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The form factors of weak decays of the Bmeson to orbitally excited scalar, axial vector, and tensor light

mesons are calculated in the framework of the QCD-motivated relativistic quark model based on the

quasipotential approach. Relativistic effects are systematically taken into account. The form factors are

expressed through the overlap integrals of the meson wave functions, and their dependence on the

momentum transfer is self-consistently determined in the whole kinematical range. On this basis semi-

leptonic and two-body nonleptonic B decay rates to orbitally excited light mesons are calculated. Good

agreement of the obtained predictions with available experimental data is found.
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I. INTRODUCTION

Recently significant experimental progress has been
achieved in studying weak decays of B mesons into light
mesons [1]. Many new decay modes have been measured,
including nonleptonic decays involving excited light me-
sons [2–5]. In Ref. [6] we investigated semileptonic
B decays to the ground-state � and � mesons in the
framework of the relativistic quark model based on the
quasipotential approach in QCD. The peculiar feature
of the heavy-to-light weak decays is the very broad kine-
matical range in which the recoil momentum of the final
light meson is significantly larger than the mass of the
light meson except for the small region near the point of
zero recoil. Therefore, it is very important to take into
account all relevant relativistic effects and determine
the decay form factors without any extrapolations or
additional parametrizations. Weak decay form factors
were self-consistently calculated [6] in the whole acces-
sible kinematical range. It was found that both the behavior
of the form factors on momentum transfer and differential
and total semileptonic decay rates agree well with the
rather precise experimental data. This allowed us to deter-
mine the Cabibbo-Kobayashi-Maskawa (CKM) matrix
element Vub.

In this paper we further extend our analysis for the
consideration of the weak semileptonic and two-body non-
leptonic B decays to the orbitally excited light mesons. We
calculate the corresponding decay form factors, paying
special attention to a consistent account of all relativistic
effects and determination of the form factor dependence on
the momentum transfer in the whole accessible kinematical
range. For calculations we use masses and wave functions
of orbitally excited light mesons which were previously
studied by us in Ref. [7]. Table I quotes a comparison of
our predictions for the P-wave light unflavored mesons
with experimental data [1]. Results for scalar a0, f0, spin
triplet (3P1) axial vector a1, f1, spin singlet (1P1) axial
vector b1, h1, and tensor a2, f2 mesons are presented. Our

model predicts [7] light scalar meson masses heavier than
1 GeV. The scalar mesons below 1 GeVare well described
as the light tetraquarks, composed from the light scalar
diquarks and antidiquarks [8]. From Table I we see that the
calculated mass of the scalar q �q state 13P0 is significantly

lower than the mass of the experimentally observed
a0ð1450Þ meson. Our model predicts that this state is also
the tetraquark composed from the axial vector diquark and
antidiquark with the mass 1480 MeV [8]. Nevertheless,
for the purpose of comparison, we assume here that the
lightest scalar q �q state corresponds to the a0ð1450Þ meson,
and we test this assumption by confronting the obtained
predictions for the B decays involving this meson with
available experimental data and results of the different
theoretical investigations based on quark models, sum
rules, light-cone sum rules, and perturbative QCD.
Therefore, the study of weak B decays involving light
scalars is an important problem, since it can help to reveal
their real nature.
The calculated weak decay form factors are used for

the evaluation of the semileptonic B decay branching
fractions. Then they are employed for studying the two-
body nonleptonic B decays using the factorization
approach. Such approximation significantly simplifies
calculations, since it expresses the matrix elements of the
weak Hamiltonian responsible for the nonleptonic decays
through the product of the transition matrix elements and
meson decay constants. Comparison of the obtained results
with experimental data, which are mostly available for the
nonleptonic B decays involving light axial vector mesons
[3,4], can help in testing this approach and discriminating
between different models for form factors.

II. RELATIVISTIC QUARK MODEL

In the quasipotential approach a meson is described as a
bound quark-antiquark state with a wave function satisfy-
ing the quasipotential equation of the Schrödinger type,
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where the relativistic reduced mass is

�R ¼ E1E2

E1 þ E2

¼ M4 � ðm2
1 �m2

2Þ2
4M3

; (2)

and E1, E2 are the center of mass energies on mass shell
given by

E1 ¼ M2 �m2
2 þm2

1

2M
; E2 ¼ M2 �m2

1 þm2
2

2M
: (3)

Here M ¼ E1 þ E2 is the meson mass, m1;2 are the quark

masses, and p is their relative momentum. In the center of
mass system the relative momentum squared on mass shell
reads

b2ðMÞ ¼ ½M2 � ðm1 þm2Þ2�½M2 � ðm1 �m2Þ2�
4M2

: (4)

The kernel Vðp;q;MÞ in Eq. (1) is the quasipotential
operator of the quark-antiquark interaction. It is con-
structed with the help of the off-mass-shell scattering
amplitude, projected onto the positive energy states.
Constructing the quasipotential of the quark-antiquark in-
teraction, we have assumed that the effective interaction is
the sum of the usual one-gluon exchange term with the
mixture of long-range vector and scalar linear confining
potentials, where the vector confining potential contains
the Pauli interaction. The quasipotential is then defined
by [7]

Vðp;q;MÞ ¼ �u1ðpÞ �u2ð�pÞV ðp;q;MÞu1ðqÞu2ð�qÞ; (5)

with

V ðp;q;MÞ ¼ 4
3�sD��ðkÞ��

1 �
�
2 þ VV

confðkÞ��
1 �2;�

þ VS
confðkÞ;

where �s is the QCD coupling constant, D�� is the gluon

propagator in the Coulomb gauge,

D00ðkÞ ¼ � 4�

k2
;

DijðkÞ ¼ � 4�

k2

�
�ij � kikj

k2

�
;

D0i ¼ Di0 ¼ 0;

(6)

and k ¼ p� q. Here �� and uðpÞ are the Dirac matrices

and spinors,

u�i ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	iðpÞ þmi

2	iðpÞ

s
1
�p

	iðpÞþmi

 !

