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2Dipartimento di Fisica, Università della Calabria, and Istituto Nazionale di Fisica Nucleare, Gruppo collegato di Cosenza,

I-87036 Arcavacata di Rende, Cosenza, Italy
3Bogolubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, UA-03680 Kiev, Ukraine

(Received 10 January 2012; published 14 March 2012)

Exclusive diffractive production of real photons and vector mesons in ep collisions has been studied at

HERA in a wide kinematic range. Here we present and discuss a Regge-type model of real photon

production (deeply virtual Compton scattering), as well as production of vector mesons treated on the

same footing by using an extension of a factorized Regge-pole model proposed earlier. The model has

been fitted to the HERA data. Despite the very small number of the free parameters, the model gives a

satisfactory description of the experimental data, both for the total cross section as a function of the photon

virtualityQ2 or the energyW in the center of mass of the ��p system, and the differential cross sections as

a function of the squared four-momentum transfer t with fixed Q2 and W.
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I. INTRODUCTION

Measurements of exclusive deep inelastic processes,
such as the production of a real photon or a vector meson,
processes known as deeply virtual Compton scattering
(DVCS) and vector meson production (VMP), respec-
tively, opened a new window in the study of the nucleon
structure in three dimensions, namely, in the virtuality Q2,
the energy W in the center of mass of the ��p system and
the squared momentum transfer t. The construction of
scattering amplitudes depending simultaneously on these
variables is a challenge for the theory and its knowledge is
necessary for the deconvolution of the relevant generalized
parton distributions (GPDs). These provide information on
parton distributions in the coordinate space and, in a more
restricted sense, the parton density in the two-dimensional
impact parameter space. They are complementary to the
linear momentum distribution in the variable x to give a
tomographic picture of the nucleon.

The aim of the present paper is to construct an explicit
model for the DVCS and VMP amplitudes depending on
the three independent variables Q2, W, and t. The am-
plitude should satisfy Regge behavior, scaling behavior,
be compatible with the quark counting rules, and fit the
experimental data on DVCS and VMP. In this paper we
extend a model on DVCS [1], published earlier by some
of the authors, to include VMP. Besides the similarities
between these two processes, there are also differences.
In a number of papers, Regge-pole models were success-
fully applied to VMP (for a review on VMP at HERA,
see Ref. [2]). The main problem is how the photon

virtuality Q2 enters the scattering amplitude. In
Ref. [3], the Q2 dependence is described via a general-
ization of the vector dominance model. According to
Donnachie and Landshoff [4,5], the Q2 evolution can
be effectively mimicked by a properly chosen factor in
front of the Regge-pole terms. Moreover the same au-
thors argue that HERA data on DVCS and VMP indicate
the existence of a soft and a hard Pomeron, whose
relative contributions change with the hardness of the
reaction, i.e. with the photon virtuality and the mass of
produced vector mesons.
The paper is organized as follows. In Sec. II we recall the

main features of the model. In Sec. III we illustrate our
fitting strategy and present the results of fits of our model to
experimental data on DVCS and VMP processes. In
Sec. IV there are our conclusions. Details of the calculation
of the integrated cross section with a nonlinear Pomeron
trajectory are given in the Appendix.

II. THE MODEL

A. Kinematics

The diagrams of the reactions in question, DVCS and
VMP processes, with a single-photon exchange, are shown
in Fig. 1. Since we are interested in the nucleon structure,
the precisely calculable electroweak vertex e��e� of
Fig. 1(a) and 1(b) can be factorized out. In the remaining
subprocess��p ! �ðVÞp, where�� is the incoming virtual
photon and the outgoing vector particle is a real photon
� [Fig. 1(a)] or a vector meson V [Fig. 1(b)], at high
energies, typical of the HERA experiments, the amplitude
is dominated by Regge exchanges, as shown in Fig. 1(c).
In the center of mass of the ��p system the three indepen-
dent variables of the reactions are, as said above, the vir-
tuality Q2 ¼ �q21, whose physical values are positive, the
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energy W ¼ ðp1 þ q1Þ, and squared momentum transfer
t ¼ ðq2 � q1Þ2. In the study of VMP it is customary
to combine the virtuality Q2 and the squared mass

of the produced vector particle M2
V as ~Q2 ¼ Q2 þM2

V .
Note that there is no proof for this relation—it is rather a
plausible assumption. Moreover, a weight factor might
enter the game, namely, we could perform the substitution
~Q2 ) c � ~Q2.
In Ref. [1] one further step was made, introducing a new

variable z through the combination

z ¼ t�Q2: (1)

The argument in favor of this relation is that both t and
�Q2 have the meaning of the squared momentum transfer
and are an indication of the softness/hardness of the
dynamics.

