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Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

(Received 14 December 2011; published 5 March 2012)

We report the first complete calculation of QCD corrections to the production of a massive color-octet

vector boson. Our next-to-leading-order (NLO) calculation includes both virtual corrections as well as

corrections arising from the emission of gluons and light quarks, and we demonstrate the reduction in

factorization-scale dependence relative to the leading-order approximation used in previous hadron

collider studies. We show that the QCD NLO corrections to coloron production are as large as 30%,

and that the residual factorization scale-dependence is reduced to of order 2%. We also calculate the

K-factor and the pT spectrum for coloron production, since these are valuable for comparison with

experiment. Our results apply directly to the production of the massive color-octet vector bosons in

axigluon, topcolor, and coloron models, and approximately to the production of KK gluons in extra-

dimensional models or color-octet technivector mesons in technicolor models.
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I. INTRODUCTION

Massive color-octet vector bosons are predicted in a
variety of models, including axigluon models [1,2], top-
color models [3–6], technicolor models with colored tech-
nifermions [7], flavor-universal [8,9], and chiral [10]
coloron models, and extra-dimensional models with KK
gluons [11,12]. These states have also recently been con-
sidered as a potential source [13,14] of the top-quark
forward-backward asymmetry observed by the CDF col-
laboration [15,16].1 Recent searches for resonances in the
dijet mass spectrum at the LHC imply that the lower bound
on such a boson is now 2–3 TeV [20–23].2 If there are
color-octet vector bosons associated with the electroweak
symmetry breaking sector, as suggested by several of the
models discussed above, their presence should be uncov-
ered by the LHC in the future.

In this paper, we report the first complete calculation3 of
QCD corrections to the production of a massive color-octet
vector boson. We will refer to these massive color-octet
vector states generically as ‘‘colorons.’’ We treat the col-
oron as an asymptotic state in our calculations, employing
the narrow width approximation. Our next-to-leading-
order (NLO) calculation includes both virtual corrections
as well as corrections arising from the emission of gluons
and light quarks, and we demonstrate the reduction in
factorization-scale dependence relative to the leading-
order (LO) approximation used in previous hadron collider
studies.
The QCD NLO calculation of coloron production re-

ported here differs substantially from the classic computa-
tion of the QCD NLO corrections to Drell-Yan production
[26], because the final state is colored. In particular, Drell-
Yan production involves the coupling of the light quarks to a
conserved (or, in the case of W- or Z-mediated processes,
conserved up to quark masses) current. Hence, in comput-
ing the NLO corrections to Drell-Yan processes, the current
conservation Ward identity insures a cancellation between

*sekhar@msu.edu
†farzinni@msu.edu
‡esimmons@msu.edu
§foadiros@msu.edu
1Note, however, that the observation of a top-quark forward-

backward asymmetry is not confirmed by results of the D0
collaboration [17,18]. Furthermore, if the observed top-quark
forward-backward asymmetry is confirmed, explaining this us-
ing color-octet vector bosons is problematic given the tight
constraints on flavor-changing neutral-currents [19].

2At least for the fermion charge assignments considered, and
in the case where the resonance is narrow compared to the dijet
mass resolution of the detector.

3As this work was being completed, a computation of the NLO
virtual corrections of top-quark pair production via a heavy
color-octet vector boson has been reported in [24]. That work
is complementary to ours in that it does not employ the narrow
width approximation for the color-octet boson, but neither does
it include real gluon or quark emission. After this work was
submitted for publication, real emission has also been considered
by those authors [25].
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the UV divergences arising from virtual quark wave func-
tion and vertex corrections. These cancellations do not
occur in the calculation of the NLO corrections to coloron
production, because of vertex corrections involving the
3-point non-Abelian colored-boson vertices. As we de-
scribe in Sec. IV, we use the ‘‘pinch technique’’ [27] to
divide the problematic non-Abelian vertex corrections into
two pieces—a ‘‘pinched’’ piece whose UV divergence con-
tributes to the renormalization of the coloron wavefunction
(and, ultimately, a renormalization of the coloron coupling)
and an ‘‘unpinched’’ part whose UV divergence (when
combined with an Abelian vertex correction) cancels
against the UV divergences in quark wave function renor-
malization. As we show, once the UV divergences are
properly accounted for, the IR divergences cancel in the us-
ual way: the IR divergences arising from real quark or gluon
emission cancel against the IR divergences in the virtual
corrections, and the IR divergences arising from collinear
quarks or gluons in the initial state are absorbed in the
properly defined parton distribution functions (PDFs).

We compute the gauge-, quark-, and self-couplings of
the coloron from a theory with an extended SUð3Þ1c �
SUð3Þ2c ! SUð3Þc gauge structure, where SUð3Þc is iden-
tified with QCD. The calculation yields the minimal cou-
pling of gluons to colorons, and allows for the most general
couplings of quarks to colorons. The cancellation of UV
divergences described above, however, occurs only when
the 3-coloron coupling has the strength that arises from the
dimension-four gauge-kinetic energy terms of the extended
SUð3Þ1c � SUð3Þ2c gauge structure. Our computation ap-
plies directly to any theory with this structure, i.e. to
massive color-octet vector bosons in axigluon, topcolor,
and coloron models. In general, the triple coupling of KK
gluons in extra-dimensional models, or of colored techni-
vector mesons in technicolor models, will not follow this
pattern. However our results apply approximately to these
cases as well, to the extent that the SUð3Þ1c � SUð3Þ2c
model is a good low-energy effective theory for the
extra-dimensional model (a ‘‘two-site’’ approximation in
the language of deconstruction [28,29]) or for the techni-
color theory (a hidden local symmetry approximation for
the effective technivector meson sector [30,31]).4

This paper is structured as follows. In Sec. II we intro-
duce the formalism of a minimal vector coloron theory,
deriving all the Feynman rules, and setting the stage for
the subsequent calculations. In Sec. III we review the
leading-order computations of the amplitude and cross

section for coloron production due to q �q pair annihilation.
Sec. IV describes in detail the one-loop virtual corrections
to the q �q pair annihilation process, elaborating on the con-
tributions from the quark self-energy, coloron-coloron, and
gluon-coloron mixed vacuum polarization amplitudes, and
the vertex corrections.We employ the pinch technique [27],
described above, in order to consistently treat the UV
divergences, and obtain a gauge-invariant, mutually inde-
pendent set of counterterms. The one-loop cross section is
constructed, and the IR singularities of thevirtual correction
properly extracted. In Sec. V we consider the real emission
processes, consisting of real (soft and collinear) gluon and
(collinear) quark emission. In Sec. VI we put all the pieces
together, exhibiting the explicit cancellation of the IR
divergences among the real and virtual corrections, and
demonstrate the renormalization of the quark and gluon
PDFs. We give a finite expression for the NLO-corrected
production cross section. Finally, in Sec. VII we plot the
cross section, demonstrate that the QCD NLO corrections
are as large as 30%, and show that the residual factorization-
scale dependence is at the 2% level. We also calculate the
K-factor and the pT spectrum for coloron production, since
these are valuable for comparison with experiment.
An appendix contains all the Feynman rules of the

theory.

II. A MINIMALTHEORY FOR SPIN-ONE
COLORONS

In this section, we introduce colorons5 as the massive
color-octet bosons arising when an extended SUð3Þ1c �
SUð3Þ2c gauge symmetry is spontaneously broken by a
nonlinear sigma model field to its diagonal subgroup,
SUð3Þc, which we identify with QCD. The symmetry
breaking results in a low-energy spectrum that includes
both a massless spin-one color octet of gauge bosons, the
gluons, and a massive spin-one color octet of gauge bo-
sons, the colorons.
In detail, we replace the QCD Lagrangian with

Lcolor ¼ � 1

4
G1��G

��
1 � 1

4
G2��G

��
2

þ f2

4
TrD��D

��y þLgauge-fixing

þLghost þLquark: (1)

4Arbitrary three- and four-point coloron self-couplings can be
incorporated in the SUð3Þ1c � SUð3Þ2c by addingOðp4Þ terms in
the effective chiral Lagrangian of Eq. (1), and deviations in these
couplings are therefore of OðM2

C=�
2Þ, where � is the cutoff of

the effective coloron theory. The 3- and 4-point self-couplings,
however, are neither relevant to the leading-order q �q nor to the
IR divergent NLO coloron production contributions, and there-
fore numerically insignificant.