�; (7)

where� and 
� are Pauli matrices and spinors and 	iðpÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

i

q
. The effective long-range vector vertex is

given by

��ðkÞ ¼ �� þ i�

2m
���k

�; (8)

where � is the Pauli interaction constant characterizing
the long-range anomalous chromomagnetic moment of
quarks. Vector and scalar confining potentials in the non-
relativistic limit reduce to

VV
confðrÞ ¼ ð1� "ÞðArþ BÞ; VS

confðrÞ ¼ "ðArþ BÞ;
(9)

reproducing

VconfðrÞ ¼ VS
confðrÞ þ VV

confðrÞ ¼ Arþ B; (10)

where " is the mixing coefficient.
The expression for the quasipotential of the heavy quar-

konia, expanded in v2=c2, can be found in Ref. [9]. The
quasipotential for the heavy quark interaction with a light
antiquark without employing the nonrelativistic (v=c) ex-
pansion is given in Refs. [7,10]. All the parameters of our
model-like quark masses, parameters of the linear confin-
ing potential A and B, mixing coefficient ", and anomalous
chromomagnetic quark moment � are fixed from the analy-
sis of heavy quarkonium masses and radiative decays [9].
The quark masses mb ¼ 4:88 GeV, mc ¼ 1:55 GeV,
ms ¼ 0:5 GeV, mu;d ¼ 0:33 GeV, and the parameters of

the linear potential A ¼ 0:18 GeV2 and B ¼ �0:30 GeV
have values inherent for quark models. The value of the
mixing coefficient of vector and scalar confining potentials
" ¼ �1 has been determined from the consideration of the
heavy quark expansion for the semileptonic B ! D decays
[11] and charmonium radiative decays [9]. Finally, the
universal Pauli interaction constant � ¼ �1 has been fixed
from the analysis of the fine splitting of heavy quarkonia
3PJ states [9] and the heavy quark expansion for semi-
leptonic decays of heavy mesons [11] and baryons [12].
Note that the long-range magnetic contribution to the
potential in our model is proportional to ð1þ �Þ and thus
vanishes for the chosen value of � ¼ �1 in accordance
with the flux tube model.

TABLE I. Predicted [7] and measured masses of the P-wave
light (q ¼ u, d) unflavored mesons (in MeV).

Theory Experiment [1]

n2Sþ1LJ JPC q �q I ¼ 1 Mass I ¼ 0 Mass

13P0 0þþ 1176 a0 1474(19) f0 1200–1500

13P1 1þþ 1254 a1 1230(40) f1 1281.8(6)

13P2 2þþ 1317 a2 1318.3(6) f2 1275.1(12)

11P1 1þ� 1258 b1 1229.5(3.2) h1 1170(20)

D. EBERT, R. N. FAUSTOV, AND V.O. GALKIN PHYSICAL REVIEW D 85, 054006 (2012)

054006-2



III. MATRIX ELEMENTS OF THE
ELECTROWEAK CURRENT

In order to calculate the exclusive semileptonic decay
rate of the B meson, it is necessary to determine the
corresponding matrix element of the weak current between
meson states. In the quasipotential approach, the matrix
element of the weak current JW� ¼ �q��ð1� �5Þb, associ-
ated with the b ! q transition, between a B meson with
mass MB and momentum pB and a final P-wave light
meson F with mass MF and momentum pF takes the
form [13]

hFðpFÞjJW� jBðpBÞi ¼
Z d3pd3q

ð2�Þ6
��FpF

ðpÞ��ðp;qÞ�BpB
ðqÞ;
(11)

where ��ðp;qÞ is the two-particle vertex function and

�MpM
are the meson (M ¼ B, F) wave functions projected

onto the positive energy states of quarks and boosted to the
moving reference frame with momentum pM.

The contributions to ��ðp;qÞ come from Figs. 1 and 2.

The leading order vertex function �ð1Þ
� ðp;qÞ corresponds to

the impulse approximation, while the vertex function

�ð2Þ
� ðp;qÞ accounts for contributions of the negative-energy

states. Note that the form of the relativistic corrections

emerging from the vertex function �ð2Þ
� ðp;qÞ explicitly

depends on the Lorentz structure of the quark-antiquark
interaction. In the leading order of the v2=c2 expansion for

B and F only �ð1Þ
� ðp;qÞ contributes, while �ð2Þ

� ðp;qÞ

contributes at the subleading order. The vertex functions
look like

�ð1Þ
� ðp;qÞ ¼ �uqðpqÞ��ð1� �5ÞubðqbÞð2�Þ3�ðp �q � q �qÞ;

(12)

and

�ð2Þ
� ðp;qÞ ¼ �uqðpqÞ �u �qðp �qÞ

�
�1�ð1� �5

1Þ

� �ð�Þ
b ðkÞ

	bðkÞ þ 	bðpqÞ�
0
1V ðp �q � q �qÞ

þV ðp �q � q �qÞ �ð�Þ
q ðk0Þ

	qðk0Þ þ 	qðqbÞ
� �0

1�1�ð1� �5
1Þ
�
ubðqbÞu �qðq �qÞ; (13)

where the superscripts ‘‘(1)’’ and ‘‘(2)’’ correspond to
Figs. 1 and 2, the subscripts q, �q, b are the quark indices,
k ¼ pq ��, k0 ¼ qb þ�, � ¼ pF � pB, and

�ð�Þ
i ðpÞ ¼ 	iðpÞ � ðmi�

0 þ �0ð�pÞÞ
2	iðpÞ :

Here the quark momenta are expressed through relative
momenta q and p as follows [13]:

pqð �qÞ ¼ 	qð �qÞðpÞ pF

MF

�X3
i¼1

nðiÞðpFÞpi;

qbð �qÞ ¼ 	bð �qÞðqÞ pB

MB

�X3
i¼1

nðiÞðpBÞqi;

and nðiÞ are three four-vectors given by

nðiÞ�ðpÞ ¼
�
pi

M
; �ij þ pipj

MðEþMÞ
�
; E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q
:

The wave function of a final P-wave F meson at rest is
given by

�FðpÞ � �JM
Fð2Sþ1PJÞ

ðpÞ ¼ YJM
S c Fð2Sþ1PJÞðpÞ; (14)

where J and M are the total meson angular momentum
and its projection, while S ¼ 0, 1 is the total spin.
c Fð2Sþ1PJÞðpÞ is the radial part of the wave function, which
has been determined by the numerical solution of Eq. (1) in

[7,10]. The spin-angular momentum part YJM
S has the

following form:

YJM
S ¼ X

�1�2

h1M��1 ��2; S�1 þ�2jJMi

�
�
1

2
�1;

1

2
�2jS�1 þ�2

�
YM��1��2

1 
1ð�1Þ
2ð�2Þ:
(15)

Here hj1m1; j2m2jJMi are the Clebsch-Gordan coeffi-
cients, Ym

l are spherical harmonics, and 
ð�Þ (where

� ¼ �1=2) are spin wave functions,

FIG. 1. Lowest order vertex function �ð1Þ
� ðp;qÞ contributing to

the current matrix element (11).