B. The amplitude

In Ref. [1] a simple factorized Regge-pole model
for DVCS was suggested and successfully fitted to the
HERA data. Here we extend the analysis to VMP pro-
cesses by using the main ideas of the model. The exten-
sion includes a more detailed analysis of the Q2 and M2

V

dependence on dynamics. Note that at the HERA energies
subleading (secondary Reggeon) contributions are negli-
gible, so that a Pomeron exchange can account for the
whole dynamics of the reaction. The Pomeron pole con-
tribution was defined in Ref. [1] on the following
grounds:

(i) it is a single and factorable Regge pole;
(ii) the dependence on the mass and virtuality of

the external particles enters via the relevant
residue functions, which means that the virtuality
Q2 and the produced vector meson mass enter
only via the upper residue on Fig. 1(c), V1, while
the Pomeron trajectory �ðtÞ is universal and
Q2-independent;

(iii) following dual models (see, for instance, Ref. [6]),
we introduce a t dependence in the residues that
enters solely in terms of the trajectory; and

(iv) the Pomeron trajectory has the form

�ðtÞ ¼ �0 � �1 lnð1� �2tÞ; (2)

where�i, i ¼ 0� 2, are the�ðtÞ-trajectory parame-
ters. This choice is unique for the trajectory, giving a
nearly linear behavior at small jtj, where�0 ¼ �1�2

is the forward slope, whereas at large jtj the ampli-
tude and the cross section obey scaling behavior
governed by the quark counting rule. In fact, the
logarithmic asymptotics of the trajectory is required
by the scaling of the fixed angle scattering amplitude
(see Refs. [1,7]), moreover it follows from perturba-
tive quantum chromodynamic (pQCD) calculations
(consider, for instance, the Balitsky-Fadin-Kuraev-
Lipatov (BFKL) theory [8]).

Figure 2 shows the comparison of our logarithmic tra-
jectory with a linear one, �0 þ �0t, where �0 ¼ 1:09 and
�0 ¼ 0:25 GeV�2 for the intercept and the slope, respec-
tively, typical of the soft processes [4], have been used. The
logarithmic asymptotics are important for physical rea-
sons: at large jtj the amplitude and the cross sections
obey scaling behavior governed by the quark counting
rules, as seen in hadronic reactions [7], where sufficiently
large values of jtj have been reached in pp and �pp scat-
tering, confirming the quark counting rules. More argu-
ments in favor of the logarithmic behavior in Q2 can be
found in Ref. [9]. This is expected in future measurements
[10], and should be implied, in DVCS and VMP as well.
The highQ2 region is governed by QCD evolution, and it is
beyond the scope of the Regge-pole models. In any case,
according to the Doksitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) evolution equation [11], the high Q2 behavior
must be tempered with respect to that given by the linear
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FIG. 2 (color online). Logarithmic vs linear trajectory as a
function of t.
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FIG. 1. Diagrams of (a) DVCS and (b) VMP; (c) DVCS
(VMP) amplitude in a Regge-factorized form.
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trajectory, and be closer to the logarithmic one, or maybe
even slower (double logarithmic?). This behavior was
studied in Ref. [12].

Neglecting spin, the invariant scattering amplitude with
a simple Regge-pole exchange, as shown in Fig. 1(c), can
be written as

Aðs; t; ~Q2Þ��p!�ðVÞp ¼ �A0V1ðt; ~Q2ÞV2ðtÞð�is=s0Þ�ðtÞ: (3)

Here A0 is a normalization factor, V1ðt; ~Q2Þ ¼ exp½b2�ðzÞ�
is the ��IP� vertex, V2ðtÞ ¼ exp½b1�ðtÞ� is the pIPp

vertex, with �ðzÞ and �ðtÞ being the exchanged Pomeron
trajectory in the photon vertex and in the proton vertex,
respectively.

Similarly to Ref. [13], in Ref. [1] for DVCS only the
helicity conserving amplitude was considered. For not too
large Q2 the contribution from longitudinal photons is
small (it vanishes for Q2 ¼ 0). Moreover, at high energies,
typical of the HERA collider, the amplitude is dominated
by the helicity conserving Pomeron exchange and, since
the final photon is real and transverse, the initial one is also
transverse. Electroproduction of vector mesons, discussed
in the present paper, requires one to take into account both
the longitudinal and transverse cross sections. For conve-
nience, and following the arguments based on duality (see
Ref. [1] and references therein), the t dependence of the
pIPp vertex V2 is introduced via the trajectory and a
generalization of this concept is applied also to the
��IP� vertex V1 which, however, apart from t, depends
also on Q2 through the trajectory

�ðzÞ ¼ �0 � �1 lnð1� �2zÞ; (4)

where �i, i ¼ 0� 2, are the �ðzÞ-trajectory parameters,
and �1�2 ¼ �0 is the forward slope of this trajectory.

Hence the scattering amplitude in Eq. (3) can be written
in the form

Aðs; t; ~Q2Þ��p!�ðVÞp ¼ �A0e
b2�ðzÞeb1�ðtÞð�is=s0Þ�ðtÞ: (5)

Although the model has many parameters, most of
them are constrained by plausible assumptions. First, we
fix the intercepts of both �ðtÞ and �ðzÞ to the value of 1.09.
The hardening of the dynamics with increasing ~Q2 may
be accounted for either by letting the intercept to be
~Q2-dependent, unacceptable by Regge factorization, or
by introducing one more hard component in the Pomeron

(still unique!) with a ~Q2-dependent residue, as suggested
e.g. in Refs. [5,14]. In any case, the trajectories and their
parameters are the same for DVCS and for VMP. The other
two parameters of the trajectories, �1 and �2 (�1 and �2)
are fixed in the following way: their product �0 ¼ �1�2

(�0 ¼ �1�2) is their forward slope, that we set equal to
the value �0 ¼ 0:25 GeV�2. Furthermore, since �1 � 2
from the quark counting rules (see Ref. [1]), we get
�2 ¼ �0=�1 ¼ 0:125 GeV�2. The same values are used
also for the correspondent �1�2 parameters of the
�ðzÞ-trajectory.
The parameter s0 is not fixed by the Regge-pole theory.

