
backward directions [13–15].

1n is the conventional light-cone vector occurring in the
Sudakov decomposition of the relevant momenta.
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The physical picture encoded in baryon to meson TDAs
is conceptually close to that contained in baryon GPDs and
baryon distribution amplitudes (DAs). Baryon to meson
TDAs are matrix elements of a three quark operator (i.e.
with baryonic number one) and characterize partonic cor-
relations inside a baryon. This gives access to the momen-
tum distribution of the baryonic number inside a nucleon.
The same operator also defines the nucleon DAwhich can
be seen as a limiting case of baryon to meson TDAs with
the meson state replaced by the vacuum. In the language of
the Fock state decomposition, baryon to meson TDAs are
not restricted to the lowest Fock state as DAs. They rather
probe the nonminimal Fock components with additional
quark-antiquark pair:

jNucleoni ¼ j���i þ j���; ���i þ . . . :;

jMesoni ¼ j ���i þ j ���; ���i þ . . . ::
(4)

For baryon to meson TDAs, one may distinguish the
Efremov-Radyushkin-Brodsky-Lepage (ERBL)-like do-
main in which all three momentum fractions of quarks
are positive and two kinds of Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP)-like regions in which either one
or two momentum fractions of quarks are negative. On
Fig. 2, we show the interpretation of �N TDAs in the
ERBL-like and in DGLAP-I, II region within the light-
cone quark model [16]. As one can see from Fig. 2(a), the
ERBL part is probing the nonminimal Fock components of
the nucleon wave function. In the DGLAP-II Fig. 2(c)
region, one rather probes the nonminimal Fock compo-
nents of the meson state, while in the DGLAP-I Fig. 2(b)
region there is a nonvanishing contribution of the minimal
Fock states of baryon and meson. This interpretation,
obviously, is justified only at a very low normalization
scale. The evolution effects may significantly change it at
higher scales.
Similarly to GPDs [17–19], by Fourier transforming �N

TDAs to the impact parameter space (�T ! bT), one
obtains additional insight on the nucleon structure in the
transverse plane. This allows one to perform the femto-
photography of hadrons [20] from a new perspective. In
particular, there are hints [21] that �N TDAs may be used
as a tool to perform spatial imaging of the structure of the
meson cloud of the nucleon. This point, which still awaits a

FIG. 2 (color online). Interpretation of �N TDAs within the light-cone quark model [16]. Small vertical arrows show the flow of the
momentum. (a): Contribution in the ERBL region (all xi are positive); (b): Contribution in the DGLAP-I region (one of xi is negative).
(c): Contribution in the DGLAP-II region (two xi are negative).

FIG. 1 (color online). Left: Collinear factorization for hard
production of pions in the conventional hard meson production
kinematics. Right: Collinear factorization for hard production of
pions off nucleons in the backward kinematics.
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detailed exploration, opens a fascinating window for
the investigation of the various facets of the nucleon
interior.

Our paper is organized as follows: In Sec. II, we provide
a short summary of the basic properties of �N TDAs. In
Sec. III, we review the spectral representation for �N
TDAs and propose a factorized Ansatz for the quadruple
distributions constrained by the soft pion theorem for �N
TDAs. We complement the spectral representation with a
D-term like contribution and build a two component model
for �N TDAs. Sec. IV contains the details of calculation of
��N ! �N amplitude in the backward regime. In Sec. V,

we compute the unpolarized cross section and transverse
target single spin asymmetry of backward �þ and �0

electroproduction off protons using our two component
model for �N TDAs. Many technical details are relegated
to Appendices A, B, C, and D. Our conclusions are pre-
sented in Sec. VI.

II. GENERAL PROPERTIES OF �N TDAS

At the leading twist-3, the parametrization of the Fourier
transform of �N matrix elements of the three-local light-
cone quark operator (3) can be written as

4ðP � nÞ3
Z �Y3

j¼1

d	j

2�

�
ei
P

3
k¼1

xk	kðP�nÞh�aðp�ÞjÔ���
��� ð	1n; 	2n; 	3nÞjN
ðp1Þi

¼ �ðx1 þ x2 þ x3 � 2�ÞX
s:f:

ðfaÞ���
 s��;�H
ð�NÞ
s:f: ðx1; x2; x3; �;�2;�2

FÞ; (5)

where P ¼ p1þp�

2 is the average momentum and � ¼
p� � p1 is the u-channel momentum transfer. The spin-
flavor (s.f.) sum in (5) stands over all independent flavor
structures ðfaÞ���
 and the Dirac structures s��;� relevant at
the leading-twist; 
 (a) is the nuclon (pion) isotopic index.
The invariant amplitudesHð�NÞ

s:f: , which are often referred to
as the leading-twist �N TDAs, are functions of the light-
cone momentum fractions xi (i ¼ 1, 2, 3), the skewness
variable � (2), the u-channel momentum-transfer squared
�2 and the factorization scale �F.

For given isotopic contents (say proton to �0 TDA), the
parametrization (5) of twist-3 �N TDAs involves eight

invariant functions Vð�NÞ
1;2 , Að�NÞ

1;2 , Tð�NÞ
1;2;3;4 (see Eq. (A1)).

However, not all of them are independent. Taking into
account the isotopic and permutation symmetries (see
[12]), one may check that in order to describe all isotopic
channels of the reaction (1), it suffices to introduce eight
independent �N TDAs: four in the isospin- 12 channel and

four in the isospin- 32 channel. This result is analogous to the

case of leading twist nucleon DAs: initially, the parame-
trization [9] involves three proton DAs Vp, Ap and Tp.
However, due to the isotopic and permutation symmetries,
these three functions may be expressed through the unique
leading twist nucleon DA N � Vp � Ap. Neutron DAs
are expressed as fVn; An; Tng ¼ f�Vp;�Ap;�Tpg.

The support domain of baryon to meson TDAs in the
light-cone momentum fractions xi (

P
ixi ¼ 2�) was estab-

lished in [11]. It is given by the intersection of three stripes
�1þ � � xi � 1þ �. Instead of dealing with three de-
pendent light-cone momentum fractions xi, one can switch
to the independent variables. A convenient choice of inde-
pendent variables is the use of the so-called quark-diquark
coordinates [11]. Because of the symmetry of the support
of baryon to meson TDAs under rotations by the 2�

3 angle,

there exist three equivalent choices of quark-diquark coor-
dinates (i ¼ f1; 2; 3g):

wi ¼ xi � �; vi ¼ 1

2

X3
k;l¼1

"iklxk; (6)

where "ikl is the totally antisymmetric tensor. The support
domain of baryon to meson TDAs in terms of quark-
diquark coordinates can be parameterized as

� 1 � wi � 1; �1þ j�� �0
ij � vi � 1� j�� �0

ij;
(7)

where �0
i � ��wi

2 .

As pointed out in [14], the scale dependence of �N
TDAs is described by the appropriate generalization of
the ERBL/DGLAP evolution equations. Splitting functions
in this case turn out to be much more complicated, as they
include different pieces in different (ERBL-like and
DGLAP-like) kinematical regions.
Exactly as for the case of the usual parton distributions

and GPDs, evolution of �N TDAs can also be treated in
terms of renormalization of local operators corresponding
to the Mellin moments of �N TDAs in xi. Evolution
properties of the local operators in question were exten-
sively studied in connection with the scale dependence of
nucleon DAs (see Refs. [22,23]). The conformal partial
wave expansion of �N TDAs over the conformal basis of
the Appel polynomials or the Jacobi and Gegenbauer
polynomials represents an alternative strategy for the pa-
rametrization of �N TDAs in the spirit of the dual repre-
sentation of GPDs [24,25] or complex conformal partial
wave expansion [26].
Similar to the GPD case, the polynomiality property in �

of the Mellin moments of �N TDAs in the light-cone
momentum fractions xi is the direct consequence of the
underlying Lorentz symmetry. For n1 þ n2 þ n3 ¼ N, the
highest power of � occurring in the (n1, n2, n3-th Mellin
moment of V�N

1;2 , A
�N
1;2 , T

�N
1;2 is N þ 1, while for T�N

3;4 it is N.
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Consequently, TDAs V�N
1;2 , A

�N
1;2 , T

�N
1;2 include an analogue

of the D-term contribution [27], which generates the high-
est possible power of �.

