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The eta-photon transition form factor is evaluated in a formalism based on a phenomenological

description at low values of the photon virtuality, and a QCD-based description at high photon virtualities,

matching at a scale Q2
0. The high photon virtuality description makes use of a distribution amplitude

calculated in the Nambu-Jona-Lasinio model with Pauli-Villars regularization at the matching scale Q2
0,

and QCD evolution from Q2
0 to higher values of Q2. A good description of the available data is obtained.

The analysis indicates that the recent data from the BABAR collaboration on pion and eta transition form

factor can be well reproduced, if a small contribution of higher twist is added to the dominant twist-two

contribution at the matching scale Q2
0.
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I. INTRODUCTION

Meson distribution amplitudes (DA) are fundamental
theoretical ingredients in the description of exclusive
high-energy processes. The pseudoscalar transition form
factors (TFF), F���P, describing the process P ! ���,
where P is a pseudoscalar meson, are directly connected
with the DAs. Recently, the BABAR Collaboration has
provided new data at high virtuality for the pion and eta
TFF (�TFF and �TFF) [1,2]. The implications of these
results on �TFF in our understanding of the pion structure
have been widely discussed [3–13].

In particular, these results have cast doubts on the be-
havior, as a function of the light cone momentum fraction
x, of the pion distribution amplitude (�DA)��ðxÞ [14,15],
a quantity for which some investigations have predicted a
flat behavior, i.e., a constant value for any x [3,4], in good
agreement with the data of the form factor. These scenarios
are compatible with QCD sum rules [15] and lattice QCD
[16,17] calculations which provide values for the second
moment of the �DA which are large compared to the
asymptotic value 6xð1� xÞ. Several model calculations,
such as the ones performed in the Nambu-Jona-Lasinio
(NJL) [18–20] or in the ‘‘spectral’’ quark model [21]
frameworks, give a constant �DA, i.e. ��ðxÞ ¼ 1.

With the availability of data about the eta, it is important
to analyze all the proposed theoretical schemes. Some
work in this direction has been already done [11,22–27].
In particular, in Refs. [11,22–25] the importance of the
transverse momentum of the quarks is emphasized, making
use of some parametrization of the eta wave function. In
Refs. [26,27], the TFFs of pseudoscalar mesons are con-
sidered by using a dispersive representation of the axial

anomaly, considering also the violation of factorization and
possible higher twist corrections.
The parton distributions, generalized parton distribu-

tions and distribution amplitudes have been used as a
test of hadron models. The procedure consists of three
ingredients: i) the hadron model provides a low-energy
description of the studied distribution; ii) a high-energy
description is obtained by QCD evolution, which needs an
input at some low scale Q2

0; iii) a matching condition

between the two descriptions at a scale Q2
0 characterizing

the separation between the two regimes. This procedure
has been useful in the study of nucleon parton distributions
[28–30] as well as in that of pion distributions [31–35].
In Ref. [8], a version of the previous program, but in a

rather model-independent formalism, has been used to
calculate the �TFF. An excellent description of experi-
mental data has been obtained in the whole range of
virtuality. Summarizing, the evaluation of the �TFF at
high Q2 values in Ref. [8] is based on the following argu-
ments: i) chiral symmetry and soft pion theorems, which
explain that, at some pointQ2

0, the�DA has a flat behavior,

��ðx;Q2
0Þ ¼ 1; ii) applying QCD evolution to the �DA,

one can obtain the �TFF at any Q2 � Q2
0, iii) for

Q2 <Q2
0, the experimental parametrization of F����ðQ2Þ

given in Ref. [36] is assumed; iv) forQ2 >Q2
0 the �TFF is

given by its standard expression in terms of the �DA
modified in two directions, the quark propagator is cor-
rected, as suggested by Radyushkin [3], and a term origi-
nated by other higher twist contributions is included.
This scheme, successful for the pion, requires further

tests. The most natural one consists in the evaluation of the
same quantity for the other pseudoscalar mesons. In this
paper, the program is developed for the �meson, for which
a few sets of data are available [2,36]. The importance of
the �� �0 system for our understanding of the QCD
symmetries, and for their treatment in effective, low-
energy descriptions, is well known (see, e.g., Ref. [37]
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and references therein). To implement this program, the
approach of Ref. [8] has to be complicated, and some hints
have to be obtained within a specific model. In particular, a
generalized SUð3Þ Nambu-Jona-Lasinio model with Pauli-
Villars regularization, along the lines of Ref. [38], will be
used.