The nice and plausible relation s0 ¼ 1=�0 � ð1=4Þm2
p

follows from the hadronic string model [15]; other values,
however, cannot be excluded. We set, for sake of simplic-
ity, s0 ¼ m2

p � 1 GeV2.

Finally, we set the parameter b1 entering the proton
vertex [lower vertex of Fig. 1(c)] to b1 ¼ 2:0. In fact,
this (pIPp) vertex is known from the analysis of the pp
and �pp scattering to be of the form expðbtÞ, and an
estimate of b is b � 2 GeV�2 (see for this Ref. [16] and
references therein).
In Table I we summarize the values of all parameters

fixed following the arguments above. Thus, the only free
parameters we remain with are the parameter b2, entering
the photon vertex ��IP�ðVÞ, and the squared modulus of
the normalization factor, jA0j2.

C. Cross sections

Having fixed most of the parameters of the model as
explained above, from the amplitude (5) we can now
construct the physical quantities to be fitted to the experi-
mental data.
Notice that in this amplitude there is no room for sub-

leading trajectories’ (e.g. the f-trajectory) contribution,
because they are suppressed at the HERA energies [5].
This assumption has been confirmed by an exploratory fit
with an amplitude containing also an f-Reggeon contribu-
tion (�0 ¼ 0:5 and �0 ¼ 1 GeV�2). We found that the
f-Reggeon contribution is totally negligible.
The differential cross section d�ð��p ! �ðVÞpÞ=dt is

defined as

d�

dt
ð ~Q2;W; tÞ ¼ �

s2
jAð ~Q2;W; tÞj2: (6)

The slope of the differential cross section as a function
of t is given by

Bð ~Q2; W; tÞ ¼ d

dt
lnjAð ~Q2; W; tÞj2: (7)

The total cross section can be approximated [17] as
follows:

TABLE I. Values of fixed parameters of our model.

�0 ¼ �0 �1 ¼ �1 �2 ¼ �2 [GeV�2] s0 [GeV2] b1 �0 ¼ �0 [GeV�2] M2
V [GeV2]

1.09 2.00 0.125 1.00 2.00 0.25 M2
� ¼ 0; M2

�;�;...;
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�ðs; ~Q2Þ ¼
Z tthreshold��4m2

p

tmin��s=2
dt

d�ðs; t; ~Q2Þ
dt

�
�

1

Bðs; t; ~Q2Þ
d�ðs; t; ~Q2Þ

dt

�
t¼0

¼ jA0j2�e2�0ðb1þb2Þ

½b1 þ lnðs=s0Þ�ð1þ �2
~Q2Þ þ b2

� ðs=s0Þ2�0

2�0s2ð1þ �2
~Q2Þ2b2�1�1

: (8)

Expression (8) was obtained in the limit s ! 1.
Alternatively, the integral can be analytically calculated;
this is done in the Appendix and the result is [see
Eq. (A4)]

�ðs; ~Q2Þ ¼ K

�� 1 2F1ð2b2�1; �� 1;�;��2
~Q2Þ; (9)

where

K ¼ �jA0j2
�2s

2
e2�0ðb1þb2Þðs=s0Þ2�0 ; (10)

� ¼ 2�1½b1 þ b2 þ lnðs=s0Þ�: (11)

Performing an exploratory fit, both expressions for the total
cross sections lead to results consistent with each other.
This means that the main contribution to the total cross
section comes from the region close to t ¼ 0. We decided
to use the exact analytical expression in the fit procedure.

TABLE II. Values of the two free parameters jA0j, b2, and ~	2, from the two-parameter fit of
the total cross section to data from Refs. [18,20,21] of ��p ! �p as a function of Q2 and fixed
W. The average value of b2 was found to be: hb2i ¼ 0:690� 0:021.

�ð��p�>�pÞðQ2Þ
Collaboration Years W [GeV] jA0j½nb�1=2 b2 ~	2

H1 04–07 82 0:164� 0:012 0:641� 0:055 1.1

H1 96–00 82 0:162� 0:011 0:656� 0:069 0.7

ZEUS ðe�Þ 96–00 89 0:177� 0:013 0:703� 0:091 0.6

ZEUS ðeþÞ 96–00 89 0:170� 0:005 0:596� 0:026 0.4

ZEUS 99–00 104 0:209� 0:010 0:769� 0:077 3.3
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FIG. 3 (color online). The behavior according to our model of ��p ! �p total cross section as a function of Q2 is compared with
data from Refs. [18,20,21] measured by the H1 and ZEUS Collaborations for several values of W. The shaded bands are calculated
accordingly with the uncertainties on the free parameter jA0j.
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III. FITTING STRATEGYAND RESULTS

In the present paper the differential and the total cross
sections have been fitted to the HERA data on DVCS
[18–21] and electroproduction of vector mesons �0

[22,23], � [22,24], ! [25], and J=� [26,27]. The fit on

�ð ~Q2Þ is the most sensitive to the parameter b2 and gives a

precise estimation of it. For these reasons, we first

performed preliminary fits of the total cross section as a

function of ~Q2 at fixed W, to HERA data on DVCS and

VMP collected by the H1 and ZEUS Collaborations,

in order to get weighted average values for b2. Then,

keeping b2 fixed to these average values, we performed
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TABLE III. Values of the free parameter jA0j and ~	2 from the
fit to data from Refs. [18,20,21] of ��p ! �p total cross section
as a function of Q2 for fixed values of W and of hb2i ¼ 0:690�
0:021.