The most direct way to ensure both the polynomiality
and the support properties for �N TDAs is to employ the
spectral representation in terms of quadruple distributions,
generalizing the familiar Radyushkin’s double distribution
representation for GPDs [28–31]. In phenomenological
applications, an inviting strategy, which proved to be suc-
cessful in the case of GPDs, is to construct a factorized
Ansatz for the corresponding spectral densities. However,
contrary to the GPD case,�N TDAs lack a comprehensible
forward limit, � ! 0. This hampers the construction of the
hypothetic factorized Ansatz for quadruple distributions
with input at � ¼ 0 as suggested in [11].

In this paper, we build up a consistent model for �N
TDAs relying on their chiral properties. Chiral dynamics
constrains �N TDAs in the opposite limit, � ! 1. Indeed,
�N TDAs are conceptually much related to pion-nucleon
generalized distribution amplitudes (�N GDAs), which are
defined through the cross-conjugated matrix element of the
same three quark operator (3):

h0jÔ���
��� ð	1n; 	2n; 	3nÞjN
ðp1Þ�að�p�Þi: (8)

A similar correspondence was previously established be-
tween pion GPDs and 2� GDAs [27,32]. For simplicity, let
us consider the pion to be massless (m ¼ 0). In this case
the point � ¼ 1,�2 ¼ M2, whereM stands for the nucleon
mass, belongs simultaneously to both physical regions: that
of �N GDAs and that of �N TDAs (see discussion in
[12]). Moreover, it is at this very point that the soft-pion
theorem [33] applies for �N GDAs. As argued in [34,35],
this allows us to express �N GDAs at the threshold in
terms of the nucleon DAs Vp, Ap and Tp. In the chiral
limit, the soft-pion theorem for GDAs also constrains �N
TDAs similarly to the way [36] the soft-pion theorem [32]
for 2� GDAs in the chiral limit links the isovector pion
GPD at � ¼ 1, �2 ¼ 0 to the pion DA ’�.

In the chiral limit, the soft-pion theorem thus provides
the normalization point for �N TDAs. The explicit form of
the soft-pion theorem for �N TDAs was established in
[12]. In this paper, we use this information as input for
realistic modeling of �N TDAs based on the spectral
representation in terms of quadruple distributions.

III. SPECTRAL REPRESENTATION FOR
�N TDAS, FACTORIZED ANSATZ

FOR QUADRUPLE DISTRIBUTIONS
AND D-TERM

In this section, we propose a two component model for
�N TDAs involving the following contributions:

(1) a spectral representation with input fixed at � ¼ 1
from the soft-pion theorem;

(2) a nucleon-pole exchange in the u-channel which is a
pureD-term like contribution complementary to the
spectral representation.

To do so, we formulate the spectral representation con-
structed in [11] in a way suitable for the implementation of
chiral constraints for �N TDAs. This allows us to propose
a factorized Ansatz for quadruple distributions with input
from the soft-pion theorem.

A. Toy exercise: GPD case

To give an idea of the new type of factorized Ansatz for
quadruple distributions, let us first consider how one can
constrain a GPD model from the � ¼ 1 limit rather than
from the forward limit � ¼ 0. Let us consider the standard
double distribution representation for GPDs [28–31]:

Hðx; �Þ ¼
Z
�
d�d��ðx� �� ��Þfð�;�Þ; (9)

where � is the usual domain in the spectral parameter
space

� ¼ fj�j � 1; j�j � 1� j�jg; (10)

and fð�;�Þ is the double distribution. Let us perform the
change of variables: � ¼ �þ�

2 , � ¼ ���
2 . This gives

Hðx;�Þ¼
Z 1

�1
d�

Z 1

�1
d��

�
xþ1��

2
��1þ�

2
�

�
1

2
Fð�;�Þ;

(11)

where Fð�; �Þ � fð���
2 ; �þ�

2 Þ. Instead of the usual factor-

ized Ansatz in (9) in the variables f�;�g,
fð�;�Þ ¼ hð�;�Þqð�Þ; (12)

let us employ in (11) the following factorized Ansatz in the
variables f�; �g:

Fð�; �Þ ¼ 2’ð�Þhð�Þ; (13)

with the profile hð�Þ normalized according to

Z 1

�1
d�hð�Þ ¼ 1: (14)

Obviously, Eq. (11) then gives Hðx; � ¼ 1Þ ¼ ’ðxÞ.
In order to implement the so-called ‘‘Munich symme-

try’’ [37] fð�;�Þ ¼ fð�;��Þ, which is the consequence
of hermiticity and time-reversal invariance of nonforward
matrix element entering the definition of GPDs, one should
require that

hð�Þ � ’ð��Þ
�Z 1

�1
d�’ð��Þ

��1
: (15)

Let us emphasize that, in the GPD case, symmetry require-
ments unambiguously fix the shape of the profile h in the
factorized Ansatz (13).
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Although it is but a toy model, the factorized Ansatz (13)
may be applied to the case of quark isovector GPD of a
pion Hu�d

� , which in the soft-pion limit [32] reduces to the
pion DA ’�:

lim
�!1

Hu�d
� ðx; �; t ¼ 0Þ ¼ ’�ðxÞ: (16)

B. An alternative form of the spectral representation
for �N TDAs

Let us now apply the trick of previous subsection for the
case of �N TDAs. According to [11], the spectral repre-
sentation for �N TDAs reads

Hð�NÞðx1;x2;x3¼2��x1�x2;�Þ

¼
�Y3
i¼1

Z
�i

d�id�i

�
�ðx1����1��1�Þ

��ðx2����2��2�Þ�ð�1þ�2þ�3Þ
��ð�1þ�2þ�3þ1Þ
�fð�1;�2;�3;�1;�2;�3Þ; (17)

where �i denote three copies of the usual domain (10) in
the spectral parameter space. The spectral density f is an
arbitrary function of six variables, which are subject to two
constraints imposed by the two last delta functions in
Eq. (17). Therefore, f is effectively a quadruple distribu-
tion. The spectral representation (17) by the very construc-
tion ensures the polynomiality and the support properties
of �N TDAs.

Let us employ the particular choice of the quark-diquark
coordinates (wi, vi) (6) and introduce the following com-
binations of the spectral parameters:

�i ¼ �i þ �i; �i ¼ 1

2

X3
k;l¼1

"iklð�k þ �kÞ;

�i ¼ �i � �i; 	i ¼ 1

2

X3
k;l¼1

"iklð�k � �kÞ:
(18)

The spectral representation (17) can then be rewritten as

Hðwi;vi;�Þ
¼
Z 1

�1
d�i

Z ð1��iÞ=2

�ð1��iÞ=2
d�i

Z 1

�1
d�i

�
Z ð1��iÞ=2

�ð1��iÞ=2
d	i�

�
wi��i��i

2
ð1��Þ��i�

�

��

�
vi��i�	i

2
ð1��Þ��i�

�

�1

4
Fið�i;�i;�i;	iÞ: (19)

The working formulas for the calculation of �N TDAs in
the ERBL-like and DGLAP-like domains are summarized
in Appendix B 2.

We suggest using the following factorized Ansatz for the
quadruple distribution Fi in (19):

Fið�i; �i; �i; 	iÞ ¼ 4Vð�i; �iÞhð�i; 	iÞ; (20)

with the profile function hð�i; 	iÞ normalized as

Z 1

�1
d�i

Z ð1��iÞ=2

�ð1��iÞ=2
d	ihð�i; 	iÞ ¼ 1: (21)

Note that the support of the profile function h is that of a
baryon DA.
With the help of the spectral representation (19), one can

check that in the limit � ! 1 Hi now reduces to

Hðwi; vi; � ¼ 1Þ ¼ Vðwi; viÞ: (22)

We also note that the support properties of Fið�i; �i; �i; 	iÞ
in the (�i, �i)-plane correspond to that of baryon DAs. It is
thus natural to use the combination of baryon DAs to which
�N TDA reduces in the limit � ! 1 due to the soft-pion
theorem as input for Vðwi; viÞ.
Let us denote the combination of nucleon DAs, to which

�N TDA H reduces in the limit � ! 1, as Vðy1; y2; y3Þ. It
is the function of three momentum fractions yi (0�yi�1)
satisfying the condition

P
iyi ¼ 1. Then, according to the

particular choice of quark-diquark coordinates in (17), one
has to employ in (20):

Vð�1; �1Þ � 1

4
V

�
�1 þ 1

2
;
1� �1 þ 2�1

4
;
1� �1 � 2�1

4

�
;

Vð�2; �2Þ � 1

4
V

�
1� �2 � 2�2

4
;
�2 þ 1

2
;
1� �2 þ 2�2

4

�
;

Vð�3; �3Þ � 1

4
V

�
1� �3 þ 2�3

4
;
1� �3 � 2�3

4
;
�3 þ 1

2

�
:

(23)