FIG. 2. Vertex function �ð2Þ
� ðp;qÞ taking the quark interaction

into account. Dashed lines correspond to the effective potential
V in (5). Bold lines denote the negative-energy part of the quark
propagator.
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ð1=2Þ ¼ 1
0

� �
; 
ð�1=2Þ ¼ 1

0

� �
:

It is important to note that the wave functions entering
the weak current matrix element (11) are not in the rest
frame, in general. For example, in the B meson rest frame
(pB ¼ 0), the final meson is moving with the recoil mo-
mentum �. The wave function of the moving meson �F�

is connected with the wave function in the rest frame
�F0 � �F by the transformation [13]

�F�ðpÞ ¼ D1=2
q ðRW

L�
ÞD1=2

�q ðRW
L�
Þ�F0ðpÞ; (16)

where RW is the Wigner rotation, L� is the Lorentz boost
from the meson rest frame to a moving one, and the

rotation matrixD1=2
q ðRÞ in spinor representation is given by

1 0
0 1

� �
D1=2

q ðRW
L�
Þ ¼ S�1

q ðpqÞSqð�ÞSqðpÞ; (17)

where

SqðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	qðpÞ þmq

2mq

vuut �
1þ �p

	qðpÞ þmq

�

is the usual Lorentz transformation matrix of the four-
spinor.

IV. FORM FACTORS OF THE SEMILEPTONIC
B DECAYS TO THE ORBITALLY EXCITED

LIGHT MESONS

The matrix elements of the weak current JW� ¼
�b��ð1� �5Þq for B decays to orbitally excited scalar light

mesons (S) can be parametrized by two invariant form
factors [14]:

hSðpFÞj �q��bjBðpBÞi ¼ 0;

hSðpFÞj �q���5bjBðpBÞi ¼ fþðq2Þðp�
B þ p

�
F Þ

þ f�ðq2Þðp�
B � p

�
F Þ; (18)

where four-momentum transfer q ¼ pB � pF, and MS is
the scalar meson mass.

The matrix elements of the weak current for B decays to
the spin triplet (3P1) axial vector mesons (AV) can be
expressed in terms of four invariant form factors [14],

hAðpFÞj �q��bjBðpBÞi ¼ ðMB þMAÞhV1
ðq2Þ	��

þ½hV2
ðq2Þp�

B þ hV3
ðq2Þp�

F �
	� �q
MB

;

(19)

hAðpFÞj �q���5bjBðpBÞi ¼ 2ihAðq2Þ
MB þMA

	����	��pB�pF�;

(20)

where MA and 	� are the mass and polarization vector of
the axial vector meson. The matrix elements of the weak

current for B decays to the spin singlet (1P1) axial vector
mesons are obtained from Eq. (19) by the replacement of
the set of form factors hiðq2Þ by giðq2Þ (i ¼ V1, V2, V3, A).
The matrix elements of the weak current for B decays to

tensor mesons (T) can be decomposed into four Lorentz-
invariant structures [14],

hTðpFÞj �q��bjBðpBÞi ¼ 2itVðq2Þ
MB þMT

	����	���
p�
B

MB

pB�pF�;

(21)

hTðpFÞj �q���5bjBðpBÞi
¼ ðMB þMTÞtA1

ðq2Þ	��� pB�

MB

þ ½tA2
ðq2Þp�

B þ tA3
ðq2Þp�

F �	��
p�
Bp


B

M2
B

; (22)

where MT and 	�� are the mass and polarization tensor of
the tensor meson.
The general structure of the current matrix element (11)

is rather complicated, since it is necessary to integrate with
respect to both d3p and d3q. We calculate exactly the

contribution of the leading vertex function �ð1Þ
� ðp;qÞ given

by Eq. (12) to the transition matrix element of the weak
current (11) using the � function. As a result, the contri-

bution of �ð1Þ
� ðp;qÞ to the current matrix element has the

usual structure of an overlap integral of meson wave func-
tions and can be calculated exactly in the whole kinemati-
cal range. The calculation of the subleading contribution

�ð2Þ
� ðp;qÞ is significantly more difficult. The heavy quark is

present in the initial B meson only. Therefore, the expan-
sion in its inverse powers retains the dependence on the
relative momentum in the energy of the final light quark.
Such dependence does not allow one to perform one of
the integrals in the decay matrix element (11) using the
quasipotential equation. However, the final light meson has
a large recoil momentum [� � pF � pB, j�maxj ¼
ðM2

B �M2
FÞ=ð2MBÞ � 2:5 GeV] almost in the whole kine-

matical range except the small region near q2 ¼ q2max

(j�j ¼ 0). This also means that the recoil momentum of
the final meson is large with respect to the mean relative
quark momentum jpj in the meson (�0:5 GeV). Thus one
can neglect jpj compared to j�j in the final light quark

energy 	qðpþ�Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

q þ ðpþ�Þ2
q

, replacing it by

	qð�Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

q þ�2
q

in expressions for the �ð2Þ
� ðp;qÞ.

This replacement removes the relative momentum depen-
dence in the energy of the light quark and thus permits us to

perform one of the integrations in the �ð2Þ
� ðp;qÞ contribu-

tion using the quasipotential equation. This contribution is
relatively small, since it is proportional to the binding
energy in the meson. To demonstrate this observation, we

show in Fig. 3 leading hð1ÞA ðq2Þ and subleading hð2ÞA ðq2Þ
terms of the form factor hAðq2Þ as an example.
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Contributions of such terms to other form factors are
similar. Therefore, application of heavy quark and large
recoil energy expansions and the extrapolation of the sub-
leading contribution to the small recoil region introduces
minor errors. Similar calculations for the weak B decays to
light ground-state mesons were made in Ref. [6]. There it
was shown that such extrapolation introduces uncertainties

from the vicinity of zero recoil q2 ¼ q2max of less than 1%.
It is important to emphasize that calculating the form
factors, we consistently take into account all relativistic
contributions, including the boosts of the meson wave
functions from the rest reference frame to the moving
ones, given by Eq. (16). Recently, we performed a similar
calculation of the weak form factors for the transitions of
Bc mesons to the orbitally excited mesons [14]. Since in
this calculation the spectator charmed quark was treated
without the 1=mc expansion and the final active quark was
considered to be light in the framework of the approach
described above, we can use, for the present calculation,
the expressions for the decay form factors given in the
Appendix of Ref. [14], with obvious replacements. In the
limits of infinitely heavy quark mass and large recoil
energy of the final meson, these form factors satisfy all
heavy quark symmetry relations [15,16].
For numerical evaluations of the form factors we use the

quasipotential wave functions of the Bmeson and orbitally
excited light mesons obtained in [7,10]. Our results for the
masses of these mesons are given in Table I. With the
exception of the a0 meson, they are in good agreement
with available experimental data [1].
In Fig. 4 we plot form factors of the weak B transitions to

the isovector P-wave light mesons (scalar a0, axial vector
a1 and b1, tensor a2). The calculated values of these form

h A

h A
1

h A
2
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0.0
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0.8
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1.2