�ð��p�>�pÞðQ2Þ
Collaboration Years W [GeV] jA0j½nb�1=2 ~	2

H1 04–07 82 0:172� 0:006 1.0

H1 96–00 82 0:165� 0:008 0.6

ZEUS ðe�Þ 96–00 89 0:176� 0:006 0.4

ZEUS ðeþÞ 96–00 89 0:183� 0:005 1.1

ZEUS 99–00 104 0:204� 0:009 3.3

TABLE IV. Values of the free parameter jA0j and ~	2 from the
fit to data from Refs. [18,19,21] of ��p ! �p integrated cross
section as a function of W for fixed values of Q2.

�ð��p�>�pÞðWÞ
Collaboration Years Q2½GeV2� jA0j½nb�1=2 ~	2

H1 05–06 8 0:163� 0:008 6.0

ZEUS 99–00 2.4 0:240� 0:008 1.7

ZEUS 99–00 3.2 0:222� 0:007 3.8

ZEUS 96–00 6.2 0:181� 0:007 1.0

ZEUS 96–00 9.6 0:173� 0:007 3.2

ZEUS 96–00 9.9 0:170� 0:010 2.9

ZEUS 96–00 18.0 0:182� 0:010 1.9
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one-parameter fits to the data for�ðQ2Þ,�ðWÞ, and d�=dt,
the only free parameter being the normalization A0.

A. DVCS

Experimental data for the fits are taken from
Refs. [18–21]. The exploratory fit to determine the
weighted average value of b2 gives globally a rather

satisfactory result, which is shown in Table II. Here and
in the following tables, ~	2 means 	2=d:o:f.
Having fixed the parameter b2 to the weighted average

value 0.690(21), all subsequent fits are performed with
only jA0j as a free parameter. In Figs. 3 and 4 and
Tables III and IV we present the result for the total cross
section as a function of Q2 at fixed W and as a function of
W at fixedQ2, respectively, while in Fig. 5 and Table V we

TABLE V. Values of the free parameter jA0j and ~	2 from the fit to data from Ref. [20] of
��p ! �p differential cross section as a function of t for fixed values of Q2 and W.

�ð��p�>�pÞðtÞ
Collaboration Years W [GeV] Q2½GeV2� jA0j½nb�1=2 ~	2

H1 04–07 40 10 0:122� 0:007 1.5

H1 04–07 70 10 0:157� 0:003 0.3

H1 04–07 82 8 0:168� 0:006 0.8

H1 04–07 82 15.5 0:161� 0:004 0.3

H1 04–07 82 25 0:163� 0:008 0.4

H1 04–07 100 10 0:185� 0:003 0.2

H1 05–06 40 8 0:118� 0:0128 2.2

H1 05–06 40 20 0:109� 0:005 0.3

H1 05–06 70 8 0:146� 0:012 1.8

H1 05–06 70 20 0:150� 0:005 0.4

H1 05–06 100 8 0:181� 0:008 0.5

H1 05–06 100 20 0:171� 0:008 0.4

ZEUS 99–00 104 3.2 0:204� 0:018 0.9

TABLE VI. Values of the two free parameters jA0j, b2, and ~	2, from the two-parameter fit to
data from Refs. [22,23] of total cross section of ��p ! �0p as a function ofQ2 and fixedW. The
average value of b2 was found to be hb2i ¼ 1:087� 0:025.

�ð��p�>�0pÞðQ2Þ
Collaboration Years W [GeV] jA0j½nb�1=2 b2 ~	2

H1 96–00 75 0:887� 0:017 1:091� 0:025 1.5

ZEUS 96–00 90 0:916� 0:030 1:084� 0:044 7.5
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FIG. 6 (color online). The behavior according to our model of the ��p ! �0p total cross section as a function of Q2 is compared
with data from Refs. [22,23] measured by the H1 and ZEUS Collaborations for fixed values of W. The shaded bands are calculated
accordingly with the uncertainties on the free parameter jA0j.
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present the results for the differential cross section. The

result appears fairly good, except for high value of Q2, for

which we can observe some discrepancy between experi-

mental data and our description.

B. Exclusive vector meson electroproduction
(��p ! Vp)

To describe vector meson production we used the
same model as for DVCS. We considered exclusive
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FIG. 7 (color online). The behavior according to our model of the ��p ! �0p total cross section as a function ofW is compared with
data from Refs. [22,23] measured by the H1 and ZEUS Collaborations for several values of Q2. The shaded bands are calculated
accordingly with the uncertainties on the free parameter jA0j.

TABLE VII. Values of the free parameter jA0j and ~	2 from the fit to data from Refs. [22,23] of
��p ! �0p total cross section as a function of Q2 for fixed values of W.