The NJL model is the most realistic model for the
pseudoscalar mesons based on a local quantum field theory
built with quarks. It respects the realization of chiral sym-
metry and gives a good description of the low-energy
physics of pseudoscalar mesons. It allows us to describe
mesons in a field theoretical framework treating them as
bound states in a fully covariant manner using the Bethe-
Salpeter amplitude. In this way, the Lorentz covariance of
the problem is preserved.

The NJL model is a nonrenormalizable field theory and
therefore a cutoff procedure has to be implemented. The
Pauli-Villars regularization procedure has been chosen
because it respects the gauge symmetry of the problem.
The NJL model together with its regularization procedure
is regarded as an effective theory of QCD. In the chiral
limit, it predicts for the pion ��ðxÞ ¼ 1, 0 � x � 1, in
agreement with the model-independent study of the pion in
Ref. [8]. At this point, due to the lack of fits in the SUð3Þ
NJL model with the Pauli-Villars regularization, a new
analysis of the parameters of the model is performed. It
is interesting to notice that an early attempt to use the NJL
model, but in a Uð3Þ invariant scheme, has been presented
in Ref. [39], where the � parton distribution has been
evaluated.

The paper is organized as follows. In Sec. II, the theo-
retical description of the ��� ! P is reviewed, extracting
the soft (nonperturbative) part, to be described by the
model. In Sec. III, the � calculation in the NJL model is
presented. In the following section, numerical results are

presented and discussed. The conclusions are drawn in the
last section. In the Appendix, a summary of the NJL model
is given, including the description of the fit which has been
used.

II. THE ��� ! P PROCESS: THEORETICAL
DESCRIPTION

The subject of this study is the transition form factor
(TFF), F���P, i.e., the form factor for the coupling of a real

photon and a virtual photon to a pseudoscalar meson, P.
The TFF is a very important quantity in the QCD descrip-
tion of exclusive processes. In particular, it can be used to
obtain information on the shape of the meson DA
[14,40,41]. Experimentally, it has been measured for the
�, � and �0 mesons by the CELLO [42], by the CLEO [36]
and, recently, by the BABAR [1,2] collaborations. The latter
results, for the pion, have been found in disagreement with
theoretical expectations.
In order to establish the proper formalism, in this section

the theoretical description of the �ðq1Þ��ðq2Þ ! PðkÞ pro-
cess is reviewed. From general arguments it is well known
that the transition amplitude of this process can be written
as (see, e.g., [43])

hPðkÞ outj�ðq1; "1Þ; ��ðq2; "2Þ ini
¼ ið2�Þ4�4ðq1 þ q2 � kÞT ; (1)

with

T ¼ 4��"1�"2�q1	q2
"
��	
F���P; (2)

where � is the fine structure constant. On the other hand,
applying the reduction formalism of Lehmann, Symanzik
and Zimmermann [43], this process is described by

hPðkÞ outj�ðq1; "1Þ;��ðq2; "2Þ ini ¼�ð2�Þ4�4ðq1 þq2 � kÞ
Z

d4ze�iðq1�q2Þz=2
�
PðkÞ out

��������T
�
"1 � j

�
z

2

�
"2 � j

�
� z

2

����������0
�
;

(3)

where j�ðzÞ ¼
P

jej �c jðzÞ��c jðzÞ is the electromagnetic current for the quarks. Evaluating the time-ordered product at
leading order and after some algebra, one has

T ¼ i
Z

d4ze�iðq1�q2Þz=2
Z d4t

ð2�Þ4 e
�itz

X
j

2ie2j"1�"2�ð�i"����t�Þ 1

t2 �m2
j þ i�

�
PðkÞ out

�������� �c j

�
z

2

�
���5c j

�
� z

2

���������0
�
:

(4)

Defining

�
PðkÞ out

�������� �c ja

�
z

2

�
c jb

�
� z

2

���������0
�
¼

Z d4‘

ð2�Þ4 e
�iðk=2�‘Þzi
j

ab
ð‘Þ; (5)

where a, b are quadrispinor indices, one can write the amplitude T as,

T ¼ "1�"2�"
����I��; (6)

with
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I��¼�i
Z d4‘

ð2�Þ4 2ðq1

�‘Þ�
X
j

1

ðq1�‘Þ2�m2
j þ i�

e2j ð���5Þbaði
j
ab
ð‘ÞÞ:

(7)

Since the symmetric part of I�� does not give a contribu-
tion to T , the attention is focused in the antisymmetric
part. With the momenta q1 and q2, one can build two
antisymmetric tensors, q1�q2� � q1�q2� and "��	
q

	
1q



2 .