5Colorons can in principle be introduced as matter fields in the
adjoint of SUð3Þc. This approach, however, would lead to an
early violation of tree-level unitarity, as the scattering amplitude
of longitudinally polarized massive spin-one bosons can grow,
by power counting, like E4, where E is the center-of-mass (CM)
energy. The only way to avoid this is to ‘‘promote’’ the coloron
to the status of gauge field of a spontaneously broken gauge
theory: then the special relation between trilinear and quartic
gauge couplings will lead to an exact cancellation of the terms
growing like E4, as happens in the standard electroweak theory.
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Here � is the nonlinear sigma field breaking SUð3Þ1c �
SUð3Þ2c to SUð3Þc,

� ¼ exp

�
2i�ata

f

�
; a ¼ 1; . . . ; 8; (2)

where �a are the Nambu-Goldstone bosons ‘‘eaten’’ by the
coloron, f is the corresponding ‘‘decay-constant,’’ and ta

are the Gell-Mann matrices, normalized as Trtatb ¼
�ab=2. The � field transforms as the bi-fundamental of
SUð3Þ1c � SUð3Þ2c,

� ! u1�u
y
2 ; ui ¼ expði�a

i t
aÞ; (3)

where the �a
i are the parameters of the SUð3Þic transfor-

mations. This leads to the covariant derivative

D�� ¼ @��� igs1G
a
1�t

a�þ igs2�G
a
2�t

a; (4)

where gsi is the gauge coupling of the SUð3Þic gauge group.
Up to a total divergence, the quadratic terms in the
Lagrangian are

Lð2Þ
color ¼

1

2
Ga

i�ðg��@2 � @�@�ÞGa
i�

þ f2

8
ðgs1Ga

1� � gs2G
a
2�Þ2 þ

1

2
ð@��aÞ2

� f

2
ðgs1Ga

1� � gs2G
a
2�Þ@��a þLð2Þ

gauge-fixing

þLð2Þ
ghost þLð2Þ

quark; (5)

where a sum over i ¼ 1, 2 in the gauge kinetic terms is
implied.

The gauge-Goldstone mixing term can be removed, up
to a total divergence, by choosing the gauge-fixing
Lagrangian to be

Lgauge-fixing ¼ � 1

2
ðF a

i Þ2; (6)

where the gauge-fixing functions are

F a
1 �

1ffiffiffi
�

p
�
@�Ga

1� þ �
gs1f

2
�a

�
;

F a
2 �

1ffiffiffi
�

p
�
@�Ga

2� � �
gs2f

2
�a

�
:

(7)

The Faddeev-Popov ghost Lagrangian is obtained by tak-
ing the functional determinant of �F a

i =��
b
j . This leads to

Lghost ¼ �cai

�
�@�ð�ij�

ab@� � gsif
abc�ijG

c
i�Þ

� �
g2sif

2

4
ð�i1 � �i2Þð�1j � �2jÞ�ab þOð�Þ

�
cbj ;

(8)

where fabc are the SUð3Þ structure constants, and a sum
over i, j ¼ 1, 2 is implied. Notice that we have included
only the inhomogeneous terms in the transformation of the
eaten Goldstone boson, whence the unspecified Oð�Þ
terms in the ghost Lagrangian, which are unnecessary for

our computation. Up to a total divergence, the quadratic
Lagrangian now reads

Lð2Þ
color ¼

1

2
Ga

i�

�
�ijg

��@2 � �ij

�
1� 1

�

�
@�@�

þ g2sif
2

4
ð�i1 � �i2Þð�1j � �2jÞ

�
Ga

j�

� 1

2
�a

�
@2 þ �

4
ðg2s1 þ g2s2Þf2

�
�a

� �cai

�
�ij@

2 þ �
g2sif

2

4
ð�i1 � �i2Þð�1j � �2jÞ

�
caj

þLð2Þ
quark: (9)

Aside from a factor of the gauge-fixing parameter �, the
gauge and ghost fields share the same mass matrix, as
expected. This is diagonalized by

Ga
1�

Ga
2�

 !
¼ R

Ga
�

Ca
�

� �
;

ca1
ca2

� �
¼ R

caG
caC

� �
; (10)

where

R � cos�c � sin�c
sin�c cos�c

� �
; sin�c �

gs1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2s1 þ g2s2

q : (11)

In Eq. (10)Ga
� is the gluon field andCa

� is the coloron field,

whereas caG and caC are the corresponding ghost fields.

Inserting these expressions in Eq. (9) gives, for the coloron
mass,

MC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2s1 þ g2s2

q
f

2
� gsf

sin2�c
; (12)

where gs is the SUð3Þc coupling,
1

g2s
¼ 1

g2s1
þ 1

g2s2
: (13)

The gluon ghost is massless, whereas both the coloron
ghost and the eaten Goldstone boson have mass

ffiffiffi
�

p
MC.

The interaction vertices and the corresponding Feynman
rules can be found in Appendix A.
We will leave the quark charge assignments under

SUð3Þ1c � SUð3Þ2c arbitrary, for greater generality. In the
mass eigenstate basis we write

L quark ¼ �qii½@� igsG
ata � i 6CataðgLPL þ gRPRÞ�qi;

(14)

where PL and PR are the helicity projection operators,

PL � 1� �5

2
; PR � 1þ �5

2
; (15)

and i is a flavor index.6 The coupling to the gluon is

6Here we work in the broken electroweak phase, and only
employ fermion mass eigenstates.
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dictated by charge universality, whereas the gL and gR
couplings to the coloron depend on the original charge
assignments of the quarks. For example, if both left-handed
and right-handed quarks are only charged under SUð3Þ1c,
then gL ¼ gR ¼ �gs tan�c, while the axigluon [1,2] cor-
responds to gL ¼ �gR ¼ gs (i.e. �c ¼ �=4). In general,
gL and gR can each take on the values �gs tan�c or
gs cot�c in any specific model,7

gL; gR 2 f�gs tan�c; gs cot�cg: (16)

III. LO COLORON PRODUCTION

The dominant channel for coloron production at a had-
ron collider is given by the tree-level diagram of Fig. 1, in
which a q �q pair annihilates into a coloron. The tree-level
diagram with gluon-gluon fusion into a coloron does not
exist in the Lagrangian of Eq. (1): in general there are no
dimension-four terms with two gauge bosons of an unbro-
ken symmetry and a spin-one field charged under the same
symmetry. We use the narrow-width approximation for the
coloron, take the quarks to be on-shell, and set their masses
to zero: this is certainly a good approximation, as current
experimental bounds [20,22,23] constrain the coloron mass
to be in the TeV range.

The leading order (LO) amplitude corresponding to the
diagram of Fig. 1 is

iMð0Þ
q �q!C ¼ gs �v

rð �pÞi��ðrLPL þ rRPRÞtausðpÞ"a	�� ðrÞ;
(17)

where the superscripts r and s denote quark spin projec-
tions, 	 is the coloron polarization, and

rL � gL
gs

; rR � gR
gs

; rL; rR 2 f� tan�c; cot�cg:
(18)

In d ¼ 2ð2� 
Þ dimensions the squared amplitude aver-
aged over initial spins and colors, and summed over final

polarization states, is

jMð0Þ
q �q!Cj2 �

�
1

dimðrÞ
�
2
�
1

2

�
2 X
spin&color

jMð0Þ
q �q!Cj2

¼ C2ðrÞð1� 
Þ
2 dimðrÞ g2sðr2L þ r2RÞŝ; (19)

where dimðrÞ ¼ 3 and C2ðrÞ ¼ 4=3 are, respectively, the
dimension and Casimir of the fundamental representation
of SUð3Þ, and ŝ � ðpþ �pÞ2 ¼ 2p � �p is the partonic
center-of-mass (CM) energy. This gives the LO cross
section [2] for q �q ! C,

�̂ ð0Þ
q �q!C ¼ �

ŝ2
jMð0Þ

q �q!Cj2�ð1� �Þ

¼ �sAðr2L þ r2RÞ
ŝ

�ð1� �Þ; (20)

where �s � g2s=4�,

A � 2�2C2ðrÞð1� 
Þ
dimðrÞ ; (21)

and

� � M2
C

ŝ
: (22)

The full LO cross section for pp ! C is given by the

convolution of the LO partonic cross section �̂ð0Þ
q �q!C with

the parton distribution functions (PDFs) for the quarks
within the protons, and a sum over all quark flavors,

�LO ¼
Z

dx1
Z

dx2
X
q

½fqðx1Þf �qðx2Þ

þ f �qðx1Þfqðx2Þ��̂ð0Þ
q �q!C; (23)

where fqðxÞ is the PDF of parton q, and x the momentum

fraction of the corresponding parton. Taking the collision
axis to be the 3-axis, the four-momenta of the partons are

p ¼
ffiffiffi
s

p
2
ðx1; 0; 0; x1Þ; �p ¼

ffiffiffi
s

p
2
ðx2; 0; 0;�x2Þ; (24)

where s is the CM energy of the colliding hadrons. This
gives

ŝ ¼ x1x2s; � ¼ M2
C

sx1x2
: (25)

IV. NLO COLORON PRODUCTION: VIRTUAL
CORRECTIONS

In this section we compute the next-to-leading order
(NLO) virtual QCD corrections to the q �q ! C amplitude.
These include one-loop wave-function and vertex correc-
tions, which we choose to compute in ’t Hooft-Feynman
gauge, � ¼ 1. The non-Abelian vertex corrections are
computed by employing the pinch technique: this allows
us to obtain QED-like Ward identities, and absorb all

FIG. 1. Tree-level contribution to coloron production. The
coloron field, Ca

�, is represented by the zigzag line.