The profile function hð�i; 	iÞ also has the support of a

baryon DA: �1 � �i � 1; � 1��i

2 � 	i � 1��i

2 . Contrary

to the GPD case, no symmetry constraint from hermiticity
and time-reversal invariance occurs for quadruple distribu-
tions. Therefore, we are free to employ an arbitrary shape
for the profile function. For example, we may assume that
it is determined by the asymptotic form of a baryon DA
(120y1y2y3 with

P
iyi ¼ 1):

hð�i; 	iÞ ¼ 15

16
ð1þ�iÞðð1��iÞ2 � 4	2

i Þ: (24)

In fact, this is the simplest possible choice for the profile
vanishing at the borders of its domain of definition. The
normalization (21) is obviously ensured.
On Fig. 3, we present the result of the calculation of�0p

TDAs from the factorized Ansatz (20) with the profile
function (24) as a function of quark-diquark coordinates
w � w3, v � v3 defined in (6). In accordance with the

soft-pion theorem, in the � ¼ 1 limit, our�0p TDAs V�0p
1 ,
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FIG. 3 (color online). �0p TDAs V�0p
1 , A�0p

1 and T�0p
1 computed in the model based on the factorized Ansatz (20) with the profile

function (24) as functions of quark-diquark coordinates w � w3, v � v3. In the limit � ¼ 1, as required by the soft-pion theorem,
TDAs are reduced to the appropriate combinations of nucleon DAs Vp, Ap and Tp (see Eq. (25)). For � < 1, �N TDAs are obtained by
‘‘skewing’’ � ¼ 1 limit. CZ nucleon DAs [38] are used as numerical input.
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A�0p
1 and T�0p

1 are reduced to the following combination of
nucleon DAs [12]2:

V�0p
1 ðx1; x2; x3; � ¼ 1Þ ¼ � 1

2
� 1

4
Vp

�
x1
2
;
x2
2
;
x3
2

�
;

A�0p
1 ðx1; x2; x3; � ¼ 1Þ ¼ � 1

2
� 1

4
Ap

�
x1
2
;
x2
2
;
x3
2

�
;

T�0p
1 ðx1; x2; x3; � ¼ 1Þ ¼ 3

2
� 1

4
Tp

�
x1
2
;
x2
2
;
x3
2

�
:

(25)

We employ the Chernyak-Zhitnitsky (CZ) nucleon DA
[38] as the numerical input.

Our spectral representation provides a lively xi and �
dependence for �N TDAs. However, the suggestion of a
reasonable �2 dependence still remains an open question.
The most straightforward solution would be, similar to
early attempts in the GPD case, to try a sort of factorized
form of �2 dependence for quadruple distributions (20):

Fið�i; �i; �i; 	i;�
2Þ ¼ 4Vð�i; �iÞhð�i; 	iÞ �Gð�2Þ;

(26)

where Gð�2Þ is the �N transition form factor of the local

three quark operator Ô���
��� ð0; 0; 0Þ (3). This leads to a

factorized �2-dependence for �N TDAs:

H�Nðxi; �;�2Þ ¼ H�Nðxi; �Þ �Gð�2Þ: (27)

The determination of Gð�2Þ goes beyond the scope of the
present paper. Let us however note that such a factorized
form of the �2 dependence is known to be oversimplified
and was much criticized in the GPD case (see e.g. discus-
sion in [39]).

C. D-term-like nucleon pole contribution

Similar to the GPD case, �N TDAs within the spectral
representation (17) do not satisfy the polynomiality condi-
tion in its complete form. As it was pointed out in [12], the

spectral representation for �N TDAs Vð�NÞ
1;2 , Að�NÞ

1;2 , Tð�NÞ
1;2

has to be complemented by an analogue of the D-term.

TDAs Tð�NÞ
3;4 do not require adding theD-term. ThisD-term

has a pure ERBL-like support in xi and hence it contributes
only to the real part of the backward pion electroproduction
amplitude (31). In this paper, we employ the simplest
possible model for such a D-term which accounts for the
contribution of the u-channel nucleon exchange into �N
TDAs computed in [12]. This model shares many common
features with the pion pole model for the polarized nucleon
GPD ~E suggested in Sec. 2.4 of Ref. [40] (see Fig. 4).

The explicit expression for the contribution of the
u-channel nucleon exchange into the isospin- 12 �N TDAs

was established in [12]:

fV1; A1; T1gð�NÞ1=2ðx1; x2; x3; �;�2ÞjNð940Þ

¼ �ERBLðx1; x2; x3Þ � ðg�NNÞ Mf�
�2 �M2

1

ð2�Þ
� fVp; Ap; Tpg

�
x1
2�

;
x2
2�

;
x3
2�

�
;

fV2; A2; T2gð�NÞ1=2ðx1; x2; x3; �;�2ÞjNð940Þ

¼ 1

2
fV1; A1; T1gð�NÞ1=2ðx1; x2; x3; �;�2ÞjNð940Þ;

fT3; T4gð�NÞ1=2ðx1; x2; x3; �;�2ÞjNð940Þ ¼ 0; (28)

where we employ the notation

�ERBLðx1; x2; x3Þ �
Y3
k¼1

�ð0 � xk � 2�Þ; (29)

M denotes the nucleon mass; f� is the pion weak decay
constant and g�NN is the pion-nucleon phenomenological
coupling (see e.g. [41]).
The nucleon pole contribution into �þp and �0p ex-

pressed through isospin-1=2 �N TDAs (28) reads

fV1;2; A1;2; T1;2g�þpjNð940Þ

¼ � ffiffiffi
2

p fV1;2; A1;2; T1;2g�0pjNð940Þ

� � ffiffiffi
2

p fV1;2; A1;2; T1;2gð�NÞ1=2 jNð940Þ;

fT3;4g�þpjNð940Þ ¼ fT3;4g�0pjNð940Þ ¼ 0: (30)

FIG. 4 (color online). Left: pion pole exchange model for the
polarized GPD ~E; lower and upper blobs depict pion DAs; the
dashed circle contains a typical LO graph for the pion electro-
magnetic form factor in perturbative QCD; the rectangle con-
tains the pion pole contribution into GPD. Right: nucleon pole
exchange model for �N TDAs; dashed circle contains a typical
LO graph for the nucleon electromagnetic form factor in per-
turbative QCD; the rectangle contains the nucleon pole contri-
bution into �N TDAs.

2Note that Eq. (11) of [15] and Eq. (19) of [10] contain a sign
error for T�0p as well as erroneous overall factors 2. This affects
the numerical results of these papers.
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IV. CALCULATION OF ��N ! �NAMPLITUDE

Within the factorized approach, the leading order (both
in �s and 1=Q) amplitude for hard exclusive ��N ! �N
reaction in the backward region, M	

s1s2 , reads [10]

M	
s1s2 ¼�i

ð4��sÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4��em

p
f2N

54f�

1

Q4

�
�
S	
s1s2

Z
d3x

Z
d3y

�
2
X7
�¼1

T� þ
X14
�¼8

T�

�

�S0	
s1s2

Z
d3x

Z
d3y

�
2
X7
�¼1

T0
� þ

X14
�¼8

T0
�

��
; (31)

where f� ¼ 93 MeV is the pion weak decay constant and
fN � 5:2 � 10�3 GeV2 is a constant, which determines the
value of the dimensional nucleon wave function at the
origin; �em ’ 1

137 is the electromagnetic fine structure con-

stant; and �s is the strong coupling constant. The convo-
lution integrals in xi and yi in (31), respectively, stand over
the supports of �N TDAs and nucleon DAs in T� and T0

�.
The spin structures S and S0 are defined as

S	
s1s2 � �Uðp2; s2Þ�̂ð	Þ�5Uðp1; s1Þ;

S0	
s1s2 �

1

M
�Uðp2; s2Þ�̂ð	Þ�̂T�

5Uðp1; s1Þ;
(32)

where �ð	Þ denotes the polarization vector of the virtual
photon. We introduce the following notations:

fI ;I 0gð�;�2Þ
�
Z 1þ�

�1þ�
dx1

Z 1þ�

�1þ�
dx2

Z 1þ�

�1þ�
dx3�ðx1þx2þx3�2�Þ

�
Z 1

0
dy1

Z 1

0
dy2

Z 1

0
dy3�ðy1þy2þy3�1Þ

�
�
2
X7
�¼1

fT�;T
0
�gþ

X14
�¼8

fT�;T
0
�g
�
;