Nevertheless, there is not enough structure in the integrand
of Eq. (7) to generate a tensor like "��	
q

	
1q



2 , at least at

the leading order. Therefore, the tensor structure of I�� is

I�� ¼ 1

2
ðq1�q2� � q1�q2�ÞI þ symmetric part: (8)

Turning back to the Eqs. (2) and (6), and using Eq. (8), one
gets F���P ¼ �I. Contracting (8) with q1�q2� � q1�q2�
and using the explicit expression of I��, Eq. (7), yields

F���P¼� i

ðq1:q2Þ2

�
Z d4‘

ð2�Þ42
X
j

1

ðq1�‘Þ2�m2
j þ i�

e2j ½q1:ðq1�‘Þ

�ð6q2�5Þba�q2:ðq1�‘Þð6q1�5Þba�ði
j
ab
ð‘ÞÞ: (9)

This expression for the transition form factor is quite
general. At this stage the assumptions made are i) the free
quark propagator has been used in going from Eq. (3) to
Eq. (4) and ii) the corrections to the elctromagnetic vertex
has not been considered. A more general expression could
be obtained by changing the free propagator, ðt�mþ
i�Þ�1, by the general one associated with a dressed quark,
ðAðtÞt� BðtÞ þ i�Þ�1, studied in actual lattice QCD calcu-

lations [44] and including a term with the neglected struc-
ture, "��	
q

	
1q



2 .

Looking at the kinematics of the process, one can choose
the reference frame in such a way that the pions’ and
photons’ four-momenta are k ¼ ðEk; kx; 0; kzÞ, q1 ¼
ðE1; 0; 0;�E1Þ, q2 ¼ ðEk � E1; kx; 0; E1 þ kzÞ, respec-
tively. It is interesting to express the quantities in terms

of the light-front variables, k� ¼ ðEk � kzÞ=
ffiffiffi
2

p
, ~k? ¼

ðkx; 0Þ, q�1 ¼ ðQ2 þm2
PÞ=2kþ, qþ1 ¼ 0, ~q1? ¼ 0,

qþ2 ¼ kþ, q�2 ¼ �ðQ2 � k2?Þ=2kþ, ~q2? ¼ ~k?, where

Q2 ¼ �q22. In the limit of large Q2, some of the quantities
in Eq. (9) can be approximated by

6q1 ’ �6q2 ’ Q2

2kþ
�þ; (10)

q1:q2 ’ 1

2
Q2; (11)

ðq1 � ‘Þ2 �m2
j þ i� ’ � ‘þ

kþ
Q2; (12)

giving for the transition form factor the expression

F���P ’ � 1

Q2
i
Z d4‘

ð2�Þ4 2
X
j

1
‘þ
kþ
e2j

�
1

kþ
�þ�5

�
ba

ði
j
ab
ð‘ÞÞ:

(13)

Finally, defining x ¼ ‘þ
kþ , one arrives at the usual

expression

F���PðQ2Þ ’ 1

Q2

Z dx

x
�Pðx;Q2Þ; (14)

with

�Pðx;Q2Þ ¼ �i
Z d‘�d2‘?

ð2�Þ4 2
X
j

e2j ð�þ�5Þbaði
j
ab
ð‘ÞÞ

¼ �2i
Z dz�

2�
eiz

�kþðx�ð1=2ÞÞ
�
PðkÞ out

��������
X
j

e2j
�c j

�
z

2

�
�þ�5c j

�
� z

2

���������0
���������zþ¼0; ~z?¼0

: (15)

As will be discussed later, in Eq. (14), besides the explicit
Q2 dependence, also an implicit one appears, through the
QCD evolution of �Pðx;Q2Þ. In the SUð3Þ formalism, the
quark operator has the form

X
j

e2j
�c j

�
z

2

�
�þ�5c j

�
� z

2

�
¼ �c

�
z

2

�
�þ�5Oc

�
� z

2

�
;

(16)

with O ¼ 2�0=ð3 ffiffiffi
6

p Þ þ �3=6þ �8=ð6 ffiffiffi
3

p Þ where �a are
the SUð3Þ generators. In the present case it is more inter-
esting to use the flavor basis in describing the � particle