7It is possible to generalize this setup to nonuniversal charge
assignments: in this case flavor-diagonal chiral couplings to the
coloron would depend on a generation index. Flavor-changing
couplings are strongly constrained [19].
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UV infinities in the renormalization of the gauge field
propagators. After inclusion of the counterterms, the vir-
tual corrections are UV-finite, yet IR infinite. In Sec. V we
show that the IR divergences cancel once the real correc-
tions, corresponding to the emission of soft and collinear
gluons and quarks, are included in the calculation of the
inclusive production cross section. Our loop integrals are
computed in dimensional regularization, with d¼2ð2�
Þ
dimensions. We first regulate the IR divergences by giving
the gluon a small mass (mg ! 0þ): in this way all infinities
are in the UV, and regularization requires 
 > 0. After all
of the UV infinities are removed, by cancellation and
inclusion of the counterterms, we let the gluon mass ap-
proach zero. This will make the virtual corrections IR
divergent, with the infinities being regulated by taking

 < 0.

Since the quark couplings to the coloron are chiral, in
general, we need a prescription for treating �5 in d � 4.
Here we take �5 to always anticommute with ��. Choosing
an alternative prescription, such as ’t Hooft-Veltman in
which �5 anticommutes with �� for � ¼ 0, 1, 2, 3 and
commutes for other values of �, would lead to a cross
section for q �q ! Cwhich differs from ours by only a finite
renormalization of the coupling(s).

The general structure of the q �q ! C amplitude, illus-
trated in Fig. 2, is

iMq �q!C ¼ gs �v
rð �pÞi

�
Z1=2
C �

a�
qqC þ �

a�
qqG

�GCðŝÞ
ŝ

�
� Zqu

sðpÞ"a	�� ðrÞ; (26)

where �
a�
qqC (�

a�
qqG) is the one-particle-irreducible (1PI)

quark-quark-coloron (quark-quark-gluon) vertex and
�GC is the coefficient of g�� in the gluon-coloron vacuum
polarization mixing amplitude (VPA). The factors Zq and

ZC are, respectively, the residues of the full quark and
coloron propagators at the mass pole; they are obtained

from the quark self-energy amplitude, �ð6pÞ, and the
coefficient of g�� in the coloron-coloron VPA, �CCðq2Þ,
as follows:

Zq ¼ 1

1��0ð0Þ ; ZC ¼ 1

1��0
CCðM2

C physÞ
; (27)

where the prime denotes a derivative with respect to the
argument, and MC phys is the coloron’s physical mass. To

lowest order, Zq ¼ 1, ZC ¼ 1, �GC ¼ 0, and i�a�
qqC ¼

��ðrLPL þ rRPRÞta; inserting these in Eq. (26) recovers
the tree-level amplitude of Eq. (17).

A. Quark self-energy

The NLO quark self-energy correction to the q �q ! C
amplitude is found, from Eqs. (26) and (27), to be

iQ ¼ �vrð �pÞi��ðgLPL þ gRPRÞta�Zqu
sðpÞ"a	�� ðrÞ; (28)

where

�Zq ¼ �0ð0Þ: (29)

At one-loop, the �ð6pÞ amplitude is given by the diagrams
of Fig. 3. These lead to the expression

�ð6pÞ ¼ �6pg2sC2ðrÞ2ð1� 
Þ�ð
Þ
16�2

Z 1

0
dxð1� xÞ

�
��

4��2

�Gq

�

 þ

�
4��2

�Cq

�

ðr2LPL þ r2RPRÞ

�
;

(30)

where �ð
Þ is the Euler Gamma-function evaluated at
infinitesimal 
, and

�Gq ¼ ð1� xÞm2
g � xð1� xÞp2 � i;

�Cq ¼ ð1� xÞM2
C � xð1� xÞp2 � i:

(31)

The parameter � is the mass scale introduced by the loop
integral in d dimensions, and  is the positive infinitesimal
parameter giving the appropriate prescription for comput-
ing the integral in momentum space. As previously antici-
pated, we have introduced a small gluon mass,mg, in order

to regulate the IR divergences and isolate the UV infinities:
with mg � 0, �ð6pÞ and �0ð6pÞ contain only UV divergen-

ces. Inserting Eq. (30) in Eq. (29) gives

FIG. 2. Structure of q �q ! C amplitude, to all orders in pertur-
bation theory. Direct coloron production is illustrated on the left,
while production via mixing with the gluon is shown on the right.
The gluon field is, as usual, represented by the coiling line; the
coloron field is represented by the zigzag line.

FIG. 3. Quark self-energy diagrams at one-loop. Particle nota-
tion as defined in Fig. 2.
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�Zq ¼ � g2sC2ðrÞ2ð1� 
Þ�ð
Þ
16�2

Z 1

0
dxð1� xÞ

�
��

4��2

ð1� xÞm2
g � i

�

 þ

�
4��2

ð1� xÞM2
C � i

�



� ðr2LPL þ r2RPRÞ
�
: (32)

The amplitude of Eq. (28) becomes

iQ ¼ � �s

4�
2C2ðrÞð1� 
Þ�ð
Þ

�
Z 1

0
dx

Z 1�x

0
dy

��
4��2

ð1� xÞm2
g � i

�


iMð0Þ

q �q!C

þ
�

4��2

ð1� xÞM2
C � i

�


iM0ð0Þ

q �q!C

�
; (33)

where Mð0Þ
q �q!C is given by Eq. (17), and

iM0ð0Þ
q �q!C ¼ gs �v

rð �pÞi��ðr3LPL þ r3RPRÞtausðpÞ"a	�� ðrÞ:
(34)

For later convenience we have traded the 1� x factor, in
Eq. (32), for an integral over dy: this will allow us to
directly add the self-energy correction to the vertex cor-
rection and explicitly show the cancellation of the UV
divergences.

B. Abelian vertex corrections

The one-loop Abelian vertex correction to the q �q ! C
amplitude is given by the diagrams of Fig. 4. These lead to
the amplitude

iVAbelian ¼ �s

4�
½2C2ðrÞ � C2ðGÞ��ð1þ 
Þ

�
Z 1

0
dx

Z 1�x

0
dy

��ð1� 
Þ2



� ðxy
� ð1� xÞ

� ð1� yÞÞ ŝ

�Gqq

��
4��2

�Gqq

�


iMð0Þ

q �q!C

þ
�ð1� 
Þ2



� ðxy
� ð1� xÞð1� yÞÞ ŝ

�Cqq

�

�
�
4��2

�Cqq

�


iM0ð0Þ

q �q!C

�
; (35)

where C2ðGÞ ¼ 3 is the Casimir of the adjoint representa-
tion, and

�Gqq ¼ ð1� x� yÞm2
g � xyŝ� i;

�Cqq ¼ ð1� x� yÞM2
C � xyŝ� i:

(36)

Once again, we have included a small gluon mass mg in

order to regulate the IR divergences.

C. Non-Abelian vertex corrections a la pinch-
technique: unpinched diagrams

The non-Abelian vertex corrections are given by the
diagrams of Fig. 5. When added to the overall Abelian
vertex correction, Eq. (35), these give the one-loop total
vertex correction to q �q ! C. Unlike in QED, the UV
divergences in the vertex correction do not cancel the UV
divergences arising from the self-energy amplitudes. The
reason for this is that the QED Ward identity @�j� ¼ 0 is

now replaced by its non-Abelian counterpart D�ja� ¼ 0,

which does not imply the equality of vertex and quark-
wavefunction renormalization constants. It is possible,
though, to recover QED-like Ward identities for the cur-
rents ja� by employing the pinch technique. This consists of

breaking up the gauge-boson internal momenta of a
Feynman diagram into ‘‘pinching’’ and ‘‘nonpinching’’
pieces. The pinching momenta are those which cancel
some internal propagators, leading to a simpler diagram
with the external-momentum structure of a propagator. The
nonpinching momenta will instead give overall amplitudes
satisfying QED-like Ward identities. A formal proof
of these statements, for an arbitrary non-Abelian gauge
theory, can be found in the review of Ref. [27] (and
references therein).
In our vertex computation the pinch technique works as

follows. The non-Abelian vertex structure in each of the
diagrams in Fig. 5 is

����ðk;p; �pÞ¼g��ð�2p� �pþkÞ�
þg��ðp� �p�2kÞ�þg��ðkþpþ2 �pÞ�:

(37)

We can break this into two parts,

����ðk; p; �pÞ ¼ ����
F ðk; p; �pÞ þ ����

P ðk; p; �pÞ; (38)

FIG. 4. One-loop Abelian vertex correction to the q �q ! C
amplitude. Particle notation is as defined in Fig. 2.