C��i
ð4��sÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4��em

p
f2N

54f�
; (33)

and rewrite (31) as

M 	
s1s2 ¼ C

1

Q4
½S	

s1s2Ið�;�2Þ þ S0	
s1s2I

0ð�;�2Þ�: (34)

The expressions for the coefficients T� and T0
� for the

��p ! �0p channel are presented in the Table I of
Ref. [10]. The result for ��p ! �þn channel can be read
from the same table with the obvious changes:

Qu ! Qd; Qd ! Qu;

Vp; Ap; Tp ! Vn; An; Tn � �Vp;�Ap;�Tp;

Vp�0

1;2 ; Ap�0

1;2 ; Tp�0

1;2;3;4 ! Vp�þ
1;2 ; Ap�þ

1;2 ; Tp�þ
1;2;3;4:

(35)

We note that in Ref. [10] a somewhat inadequate parame-
trization of �N TDAs was employed. Within this parame-
trization, �N TDAs do not satisfy the polynomiality
property in its simple form due to the appearance of
kinematical singularities (see discussion in Ref. [12]). In
this paper, we adopt the parametrization suggested in [12]
in which polynomiality is explicit. The relation between
the two parameterizations is given by Eq. (A2).
As we note, xi and yi dependencies in coefficients T�

(T0
�) are factorized. One therefore anticipates that the con-

volution integrals in Eq. (31) have the following generic
structure3:

Z
d3xK�ðx1; x2; x3Þ½combination of �N TDAsðx1; x2; x3Þ�

Z
d3yR�ðy1; y2; y3Þ½combination of NDAsðy1; y2; y3Þ�:

(36)

K�ðx1; x2; x3Þ and R�ðy1; y2; y3Þ refer to parts of the singu-
lar convolution kernel in T� (T0

�) depending on xi and yi
respectively. These can be read from the Table I of
Ref. [10].
The convolution integrals in yi in (36) are similar to

those occurring within the perturbative description of the
nucleon electromagnetic form factor. The convolutions
with singular kernels R�ðy1; y2; y3Þ do not generate any
imaginary part since the nucleon DAs have purely ERBL
support and vanish at the borders of their domain of
definition. These integrals can be calculated in a straight-
forward way.
On the contrary, the convolution integrals in xi with �N

TDAs in (36) may, in principle, generate a nonzero imagi-
nary part of the amplitude. �N TDAs, indeed, do not
necessarily vanish on the cross over trajectories xi ¼ 0,
separating ERBL-like and DGLAP-like regimes, as well as
on the lines xi ¼ 2�.
Switching to quark-diquark coordinates (6), one may

show that the following types of convolution kernels K�

occur in (36):

Kð	;	Þ
I ðwi; viÞ ¼ 1

ðwi 	 �
 i0Þ
1

ðvi 	 �0
i 
 i0Þ ;

Kð�;	Þ
II ðwi; viÞ ¼ 1

ðwi � �þ i0Þ2
1

ðvi 	 �0
i 
 i0Þ :

Throughout the following discussion, we adopt the con-
vention that the first sign in the (	 ,	) index of a quantity
corresponds to the one in the w	 � denominator while the
second sign corresponds to the one in the v	 �0
denominator.

3Here � ¼ 1; . . . ; 14 should be understood as a label. No
summation over repeating � is implied.
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Thus, we have to deal with only two types of integrals:

Ið	;	Þ
I ð�Þ ¼

Z 1

�1
dw

Z 1�j���0j

�1þj���0j
dv

1

ðw	 �
 i0Þ
1

ðv	 �0 
 i0ÞHðw; v; �Þ; (37)

and

Ið�;	Þ
II ð�Þ ¼

Z 1

�1
dw

Z 1�j���0j

�1þj���0j
dv

1

ðw� �þ i0Þ2
1

ðv	 �0 
 i0ÞHðw; v; �Þ; (38)

for which we have to develop a method of calculation. The integration in (37) and (38) stands over the support (7) of �N
TDAs in quark-diquark coordinates.

Using the formulas summarized in Appendix C, we establish the expression for the real and imaginary parts of Ið	;	Þ
I ð�Þ:

ReIðþ;	Þ
I ð�Þ ¼ P

Z 1

�1
dw

1

ðwþ �ÞP
Z 1�j���0j

�1þj���0j
dv

1

ðv	 �0ÞHðw; v; �Þ 	 �2Hð��;
�; �Þ;

ReIð�;	Þ
I ð�Þ ¼ P

Z 1

�1
dw

1

ðw� �ÞP
Z 1�j���0j

�1þj���0j
dv

1

ðv	 �0ÞHðw; v; �Þ 
 �2Hð�; 0; �Þ;

ImIðþ;	Þ
I ð�Þ ¼ 
�P

Z 1

�1
dw

1

wþ �
Hðw;
�0; �Þ þ �P

Z 1

�1
dv

1

v	 �
Hð��; v; �Þ;

ImIð�;	Þ
I ð�Þ ¼ 
�P

Z 1

�1
dw

1

w� �
Hðw;
�0; �Þ � �P

Z 1��

�1þ�
dv

1

v
Hð�; v; �Þ:

(39)

Let us now consider the second type of integrals by rewrit-
ing it as

Ið�;	Þ
II ð�Þ ¼

Z 1

�1
dw

1

ðw� �þ i0Þ2
� f
i�Hðw;
�0; �Þ þ Jð	Þðw; �Þg; (40)

where we introduced the notation

Jð	Þðw; �Þ ¼ P
Z 1�j���0j

�1þj���0j
dv

1

v	 �0 Hðw; v; �Þ: (41)

Let us emphasize that in (40) we are dealing with con-
volution of the product of two generalized functions with
the test function Hðw; v; �Þ. In order to assign meaning to
this ill-defined expression as it is done in Eq. (40),

Hðw;
�0; �Þ and Jð	Þðw; �Þ and their first derivatives in
w should be continuous in the vicinity of w ¼ �. One can
check that these assumptions are justified by the use of the
spectral representation (17) with continuous input qua-
druple distributions vanishing at the borders of their
domain of definition.

We obtain the following contributions to the real and
imaginary parts of the amplitude from (40):

ReIð�;	Þ
II ð�Þ¼	�2

�
dHðw;
�0;�Þ

dw

�
w¼�

�2Jð	Þð�;�Þ

þP
Z 1

�1
dw

1

ðw��Þ
ðJð	Þðw;�Þ�Jð	Þð�;�ÞÞ

ðw��Þ ;

ImIð�;	Þ
II ð�Þ¼	2�Hð�;0;�Þ
�P

Z 1

�1
dw

1

ðw��Þ
�ðHðw;
�0;�Þ�Hð�;0;�ÞÞ

ðw��Þ
��

�
dJð	Þðw;�Þ

dw

�
w¼�

: (42)

The formulas for the calculation of the real and the

imaginary parts of Ið	;	Þ
I ð�Þ and Ið�;	Þ

II ð�Þ in the model
based on the factorized Ansatz for quadruple distributions
(20) with input from the soft-pion theorem at � ¼ 1 and
with the profile function h given by (24) are summarized in
Appendix D.
We are going now to present the results of calculation of

Ið�Þ in our composite model for �N TDAs of Sec. III. As
it was already pointed out, the coefficients T�, T

0
� (33),

which can be read from the Table I of Ref. [10], are defined
with respect to the alternative parametrization of �N
TDAs. The relation between that parametrization and the
one employed in the present paper is summarized in
Appendix A. Within the parametrization of Ref. [10],
Ið�Þ receives contributions only from �N TDAs
fV1; A1; T1; T4g½10� while I 0ð�Þ receives contributions only
from �N TDAs fV2; A2; T2; T3g½10�.
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One may establish the following relations for the spec-
tral part of �N TDA model based on the factorized Ansatz
(20) with input from the soft-pion theorem:

fV1; A1; T1g�Nðx1; x2; x3; �Þj½10�spectral part

¼ fV1; A1; T1g�Nðx1; x2; x3; �Þj½12� & this paper
spectral part (43)

and

fV2; A2; T2; T3; T4g�Nðx1; x2; x3; �Þj½10�spectral part ¼ 0: (44)

Now we consider the nucleon-pole part (28) of the two-
component model for �N TDAs

fV1; A1; T1g�Nðx1; x2; x3; �Þj½10�Nð940Þ

¼ 1� �

1þ �
fV1; A1; T1g�Nðx1; x2; x3; �Þj½12� & this paper

Nð940Þ ;

fV2; A2g�Nðx1; x2; x3; �Þj½10�Nð940Þ

¼ fV1; A1; T1g�Nðx1; x2; x3; �Þj½12� & this paper
Nð940Þ ;