(see the Appendix). In this basis, one has O ¼ 5�q=18þ
�s=ð9 ffiffiffi

2
p Þ þ �3=6. As usual, the DA of P in the flavor basis

is defined as

ifjP�
j
Pðx;Q2Þ ¼ �

Z dz�

2�
eiz

�kþðx�ð1=2ÞÞ
�
PðkÞ

�
�������� �c j

�
z

2

�
�þ�5

�jffiffiffi
2

p c j

�
� z

2

���������0
�

�
��������zþ¼0; ~z?¼0

; (17)

with j ¼ 3, q, s. This yields
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�Pðx;Q2Þ ¼
ffiffiffi
2

p
3

f3P�
3
Pðx;Q2Þ þ 5

9

ffiffiffi
2

p
fqP�

q
Pðx;Q2Þ

þ 2

9
fsP�

s
Pðx;Q2Þ: (18)

In the pion case, this equation corresponds to ��ðxÞ ¼ffiffiffi
2

p
f���ðxÞ=3, where ��ðxÞ is the �DA and f� ¼

0:131 GeV is the pion decay constant.
One should notice that, in going from Eq. (1) to the final

result Eq. (14), a few approximations have been made: the
free expression has been used for the quark propagator,
with the additional simplification given by Eq. (12); be-
sides, the approximations Eqs. (10) and (11) have been
applied in the numerator of Eq. (9) and a new tensor
structure in I�� has been neglected. Some of these correc-

tions have a kinematic character, while others are certainly
dynamical. Both type of corrections imply the presence of
higher twist distribution amplitudes.

In Ref. [8] it has been argued that the approximations,
leading to the simple expression Eq. (14) for the transition
form factor, are too crude to explain the BABAR experi-
mental data, and corrections at the next order in the Q�2

expansion have been added. The simplest way to imple-
ment these corrections is to start from the following
expression:

Q2F���PðQ2Þ ¼
Z 1

0

dx

xþ M2

Q2

�Pðx;Q2Þ þ C3

Q2
: (19)

The massM in Eq. (19) was introduced by Radyushkin [3],
to cure the divergence of the integrand in Eq. (14), occur-
ring when a DA �Pðx;Q2

0Þ, not vanishing at x ¼ 0, 1, is
used. This was justified as a consequence of the existence
of some transverse component in the quark momentum. As
has been shown in the previous section, M contains not
only effects associated with the mean transverse momen-
tum, but also the ones associated with the constituent quark
masses, among others. In Ref. [8] it has been shown that it

is necessary to introduce the C3-dependent term in Eq. (19),
otherwise the data cannot be well described around the
region of Q2 ¼ 10–20 GeV2. The inclusion of this term
has been thoroughly motivated in this section, where it has
been shown that the perturbative approach leading to
Eq. (14) is correct only for high enough values of the
virtuality. We call the C3 term as ‘‘the higher twist
term,’’ although it is clear that also the mass term, M, is
of the same order.

III. THE � TRANSITION FORM FACTOR

In this section, we evaluate the �TFF. To this aim,
according to Eq. (19), in calculating F����ðQ2Þ the �DA

is needed. From Eq. (18), the �DA is expressed by

��ðx;Q2Þ ¼ 5

9

ffiffiffi
2

p
fq��

q
�ðx;Q2Þ þ 2

9
fs��

s
�ðx;Q2Þ: (20)

In the calculation, we use the following values of the �
weak decay constants

fq� ¼ ð0:828� 0:019Þf�;
fs� ¼ ð�0:848� 0:042Þf�;

(21)

with f� ¼ 131 MeV, obtained in the phenomenological
study of Ref. [37].
Now, it is necessary to calculate the �DA at some initial

scale Q2
0 within a model. To this end, we have obtained the

DAs corresponding to the q and s flavors within the
Nambu-Jona Lasinio (NJL) model, which has a long tra-
dition of successful predictions of meson parton structure
[31–35]. In particular, we use in the present calculation the
three quark-flavor version of the model with the Pauli-
Villars regularization [38,45]. A brief summary of the
model and of the regularization procedure is given in the
Appendix.
In the NJL model, mesons are described through Bethe-

Salpeter amplitudes. For the � meson one has:

h�ðkÞjc �ðx2Þ �c �ðx1Þj0i ¼ eikðx1þx2Þ=2
Z d4‘

ð2�Þ4 e
i‘ðx1�x2Þ

�
iSF

�
‘� k

2

�
ig�qqðcos��q � sin��sÞi�5iSF

�
‘þ k

2

��
��

; (22)

where the index �, � stand for color, flavour and quadrispinor index. Inserting this expression in Eq. (17) one obtains

ifj��
j
�ðxÞ ¼

ffiffiffi
2

p
g�qqðcos��j;q � sin��j;sÞNc

Z d4‘

ð2�Þ4 �
�
‘þ � kþ

�
x� 1

2

��
tr

�
SF

�
‘� k

2

�
�5SF

�
‘þ k

2

�
�þ�5

�
: (23)