FIG. 5. One-loop non-Abelian vertex correction to the q �q ! C
amplitude. Particle notation is as defined in Fig. 2. Each three-
gauge-boson vertex in these diagrams is a full non-Abelian
vertex ���� in Eq. (37).
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where

�
���
F ðk; p; �pÞ ¼ �2g��ðpþ �pÞ� þ 2g��ðpþ �pÞ�

þ g��ðp� �p� 2kÞ�; (39)

�
���
P ðk; p; �pÞ ¼ g��ð �pþ kÞ� þ g��ðk� pÞ�: (40)

Unlike ����ðk; p; �pÞ, the �
���
F ðk; p; �pÞ vertex satisfies a

QED-like Ward identity for the gC ! C and CC ! C
amplitudes,

ðpþ �pÞ�����
F ðk; p; �pÞ ¼ g��½ðp� kÞ2 � ð �pþ kÞ2�:

(41)

As shown below, when �
���
F ðk; p; �pÞ is used to compute

the integral in momentum space (instead of ����ðk; p; �pÞ),
its UV divergences, added to the UV divergences of the
Abelian vertex corrections, exactly cancel the UV diver-
gences of the quark self-energy amplitudes. As mentioned
above, this occurs because a QED-like Ward identity for
q �q ! C holds, as one can prove by using the QED-like
Ward identity for the gC ! C and CC ! C amplitudes
given in Eq. (41). The three diagrams which correspond to
using �

���
F ðk; p; �pÞ instead of ����ðk; p; �pÞ are symboli-

cally denoted with a black disk over the non-Abelian
vertex, and are shown in Fig. 6. These lead to the following
contribution to the q �q ! C amplitude:

iVnon-Abelian ¼ �s

4�
C2ðGÞ�ð1þ 
Þ

Z 1

0
dx

Z 1�x

0
dy

���
1� 




� ðxþ yÞ ŝ

�GCq

��
4��2

�GCq

�



þ
�
1� 




� ðxþ yÞ ŝ

�CGq

��
4��2

�CGq

�

 �

�
1� 




� ðxþ yÞ ŝ

�CCq

��
4��2

�CCq

�


�
iMð0Þ

q �q!C

þ
�
1� 




� ðxþ yÞ ŝ

�CCq

��
4��2

�CCq

�


iM0ð0Þ

q �q!C

�
; (42)

where

�GCq ¼ xm2
g þ yM2

C � xyŝ� i; �CGq ¼ xM2
C þ ym2

g � xyŝ� i;

�CCq ¼ ðxþ yÞM2
C � xyŝ� i: (43)

In order to obtain Eq. (42) we have used the equations of
motion for the external spinors, together with the relations

2 cot2�crL ¼ �1þ r2L; 2 cot2�crR ¼ �1þ r2R; (44)

which are true for any charge assignment of the quarks. As
anticipated, iQþ iVAbelian þ iVnon-Abelian is free of UV
divergences, as manifestly shown by adding together
Eqs. (33), (35), and (42). This part of the amplitude is
however IR divergent in the limit of zero gluon mass.
Setting mg ¼ 0 and 
 < 0 gives

iQþ iVAbelian þ iVnon-Abelian

¼ �s

4�

�
C2ðrÞ

�
� 2


2
� 3þ 2i




�
þ C2ðGÞ i�




�
iMð0Þ

q �q!C

þ finite: (45)

Of course we still need to include the contribution from
����
P ðk; p; �pÞ [of Eq. (40)] in the full non-Abelian vertex

correction. This contains the pinching momenta: the action
of p and �p on the external spinors gives zero, and the
remaining piece cancels the internal fermion propagator in
the diagram. Thus the internal fermion line in each diagram
is pinched away, leaving an effective diagram with a
4-point coupling between fermions and gauge bosons as
shown in Fig. 7. The UV divergences of the pinched
diagrams have the same group- and momentum-structure
as those of the VPAs, and can be absorbed in the counter-
terms for the gauge field propagators. In order to see this
clearly, we will now consider the form of the ‘‘true’’
propagator corrections to the q �q ! C amplitude in the
following subsection.

FIG. 6. Non-Abelian unpinched vertex-correction diagrams for
the q �q ! C amplitude at one-loop. Particle notation is as defined
in Fig. 2. The black disk indicates that each three-point gauge-
boson vertex in these diagrams has been replaced by the non-
pinched portion �

���
F , as described in Eqs. (38) and (39).
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D. Form of the vacuum polarization amplitudes

The NLO corrections to the q �q ! C amplitude due to
the VPAs are found, from Eqs. (26) and (27), to have the
form

iP ¼ iMð0Þ
q �q!C

�ZC

2
þ iM00ð0Þ

q �q!C

�GCðŝÞ
ŝ

; (46)

where

�ZC ¼ �0
CCðM2

CÞ; (47)

and

iM00ð0Þ
q �q!C ¼ gs �v

rð �pÞi��tausðpÞ"a	�� ðrÞ: (48)

In order to obtain the second term of Eq. (46), we have
replaced �a�

qqG with its LO component i��ta. Notice also

that at this order we can swap M2
C phys for M

2
C.

At one-loop,�CCðq2Þ is given by the diagrams of Figs. 8
and 10, in which the gluon ghost is represented by dotted
lines, the coloron ghost by a sequence of filled circles, and
the eaten Goldstone bosons are represented by dashed
lines. There are poles at d ¼ 2 proportional to both q2

and M2
C. The latter correspond to quadratic divergences

(renormalizing the coloron mass scale f), whereas the
former can only be logarithmic by dimensional analysis
(renormalizing the coloron field).8 The momentum-
dependent part of the full coloron-coloron VPA is not
transverse, as the coefficients of the q2 and q�q� terms
are different. However we have explicitly verified that the
infinite part is transverse: this is necessary, because the
corresponding Lagrangian counterterms are transverse.
For small values of 
 we obtain

�
�s

4�

��1
�CCðq2Þg�� þ q�q� terms ¼ C2ðGÞ

Z 1

0
dx

���
�2

�GC

�


2ð1þ 4xð1� xÞÞEþ 2ð1� 2xÞ2

�
ðg��q2 � q�q�Þ

þ
��

�2

�GC

�

ð1� xð4� 3xÞÞE� xð1� xÞ

�
g��q2

þ
��

�2

�GC

�


2xEþ 3� 5x

�
g��M2

C

�
þ 4cot2ð2�cÞC2ðGÞ

�
Z 1

0
dx

���
�2

�CC

�

ð1þ 4xð1� xÞÞEþ ð1� 2xÞ2

�
ðg��q2 � q�q�Þ

þ
�
�
�
�2

�CC

�

 xð1� xÞ

4
E� xð1� xÞ

4

�
g��q2 þ

�
�2

�CC

�

 ð1� 2xÞ2

8
Eq�q�

þ
��

�2

�CC

�

 5

4
Eþ 1

4

�
g��M2

C

�
þ ðr2L þ r2RÞNf

Z 1

0
dx

�
�2

�qq

�

½�2xð1� xÞ�

� Eðg��q2 � q�q�Þ; (49)

where our results depend only on the coefficient of g��, the
quantity Nf is the number of quark flavors in the loop (see
Fig. 10),

E � 1



� �þ log4�; (50)

and � is the Euler-Mascheroni constant. The� functions in
Eq. (49) are

�GC � xm2
g þ ð1� xÞM2

C � xð1� xÞq2 � i;

�CC � M2
C � xð1� xÞq2 � i;

�qq � �xð1� xÞq2 � i:

(51)

Notice that the coloron-coloron VPA of Eq. (49) is not IR
divergent in the limit mg ! 0, since there are no contribu-
tions with only massless (gluon) states. However what
enters in Eq. (46) is the derivative of �CC [see Eq. (47)],
which is IR divergent in the limit mg ! 0.
The momentum dependent part of the gluon-coloron

mixing amplitude (Figs. 9 and 10) is found to be transverse,
both in the infinite and the finite parts. For small values of 

we find

FIG. 7. Non-Abelian pinched vertex-correction diagrams for
the q �q ! C amplitude at one-loop. Particle notation is as defined
in Fig. 2.

8This situation parallels the renormalization of the electro-
weak chiral Lagrangian [32,33].
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�
�s

4�

��1
�GCðq2Þg�� þ q�q� terms

¼ 2 cotð2�cÞC2ðGÞ
Z 1

0
dx

�
�2

�CC

�



�
���

3

4
þ 5xð1� xÞ

�
Eþ ð1� 2xÞ2

�

� ðq2g�� � q�q�Þ þ EM2
C

�

þ ðrL þ rRÞNf

Z 1

0
dx

�
�2

�qq

�

½�2xð1� xÞ�

� ðq2g�� � q�q�Þ: (52)

There are no potential IR divergences hidden in �GC.