ðT2 þ T3Þ�Nðx1; x2; x3; �Þj½10�Nð940Þ

¼ 2T�N
1 ðx1; x2; x3; �Þj½12� & this paper

Nð940Þ : (45)

Consequently, in our model, the following relation holds
for the nucleon pole contribution into I and I 0:

Re Ið�;�2ÞjNð940Þ ¼ 1� �

1þ �
ReI 0ð�;�2ÞjNð940Þ: (46)

On Fig. 5, we present the results in our model for the real
and imaginary parts of Ið�Þ for backward production of�0

(two upper panels) and �þ (two lower panels) off proton
showing separately the spectral part, the pole part and their
sum. The CZ phenomenological solution [9] for the nu-
cleon DA is used as the numerical input for our model. For
small � (� & 0:3� 0:5), the real part is dominated by the
contribution of the nucleon pole. The contribution of the
spectral part to the real part becomes relatively more
important for larger �. The nucleon pole contribution is
purely real. The appearance of a significant imaginary part
stemming from the spectral component of the model is a
distinctive feature of our approach. This is crucial for the
nonvanishing of the transverse target single spin asymme-
try for backward pion electroproduction discussed in
Sec. V.
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FIG. 5 (color online). Real and imaginary parts of Ið�Þ for ��p ! �0p and ��p ! �þn backward production as functions of �
computed in our two component model for �N TDAs. Dashed lines: nucleon pole contribution into ReIð�Þ; thin solid line: spectral
representation with input from the soft-pion theorem; solid line: sum of two contributions (for the real part).
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V. UNPOLARIZED CROSS SECTION AND
TRANSVERSE TARGET SINGLE SPIN
ASYMMETRY FOR BACKWARD PION

PRODUCTION

Let us first specify our conventions for the backward
pion electroproduction cross section. In the one photon
exchange approximation, the unpolarized cross section of
hard leptoproduction of a pion off a nucleon (1) can be
decomposed as follows [42]:

d4�

dsdQ2d’dt
¼ �emðs�M2Þ

4ð2�Þ2ðkL0 Þ2M2Q2ð1� "Þ
�

�
d�T

dt
þ "

d�L

dt
þ " cos2’

d�TT

dt

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2"ð1þ "Þ

p
cos’

d�LT

dt

�
; (47)

where ’ is the angle between the leptonic and hadronic
planes; s ¼ ðp1 þ qÞ2 � W2 and t ¼ ðp2 � p1Þ2 are the
Mandelstam variables; kL0 is the initial state electron energy
in the laboratory (LAB) frame (beam energy). " is the
polarization parameter of the virtual photon:

" ¼
�
1þ 2

ðkL0 � k0L0 Þ2 þQ2

Q2
tan2

�Le
2

��1
; (48)

where k0L0 is the energy of the final state electron in the

LAB frame and �Le is the electron scattering angle in the
LAB frame.

Within the suggested factorization mechanism for back-
ward pion leptoproduction, only the transverse cross sec-

tion d�T

dt receives a contribution at the leading twist level.

Using the explicit expression relating scattering ampli-
tudes of leptoproduction to those for virtual photoproduc-

tion (eq. (2.12) of Ref. [42]), we express d2�T

d��
in the center

of mass (CMS) system of the pion and final nucleon
through ��N ! N� helicity amplitudes M	

s1s2 defined in

(31):

d5�

dE0d�e0d��

¼ �� �ðs; m2;M2Þ
128�2sðs�M2Þ

� X
s1;s2

�
1

2
ðjM1

s1s2 j2 þ jM�1
s1s2 j2Þ þ . . .

�

¼ ��
�
d2�T

d��

þ . . .

�
: (49)

Here, �e0 is the differential solid angle for the scattered
electron in the LAB frame; �� is the differential solid
angle of the produced pion in N0� CMS frame (see Fig. 6
for the definition of angular variables); by dots, we denote
the subleading twist terms suppressed by powers of 1=Q;�
is the usual Mandelstam function

�ðx; y; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2 � 2xy� 2xz� 2yz

q
: (50)

� is the virtual photon flux factor in Hand’s convention [43]
given by

� ¼ �em

2�2

k0L0
kL0

s�M2

2MQ2

1

1� "
: (51)

Our present goal is to establish the expression for the LO
transverse cross section through the helicity amplitudes
defined in (34). We rewrite our formula (34) as

M s1s2
	 ¼ C

1

Q4
�Uðp2; s2Þ�HUðp1; s1Þ; (52)

where

�H ¼ �̂ð	Þ�5I � �̂ð	Þ �̂T

M
�5I 0: (53)

Let us now square the amplitude and sum over the trans-
verse polarizations of the virtual photon and over the spin
of outgoing nucleon:

jMs1
T j2¼jCj2 1

Q8

X
	T

Tr

�
�
ðp̂2þMÞ�H

1þ�5ŝ1
2

ðp̂1þMÞ�0�
y
H�0

�
: (54)

Let us first consider the traceX
	T

Trfðp̂2 þMÞ�Hðp̂1 þMÞ�0�
y
H�0g

¼�X
	T

��ð	Þ���ð	ÞTr
�
ðp̂2 þMÞ

�
���5I ��� �̂T

M
�5I 0

�

�ðp̂1 þMÞ
�
�5�

�I� ��5

�̂T

M
��ðI 0Þ�

��
: (55)
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FIG. 6 (color online). Kinematics of electroproduction of a
pion off a nucleon in the CMS frame of �� nucleon.
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We employ the relation

X
	T

��ð	Þ���ð	Þ ¼ �g�� þ 1

ðp � nÞ ðp
�n� þ p�n�Þ (56)

to sum over the transverse polarizations of the virtual
photon. We use the backward kinematics for the reaction
(1) summarized in [10]:

p1 � n ¼ 1þ �

2
; p1 � p ¼ M2

2ð1þ �Þ ;

p2 � n ¼ Oð1=Q2Þ; p2 � p ¼ Q2

4�
þOðQ0Þ:

(57)

Then for the part which is independent of the nucleon spin,
we get

X
	T

Trfðp̂2 þMÞ�Hðp̂1 þMÞ�0�
y
H�0g

¼ 2Q2ð1þ �Þ
�

jI j2 � 2Q2ð1þ �Þ
�

�2
T

M2
jI 0j2 þOðQ0Þ:

(58)

Now we turn to the nucleon spin dependent part of the
trace (54).

X
	T

Trfðp̂2 þMÞ�H�5ŝ1ðp̂1 þMÞ�0�
y
H�0g ¼

X
	T

��ð	Þ���ð	Þ
�
ðp̂2 þMÞ��ŝ1ðp̂1 þMÞ�5

�̂T

M
��

�
IðI 0Þ�

þX
	T

��ð	Þ���ð	Þ
�
ðp̂2 þMÞ�� �̂T

M
ŝ1ðp̂1 þMÞ�5�

�

�
I 0ðIÞ�

¼ 4
Q2ð1þ�Þ

M�
"ðn;p;s1;�TÞð�iIðI 0Þ� þ iI 0ðIÞ�Þ

¼�4
Q2ð1þ�Þ

�

j�Tj
M

j~s1j sinð’�’sÞImðI 0ðIÞ�Þ: (59)

In the last line of (59), we consider s1 as being purely
transverse and choose the reference frame so that s1 has
only an x-component. Then

"ðn; p; s1;�TÞ ¼ 1

2
j�Tjj ~s1j sinð’� ’sÞ; (60)

where ’ is the angle between the leptonic and hadronic
planes and ’s is the angle between the leptonic plane the
transverse target spin (see Fig. 6). We employ the conven-
tions in which "0123 ¼ 1 with �5 ¼ � i

4!"
������������.