�ð��p�>�0pÞðQ2Þ
Collaboration Years W [GeV] jA0j½nb�1=2 ~	2

H1 96–00 75 0:885� 0:013 1.4

ZEUS 96–00 90 0:918� 0:021 6.8
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FIG. 8 (color online). The behavior of ��p ! �0p differential cross section as a function of t is compared with data from
Refs. [22,23] measured by the H1 and ZEUS Collaborations for several values of Q2 and W. The shaded bands are calculated
accordingly with the uncertainties on the free parameter jA0j.

TABLE VIII. Values of the free parameter jA0j and ~	2 from the fit to data from Ref. [22] of
��p ! �0p integrated cross section as a function of W for fixed values of Q2.

�ð��p�>�0pÞðWÞ
Collaboration Years Q2 [GeV2] jA0j½nb�1=2 ~	2

H1 96–00 3.3 0:916� 0:036 3.1

H1 96–00 6.6 0:837� 0:027 2.1

H1 96–00 11.9 0:883� 0:021 0.7

H1 96–00 19.5 0:937� 0:054 4.2

H1 96–00 35.6 1:082� 0:112 3.7

ZEUS 96–00 2.4 1:023� 0:018 1.2

ZEUS 96–00 3.7 0:946� 0:023 4.0

ZEUS 96–00 6.0 0:837� 0:017 2.2

ZEUS 96–00 8.3 0:854� 0:024 4.5

ZEUS 96–00 13.5 0:866� 0:026 5.8

ZEUS 96–00 32.0 1:109� 0:053 3.9
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electroproduction of �0, �, !, and J=� mesons. In VMP,
contrary to DVCS, apart from transversely polarized pho-
ton amplitude, the longitudinal component is also impor-
tant. We have performed a fit for each reaction separately,
applying the same strategy as in DVCS, using the same set
of fixed parameters. First, leaving as free parameters the
normalization jA0j and b2, through a preliminary fit we
have determined the weighted average value of the parame-
ter b2 for each process. Then we have fitted our model to
the data having only jA0j as a free parameter to be deter-
mined by the fit. From the results one can see how the

weighted average value of the parameter b2 of the Regge
pole in the ��IP� vertex obviously depends on the specific
reaction.

1. ��p ! �0p

Experimental data for the fits are taken from
Refs. [22,23]. The exploratory fit to determine the
weighted average value of b2 is shown in Table VI.
All subsequent fits are performed with only jA0j as

a free parameter (see Table VII). The results for the total
cross section as a function of Q2 at fixed W and as a

TABLE IX. Values of the free parameter jA0j and ~	2 from the fit to data from Ref. [22] of
��p ! �0p differential cross section as a function of t for fixed values of Q2 and W.

�ð��p�>�0pÞðtÞ
Collaboration Years W [GeV] Q2 [GeV2] jA0j½nb�1=2 ~	2

H1 96–00 75 3.3 0:885� 0:048 5.1

H1 96–00 75 6.6 0:801� 0:039 5.0

H1 96–00 75 11.5 0:872� 0:030 1.1

H1 96–00 75 17.4 0:847� 0:022 0.7

H1 96–00 75 33 0:901� 0:023 0.4

ZEUS 96–00 90 2.7 1:002� 0:038 4.3

ZEUS 96–00 90 5.0 0:867� 0:026 2.8

ZEUS 96–00 90 7.8 0:824� 0:025 2.4

ZEUS 96–00 90 11.9 0:834� 0:019 1.1

ZEUS 96–00 90 19.7 0:946� 0:016 0.4

ZEUS 96–00 90 41.0 1:166� 0:050 0.4

TABLE X. Values of the two free parameters jA0j, b2, and ~	2, from the two-parameter fit to
data from Refs. [22,24] of total cross section of ��p ! �p as a function of Q2 and fixed values
of W. The average value of b2 was found to behb2i ¼ 1:131� 0:033.

�ð��p�>�pÞðQ2Þ
Collaboration Years W [GeV] jA0j½nb�1=2 b2 ~	2

H1 96–00 75 0:390� 0:010 1:155� 0:044 0.9

ZEUS 98–00 75 0:433� 0:011 1:110� 0:050 2.6
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FIG. 9 (color online). The behavior of ��p ! �p total cross section as a function of Q2 is compared to data from Refs. [22,24]
measured by the H1 and ZEUS Collaborations for W ¼ 75 GeV. The shaded bands are calculated accordingly with the uncertainties
on the free parameter jA0j.
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FIG. 10 (color online). The behavior of ��p ! �p total cross section as a function of W is compared to data from Refs. [22,24]
measured by the H1 and ZEUS Collaborations for several values of Q2. The shaded bands are calculated accordingly with the
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TABLE XI. Values of the free parameter jA0j and ~	2 from the fit to data from Refs. [22,24] of
��p ! �p total cross section as a function of Q2 and fixed value of W.

�ð��p�>�pÞðQ2Þ
Collaboration Years W [GeV] jA0j½nb�1=2 ~	2

H1 96–00 75 0:387� 0:008 0.8

ZEUS 96–00 75 0:435� 0:010 2.3

TABLE XII. Values of the free parameter jA0j and ~	2 from the fit to data from Ref. [22] of
��p ! �p integrated cross section as a function of W for fixed values of Q2.