FIG. 3 (color online). The form factor hAðq2Þ of the B ! a1
weak transition with leading hð1ÞA ðq2Þ and subleading hð2ÞA ðq2Þ
contributions.
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FIG. 4 (color online). Form factors of the B decays to the P-wave light mesons.
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factors at q2 ¼ 0, several intermediate points, and q2 ¼
q2max � ðMB �MFÞ2 are given in Table II. Since we do not
distinguish between isovector and isoscalar mesons, the
form factors for the corresponding weak decays involving
isoscalar mesons coincide with the isovector ones up to the

factor 1=
ffiffiffi
2

p
, which comes from the flavor function of the

light neutral meson. As it was argued above, the main
source of the uncertainties of our form factor calculations
originates from the subleading terms (13). We can conser-
vatively estimate the error arising from the application of
the heavy quark expansion and the extrapolation of the
subleading contributions to the small recoil region to be
less than 1% in the interval q2 ¼ 0–14 GeV2 and to be less
than 4% for the interval q2 ¼ 14 GeV2–q2max.

These form factors can be approximated with good
accuracy by the following expressions: (a) Fðq2Þ ¼
fþðq2Þ, f�ðq2Þ, hAðq2Þ, hV3

ðq2Þ, gV1
ðq2Þ, gV2

ðq2Þ,
gV3

ðq2Þ, tVðq2Þ, tA1
ðq2Þ, tA2

ðq2Þ, tA3
ðq2Þ,

Fðq2Þ ¼ Fð0Þ
ð1þ �1

q2

M2
B

þ �2
q4

M4
B

þ �3
q6

M6
B

þ �4
q8

M8
B

Þ
; (23)

(b) Fðq2Þ ¼ hV1
ðq2Þ, hV2

ðq2Þ, gAðq2Þ,

Fðq2Þ ¼ 2Fð0Þ � Fð0Þ
ð1þ �1

q2

M2
B

þ �2
q4

M4
B

þ �3
q6

M6
B

þ �4
q8

M8
B

Þ
;

(24)

where the values Fð0Þ are given in Table II and the values
�i (i ¼ 1, 2, 3, 4) are given in Table III.1 In the next
sections we apply the obtained form factors for the calcu-
lation of semileptonic and nonleptonic B decays involving
orbitally excited light mesons.

V. SEMILEPTONIC B DECAYS TO ORBITALLY
EXCITED LIGHT MESONS

The differential decay rate for the B meson decay to
P-wave light mesons reads [17]

d�ðB ! FðS; AV; TÞl ��Þ
dq2

¼ G2
F

ð2�Þ3 jVubj2 �
1=2ðq2 �m2

l Þ2
24M3

Bq
2

�
�
HHy

�
1þ m2

l

2q2

�
þ 3m2

l

2q2
HtH

y
t

	
; (25)

where GF is the Fermi constant, Vub is the CKM
matrix element, � � �ðM2

B;M
2
F; q

2Þ ¼ M4
B þM4

F þ q4 �
2ðM2

BM
2
F þM2

Fq
2 þM2

Bq
2Þ, ml is the lepton mass, and

HHy � HþH
y
þ þH�Hy� þH0H

y
0 : (26)

The helicity components H�, H0, and Ht of the hadronic
tensor are expressed through the invariant form factors.

TABLE II. Calculated values of the form factors of the B decays to the P-wave light mesons at q2 ¼ 0, several intermediate points,
and q2 ¼ q2max � ðMB �MFÞ2.

B ! a0 B ! a1 B ! b1 B ! a2
q2 fþ f� hA hV1

hV2
hV3

gA gV1
gV2

gV3
tV tA1

tA2
tA3

0 0.27 �0:66 �0:46 �0:20 0.17 0.74 �0:04 �0:04 �0:05 �0:29 �0:29 �0:16 �0:01 �0:01
2.5 0.31 �0:71 �0:51 �0:20 0.16 0.84 �0:04 �0:04 �0:08 �0:31 �0:30 �0:18 �0:02 �0:01
5 0.35 �0:78 �0:57 �0:19 0.15 0.94 �0:04 �0:04 �0:09 �0:32 �0:33 �0:20 �0:02 �0:01
7.5 0.39 �0:87 �0:64 �0:17 0.13 1.06 �0:04 �0:04 �0:10 �0:35 �0:38 �0:22 �0:03 �0:01
10 0.45 �0:98 �0:72 �0:15 0.10 1.22 �0:03 �0:03 �0:11 �0:38 �0:45 �0:24 �0:04 �0:01
12.5 0.53 �1:13 �0:84 �0:11 0.05 1.48 �0:02 �0:03 �0:13 �0:44 �0:56 �0:26 �0:06 �0:01
15 0.63 �1:35 �1:02 �0:03 �0:02 2.05 0.01 �0:02 �0:16 �0:60 �0:82 �0:29 �0:18 �0:01
q2max 0.78 �1:69 �1:32 0.04 �0:06 3.48 0.08 �0:02 �0:27 �1:02 �1:13 �0:35 �0:43 0

TABLE III. Fitted parameters of form factor parametrizations (23) and (24).

B ! a0 B ! a1 B ! b1 B ! a2
fþ f� hA hV1

hV2
hV3

gA gV1
gV2

gV3
tV tA1

tA2
tA3

�1 �1:20 �0:63 �0:91 0.04 �0:15 �0:53 1.20 �0:95 �3:04 0.72 0.98 �0:89 �4:25 �1:33
�2 �0:27 �2:29 �2:40 �1:59 �1:85 �7:10 �12:5 9.71 2.46 �14:3 �14:7 �4:04 7.39 16.9

�3 2.35 6.03 9.36 0.36 �0:82 23.9 38.1 �30:9 13.5 45.5 36.8 17.0 �3:10 �63:9
�4 �2:53 �5:34 �9:90 �0:93 2.52 �24:2 �41:7 37.1 �22:2 �46:4 �31:8 �17:4 �3:69 77.1

1Note that we do not use these parameterizations for further
calculations.
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(a) B ! Sð3P0Þ transition:

H� ¼ 0; H0 ¼ �1=2

ffiffiffiffiffi
q2

p fþðq2Þ;

Ht ¼ 1ffiffiffiffiffi
q2

p ½ðM2
B �M2

SÞfþðq2Þ þ q2f�ðq2Þ�:
(27)

(b) B ! AVð3P1Þ transition:

H� ¼ ðMB þMAVÞhV1
ðq2Þ � �1=2

MB þMAV

hA;