E. Non-Abelian vertex corrections a la pinch-
technique: pinched diagrams

The pinched diagrams of Fig. 7 are obtained from the
diagrams of Fig. 5 by replacing the full non-Abelian vertex
momentum structure ����ðk; p; �pÞ from Eq. (37), with
����
P ðk; p; �pÞ from Eq. (40). This leads to the amplitude

iPpinched ¼ �s

4�
C2ðGÞ

Z 1

0
dx

�
2

�
�2

�GC

�

 þ 4cot2ð2�cÞ

�
�
�2

�CC

�


�
EMð0Þ

q �q!C þ �s

4�
2 cotð2�cÞC2ðGÞ

�
Z 1

0
dx

�
�2

�CC

�


EM00ð0Þ

q �q!C; (53)

where we have used Eq. (44) to rewrite the fermion cou-
plings in terms of �c. This contribution to the amplitude
has the form of a VPA correction, like that in Eq. (46). In
fact we can write

iPpinched ¼ iMð0Þ
q �q!C

~�0
CCðM2

CÞ
2

þ iM00ð0Þ
q �q!C

~�GCðŝÞ
ŝ

;

(54)

where

�
�s

4�

��1 e�CCðq2Þ ¼ C2ðGÞ
Z 1

0
dx

�
�2

�GC

�


4ðq2 �M2

CÞE
þ 4cot2ð2�cÞC2ðGÞ

�
Z 1

0
dx

�
�2

�CC

�


2ðq2 �M2

CÞE; (55)

and

�
�s

4�

��1
~�GCðq2Þ ¼ 2 cotð2�cÞC2ðGÞ

Z 1

0
dx

�
�2

�CC

�


Eq2:

(56)

F. Full propagator correction

We have just seen that, due to the pinch technique, the
coloron-coloron and gluon-coloron VPAs receive an addi-
tional contribution from the pinched non-Abelian vertex
corrections. Combining the VPAs, the UV divergences can
be removed by two wavefunction renormalization counter-
terms (which arise from renormalizing the gauge eigen-
states G1� and G2�) and one mass counterterm (which

arises from renormalizing the vacuum expectation value

f), in the usual way. In the MS scheme we obtain

FIG. 8. Coloron-coloron vacuum polarization amplitude at one-loop. A gluon field is, as usual, represented by a coiling line; a
coloron field is represented by a zigzag line. The coloron ghost is represented by a sequence of filled circles, and the eaten Goldstone
bosons are represented by dashed lines.

FIG. 9. Gluon-coloron mixing amplitude at one-loop. Particle notation is as defined in Fig. 8.

FIG. 10. Fermion contributions to coloron-coloron vacuum
polarization amplitude and gluon-coloron mixing amplitude.
Particle notation is as defined in Fig. 8.
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�
�s

4�

��1½�CCðq2Þ þ e�CCðq2Þ� ¼ C2ðGÞ
Z 1

0
dx

����
�2

�GC

�

 � 1

�
2ð3þ 4xð1� xÞÞEþ 2ð1� 2xÞ2

�
q2

þ
��

�2

�GC

�

ð1� xð4� 3xÞÞE� xð1� xÞ

�
q2

þ
�
�
��

�2

�GC

�

 � 1

�
2ð2� xÞEþ 3� 5x

�
M2

C

�

þ 4cot2ð2�cÞC2ðGÞ
Z 1

0
dx

����
�2

�CC

�

 � 1

�
ð3þ 4xð1� xÞÞEþ ð1� 2xÞ2

�
q2

�
���

�2

�CC

�

 � 1

�
Eþ 1

�
xð1� xÞ

4
q2 þ

�
�
��

�2

�CC

�

 � 1

�
3

4
Eþ 1

4

�
M2

C

�

þ ðr2L þ r2RÞNf

Z 1

0
dx

��
�2

�qq

�

 � 1

�
½�2xð1� xÞ�Eq2; (57)

and

�
�s

4�

��1½�GCðq2Þ þ e�GCðq2Þ� ¼ 2 cotð2�cÞC2ðGÞ
Z 1

0
dx

���
�2

�CC

�

 � 1

���
7

4
þ 5xð1� xÞ

�
q2 þM2

C

�
Eþ ð1� 2xÞ2q2

�

þ ðrL þ rRÞNf

Z 1

0
dx

��
�2

�qq

�

 � 1

�
½�2xð1� xÞ�Eq2: (58)

The overall UV-finite propagator correction to the q �q ! C
amplitude can be found by inserting these expressions in

iPþ iPpinched ¼ iMð0Þ
q �q!C

�0
CCðM2

CÞ þ ~�0
CCðM2

CÞ
2

þ iM00ð0Þ
q �q!C

�GCðŝÞ þ ~�GCðŝÞ
ŝ

: (59)

Letting mg ! 0, we find that Pþ Ppinched becomes IR
divergent, with the divergence arising from �0

CC. Setting
mg ¼ 0 and 
 < 0 gives

iPþ iPpinched ¼ �s

4�
C2ðGÞ

�
� 1




�
iMð0Þ

q �q!C þ finite:

(60)

We have seen that the pinched diagrams contribute to the
full propagators of the gluon-coloron system. This might
seem in conflict with the expectation that the mass poles
should be a property of freely propagating particles, and
should not depend on any initial and/or final state.
However, when we sum the Dyson series to obtain the
full propagator, the pinched diagrams always appear as an
overall prefactor, as pictorially shown in Fig. 11. This has
an overall effect on the full propagators, which depend on
the initial and final states, but has no effect on the propa-
gator poles. Thus when we compute physical masses, we
can do so by employing the true propagators in the com-
putation, without the contribution from the pinched
diagrams.

G. Cross section at one-loop

Adding up the tree-level contribution and the NLO con-
tributions from iQþ iVAbelian þ iVnon-Abelian, and iPþ
iPpinched, gives a q �q ! C amplitude of the form

FIG. 11. The relevant contributions to the coloron Dyson
series; as before, the zigzag lines represent colorons. The first
row is the sum of the coloron VPA diagrams in the propagator,
while the second row represents the sum of the VPA diagrams on
top of the one-loop contribution from the pinched vertex correc-
tion (the double curly line illustrates generically all the allowed
gauge bosons in the original non-Abelian vertices). The overall
pinched amplitude factors out, and has no effect on the coloron
pole mass.
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iMq �q!C ¼ iMð0Þ
q �q!C þ iQþ iVAbelian þ iVnon-Abelian

þ iPþ iPpinched

� iMð0Þ
q �q!C þ �s

4�
ðTiMð0Þ

q �q!C þ T0iM0ð0Þ
q �q!C

þ T00iM00ð0Þ
q �q!CÞ; (61)

where expressions for the real parts of T, T0, and T00 are
given below. Averaging the squared amplitude over initial
spins and colors, summing over final polarization states,
and integrating over the phase space, gives the NLO result
of the form

�̂virt� �̂ð0Þ
q �q!Cþ �̂ð1Þ

q �q!C

¼�sAðr2Lþr2RÞ
ŝ

�ð1��Þ
�
1þ�s

2�

�
�
ReTþr4Lþr4R

r2Lþr2R
ReT0 þrLþrR

r2Lþr2R
ReT00

��
: (62)

At ŝ ¼ M2
C it is possible to integrate over the Feynman

parameter space in the expressions for iQþ iVAbelian þ
iVnon-Abelian, and iPþ iPpinched. As we have seen, the UV

infinities cancel in iQþ iVAbelian þ iVnon-Abelian and are
absorbed by propagator counterterms in iPþ iPpinched.

Thus for mg � 0 the overall amplitude is finite. Taking

the mg ! 0 limit leads to IR divergences in ReT, which

are parametrized by taking 
 < 0. For small and negative
values of 
 we obtain

ReT ¼
�
4��2

M2
C

�


�ð1þ 
Þ

�
� 2


2
� 3



� 8þ 4�2

3

�
C2ðrÞ þ

�
�Eþ 61

9
� 5�

2
ffiffiffi
3

p � �2

3
� 8

3
log

M2
C

�2

�
C2ðGÞ

þ
�
77

48
� 7�

16
ffiffiffi
3

p � 29

16
log

M2
C

�2

�
4cot2ð2�cÞC2ðGÞ þ

�
� 1

9
þ 1

6
log

M2
C

�2

�
ðr2L þ r2RÞNf;

ReT0 ¼
�
� 11

2
þ 2�2

3

�
C2ðrÞ þ

�
1þ 5�

2
ffiffiffi
3

p � 2�2

3

�
C2ðGÞ;

ReT00 ¼
�
95

9
� 7

ffiffiffi
3

p
�

4
� 43

12
log

M2
C

�2

�
2 cotð2�cÞC2ðGÞ þ

�
� 5

9
þ 1

3
log

M2
C

�2

�
ðrL þ rRÞNf: (63)

In the next section we will compute the corrections to the
tree-level cross section due to the emission of soft and
collinear gluons. We will show that the real emission cross
section has IR divergences which exactly cancel the IR
divergences contained in �̂virt [Eq. (62)], leading to a total
cross section free of both UV and IR divergences.