�ð��p�>�pÞðWÞ
Collaboration Years Q2 [GeV2] jA0j½nb�1=2 ~	2

H1 96–00 3.3 0:397� 0:013 0.9

H1 96–00 6.6 0:362� 0:017 1.7

H1 96–00 15.8 0:423� 0:026 2.1

ZEUS 96–00 2.4 0:462� 0:010 1.1

ZEUS 96–00 3.8 0:431� 0:009 0.8

ZEUS 96–00 6.5 0:401� 0:007 0.4

ZEUS 96–00 13.0 0:470� 0:009 0.4
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function of W at fixed Q2 are, respectively, shown in
Figs. 6 and 7, and Tables VII and VIII. The results for
the differential cross section as a function of t are shown in
Fig. 8 and Table IX.

2. ��p ! �p

Experimental data for the fits are taken from
Refs. [22,24]. The exploratory fit to determine the
weighted average value of b2 is shown in Table X.
All subsequent fits are performed with only jA0j as a free

parameter (see Table XII). The results for the total cross
section as a function of Q2 at fixed W and as a function of
W at fixedQ2 are, respectively, shown in Figs. 9 and 10 and
Tables XI and XII. The results for the differential cross
section as a function of t are shown in Figs. 11 and 12 and
Table XIII.
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FIG. 11 (color online). The behavior according to our model of ��p ! �p differential cross section as a function of t is compared
with data from Ref. [22] measured by the H1 Collaboration for several values of Q2 and W. The shaded bands are calculated
accordingly with the uncertainties on the free parameter jA0j.
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TABLE XIII. Values of the free parameter jA0j and ~	2 from
the fit to data from Ref. [22] of ��p ! �p differential cross
section as a function of t for fixed values of Q2 and W.

�ð��p�>�pÞðtÞ
Collaboration Years W [GeV] Q2 [GeV2] jA0j½nb�1=2 ~	2

H1 96–00 75 3.3 0:396� 0:026 3.2

H1 96–00 75 6.6 0:358� 0:019 2.1

H1 96–00 75 15.8 0:329� 0:024 2.1

ZEUS 98–00 75 0.0 0:438� 0:015 2.0
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FIG. 13 (color online). The behavior according to our model of ��p ! !p total cross section as a function ofQ2 (left) andW (right)
is compared with data from Ref. [25] measured by the ZEUS Collaboration at fixed values of W and Q2, respectively. The shaded
bands are calculated accordingly with the uncertainties on the free parameter jA0j.
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TABLE XIV. Values of the free parameter jA0j and ~	2 from the fit to data from Ref. [25] of
��p ! !p total cross section as a function of Q2 for fixed value of W.

�ð��p�>!pÞðQ2Þ
Collaboration Years W [GeV] jA0j½nb�1=2 ~	2

ZEUS 96–97 80 0:273� 0:012 0.3

TABLE XV. Values of the free parameter jA0j and ~	2 from the fit to data from Ref. [25] of
��p ! !p total cross section as a function of W for fixed value of Q2.

�ð��p�>!pÞðWÞ
Collaboration Years Q2 [GeV2] jA0j½nb�1=2 ~	2

ZEUS 96–97 7.0 0:265� 0:022 0.5
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FIG. 14 (color online). The behavior according to our model of ��p ! J=cp total cross section as a function of Q2 is compared
with data from Refs. [26,27] measured by the H1 and ZEUS Collaborations for W ¼ 90 GeV. The shaded bands are calculated
accordingly with the uncertainties on the free parameter jA0j.

TABLE XVI. Values of the two free parameters jA0j, b2, and ~	2, from the two-parameter
fit to data from Refs. [26,27] of the total cross section of ��p ! J=cp as a function of Q2 and
fixed W. The average value of b2 was found to be hb2i ¼ 0:890� 0:033.

�ð��p�>J=cpÞðQ2Þ
Collaboration Years W [GeV] jA0j½nb�1=2 b2 ~	2

H1 99–00 90 0:855� 0:031 0:898� 0:033 0.4

ZEUS 98–00 90 0:853� 0:040 0:879� 0:035 0.7

TABLE XVII. Values of the free parameter jA0j and ~	2 from the fit to data from Refs. [26,27]
of the ��p ! J=cp total cross section as a function of Q2 for fixed value of W.

�ð��p�>J=cpÞðQ2Þ
Collaboration Years W [GeV] jA0j½nb�1=2 ~	2

H1 99–00 90 0:857� 0:013 0.4

ZEUS 98–00 90 0:875� 0:014 0.6
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3. ��p ! !p

Experimental data for the fits are taken from Ref. [25].
There only two sets of data have been published by the
ZEUS Collaboration, one at fixedW, the other at fixed Q2.

No data for the differential cross section as a function of t
are available. The results for the total cross section as a

function ofQ2 at fixedW and as a function ofW at fixedQ2

are, respectively, shown in Fig. 13 and Tables XIVand XV.