H0 ¼ 1

2MAV

ffiffiffiffiffi
q2

p
�
ðMB þMAVÞðM2

B �M2
AV � q2ÞhV1

ðq2Þ

þ �

2MB

½hV2
ðq2Þ þ hV3

ðq2Þ�
�
;

Ht ¼ �1=2

2MAV

ffiffiffiffiffi
q2

p
�
ðMB þMAVÞhV1

ðq2Þ

þM2
B �M2

AV

2MB

½hV2
ðq2Þ þ hV3

ðq2Þ�

þ q2

2MB

½hV2
ðq2Þ � hV3

ðq2Þ�
�
: (28)

(c) B ! AV 0ð1P1Þ transition: Hi are obtained from ex-
pressions (28) by the replacement of the form factors
hiðq2Þ by giðq2Þ.
(d) B ! Tð3P2Þ transition:

H� ¼ �1=2

2
ffiffiffi
2

p
MBMT

�
ðMB þMTÞtA1

ðq2Þ� �1=2

MB þMT

tV

	
;

H0 ¼ �1=2

2
ffiffiffi
6

p
MBM

2
T

ffiffiffiffiffi
q2

p fðMB þMTÞðM2
B �M2

T � q2ÞtA1
ðq2Þ

þ �

2MB

½tA2
ðq2Þþ tA3

ðq2Þ�g;Ht

¼
ffiffiffi
2

3

s
�

4MBM
2
T

ffiffiffiffiffi
q2

p
�
ðMB þMTÞtA1

ðq2ÞþM2
B �M2

T

2MB

�½tA2
ðq2Þþ tA3

ðq2Þ�þ q2

2MB

½tA2
ðq2Þ� tA3

ðq2Þ�
�
:

(29)

Here the subscripts �; 0; t denote transverse, longitudinal,
and time helicity components, respectively.
Now we substitute the weak decay form factors calcu-

lated in the previous section in the above expressions for

B a0 l Νl

e

Τ

0 5 10 15
0.0

0.5

1.0

1.5

2.0

2.5

B a1 l Νl
e

Τ

0 5 10 15
0

1

2

3

4

B b1 l Νl

e

Τ

0 5 10 15
0

1

2

3

4

5

6

B a2l Νl

e

Τ

0 5 10 15
0

1

2

3

4

5

6

FIG. 5 (color online). Predictions for the differential decay rates (in jVubj210�13 GeV�1) of the B semileptonic decays to the P-wave
light mesons.

EXCLUSIVE SEMILEPTONIC AND NONLEPTONIC DECAYS . . . PHYSICAL REVIEW D 85, 054006 (2012)

054006-7



decay rates. The resulting differential distributions for the
B decays to the P-wave light mesons are plotted in Fig. 5.
The corresponding total decay rates are obtained by inte-
grating the differential decay rates over q2. For calcula-
tions we use the following value of the CKM matrix
element, jVubj ¼ 0:0038� 0:000 44 [1]. It is necessary to
point out that the kinematical range accessible in these
semileptonic decays is rather broad. Therefore, the knowl-
edge of the q2 dependence of the form factors is very
important for reducing theoretical uncertainties of the de-
cay rates. Our results for the semileptonic B decay rates to
the P-wave light mesons are given in Table IV.2 The errors
of the decay rates presented in this table originate from the
form factor uncertainties, discussed in the previous section,
and are about 7%.

The predictions for the branching ratios of the semi-
leptonic B decays to the P-wave light meson states3 are
compared with the previous calculations [18–21] in
Table V. The authors of Ref. [18] use the constituent quark
(ISGW2) model. The perturbative QCD (pQCD) approach
is adopted in Ref. [19]. Calculations in Ref. [20] are based
on the light-cone QCD sum rules (LCSR), while Ref. [21]
employs the QCD sum rules (SR). Our predictions for B !
a0;1ðb1Þl� decays are somewhat lower than the central

values of pQCD and LCSR, but they are consistent within
rather large errors of the considered approaches. The pre-
dicted central values of the branching ratio for the B !
a2l� decay are close in all calculations except the ISGW2
model, which predicts an order of magnitude lower value.
Therefore, we find that essentially different theoretical
approaches give the values for the B ! aJðb1Þl� decay
branching ratios of order of 10�4, which is the same as
for the decays to the ground-state � and � mesons. It is
important to verify these predictions experimentally.

VI. NONLEPTONIC DECAYS

In the standard model nonleptonic B decays are de-
scribed by the effective Hamiltonian, obtained by integrat-

ing out the heavy W boson and top quark. For �B ¼ 1
transitions (q ¼ d, s) [22]

Heff ¼ GFffiffiffi
2

p
�
VcbV

�
cq½c1ð�ÞOc

1 þ c2ð�ÞOc
2�

þ VubV
�
uq½c1ð�ÞOu

1 þ c2ð�ÞOu
2�

� VtbV
�
tq

X10
i¼3

cið�ÞOið�Þ
�
: (30)

The Wilson coefficients cið�Þ are evaluated perturba-
tively at the W scale and then are evolved down to the
renormalization scale � 	 mb by the renormalization-
group equations. The expressions Oi are local four-quark
operators which are given by

Oq0
1 ¼ ð �q0bÞV�Að �qq0ÞV�A;

Oq0
2 ¼ ð �q0ibjÞV�Að �qjq0iÞV�A;

O3ð5Þ ¼ ð �qbÞV�A

X
q0
ð �q0q0ÞV�A;ðVþAÞ;

O4ð6Þ ¼ ð �qibjÞV�A

X
q0
ð �q0jq0iÞV�A;ðVþAÞ;

O7ð9Þ ¼ 3

2
ð �qbÞV�A

X
q0
eq0 ð �q0q0ÞVþA;ðV�AÞ;

O8ð10Þ ¼ 3

2
ð �qibjÞV�A

X
q0
eq0 ð �q0jq0iÞVþA;ðV�AÞ;

(31)

where eq denotes the quark electric charge and the follow-

ing notations are used:

ð �qq0ÞV
A ¼ �q��ð1
 �5Þq0:
The nonleptonic two-body decay amplitude of a B me-

son into light mesons can be expressed through the matrix
element of the effective weak Hamiltonian Heff ,

4

MðB ! M1M2Þ
¼ hM1M2jHeff jBi
¼ GFffiffiffi

2
p

�
VubV

�
uq½c1hM1M2jOu

1jBi þ c2hM1M2jOu
2jBi�

� VtbV
�
tq

X10
i¼3

cihM1M2jOið�ÞjBi
�
: (32)

The factorization approach, which is extensively used for
the calculation of two-body nonleptonic decays, assumes
that the nonleptonic decay amplitude reduces to the prod-
uct of a meson transition matrix element and a decay
constant [24]. This assumption, in general, cannot be exact.
However, it is expected that factorization can hold for

TABLE IV. Predictions for the decay rates of the semileptonic
B decays to the P-wave light mesons (in jVubj2 ps�1).