V. NLO COLORON PRODUCTION: REAL
CORRECTIONS

The real emission corrections, at NLO, are given by the
diagrams of Fig. 12. We first consider the diagrams with
real emission of a gluon, shown in Fig. 12(a). The squared
amplitude, averaged over initial colors and spins, and
summed over final colors and polarizations, is found to
be, in d ¼ 2ð2� 
Þ dimensions,

jMð1Þ
q �q!gCj2 ¼

C2ðrÞg4sðr2L þ r2RÞ
dimðrÞ �2
ð1� 
Þ

�
� �1

!ð1�!ÞC2ðrÞ þ C2ðGÞ
�

�
�

� 1þ �2

ð1� �Þ2 þ 2!ð1�!Þ
�
: (64)

where

! � 1� cos�

2
; (65)

� was defined in Eq. (22), and � is the angle between the
emitted gluon and the colliding quarks. The cross section
for the real gluon emission is

�̂ ð1Þ
q �q!gC ¼ 1

2ŝ

Z
d�2jMð1Þ

q �q!gCj2; (66)

where the integral is over the 2-body Lorentz-invariant
phase space in parton CM. In d ¼ 4� 2
 dimensions,

Z
d�2 ¼ 1

8�

1� �

�ð1� 
Þ
�
M2

Cð1� �Þ2
4��

��


�
Z 1

0
d!½!ð1�!Þ��
: (67)

This leads to the partonic cross section

�̂ ð1Þ
q �q!gC ¼ �sðr2L þ r2RÞA

ŝ

�s

2�

�
4��2

M2
C

�

 �ð1� 
Þ
�ð1� 2
Þ

�
�
�C2ðrÞ 2


�
ð1þ �2Þ
ð1� �Þ1þ2


� C2ðGÞ 23

� �
ð1þ �þ �2Þ
ð1� �Þ1þ2


�
: (68)
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Now � is no longer constrained to be equal to one. Instead
we must have � � 1, or else no on-shell coloron can be
produced. The term proportional to C2ðrÞ features a col-
linear singularity, parametrized by 
, and a soft singularity,
parametrized by 1� �. The term proportional to C2ðGÞ
only features a soft singularity. The integral over � in
Eq. (68) is finite for 
 < 0, in spite of the singularity of
the integrands. For small and negative values of 
 we can
rewrite the �-dependence as follows:

�
ð1þ �2Þ
ð1� �Þ1þ2


¼ � 1



�ð1� �Þ þ 1þ �2

ð1� �Þþ
�
�
2ð1þ �2Þ

�
logð1� �Þ
1� �

�
þ

� 1þ �2

1� �
log�

�

;

�
ð1þ �þ �2Þ
ð1� �Þ1þ2


¼ � 3

2

�ð1� �Þ þ 1þ �þ �2

ð1� �Þþ ; (69)

where, as conventional, the ‘‘þ’’ distributions are
defined byZ 1

0
d�

fð�Þ
ð1� �Þþ �

Z 1

0
d�

fð�Þ � fð1Þ
1� �

;

Z 1

0
d�fð�Þ

�
logð1� �Þ
1� �

�
þ
�
Z 1

0
d�½fð�Þ � fð1Þ�

� logð1� �Þ
1� �

: (70)

The coefficients of the delta functions are found by inte-
grating both sides of the equations. The partonic cross
section becomes

�̂ ð1Þ
q �q!gC ¼ �sAðr2L þ r2RÞ

ŝ

�s

2�
½�ð1� �ÞRþ R0�; (71)

where, using Eq. (50), and expanding for small values of 
,

R ¼
�
4��2

M2
C

�

 �ð1� 
Þ
�ð1� 2
Þ

�
C2ðrÞ

�
2


2
þ 3




�
þ C2ðGÞ 1


�
;

R0 ¼ �2

�
E� log

M2
C

�2

�
Pq!qð�Þ þ C2ðrÞ

�
4ð1þ �2Þ

�
�
logð1� �Þ
1� �

�
þ
� 2

1þ �

1� �
log�

�

þ C2ðGÞ 2
3

1þ �þ �2

ð1� �Þþ : (72)

In the second equation Pq!qð�Þ is the Altarelli-Parisi

splitting function for an on-shell quark to evolve into a
virtual quark and a real gluon:

Pq!qð�Þ ¼ C2ðrÞ
�
1þ �2

ð1� �Þþ þ 3

2
�ð1� �Þ

�
: (73)

Adding together �̂virt, given by Eqs. (62) and (63), and

�̂ð1Þ
q �q!gC, given by Eq. (71), shows that the IR divergences

proportional to �ð1� �Þ cancel. There is still a collinear
singularity in R0, proportional to the Altarelli-Parisi evo-
lution Pq!qð�Þ. This singularity arises from integrating

over all collinear initial-state gluons. As we will see in
the next section, these collinear IR divergences will be
absorbed through renormalization of the PDFs.
The real quark and antiquark emission diagrams

are shown in Figs. 12(b) and 12(c), respectively. The
corresponding summed-averaged squared amplitudes in
d ¼ 2ð2� 
Þ are

jMð1Þ
qg!qCj2 ¼

C2ðrÞg4sðr2L þ r2RÞ
dimðGÞ �2


�
�
C2ðrÞ þ C2ðGÞ ð1� �Þð1�!Þ

ð1� ð1� �Þð1�!ÞÞ2
�

�
�
2ð
þ �Þ þ 1� 
� 2�ð1� �Þ

ð1� �Þð1�!Þ
þ ð1� 
Þð1� �Þð1�!Þ

�
; (74)

and

FIG. 12. Diagrams contributing to the real emission processes.
A gluon field is, as usual, represented by a coiling line; a coloron
field is represented by a zigzag line. (a) Gluon emission.
(b) Quark emission. (c) Antiquark emission.
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jMð1Þ
�qg! �qCj2 ¼

C2ðrÞg4sðr2L þ r2RÞ
dimðGÞ �2


�
�
C2ðrÞ þ C2ðGÞ ð1� �Þ!

ð1� ð1� �Þ!Þ2
�

�
�
2ð
þ �Þ þ 1� 
� 2�ð1� �Þ

ð1� �Þ!
þ ð1� 
Þð1� �Þ!

�
; (75)

where dimðGÞ � 8 is the dimension of the adjoint repre-
sentation. Note that the amplitudes for quark and antiquark
emission are related by crossing, i.e. ! $ ð1�!Þ. The
integration over the two-body Lorentz-invariant phase
space proceeds as in the gluon emission case, yielding

�̂ ð1Þ
qg!qC ¼ �̂ð1Þ

�qg! �qC ¼ �sAðr2L þ r2RÞ
ŝ

�s

2�
R00; (76)

where

R00 ¼ dimðrÞ
dimðGÞ

�
C2ðrÞ 3þ 2�� 3�2

2
þ C2ðGÞ

�
�ð1� �Þð2þ �þ 2�2Þ

�
þ 2ð1þ �Þ log�

��

�
�
E� log

M2
C

�2
� log

ð1� �Þ2
�

þ 1

�
Pg!qð�Þ:

(77)

Here Pg!qð�Þ is the Altarelli-Parisi splitting function for

an on-shell gluon to evolve to a virtual-real quark pair,

Pg!qð�Þ ¼ C2ðrÞ � dimðrÞ
dimðGÞ ½�2 þ ð1� �Þ2�; (78)

where C2ðrÞ � dimðrÞ= dimðGÞ ¼ 1=2. There is no soft sin-

gularity in �̂ð1Þ
qg!qC � �̂ð1Þ

�qg! �qC, only a collinear singularity

proportional to the Altarelli-Parisi evolution Pg!qð�Þ. As
noted above regarding �̂ð1Þ

q �q!gC, this singularity will be

canceled by renormalization of the PDFs when we com-
pute the total hadronic cross section.