 60  80  100  120  140

σ(
γ*

 p
 →

 J
/ψ

 p
) 

[n
b]

W [GeV]

H1 99-00

Q2 = 3.2 GeV2

 10

 60  80  100  120  140

σ(
γ*

 p
 →

 J
/ψ

 p
) 

[n
b]

W [GeV]

H1 99-00

Q2 = 7.0 GeV2

 10

 60  80  100  120  140

σ(
γ*

 p
 →

 J
/ψ

 p
) 

[n
b]

W [GeV]

H1 99-00
Q2 = 22.4 GeV2

 100

 60  80  100  120  140  160

σ(
γ*

 p
 →

 J
/ψ

 p
) 

[n
b]

W [GeV]

ZEUS 98-00
Q2 = 0.4 GeV2

 40  60  80  100  120  140  160  180

σ(
γ*

 p
 →

 J
/ ψ

 p
) 

[n
b]

W [GeV]

ZEUS 98-00
Q2 = 3.1 GeV2

 10

 40  60  80  100  120  140  160  180

σ(
γ*

 p
 →

 J
/ψ

 p
) 

[n
b]

W [GeV]

ZEUS 98-00
Q2 = 6.8 GeV2

 10

 40  60  80  100  120  140  160  180  200

σ(
γ *

 p
 →

 J
/ψ

 p
) 

[n
b]

W [GeV]

ZEUS 98-00
Q2 = 16.0 GeV2

FIG. 15 (color online). The behavior according to our model of ��p ! J=cp total cross section as a function ofW is compared with
data from Refs. [26,27] measured by the H1 and ZEUS Collaborations for several values of Q2. The shaded bands are calculated
accordingly with the uncertainties on the free parameter jA0j.

TABLE XVIII. Values of the free parameter jA0j and ~	2 from the fit to data from Ref. [27] of
��p ! J=cp total cross section as a function of W for fixed values of Q2.

�ð��p�>J=cpÞðWÞ
Collaboration Years Q2 [GeV2] jA0j½nb�1=2 ~	2

H1 99–00 3.2 0:790� 0:037 1.3

H1 99–00 7.0 0:768� 0:050 1.4

H1 99–00 22.4 0:916� 0:044 0.7

ZEUS 98–00 0.4 0:867� 0:111 4.0

ZEUS 98–00 3.1 0:840� 0:043 2.1

ZEUS 98–00 6.8 0:844� 0:033 1.4

ZEUS 98–00 16.0 0:815� 0:078 5.8
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4. ��p ! J=cp

Experimental data for the fits are taken from
Refs. [26,27]. The exploratory fit to determine the
weighted average value of b2 gives a result which is shown
in Table XVI.

All subsequent fits are performed with only jA0j as
a free parameter (see Table XVII). The result for the total
cross section as a function of Q2 at fixed W and as a
function of W at fixed Q2 are, respectively, shown in
Figs. 14 and 15 and Tables XVII and XVIII. The results
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FIG. 16 (color online). The behavior according to our model of ��p ! J=cp differential cross section as a function of t is compared
with data from Refs. [26,27] measured by the H1 and ZEUS Collaborations for several values ofQ2 and fixedW. The shaded bands are
calculated accordingly with the uncertainties on the free parameter jA0j.

TABLE XIX. Values of the free parameter jA0j and ~	2 from the fit to data from Ref. [27] of
��p ! J=cp differential cross section as a function of t for fixed values of Q2 and W.

�ð��p�>J=cpÞðtÞ
Collaboration Years W [GeV] Q2 [GeV2] jA0j½nb�1=2 ~	2

H1 99–00 90 0.05 0:860� 0:035 5.1

H1 99–00 90 3.2 0:778� 0:066 4.1

H1 99–00 90 7.0 0:710� 0:083 4.3

H1 99–00 90 22.4 0:861� 0:090 3.0

ZEUS 98–00 90 3.1 0:868� 0:031 0.9

ZEUS 98–00 90 6.8 0:841� 0:033 2.9

ZEUS 98–00 90 6.8 0:824� 0:049 3.3

ZEUS 98–00 90 16.0 0:863� 0:023 0.5
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for the differential cross section as a function of t are
shown in Fig. 16 and Table XIX.

IV. CONCLUSIONS AND OUTLOOKS

In this paper we have revised and extended the model
of Ref. [1] to include, apart from DVCS, vector meson
production as well. The basic features of the model here
remain intact, but the fitting procedure has changed. On
one hand, the parameters entering the Pomeron trajectory
and the coefficient b1 in the residue of the proton (pIPp)
vertex are the same for DVCS and VMP processes. In
particular, the parameter b1 is known, due to Regge
factorization, from pp and �pp scattering and set to the
value b1 ¼ 2:0, related to the proton radius. On the other
hand, the normalization parameter A0 and the coefficient
b2 in the residue of the photon ��IP� vertex are different
for each reaction we considered in this paper (production
of a real � or �, �, !, and J=� vector mesons). In
particular, for each reaction the parameter b2 first has
been fitted to the existing sets of experimental data on
the total cross section as a function of the virtuality Q2,
then it has been fixed to the average value among those
obtained from the fits. Consequently, fits to experimental
data on differential cross section and total cross section as
a function of the energy W have been performed, the
normalization A0 being the only free parameter. All ex-
perimental data used in the fitting procedure were selected
by the H1 and ZEUS Collaborations as diffractive ones;
therefore there is no place for any secondary (nonleading)
Regge contribution, the Pomeron trajectory being the only
t channel contribution, and hence the often-used notion of
an effective trajectory, in this paper means the genuine
Pomeron.