Decay �ðl ¼ e; �Þ �ðl ¼ �Þ
B ! a0l� 3.18 1.00

B ! a1l� 5.90 1.95

B ! b1l� 4.04 0.91

B ! a2l� 5.77 1.27

2We used the calculated value of the a0 mass from Table I.
3The presented errors of our calculations arise from the

theoretical uncertainties in form factor calculations and experi-
mental uncertainties which mainly originate from the rather poor
knowledge of the CKM matrix element Vub. The latter uncer-
tainty is dominant.

4Since we make all further calculations adopting the naive
factorization assumption, we neglect contributions of charming
penguins [23] which are absent in this approximation.
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energetic decays, where both final mesons are light and
therefore possess large recoil momenta [25]. A justification
of this assumption is usually based on the issue of color
transparency [26]. In these decays the final hadrons, which
have a large relative momentum, are produced in the form
of almost pointlike color-singlet objects that do not couple
to soft gluons at leading order. Therefore, they undergo
only hard interactions with the B meson remnants before
they hadronize. A more general treatment of factorization
is given in Refs. [27], where it is shown that its naive form
follows in the heavy quark limit at zeroth order in �s and
�QCD=mB.

Then the decay amplitude can be approximated by the
product of one-particle matrix elements; e.g., the tree part
of the matrix element (q ¼ d, s) is given by

hM0
1M

�
2 jc1O1 þ c2O2jB�i

	 a1hM0
1jð �ubÞV�AjB�ihM�

2 jð �quÞV�Aj0i
þ a2hM�

2 jð �qbÞV�AjB�ihM0
1jð �uuÞV�Aj0i; (33)

in which the Wilson coefficients appear in the following
linear combinations,

ai ¼ ci þ 1

Nc

ciþ1 ði ¼ oddÞ;

ai ¼ ci þ 1

Nc

ci�1 ði ¼ evenÞ;
(34)

where Nc is the number of colors. For calculations we use
the values of the next-to-leading order Wilson coefficients

obtained in Ref. [22] for �ð5Þ
�MS
¼ 225 MeV in the ’t Hooft-

Veltman (HV) scheme: c1 ¼ 1:105, c2 ¼ �0:228, c3 ¼
0:013, c4 ¼ �0:029, c5 ¼ 0:009, c6 ¼ �0:033, c7=� ¼
0:005, c8=� ¼ 0:060, c9=� ¼ �1:283, c10=� ¼ 0:266,
where � is the fine structure constant.

The matrix elements of the weak current hMjð �qbÞV�AjBi
between B and light meson states are expressed through the
decay form factors [see, e.g., (18)–(22)]. The matrix ele-
ment hMjð �q1q2ÞV�Aj0i between vacuum and a final pseu-
doscalar (P), vector (V), scalar (S), and axial vector (AV)
meson is parametrized by the decay constants fP;V;S;AV ,

hPj �q1���5q2j0i ¼ ifPp
�
P ;

hVj �q1��q2j0i ¼ 	�MVfV;

hSj �q1��q2j0i ¼ fSp
�
P ;

hAVj �q1���5q2j0i ¼ 	�MAVfAV;

(35)

while the corresponding matrix element for the tensor (T)
meson vanishes since

hTj �q1��q2j0i / 	��p
� ¼ 0; (36)

due to the properties of the polarization tensor 	��. The

pseudoscalar fP and vector fV decay constants were cal-
culated within our model in Ref. [28]. It was shown that the

complete account of relativistic effects is necessary to get
agreement with experiment for decay constants, especially
for light mesons. The scalar decay constant is proportional
to the difference of the light quark masses and thus exactly
vanishes for the neutral scalar mesons and also vanishes
for the charged ones if isospin symmetry is assumed,
fa�

0
	 fa0

0
¼ ff0 ¼ 0. The axial vector b1 (1P1) meson

cannot be produced from the vacuum by the axial vector
current due to the G-parity conservation and, therefore,
fb1 ¼ 0. We use the following values of the decay con-

stants: f� ¼ 0:131 GeV, f� ¼ 0:220 GeV, fK ¼
0:160 GeV, fK� ¼ 0:220 GeV, f� ¼ 0:240 GeV, and

fa1 ¼ ff1 ¼ 0:238 GeV. The relevant CKM matrix ele-

ments [1] are jVudj ¼ 0:975, jVusj ¼ 0:225, jVubj ¼
j0:0019� i0:0033j ¼ 0:0038, jVtbj ¼ 0:999, jVtdj ¼
j0:0080� i0:0032j ¼ 0:0086, jVtsj ¼ 0:0403.
The matrix elements of the weak current between the B

meson and the final light meson entering the factorized
nonleptonic decay amplitude (33) are parametrized by the
set of decay form factors. Using the form factors obtained
in Sec. IV and our previous results for B decays to the
ground-state� and �mesons [6], we get predictions for the
branching ratios of the nonleptonic B decay to orbitally
excited light mesons and display them in Tables IV, V, VI,
VII, VIII, and IX in comparison with other calculations
[29–40]5 and available experimental data [1–5]. We can
roughly estimate the error of our calculations within the
adopted naive factorization approach to be about 40%. It
originates both from theoretical uncertainties in the form
factor and effective Wilson coefficient calculations and
from experimental uncertainties in the values of CKM
matrix elements (which are dominant), decay constants,
and meson masses.
The difference between charge combinations of the

same final mesons in Tables IV, V, VI, VII, VIII, and IX
is sometimes enormous. It originates mainly from the
different set of diagrams for the nonleptonic decay process
involving charged and neutral light mesons. For example,
decays �B0 ! aþ0;2K