VI. NLO CROSS SECTION

Our calculations in the previous sections have produced
all of the relevant partonic cross sections at NLO and
demonstrated them to be both UV and IR finite. Note that
the gg ! C process vanishes at tree level [34] and the one-
loop contributions are small, less than of order 0.1% of the
q �q-initiated leading-order contribution [35]; we therefore
do not include it in this work.
The full NLO cross section for coloron production at the

LHC is

�NLO ¼
Z

dx1
Z

dx2

�X
q

½f0qðx1Þf0�qðx2Þ þ f0�qðx1Þf0qðx2Þ�

� ð�̂ð0Þ
q �q!C þ �̂ð1Þ

q �q!C þ �̂ð1Þ
q �q!gCÞ

þX
q

½f0qðx1Þf0gðx2Þ þ f0gðx1Þf0qðx2Þ

þ f0�qðx1Þf0gðx2Þ þ f0gðx1Þf0�qðx2Þ��̂ð1Þ
qg!qC

�
;

(79)

where the partonic cross sections �̂ are given in Eqs. (20),
(62), (71), and (76), and where the superscript ‘‘0’’ in the
PDFs will be clear in a moment. We saw that all IR
divergences contained in � cancel, except for a couple of
collinear singularities proportional to Altarelli-Parisi evo-
lutions. Such singularities arise because we integrated over
all collinear quarks and gluons, even those which we
should have included in the PDFs. Therefore, the corre-
sponding IR singularities are absorbed by renormalizing

the bare PDFs in Eq. (79). In the MS scheme,

fiðx;�FÞ ¼ f0i ðxÞ �
g23
8�2

�
1



� �þ logð4�Þ � log

�2
F

�2

�

�
Z d�

�

X
j

f0j

�
x

�

�
Pj!ið�Þ; (80)

where i, j ¼ q, g, and �F is the factorization scale.
Exchanging the bare PDFs for the renormalized ones
replaces E with log�2

F=�
2 in Eqs. (72) and (77). The

hadronic cross section becomes

�NLO ¼ �sAH1ð�cÞ
s

�
Z dx1

x1

Z dx2
x2

�X
q

½fqðx1; �FÞf �qðx2; �FÞ þ f �qðx1; �FÞfqðx2; �FÞ�
�
�ð1� �Þ þ �s

2�
F qqð�Þ

�

þX
q

½fqðx1; �FÞfgðx2; �FÞ þ fgðx1; �FÞfqðx2; �FÞ þ ðfq ! f �qÞ� �s

2�
F qgð�Þ

�
; (81)

where the function H1ð�cÞ is defined below, in Eq. (85), A is defined in Eq. (21), and the partonic CM energy ŝ has been
traded for the hadronic one, as in Eq. (25). Notice that since the integrand is now finite, we can ignore the 1� 
 factor in A.
The functions F qqð�Þ and F qgð�Þ are

F qqð�Þ ¼ 2 log
M2

C

�2
F

Pq!qð�Þ þDqð�Þ; F qgð�Þ ¼ log
M2

C

�2
F

Pg!qð�Þ þDgð�Þ; (82)
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where

Dqð�Þ ¼ C2ðrÞ
�
4ð1þ �2Þ

�
logð1� �Þ
1� �

�
þ
� 2

1þ �

1� �
log�

�
þ C2ðGÞ 23

1þ �þ �2

ð1� �Þþ þ �ð1� �ÞQ;

Dgð�Þ ¼ dimðrÞ
dimðGÞ

�
C2ðrÞ

�
ð�2 þ ð1� �Þ2Þ

�
log

ð1� �Þ2
�

� 1

�
þ 3

2
þ �� 3

2
�2

�

þ C2ðGÞ
�ð1� �Þð2þ �þ 2�2Þ

�
þ 2ð1þ �Þ log�

��
; (83)

and

Q ¼ Nf

��
� 1

9
þ 1

6
log

M2
C

�2

�
H1ð�cÞ þ

�
� 5

9
þ 1

3
log

M2
C

�2

�
H2ð�cÞ

�
þ C2ðrÞ

�
�8þ 2�2

3
þ
�
� 11

2
þ 2�2

3

�
H3ð�cÞ
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þ C2ðGÞ
�
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9
� 5�

2
ffiffiffi
3

p � �2

3
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3
log

M2
C

�2
þ
�
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4
ffiffiffi
3
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4
log

M2
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�2

�
cot2ð2�cÞ þ

�
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ffiffiffi
3
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þ
�
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ffiffiffi
3

p
�

2
� 43

6
log

M2
C

�2

�
cotð2�cÞH4ð�cÞ

�
: (84)

The functionsHið�cÞ are determined by the chiral couplings of the quarks to the colorons [which depend on the charges of
the quarks under the full SUð3Þ1c � SUð3Þ2c symmetry]:

H1ð�cÞ ¼
8<
:
2tan2�c rL ¼ rR ¼ � tan�c
tan2�c þ cot2�c rL � rR
2cot2�c rL ¼ rR ¼ cot�c

; H2ð�cÞ ¼
8<
:
2 rL ¼ rR ¼ � tan�c
2ð1þcosð4�cÞÞ
3þcosð4�cÞÞ rL � rR
2 rL ¼ rR ¼ cot�c

;

H3ð�cÞ ¼
8<
:
tan2�c rL ¼ rR ¼ � tan�c
tan4�cþcot4�c
tan2�cþcot2�c

rL � rR

cot2�c rL ¼ rR ¼ cot�c

; H4ð�cÞ ¼
8<
:
� cot�c rL ¼ rR ¼ � tan�c
sinð4�cÞ

3þcosð4�cÞ rL � rR
tan�c rL ¼ rR ¼ cot�c

:

(85)

At NLO the � dependence is removed by trading the
MS couplings g1s and g2s, or gs and �c, for the correspond-
ing running couplings. Since �c is a free parameter, we
simply set � � MC, and express the cross section as a
function of the MS couplings. At the same time, the NLO
�F dependence weakens once the renormalized PDFs are

employed, as � in Eq. (79) is independent of �F to this
order in perturbation theory.
From these results we may also compute the transverse

momentum distribution of the produced coloron, which is
given by

d�

dpT

¼
Z

dx1
Z

dx2

�X
q

½fqðx1; �FÞf �qðx2; �FÞ þ f �qðx1; �FÞfqðx2; �FÞ�
d�̂q �q!gC

dpT

þX
q

½fqðx1; �FÞfgðx2; �FÞ þ fgðx1; �FÞfqðx2; �FÞ þ f �qðx1; �FÞfgðx2; �FÞ

þ fgðx1; �FÞf �qðx2; �FÞ�
d�̂qg!qC

dpT

�
; (86)
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where

d�̂q �q!gC

dpT

¼ 1

4�ŝ2ð1� �2Þ
pTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4p2
T

ŝð1��Þ2
r � 2jMð1Þ

q �q!gCj2;

(87)

d�̂qg!qC

dpT

¼ 1

4�ŝ2ð1� �2Þ
pTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4p2
T

ŝð1��Þ2
r ðjMð1Þ

qg!qCj2

þ jMð1Þ
qg!qCj2!!1�!

Þ;
(88)

and ! (Eq. (65)) is given by

! ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4p2

T

ŝð1��Þ2
r

2
: (89)

Note that this is the leading order prediction for d�=dpT ,
and therefore this distribution is strongly �F-dependent.

VII. DISCUSSION

We now illustrate9 our results for the NLO coloron
production cross section in Figs. 13–16. In each figure
we consider the three possible flavor-universal scenarios
for quark charge assignment: rL ¼ rR ¼ � tan�c, rL �
rR, and rL ¼ rR ¼ cot�c. All of the plots refer to coloron
production at the LHC with

ffiffiffi
s

p ¼ 7 TeV.
Notice that the perturbative expansion is only mean-

ingful as long as sin�c is neither too close to zero (where
g2s � g1s) nor too close to one (where g1s � g2s). This is
clear from Fig. 13, in which we plot the quantityQ defined
in Eq. (86), for � ¼ MC: the contribution from the virtual
corrections to the NLO cross section. The upper curve is
for the rL � rR scenario, whereas the almost identical
lower curves are for rL ¼ rR ¼ � tan�c, and rL ¼ rR ¼
cot�c. For sin2�c & 0:05 and sin2�c * 0:95 the virtual
corrections become large, and the perturbative expansion
in �s breaks down. Since �s ’ 0:118 at the Z pole, these
boundaries correspond to g2s * 2:7 and g1s * 2:7,
respectively.
In Fig. 14, we plot the �F dependence of the LO and

NLO production cross sections of a 2.0 TeV coloron (with
sin2�cj�¼2:1 TeV ¼ 0:25). The scale-dependence of the LO

cross section is of order 30% while, as expected, the NLO
cross section has a much weaker scale-dependence, only of
the order of 2% percent.
In Fig. 15 we plot the cross section times branching ratio

to quark jets as a function ofMC, allowing�F to vary from

0.0 0.2 0.4 0.6 0.8 1.0
60

40

20

0

20

sin2

Q

FIG. 13 (color online). Behavior of the Q function defined in
Eq. (84), for� ¼ MC: this gives the contribution from the virtual
corrections to the NLO cross section for coloron production. The
upper curve is for the rL � rR scenario, whereas the almost
identical lower curves are for rL ¼ rR ¼ � tan�c, and rL ¼
rR ¼ cot�c. Note that Q, and therefore the NLO corrections,
become very large when sin2�c is either too small or too large.
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FIG. 14 (color online). Dependence of LO and NLO cross sections at the LHC (
ffiffiffi
s

p ¼ 7 TeV), as a function of factorization scale�F

for MC ¼ 2:0 TeV, sin2�cj�¼2:0 TeV ¼ 0:25, and the three possible flavor-universal scenarios for the quark charge assignments. As

expected, the NLO cross section has a much weaker (formally, two-loop) residual scale-dependence.