It is always instructive to compare the Pomeron trajec-
tory deduced from DVCS and VMP production data with
that extracted from hadronic scattering. Since the Pomeron
trajectory is universal and the precision of the high-energy
pp and �pp data exceeds those of DVCS or VMP, it makes
sense to use for it values of parameters resulting from fits to
the former data.

Here we come to the important question of how
many Pomerons exist in nature. Our answer is that there
is only one Pomeron and it is universal, which does not
mean that it is simple. Moreover, it may have more com-
ponents, whose relative weights are governed by their
residue.

By assuming the universality of the Pomeron trajectory
in lepton-hadron and hadron-hadron reactions, one expects
the effect of its nonlinearity to be visible also in pp
scattering, say in the intersecting storage rings (ISR) en-
ergy region comparable to typical HERA energies. Indeed,
as shown in a series of papers [28], the flattening of the
differential cross section of pp scattering beyond the dip,
fitted by Donnachie and Landshoff by a power t�n can
equally well be attributed by the logarithmic behavior of

the Pomeron trajectory, mimicking this hard power
behavior.
In the present paper we adopted the simple case of a soft

Pomeron. The presence of another hard component here
was not considered. The delicate interplay of soft and hard
components (in a single Pomeron) is governed by the
external masses and virtualities in the residues as shown
in Ref [5]. We intend to come back to this point in a
forthcoming study. As expected, our model leads to results

on the whole satisfactory for moderate values of ~Q2 and jtj.
Instead, without a hard component in the Pomeron, fits to

the data for high ~Q2 and jtj definitely deteriorate.
Finally, let us come back to one of the main ingredients

of the model we considered in the present paper, namely, to
the variable z ¼ t�Q2. This is an unusual combination of
the squared momentum transfer t and virtuality Q2; it does
not follow from the theory, although it appears also e.g. in
the expression for the slope BðQ2; tÞ in Refs. [29,30]. These
two variables not only have similar dimensions, but have
also close physical meanings, so we could say that high
values of the variable z are correlated with a hard compo-
nent in the Pomeron.
In fact, as seen from Fig. 2, our nonlinear Pomeron

trajectory, in the region�1:0< t < 0 GeV2 does not differ
significantly from the linear one e.g. in Ref. [4]. The use of
the nonlinear trajectories is motivated: (1) conceptually, by
the expected large-jtj scaling behavior (not reached yet
experimentally) and (2) by the large-Q2 data, already
experimentally accessible.
In the spirit of the Regge-pole theory, we have taken into

account Regge factorization of the lower vertex and the
propagator by keeping them t-dependent only, while the
upper ��IP� vertex depends also onQ2. At the same time,
considering the Regge exchange as an effective one, one
must not respect this factorization since the corresponding
effective amplitude absorbs various Regge exchanges
anyway.
Since the H1 and ZEUS data, both on DVCS and VMP,

are well within the Regge kinematical region, we used the
Regge-factorized form, according to which the scattering
amplitude corresponding to the exchange of a single
Regge trajectory is the product of the two vertices and
the Pomeron propagator. Actually, the sum of different
Regge-pole exchanges often is comprised in a single ef-
fective pole, which however should not be confused with a
true Regge pole.
Most of our figures presenting the W dependence of

the various channels underestimate the high-energy tail
of the data. In our opinion, this is strong evidence in favor
of a Pomeron having two components, hard and soft,

their relative weights depending on ~Q2, as advocated in
Ref. [5]. The presence of a hard component, with a
Pomeron intercept as high as 1.3–1.4 will require unitar-
ization. In a forthcoming study, based on Regge-ometry
[14], we plan to extend the model to high values of Q2 and
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jtj by introducing a hard component in the single universal
Pomeron.

Our final comment is that our model should be used as a
guide in building explicit expressions for general parton
distributions.
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APPENDIX

Here we present the calculation of the integrated cross
section with the nonlinear trajectory given in Eqs. (2) and
(4) and entering the amplitude (5). The cross section is
defined as

�ðs; ~Q2Þ ¼
Z �4m2

p

�s=2
dt

d�ðs; t; ~Q2Þ
dt

: (A1)

In the limit of very high energy (s ! 1) and negligible
proton mass it becomes

�ðs; ~Q2Þ ¼
Z 1

0
dt

d�ðs; t; ~Q2Þ
dt

; (A2)

where the change t ! �t has been applied.
Substituting the expression (6) for the differential cross

section, usingEq. (5) for the amplitude, andwith the replace-
ment x ¼ �2t, this cross section assumes the form [31]

�ðs; ~Q2Þ ¼
Z 1

0
dxð1þ xÞ��þ
ð�þ xÞ�


¼ KBð�� 1; 1Þ2F1ð
;�� 1;�; 1� �Þ; (A3)

with

K ¼ �jA0j2
�2s

2
e2�0ðb1þb2Þðs=s0Þ2�0 ; � ¼ 1þ �2

~Q2;


 ¼ 2b2�1; � ¼ 2�1½b1 þ b2 þ lnðs=s0Þ�> 1:
Here Bð�� 1; 1Þ ¼ 1=ð�� 1Þ is our beta function

and 2F1ð
;�� 1;�; 1� �Þ is the Gauss hypergeometric
function. Then our final expression for the integrated cross
section is

�ðs; ~Q2Þ ¼ K

�� 1 2F1ð
;�� 1;�; 1� �Þ: (A4)
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