� and B� ! a00;2K
� are tree domi-

nated, while decays �B0 ! a00;2K
0 and B� ! a�0;2K

0 are

penguin dominated. In the case of the decays involving
the axial vector a1 meson, the situation is more compli-
cated since its decay constant is not equal to zero; thus
additional diagrams, where a1 is produced by the weak
current from the vacuum, contribute to the nonleptonic
decay amplitudes. It is also necessary to take into account
additional factors arising from the composition of neutral

light unflavored mesons [e.g., a0i ¼ 1=
ffiffiffi
2

p ðd �d� u �uÞ,
i ¼ 0, 1, 2].
In Table VI we present predictions for the branching

ratios of the two-body nonleptonic B decays involving the

5Only central values are given for all theoretical predictions
which have rather large error bars.
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P-wave light scalar q �q meson a0. We compare our results
with predictions of LCSR [29], QCD factorization with the
form factors evaluated in the light-front quark model [30],
naive factorization with form factors obtained using QCD
sum rules [31], and the pQCD [32] approach. We see that
LCSR [29] and pQCD [32] give the branching fractions
which are almost an order of magnitude larger than our
predictions. This is the consequence of significantly larger

values of the form factors f
Ba0þ ð0Þ ¼ 0:46 in LCSR [29]

and f
Ba0þ ð0Þ ¼ 0:86 in pQCD [32] approaches compared to

our result fBa0þ ð0Þ ¼ 0:27. On the other hand, our predic-
tions are consistent with the ones of [30,31] which both use

fBa0þ ð0Þ ¼ 0:26. In Ref. [30] it was argued that the two-
body nonleptonic B decay rates involving light scalars are
significantly different in the two- and four-quark pictures
of these mesons. Therefore, experimental measurement of
these nonleptonic decay rates can discriminate between
different models for form factors and help to clarify the
nature of light scalars. At present, only experimental upper
limits [2] are available for two �B0 decay modes to the
scalar a0ð1450Þ and charged pion or kaon, but unfortu-
nately they involve the unmeasured branching ratio
Bða0ð1450Þ ! ��Þ.
In Tables VII and VIII we compare theoretical predic-

tions for the two-body nonleptonic B decays involving the
axial vector a1 and b1 light mesons with available experi-
mental data. The naı̈ve factorization hypothesis and decay
form factors calculated within the ISGW2 model are used
in Ref. [33]. In Ref. [34] these decays are investigated in
the framework of QCD factorization with the light-cone
distribution amplitudes evaluated using QCD sum rules.
The authors of Ref. [35] employ naive factorization and
additional input of a limited number of experimental data,6

while pQCD and soft collinear effective theory, with form
factors being fitted parameters, are applied in Ref. [36].
The two-body nonleptonic B decays involving axial vector
light mesons are the best studied experimentally among the
decays to excited light mesons. Values or upper limits are
available for almost half of the decays given in Tables VII
and VIII. Notwithstanding rather large experimental error
bars the existing data can already discriminate between
various theoretical approaches. As it is seen from these
tables our results and predictions of Refs. [34–36] (pQCD
and soft collinear effective theory) are consistent with each

TABLE VI. The branching ratios of the two-body nonleptonic
B decays involving the scalar 13P0 light mesons (in 10�6).

Decay EFG [29] [30] [31] [32] Experimental [1,2]

�B0 ! aþ0 �� 3.6 20 3.1 8 <2:3=Bða0 ! ��Þ
�B0 ! a00�

0 0.03 0.7

B� ! a00�
� 2.0 2.5 4

B� ! a�0 �0 0.07 1.1 0.01

�B0 ! aþ0 K� 0.29 0.3 1 <3:1=Bða0 ! ��Þ
�B0 ! a00K

0 0.02 0.1

B� ! a�0 K0 0.04 0.1

B� ! a00K
� 0.15 0.2 0.5

�B0 ! aþ0 �� 10.3 38 13.3

�B0 ! a00�
0 0.05 3.2

B� ! a00�
� 5.5 25.4

B� ! a�0 �0 0.10 4.5

�B0 ! aþ0 K�� 2.0 5.3 28

�B0 ! a00K
�0 0.35 2.7 14

B� ! a00K
�� 1.1 2.6 7.0

B� ! a�0 K�0 0.8 7.8 30

�B0 ! aþ0 a�1 11.4

�B0 ! a00a
0
1 0.05

B� ! a�0 a01 0.11

B� ! a00a
�
1 6.1

TABLE V. Comparison of theoretical predictions for the branching ratios of the semileptonic B decays to the P-wave light mesons
(in 10�5). EFG: Ebert, Faustov, Galkin, this paper.

Decay EFG ISGW2 [18] pQCD [19] LCSR [20] SR [21]

�B0 ! aþ0 e� 7:0� 2:8 7.3 32:5þ23:6
�13:6 18þ9

�6

�B0 ! aþ0 �� 2:2� 0:9 13:2þ9:7
�5:7 6:3þ3:4

�2:5

�B0 ! aþ1 e� 13:0� 5:2 19.2 29:6þ17:4�13:9 30:2þ10:3
�10:3 16

�B0 ! aþ1 �� 4:3� 1:7 13:4þ7:8
�6:3

�B0 ! bþ1 e� 8:9� 3:6 24.1 28:8þ15:1
�12:2 19:3þ8:4

�6:8

�B0 ! bþ1 �� 2:0� 0:8 12:6þ6:6
�5:4

�B0 ! aþ2 e� 12:7� 5:1 1.1 11:6þ8:1
�5:7 16

�B0 ! aþ2 �� 2:8� 1:1 4:1þ2:9
�2:0 6

6Two possible values of the K1ð1270Þ and K1ð1400Þ mixing
angle are considered in Ref. [35]. In Tables VII and VIII we
present results only for its preferred value, 58�.
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other (taking into account rather large error bars) for most
decay branching ratios and agree with the available experi-
mental data, while the results of Ref. [33] are, in most
cases, significantly different and seem to be ruled out by
experiment.

In Table IX our predictions for the branching ratios of
the two-body nonleptonic B decays involving tensor a2 and
f2 light mesons are confronted with other theoretical pre-
dictions and experimental data. References [37,38] employ
generalized factorization complemented by form factors
calculated in the nonrelativistic ISGWmodel and covariant
light-front approach, respectively. The authors of Ref. [39]
apply the QCD factorization, while naive factorization and
the improved ISGW2 model are used in Ref. [40]. From
this table we see that theoretical predictions strongly de-
pend on the adopted approach and the model for form
factors. Experimental data are available only for a few
considered decay modes and represent mostly upper limits.
The measurements [5] were recently carried out for two
charged B decays involving the tensor f2 meson and the
charged pion and kaon, as well as for one neutral B decay
to f2 and K0. Our model prediction for B� ! f2K

� is in

agreement with experiment, while the ones for �B0 ! f2K
0

and for B� ! f2�
� are lower and larger than experimen-

tal values, respectively. However, experimental errors are
still large in order to make definite conclusions.

VII. CONCLUSIONS

Weak form factors of the B meson decays to the first
orbital excitations of light mesons were calculated in the
framework of the QCD-motivated relativistic quark model.
The form factor dependence on the momentum transfer
was self-consistently determined in the whole accessible
kinematical range without applying any additional parame-
trizations or extrapolations. All relativistic contributions,
including contributions of the intermediate negative-
energy states and transformations of the wave functions
to the moving reference frame, were consistently taken into
account. This significantly reduces theoretical uncertain-
ties of the obtained form factors.
On this basis the branching ratios of the B semileptonic

decays to orbitally excited light mesons were calculated.
Our predictions were compared with other theoretical

TABLE VII. The branching ratios of the two-body nonleptonic B decays involving the axial vector 13P1 light mesons (in 10�6).