9For the purposes of illustration we use the Mathematica package for CTEQ5 [36] to evaluate the relevant parton distribution
functions.
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MC=2 to 2MC. Here, in order to compare to the experi-
mental results of [22] (shown as the solid line in the
figures), we correct for the acceptance of the detector by
multiplying our partonic-level NLO production cross sec-
tion by the factor

R ¼ ð�ðpp ! CÞ �B � AÞCMS
axigluon

�LOðpp ! CÞaxigluon
: (90)

In this expression, ð�ðpp ! CÞ �B � AÞCMS
axigluon is the CMS

(LO) prediction for axigluon production cross section,
times dijet branching ratio, times acceptance10 reported
in [22], and �LOðpp ! CÞaxigluon is the leading order cross
section in Eq. (23) in the case of an axigluon (i.e. rL ¼
�rR ¼ 1), assuming the branching ratio to quarks
BðC ! q �qÞ ¼ 1.11 The three sets of thin bands correspond
to sin2�cj�¼MC

¼ 0:05 (dashed), 0.25 (dot-dashed), and 0.5

(dotted). Here, the weak residual �F dependence is shown
by the narrowness of the bands. To give a sense of current
experimental reach, we also show the 1 fb�1 CMS upper
bounds on the cross-section times dijet branching ratio for
a narrow resonance [22]. Note that the bound on the
axigluon [1] corresponds to the rL � rR plot with
sin2�c ¼ 0:5—and hence a narrow axigluon resonance is
constrained to have a mass of order 2.6 TeVor higher. The
enhancement of the axigluon cross section at NLO is
responsible for the increase in the bound from of order
2.5 TeV as reported in [22].

Next, we compute the ‘‘K-factor’’ for coloron
production,

KðMC; sin�cj�¼MC
;�F ¼ MCÞ

� �NLOðMC; sin�cj�¼MC
;�F ¼ MCÞ

�LOðMC; sin�cj�¼MC
;�F ¼ MCÞ

; (91)

shown in Fig. 16 for sin2�c ¼ 0:05 (dashed), 0.25 (dot-
dashed) and 0.50 (dotted). Again, we see that the NLO
corrections are of order 30%. In Appendix B we report the
numerical values of theK-factors corresponding to Fig. 16,
as well as those corresponding to the ATLAS KK-gluon
search reported in [38].
At leading order, the coloron is produced with zero

transverse momentum. We may use our results to compute
the pT spectrum in coloron production to leading nontrivial
order from Eq. (88). Using these formulas, we may com-
pute the fraction of colorons produced above a momentum
pTmin

P ðpT 	 pTmin;MC; sin�cj�¼MC
;�F ¼ MCÞ

� 1

�NLOðMC; sin�cj�¼MC
;�F ¼ MCÞ

�
Z pTmax

pTmin

dpT

d�

dpT

; (92)

FIG. 15 (color online). NLO cross section times branching-ratio to quarks for on-shell coloron production at the LHC (
ffiffiffi
s

p ¼
7 TeV), corrected for acceptance as described in the text. We consider the three possible flavor-universal scenarios for the quark charge
assignments, take the renormalization scale � to be equal to MC, and plot � for sin2�cj�¼MC

¼ 0:05 (dashed), 0.25 (dot-dashed), and

0.5 (dotted). We plot these cross sections for �F ranging from MC=2 to 2MC and, reflecting the weak dependence of the NLO cross
section on the factorization scale, the resulting bands for each sin2�c are very narrow. To give a sense of current experimental reach, we
plot the CMS [22] upper limit (solid line) on the cross-section times dijet branching ratio for a narrow resonance. Note that the
axigluon [1] corresponds to the middle rL � rR plot with sin2�c ¼ 0:5—and hence a narrow axigluon resonance is constrained to have
a mass of order 2.6 TeV or higher.

11It is worth noting that there are examples of models with colorons which do not decay primarily to dijets, e.g. [37].

10The CMS acceptance for isotropic decays is of order 0.6, independent of resonance mass [22].
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where pTmax is the kinematic maximum transverse mo-
mentum (which depends on the coloron mass). For illus-
tration, we plot this fraction for vectorial colorons
(rL ¼ rR ¼ � tan�c, with sin2�c ¼ 0:05) with masses of
1.2, 2.0, and 3.0 TeV in Fig. 17. Note that of order 30% of
the colorons in this model and mass range are produced
with pT 	 200 GeV. Below a pT of 200 GeV the correc-
tions become larger than 30%, terms proportional to
logðM2

C=p
2
TminÞ become large, and this fixed-order calcu-

lation becomes unreliable.
In conclusion, we have reported the first complete cal-

culation of QCD corrections to the production of a massive
color-octet vector boson. Our next-to-leading-order calcu-
lation includes both virtual corrections as well as correc-
tions arising from the emission of gluons and light quarks,
and we have demonstrated the reduction in factorization-

scale dependence relative to the leading-order approxima-
tion used in previous hadron collider studies. In particular,
we have shown that the QCD NLO corrections to coloron
production are as large as 30%, and that the residual
factorization scale-dependence is reduced to of order 2%.
We have also calculated the K-factor and the pT spectrum
for coloron production, since these are valuable for com-
parison with experiment. Our computation applies directly
to the production of the massive color-octet vector bosons
in axigluon, topcolor, and coloron models, and approxi-
mately to the production of KK gluons in extra-
dimensional models or colored technivector mesons in
technicolor models. We look forward to future results
from the LHC, and the possible discovery of colorons.
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APPENDIX A: FEYNMAN RULES

12The Feynman rules for the trilinear and quartic verti-
ces are shown in Figs. 18 and 19, respectively. The coloron
is represented by a zigzag line, the coloron ghost by a
sequence of small circles, and the eaten Goldstone bosons
by dashed lines. All other particles are denoted as in QCD
standard notation.

12The Feynman rules discussed here are equivalent to those in
[24], aside from those for the triple-coloron vertex which is not
specified in that reference.
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FIG. 17 (color online). Fraction of colorons produced with a
pT greater than pTmin, as a function of pTmin. The curves are for
MC ¼ 1:2 (highest, thin blue line), 2.0 (middle, medium purple
line), and 3.0 TeV (lowest, thick green line), for the vectorial
case rL ¼ rR ¼ � tan�c and sin2�c ¼ 0:05. Note that of order
30% of the colorons in this mass range are produced with pT 	
200 GeV. As denoted by the red shaded region, below a pT of
200 GeV the corrections become larger than 30%, terms pro-
portional to logðM2

C=p
2
TminÞ become large, and this fixed-order

calculation becomes unreliable.

FIG. 16 (color online). ‘‘K-factor’’, the ratio of the NLO to LO cross section for coloron production at the LHC (
ffiffiffi
s

p ¼ 7 TeV),
plotted as a function of MC for sin2�c ¼ 0:05 (dashed), 0.25 (dot-dashed) and 0.50 (dotted), �F ¼ MC, and the three different quark
charge assignments.
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FIG. 19. Feynman rules for the quartic vertices. A gluon field is, as usual, represented by a coiling line; a coloron field is represented
by a zigzag line.

FIG. 18. Feynman rules for the trilinear vertices. In each diagram the momenta are toward the vertex. A gluon field is, as usual,
represented by a coiling line; a coloron field is represented by a zigzag line. The coloron ghost is represented by a sequence of filled
circles, and the eaten Goldstone bosons are represented by dashed lines.
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APPENDIX B: NUMERICALVALUES
OF THE K-FACTOR

The numerical values of the K-factors for various values
of the coloron mass and the three patterns of coloron

coupling are shown in Figs. 20(a)–20(c). Finally, the values
of the K-factor corresponding to the KK-gluons of [12],
corresponding to the experimental search reported in [38],
are shown in Fig. 21.

FIG. 21. K-factors for KK-gluons of various masses considered
in [38]. This calculation is based on the theoretical framework of
[12], with the KK-gluon coupling (specified in the column head-
ing) varying between �0:20gs and �0:40gs.

FIG. 20. K-factors for colorons of various masses and couplings. The classic ‘‘axigluon’’ [1] corresponds to rL � rR and sin2�c ¼
0:50.
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