Finally, we conclude that

jMs1
T j2 ¼ jCj2 1

Q6

ð1þ�Þ
�

�
jI j2 ��2

T

M2
jI 0j2

� 2
j�Tj
M

j~s1jImðI 0ðIÞ�Þ sin ~’
�
þOð1=Q8Þ; (61)

where ~’ � ’� ’s.
Hence, we establish the following formula for the LO

unpolarized cross section (49) through the coefficients I ,
I 0, introduced in (34):

d2�T

d��

¼ jCj2 1

Q6

�ðs; m2;M2Þ
128�2sðs�M2Þ

1þ �

�

�
jI j2 � �2

T

M2
jI 0j2

�
:

(62)

Within our kinematics

�2
T ¼ ð1� �Þð�2 � 2�ð M2

1þ� � m2

1��ÞÞ
1þ �

; (63)

where m is the pion mass.
On Fig. 7, we present our estimates for the unpolarized

cross section d2�T

d��
(62) of backward production of �0 and

�þ off protons for Q2 ¼ 10 GeV2 and u ¼ �0:5 GeV2 in
nb=sr as a function of xB.
We use the two component model for �N TDAs

presented in Secs. III and IV. In order to quantify the
sensitivity of our model prediction on the input nucleon
DAs, we show the cross section for the case of four
phenomenological solutions fitting the nucleon electro-
magnetic form factor: CZ [9] (solid lines), Chernyak-
Ogloblin-Zhitnitsky (COZ) [38] (dotted lines), King and
Sachrajda (KS) [44] (dashed lines), Gari and Stefanis (GS)
[45] (dash-dotted lines) and Braun, Lenz and Wittmann
next-to-next-to-leading order (BLW NNLO) [46,47]. The
magnitude of these cross sections is large enough for a
detailed investigation to be carried at high luminosity
experiments such as J-lab@12 GeV and EIC. We recall
that the scaling law for the cross section (62) is 1=Q8.
On the upper panel of Fig. 8, we show the Q2 depen-

dence of the unpolarized differential cross section of

J. P. LANSBERG et al. PHYSICAL REVIEW D 85, 054021 (2012)

054021-12



��p ! n�þ for fixed � ¼ 0:25 which is characteristic for
the J-lab kinematics and for �2

T ¼ 0. The plot exhibits the
expected universal 1=Q8 scaling behavior; the shape of�N
TDAs, indeed, affects only the overall normalization. On
the lower panel of Fig. 8, similarly to [48], we show instead
the same cross section as the function of Q2 for fixed
W ¼ 2:0 GeV and �2

T ¼ 0. Let us emphasize that the

scaling behavior in the latter case is shadowed due to the
fact that, for fixed W, the running of Q2 also imposes
variation of the scaling variable �.

Asymmetries, being ratios of the cross sections, are
less sensitive to perturbative corrections. Therefore, they
are usually considered to be more reliable to test
the factorized description of hard reactions. For the back-
ward pion electroproduction, an evident candidate is the
transverse target single spin asymmetry (STSA) [49] de-
fined as

A ¼ 1

j~s1j
�Z �

0
d ~’jMs1

T j2 �
Z 2�

�
d~’jMs1

T j2
�

�
�Z 2�

0
d~’jMs1

T j2
��1

¼ � 4

�

j�T j
M ImðI 0ðIÞ�Þ
jI j2 � �2

T

M2 jI 0j2
: (64)

As argued in Sec. IV, within the two component model for
�N TDAs, the nonvanishing of the numerator in the last
equality of (64) is achieved due to the interference of the
spectral part contribution into ImIð�Þ and of the nucleon
pole part contribution into ReI 0ð�Þ.
On Fig. 9, we show the result of our calculation of the

STSA for backward �0 and �þ electroproduction off
protons for Q2 ¼ 10 GeV2 and u ¼ �0:5 GeV2. CZ [9],
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FIG. 7 (color online). Unpolarized cross section d2�T

d��
(in nb=sr)

for backward ��p ! p�0 (upper panel) and for backward
��p ! n�þ (lower panel) as the function of xB computed in
the two component model for �N TDAs for Q2 ¼ 10 GeV2,
u ¼ �0:5 GeV2 as a function of xB. CZ [9] (solid lines), COZ
[38] (dotted lines), KS [44] (short dashes), GS [45] (dash-dotted
lines) and BLW NNLO [46,47] (long dashes) nucleon DAs were
used as inputs for our model.
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FIG. 8 (color online). Upper panel: unpolarized cross section
d2�T

d��
(in nb=sr) for backward ��p ! n�þ for fixed � ¼ 0:25 and

�2
T ¼ 0 as a function of Q2 in the two component model for �N

TDAs. Lower panel: unpolarized cross section d2�T

d��
(in nb=sr) for

backward ��p ! n�þ for fixed W ¼ 2:0 GeV and �2
T ¼ 0 as a

function of Q2 in the two component model for �N TDAs. CZ
[9] (solid lines), COZ [38] (dotted lines), KS [44] (short dashes),
GS [45] (dash-dotted lines) and BLW NNLO [46,47] (long
dashes) nucleon DAs are used as inputs for the model.
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COZ [38], KS [44] and GS [45] nucleon DAs are used as
phenomenological input for our model. We conclude that
STSA turns out to be sizable in the valence region. Its
measurement should therefore be considered as a crucial

test of the applicability of our collinear factorized scheme
for backward pion electroproduction.

VI. CONCLUSIONS

For the first time, we have managed to build a consistent
model of �N TDAs in their whole domain of definition. It
satisfies general constraints imposed by the underlying
QCD such as isospin symmetry, the Lorentz invariance
manifested through the polynomiality property of the
Mellin moments of �N TDAs in the light-cone momentum
fractions, as well as the chiral properties. We used this
model in the estimates of the unpolarized cross section and
the transverse target single spin asymmetry for backward
�þ and�0 electroproduction off protons. Our results make
us hope for bright experimental prospects for measuring
baryon to meson TDAs with high luminosity lepton beams
such as COMPASS, J-lab@ 12 GeV and EIC [50].
Experimental data from J-lab@ 6 GeV on backward �þ,
�0, � and ! meson production are currently being ana-
lyzed [51]. We eagerly wait for the first evidences of the
factorized picture for backward electroproduction reac-
tions as suggested in our approach.
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APPENDIX A: PARAMETRIZATION OF
LEADING TWIST �N TDAS

The parametrization of the leading twist-3 �N TDAs of
given flavor contents suggested in [12], which we employ
in this paper, reads

4ðP � nÞ3
Z �Y3

j¼1

d	j

2�

�
ei
P

3
k¼1

xk	kðP�nÞh�ðp�ÞjÔ���ð	1n; 	2n; 	3nÞjNðp1Þi

¼ �ðx1 þ x2 þ x3 � 2�Þi fN
f�M

½V�N
1 ðx1; x2; x3; �;�2ÞðP̂CÞ��ðP̂UÞ� þ A�N

1 ðx1; x2; x3; �;�2ÞðP̂�5CÞ��ð�5P̂UÞ�
þ T�N

1 ðx1; x2; x3; �;�2Þð�P�CÞ��ð��P̂UÞ� þ V�N
2 ðx1; x2; x3; �;�2ÞðP̂CÞ��ð�̂UÞ�

þ A�N
2 ðx1; x2; x3; �;�2ÞðP̂�5CÞ��ð�5�̂UÞ� þ T�N

2 ðx1; x2; x3; �;�2Þð�P�CÞ��ð���̂UÞ�
þ 1

M
T�N
3 ðx1; x2; x3; �;�2Þð�P�CÞ��ðP̂UÞ� þ 1

M
T�N
4 ðx1; x2; x3; �;�2Þð�P�CÞ��ð�̂UÞ��; (A1)

where f� is the pion weak decay constant and fN is a constant, which determines the value of the dimensional nucleon
wave function at the origin; U is the usual Dirac spinor and C is the charge conjugation matrix. We employ Dirac’s ‘‘hat’’
notation: â � ��a

� and adopt the conventions: ��� ¼ 1
2 ½��; ���; �v� � v��

��, where v� is an arbitrary 4-vector.
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FIG. 9 (color online). Transverse target single spin asymmetry
(64) for backward ��p" ! p�0 (upper panel) and for backward
��p" ! n�þ (lower panel) as a function of xB computed with
the two component model for �N TDAs for Q2 ¼ 10 GeV2,
u ¼ �0:5 GeV2 as a function of xB. We show the results of our
model with different input nucleon DAs: CZ (solid line), COZ
(dotted line), KS (short dashes), GS (dot dashed line) and BLW
NNLO (long dashes) used as input.
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The relation of the parametrization (A1) for �N TDAs to that of [10] is given by

fV1; A1; T1g�N½10� ¼
�

1

1þ �
fV1; A1; T1g�N � 2�

1þ �
fV2; A2; T2g�N

���������½12� & this paper
;

fV2; A2g�Nj½10� ¼
�
fV2; A2g�N þ 1

2
fV1; A1g�N

�
½12� & this paper

;

T�N
3 j½10� ¼ T�N

2

�����½12� & this paper
þ 1

2
T�N
1

�����½12� & this paper
;

T�N
2 j½10� ¼

�
1

2
T�N
1 þ T�N

2 þ T�N
3 � 2�T�N

4

���������½12� & this paper
;

T�N
4 j½10� ¼

�
1þ �

2
T�N
3 þ ð1þ �ÞT�N

4

���������½12� & this paper
:

(A2)

APPENDIX B: AN ALTERNATIVE FORM OF SPECTRAL REPRESENTATION FOR GPDS
AND BARYON TO MESON TDAS

1. GPD in the ERBL and DGLAP regions

From (11), one can derive the following expressions for GPD in the DGLAP and the ERBL regions:
(1) For �1 � x � �� (DGLAP 1 region):

Hðx;�Þ¼ 1

1��

Z ð1��þ2xÞ=ð1þ�Þ

�1
d�F

�
�;
�ð1þ�Þ�2x

1��

�
; (B1)

(2) For �� � x � � (ERBL region):

Hðx; �Þ ¼ 1

1� �

Z ð1��þ2xÞ=ð1þ�Þ

ð�1þ�þ2xÞ=ð1þ�Þ
d�F

�
�;

�ð1þ �Þ � 2x

1� �

�
; (B2)

(3) For � � x � 1 (DGLAP 2 region):

Hðx; �Þ ¼ 1

1� �

Z 1

ð�1þ�þ2xÞ=ð1þ�Þ
d�F

�
�;

�ð1þ �Þ � 2x

1� �

�
: (B3)

2. Set of working formulas for �N TDAs in the ERBL-like and DGLAP-like regions

In order to be able to compute �N TDAs from the spectral representation (19), we perform integrals over � and 	 with
the help of two �-functions. We omit the index i referring to the choice of quark-diquark coordinates in the formulas of this
Appendix.

The resulting domain of integration in (�, �) is defined by the inequalities:

�1 �� � 1;

� 1� �

2
�� � 1� �

2
;

�1þ �þ 2w

1þ �
�� � 1� �þ 2w

1þ �
;

�

2
� 1

1þ �

�
w� 2vþ 1� �

2

�
�� � ��

2
þ 1

1þ �

�
wþ 2vþ 1� �

2

�
:

(B4)

Below, we summarize the explicit expressions for �N TDAs from the spectral representation (19) in the ERBL-like and
DGLAP-like regions. Let us introduce the following notation for the integrand:

Fð. . . :Þ � F

�
�; �;

�ð1þ �Þ � 2w

1� �
;
�ð1þ �Þ � 2v

1� �

�
: (B5)
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(1) For w 2 ½�1;��� and v 2 ½�0; 1� �0 þ �� (DGLAP-like type I domain):

Hðw; v; �Þ ¼ 1

ð1� �Þ2
Z ð1�2vþwÞ=ð1þ�Þ

�1
d�

Z ð1��Þ=2

ð�=2Þ�1=ð1þ�Þðw�2vþð1��Þ=2Þ
d�Fð. . . :Þ (B6)

(2) For w 2 ½�1;��� and v 2 ½��0;�0� (DGLAP-like type II domain):

Hðw; v; �Þ ¼ 1

ð1� �Þ2
Z ð1��þ2wÞ=ð1þ�Þ

�1
d�

Z �ð�=2Þþ1=ð1þ�Þðwþ2vþð1��Þ=2Þ

ð�=2Þ�1=ð1þ�Þðw�2vþð1��Þ=2Þ
d�Fð. . . :Þ (B7)

(3) For w 2 ½�1;��� and v 2 ½�1þ �0 � �;��0� (DGLAP-like type I domain):

Hðw; v; �Þ ¼ 1

ð1� �Þ2
Z ð1þ2vþwÞ=ð1þ�Þ

�1
d�

Z �ð�=2Þþ1=ð1þ�Þðwþ2vþð1��Þ=2Þ

�ð1��Þ=2
d�Fð. . . :Þ: (B8)

(4) For w 2 ½��;�� and v 2 ½�0; 1� �þ �0� (DGLAP-like type II domain):

Hðw; v; �Þ ¼ 1

ð1� �Þ2
Z ð1�2vþwÞ=ð1þ�Þ

ð�1þ�þ2wÞ=ð1þ�Þ
d�

Z ð1��Þ=2

ð�=2Þ�1=ð1þ�Þðw�2vþð1��Þ=2Þ
d�Fð. . . :Þ: (B9)

(5) For w 2 ½��;�� and v 2 ½��0;þ�0� (ERBL-like domain):

Hðw; v; �Þ ¼ 1

ð1� �Þ2
Z ð1��þ2wÞ=ð1þ�Þ

ð�1þ�þ2wÞ=ð1þ�Þ
d�

Z �ð�=2Þþ1=ð1þ�Þðwþ2vþð1��Þ=2Þ

ð�=2Þ�1=ð1þ�Þðw�2vþð1��Þ=2Þ
d�Fð. . . :Þ:

(6) For w 2 ½��;�� and v 2 ½�1þ �� �0;��0� (DGLAP-like type II domain):

Hðw; v; �Þ ¼ 1

ð1� �Þ2
Z ð1þ2vþwÞ=ð1þ�Þ

ð�1þ�þ2wÞ=ð1þ�Þ
d�

Z �ð�=2Þþ1=ð1þ�Þðwþ2vþð1��Þ=2Þ

�ð1��Þ=2
d�Fð. . . :Þ: (B10)

(7) For w 2 ½�; 1� and v 2 ½��0; 1� �þ �0�, the result coincides with (B9) as it certainly should be, since this is the
part of the same DGLAP-like type II domain.

(8) For w 2 ½�; 1� and v 2 ½�0;��0� (DGLAP-like type II domain):

Hðw; v; �Þ ¼ 1

ð1� �Þ2
Z 1

ð�1þ�þ2wÞ=ð1þ�Þ
d�

Z ð1��Þ=2

�ð1��Þ=2
d�Fð. . . :Þ: (B11)

(9) For w 2 ½�; 1� and v 2 ½�1þ �� �0;�0�, the result coincides with (B10), since this is the part of the same
DGLAP-like type II domain.

APPENDIX C: ON THE RELEVANT
GENERALIZED FUNCTIONS

Sohotsky’s formula (see e.g. Chapter II of [52]) reads:

1

x	 i0
¼ 
i��ðxÞ þ P

1

x
; (C1)

where P stands for the Cauchy principal value prescrip-
tion. The generalized function P 1

x2
is then defined as

d
dxP

1
x ¼ �P 1

x2
. For an arbitrary test function ’ðxÞ,

�
P

1

x2
; ’ðxÞ

�
¼ P

Z
dx

’ðxÞ � ’ð0Þ
x2

: (C2)

Employing (C1) and (C2) one can establish the familiar
relation:

d

dx

1

x	 i0
¼ 
i��0ðxÞ � P

1

x2
: (C3)

The formula (C3) concerns the conventional generalized
functions dealing with the class of test functions defined on
(�1; 1) and sufficiently fast decreasing at the infinity. In
our case, we have to consider a different class of general-
ized functions dealing with the test functions defined on the
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interval ½A;B� (A < 0, B> 0 so that the singularity point
x ¼ 0 belongs to the interval). Let ’ðxÞ be a test function
defined on the interval ½A;B�. Then

Z B

A

�
d

dx

�
P
1

x

�
; ’ðxÞ

�

�
�
d

dx

�
P

1

x

�
; ’ðxÞ

�
½A;B�

¼ 1

x
’ðxÞjx¼B

x¼A � lim
�!0

�Z ��

A
þ
Z B

�

�
dx

’0ðxÞ
x

: (C4)

Let us consider the integral term at the right-hand side of
Eq. (C4):

lim
�!0

�Z ��

A
þ
Z B

�

�
dx

’0ðxÞ
x

¼ lim
�!0

�Z ��

A
þ
Z B

�

�
dx

d
dxð’ðxÞ�’ð0ÞÞ

x

¼1

x
ð’ðxÞ�’ð0ÞÞjx¼B

x¼AþP
Z B

A
dx

1

x

’ðxÞ�’ð0Þ
x

: (C5)

Thus we conclude that�
P

1

x2
; ’ðxÞ

�
½A;B�

� �
�
d

dx

�
P
1

x

�
; ’ðxÞ

�
½A;B�

¼ �’ð0Þ 1
x

��������
x¼B

x¼A
þP

Z B

A
dx

1

x

’ðxÞ � ’ð0Þ
x

: (C6)

So finally we establish the following relation:�
1

ðx	 i0Þ2 ; ’ðxÞ
�
½A;B�

¼ 	i�ð�0ðxÞ; ’ðxÞÞ½A;B�

þ
�
P

1

x2
; ’ðxÞ

�
½A;B�

¼ 
i�’0ð0Þ þ ’ð0Þ ðB� AÞ
AB

þ P
Z B

A
dx

1

x

’ðxÞ � ’ð0Þ
x

;

(C7)

that represents the version of (C3) adopted for the use on
the finite interval.