Decay EFG [33] [34] [35] pQCD [36] [36] Experimental [1,3]

�B0 ! aþ1 �
� 15.7 74.3 9.1 11.8 12.7 10.7 13:0� 4:3

�B0 ! a�1 �
þ 21.1 36.7 23.4 12.3 15.7 17.0 24:2� 5:8

�B0 ! a�1 �
� 36.8 111.0 32.5 24.1 28.3 27.7 33� 5

�B0 ! a01�
0 0.34 0.27 0.9 1.7 0.12 5.5 <1100

B� ! a01�
� 11.3 43.2 7.6 8.8 6.7 17.2 20:4� 4:7� 3:4

B� ! a�1 �
0 13.7 13.6 14.4 10.6 8.1 19.0 13:2� 2:7� 2:1

�B0 ! aþ1 K
� 13.2 72.2 18.3 41 20.6 15.8 16:3� 2:9� 2:3

�B0 ! a01K
0 6.0 42.3 6.9 25 8.0 6.3

B� ! a�1 K
0 19.8 84.1 21.6 52 25.5 15.5 33:2� 5:0� 4:4

B� ! a01K
� 14.3 43.4 13.9 28 15.4 10.5

�B0 ! aþ1 �� 20.7 4.3 23.9 <61

�B0 ! aþ1 K�� 3.9 0.92 10.6

B� ! a�1 K�0 0.66 0.51 11.2 1:3þ1:1þ1:1
�1:0�2:6

�B0 ! a01� 0.001 0.0005 0.01

�B0 ! aþ1 a�1 46.1 6.4 37.4 47:3� 10:5� 6:3

�B0 ! a01a
0
1 0.81 0.1 0.5

B� ! a�1 a
0
1 31.5 3.6 22.4 <13000

�B0 ! a01f1 0.85 0.02 0.1

B� ! a�1 f1 17.9 3.7 12.4

�B0 ! f1�
0 0.56 0.47 0.26

B� ! f1�
� 11.6 34.1 5.2

�B0 ! f1K
0 2.9 34.7 14.6

B� ! f1K
� 4.9 31.1 14.8 <2:0
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calculations based on the ISGW2 quark model [18], per-
turbative QCD [19], light-cone sum rules [20], and QCD
sum rules [21]. It is important to point out that in most of
the previous approaches the weak form factors were calcu-
lated in some particular kinematical point or limited kine-
matical range and then were extrapolated to the whole
accessible kinematical range, which is rather broad for
such decays. Thus the ISGW2 quark model allows the
calculation of the form factors at q2 ¼ q2max and then
applies the Gaussian parametrization for them, while
light-cone sum rules determine form factors in the range
near q2 ¼ 0 and, therefore, require extrapolation. It was
found that all these essentially different approaches predict
that semileptonic decays to orbitally excited light mesons
have branching ratios of order 10�4, which is the same as
for the decays to the ground-state � and � mesons.

The obtained form factors were used for the evaluation
of the branching ratios of the two-body nonleptonic decays
of B mesons involving orbitally excited light mesons. The
factorization approach was employed to express the decay
matrix elements through the products of the weak form

factors and decay constants. Decays involving scalar
a0ð1450Þ,7 axial vector a1ð1260Þ, f1ð1285Þ, b1ð1235Þ,
h1ð1170Þ or tensor a2ð1320Þ, f2ð1270Þ and light �, �, K,
and K� mesons were considered. Obtained predictions
were compared with previous calculations based on naive
and generalized factorization with form factors obtained in
different models, QCD factorization, light-cone sum rules,
and perturbative QCD. It was found that the results sig-
nificantly depend on the adopted approach for the calcu-
lation of the decay matrix elements and form factors. Our
predictions agree well with the experimental data, which
are mostly available for the decays involving axial vector
light mesons, while some of the previous calculations
significantly deviate from experimental values. In the fu-
ture more precise and comprehensive data, especially on
the semileptonic decays, can help to discriminate between
various theoretical approaches and form factor models.

TABLE VIII. The branching ratios of the two-body nonleptonic B decays involving the axial vector 11P1 light mesons (in 10�6). All
experimental values include the unmeasured branching ratios Bðb1 ! !�Þ.
Decay EFG [33] [34] [35] pQCD [36] [36] Experimental [1,4]

�B0 ! bþ1 �� 17.7 36.2 11.2 0.7 18.7 7.7
�B0 ! b�1 �þ 0 0 0.3 	 0 1.4 0.6
�B0 ! b�1 �� 17.7 36.2 11.5 0.7 20.2 8.3 10:9� 1:2� 0:9
�B0 ! b01�

0 0.18 0.15 1.1 0.01 1.5 1.8 0:4� 0:8� 0:2

B� ! b01�
� 9.5 18.6 9.6 0.7 5.1 5.0 6:7� 1:7� 1:0

B� ! b�1 �0 0.62 0.29 0.4 0.5 1.0 2.0 1:8� 0:9� 0:2
�B0 ! bþ1 K� 11.6 35.7 12.1 2.0 42.9 8.5 7:4� 1:0� 1:0
�B0 ! b01K

0 4.4 19.3 7.3 4.0 23.3 4.0 5:1� 1:8� 0:5

B� ! b�1 K
0 8.3 41.5 14.0 3.0 55.0 8.6 9:6� 1:7� 0:9

B� ! b01K
� 8.2 18.1 6.2 0.7 24.9 4.6 9:1� 1:7� 1:0

�B0 ! bþ1 �� 22.7 1.6 32.1
�B0 ! b01�

0 0.20 0.002 3.2 <3:4

B� ! b�1 �0 0.43 0.0005 0.9 <5:2

B� ! b01�
� 11.2 0.86 29.1 <3:3

�B0 ! bþ1 K�� 4.1 0.32 12.5
�B0 ! b01K

�0 0.36 0.15 6.4 <8:0

B� ! b01K
�� 2.2 0.12 12.8 <6:7

B� ! b�1 K�0 0.7 0.18 7.0 <5:9
�B0 ! b01� 0.001 0.0002 0.01
�B0 ! bþ1 b

�
1 0 0 1.0

�B0 ! b01b
0
1 0 0 3.2

B� ! b�1 b
0
1 0 0 1.4

�B0 ! h1�
0 0.22 0.16 0.16

B� ! h1�
� 9.6 18.6 1.8

�B0 ! h1K
0 4.3 19.0 10.9

B� ! h1K
� 11.1 19.0 11.3

7Under the assumption that it is the 13P0 q �q state.
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