APPENDIX D: CALCULATION OF THE
CONVOLUTION INTEGRALS

In the calculation of ReIð	;	Þ
I ð�Þ and ReIð�;	Þ

II ð�Þ, we
encountered the following double principal value integrals:

P
Z 1

�1
dw

1

ðw	 �ÞP
Z 1�j���0j

�1þj���0j
dv

1

ðv	 �0ÞHðw; v; �Þ;
(D1)

P
Z 1

�1
dw

1

ðw� �Þ2 P
Z 1�j���0j

�1þj���0j
dv

1

ðv	 �0ÞHðw; v; �Þ:
(D2)

We propose here a strategy of computation of these
integrals once Hðw; v; �Þ is parameterized with the help
of the spectral representation (19) with the use of the
factorized Ansatz (20). The procedure generalizes the
way of proceeding with the principal value integrals
when computing the real part of the elementary DVCS
amplitude with GPDs parameterized through Radyushkin’s
factorized Ansatz. The following steps are to be per-
formed:
(1) By interchanging the order of integration in (D1)

and (D2), w and v integrals may be computed using
the two delta functions. One is left with four inte-
grations over the spectral parameters.

(2) After suitable change of variables, two principal
value integrations can be performed analytically.

(3) The double integration over the remaining two spec-
tral parameters is performed numerically. The cor-
responding integrands possess only logarithmic
singularities which are perfectly integrable. In this
way, we managed to reduce the problem of perform-
ing highly singular principal value integrals (D1)
and (D2) to much less singular integration. This
allows us to construct a stable and reliable numerical
procedure.

We present below the results for the principal value
integral (D1) for the case of the factorized Ansatz (20)
with the profile hð�;	Þ, given by Eq. (24).

P
Z 1

�1
dw

1

ðw	 �ÞP
Z 1�j���0j

�1þj���0j
dv

1

ðv	 �0ÞHðw; v; �Þ

¼ 60�ð	;	Þ

ð1� �Þ5
Z 1

�1
d�

Z ð1��Þ=2

�ð1��Þ=2
d�Z1ðað	;	Þð�; �; �Þ; bð	;	Þð�; �; �Þ; cð	Þð�; �ÞÞVð�; �Þ: (D3)

Here, � is the sign factor:

�ð	;þÞ ¼ 1; �ð	;�Þ ¼ �1: (D4)
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The coefficient functions að	;	Þ, bð	;	Þ are defined as follows:

að	;þÞð�; �; �Þ ¼ 1

2

�
1� �

2
þ �

�
ð1þ �Þ; að	;�Þð�; �; �Þ ¼ 1

2

�
1� �

2
� �

�
ð1þ �Þ; (D5)

bð�;þÞð�; �; �Þ ¼ � 1

2

�
1� �

2
� �

�
ð1þ �Þ; bð�;�Þð�; �; �Þ ¼ � 1

2

�
1� �

2
þ �

�
ð1þ �Þ;

bðþ;þÞð�; �; �Þ ¼ 2�� 1

2

�
1� �

2
� �

�
ð1þ �Þ; bðþ;�Þð�; �; �Þ ¼ 2�� 1

2

�
1� �

2
þ �

�
ð1þ �Þ:

(D6)

The first (second) sign in the indices of�ð	;	Þ, að	;	Þ, bð	;	Þ corresponds to that in thew	 � (v	 �0) denominator in (D1)
respectively. The coefficient functions cð	Þ are defined as

cð	Þð�; �Þ ¼ 1

2
ð�ð1þ �Þ þ ð1� �Þ 	 2�Þ: (D7)

The sign in the index corresponds to the one in the w	 � denominator of (D1).

The explicit expression for Z1ða; b; cÞ in (D3) reads:

Z1ða; b; cÞ ¼ � a3

6
þ ba2 þ 3ca2

2
� b2a

2
þ 3c2a

2
� b3

3
� c3

6
þ bc2 � b2c

2
þ

�
ab2

2
� ac2

2

�
log

�ðb� cÞ2
a2

�

�
�
a2c

2
� b2c

2

�
log

�ða� bÞ2
c2

�
þ abc

�
1

2
log

�
a2

b2

�
log

�ða� bÞ2
c2

�
� log

�
1� a

b

�
log

�
a2

b2

�
� 2Li2

�
a

b

�

þ log

�ðb� cÞ2
b2

�
log

�
c

b

�
þ 2Li2

�
1� c

b

��
;

(D8)

where Li2ðzÞ is the usual dilogarithm function

Li 2ðzÞ ¼ �
Z z

0
dz

logð1� zÞ
z

: (D9)

One may check, that for real a, b and c, no imaginary part appears in (D8) as it should be, since it is the result of integration
of a real function over a real interval. The imaginary part occurring from dilogarithms for a

b > 1 and c
b < 0 is exactly

canceled by the imaginary parts stemming from logarithms in the last line of (D8) due to the well known property of
dilogarithm:

Im ðLi2ðzþ i0ÞÞ ¼ �� logz for z > 1: (D10)

We now turn to the second principal value integral (D2). For the factorized Ansatz (20), with the profile hð�;	Þ, given
by Eq. (24) the result reads

P
Z 1

�1
dw

1

ðw� �Þ2 P
Z 1�j���0j

�1þj���0j
dv

1

ðv	 �0ÞHðw; v; �Þ

¼ 60�ð�;	Þ

ð1� �Þ5
Z 1

�0

d�
Z ð1��Þ=2

�ð1��Þ=2
d�Z2ðað�;	Þð�; �; �Þ; bð�;	Þð�; �; �Þ; cð�Þð�; �ÞÞVð�; �Þ

þ 60�ð�;	Þ

ð1� �Þ5
Z �0

�1
d�

Z ð1��Þ=2

�ð1��Þ=2
d� ~Z2ðað�;	Þð�; �; �Þ; bð�;	Þð�; �; �Þ; cð�Þð�; �ÞÞVð�; �Þ; (D11)

where �ð�;	Þ, að�;	Þ, bð�;	Þ, cð�Þ are given by (D4)–(D7) and �0 is defined by the equation cð�Þð�0; �Þ ¼ 0:

�0 ¼ �1þ 3�

1þ �
: (D12)
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The explicit expressions for Z2ða; b; cÞ and ~Z2ða; b; cÞ read

Z2ða; b; cÞ ¼ � 1

2
ða� bþ cÞð5aþ 3bþ cÞ þ ða� bÞc logðða� bÞ2Þ � acða logða2Þ � b logðb2ÞÞ

a� b

þ 1

2
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�
þ ab log

�
b2
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� 1
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b
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��
1� c

b
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2
�
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�
a

b

�
� 2Li2

�
1� c

b

��
;

~Z2ða; b; cÞ ¼ Z2ða; b; cÞ þ
�

1

a� b
þ 1

c

�
c

�
b2 � a2 þ ab log

�
a2

b2

��
: (D13)

To complete the calculation of the real and imaginary parts of Ið�;	Þ
II (42), we also present the explicit expression for

ðdHðw;
�0;�Þ
dw Þw¼� and ðdJð	Þðw;�Þ

dw Þw¼� (see Eq. (41)).

Using the formulas summarized in Appendix B 2 one may check that

�
dHðw;
�0; �Þ

dw

�
w¼�

¼ 1

ð1� �Þ3
Z 1

�0

d�
Z ð1��Þ=2

�ð1��Þ=2
d�4Vð�; �Þ
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�
�ð1þ �Þ � 2�

1� �
;
�ð1þ �Þ
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�

� 2hð1;0Þ
�
�ð1þ �Þ � 2�

1� �
;
�ð1þ �Þ
1� �

��
; (D14)

where hð1;0Þð�;	Þ � @
@� hð�;	Þ; hð0;1Þð�;	Þ � @

@	 hð�;	Þ and we use the fact that h vanishes at the border of its domain of
definition: hð�1; 	Þ ¼ 0.

Finally,

�
dJð	Þðw; �Þ

dw

�
w¼�

¼ 60�ð�;	Þ

ð1� �Þ5
Z 1

�0

d�
Z ð1��Þ=2

�ð1��Þ=2
d�Vð�; �ÞZ3ðað�;	Þð�; �; �Þ; bð�;	Þð�; �; �Þ; cð�Þð�; �ÞÞ; (D15)

where

Z3ða; b; cÞ ¼ ða� bÞðaþ bþ 2cÞ � aðbþ cÞ log
�
a2

b2

�
: (D16)
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