Evaluating the trace and using Eq. (A18) of the Appendix, one has

�qðsÞ
� ðx;Q2

0Þ ¼
1

I2ðmqðsÞ; mqðsÞ; m2
�Þ

~I�;qðsÞðx;mqðsÞ; m2
�Þ; (24)

where ~I2ðx;mi; m
2
PÞ is given in Eq. (A23) and I2ðmqðsÞ; mqðsÞ; m2

�Þ is the two-propagator integral defined in Eq. (A2). The
flavor DA defined in Eq. (24) satisfies the normalization condition
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Z
dx�qðsÞ

� ðx;Q2
0Þ ¼ 1: (25)

For Q2 >Q2
0, the �TFF is obtained through QCD evo-

lution [14,46,47]. The �DA can be expressed in terms of
the Gegenbauer polynomials,

�q;s
� ðx;Q2Þ¼6xð1�xÞ X1

nðevenÞ¼0

aq;sn C3=2
n ð2x�1Þ

�
0
@log

Q2

�2
QCD

log
Q2

0

�2
QCD

1
A��n

; (26)

where �n is the anomalous dimension

�n ¼ CF

�

�
1þ 4

Xnþ1

k¼2

1

k
� 2

ðnþ 1Þðnþ 2Þ
�
; (27)

� ¼ 11NC

3 � 2Nf

3 is the beta function to lowest order and

CF ¼ N2
C
�1

2NC
. If the aq;sn coefficients are known, using

Eq. (26) in Eq. (20) and (19), the �TFF is obtained for
any Q2 � �2

QCD. Once �q;s
� ðx;Q2

0Þ are known at a given

scale Q2
0, the aq;sn coefficients are obtained using the or-

thogonality property of the Gegenbauer polynomials

aq;sn ¼ 2

3

2nþ 3

ðnþ 1Þðnþ 2Þ
Z 1

0
dxC3=2

n ð2x� 1Þ�q;s
� ðx; Q2

0Þ:
(28)

In this scheme, the � meson cannot couple to two
gluons. This should not be a serious drawback of the
approach, having the � essentially an octet character under
SUð3Þ transformations.

We now fix the values of Q0, C3 andM. The Q0 scale is
closely related to the choice of the �QCD value. We fix a

scale of Q0 ¼ 1 GeV, together with �QCD ¼ 0:226 GeV,
in analogy with the previous analysis [8]. A natural con-
dition to be satisfied is continuity between the low-
virtuality description of the �TFF and the high-virtuality
description, provided by Eq. (19). To minimize the model
dependence, we use the parametrization of the CLEO
collaboration [36] for the description of the TFF in the
LV region

FLV
����ðQ2Þ ¼

�
64��ð� ! ��Þ

ð4��Þ2m3
�

�
1

1� t
�2

�

¼ Fð0Þ
1þ Q2

�2
�

; (29)

with Fð0Þ ¼ 0:272� 0:007 GeV�1, obtained using
�ð� ! ��Þ ¼ 0:510� 0:026 10�3 MeV as given by the
Particle Data Group [48] together with m� ¼
547:85 MeV, and �� ¼ 774� 29 MeV [36].

The value of the massM can be obtained by equating the
�TFF given by Eq. (19) at Q2 ¼ Q2

0, using as ��ðx; Q2
0Þ

the one provided by the NJL model, to the value given, at
the same scale, by the monopole parametrization Eq. (19),

Q2
0F

LV
����ðQ2

0Þ ¼
Q2

0Fð0Þ
1þ Q2

0

�2
�

¼
Z 1

0

dx

xþ M2

Q2
0

��ðx;Q2
0Þ þ

C3

Q2
0

:

(30)

Finally, the only unknown is C3, for which several
reasonable values have been used, as discussed in the
following section.

IV. RESULTS AND DISCUSSION

We now present our results of the calculation of the
�TFF. The starting point is the �DA, evaluated at the
low-energy scale of the model. According to Eq. (24), all
we need is the value of the � mass, the quark masses and
the regularization parameter �. We use for the � mass the
experimental value, m� ¼ 548 MeV. The quark masses

mqðsÞ and the regularization parameter � have to be fixed

within the NJL model. It is important to work in the Pauli-
Villars regularization scheme, in order to preserve gauge
invariance. Unfortunately, to our knowledge, all the avail-
able fits for the NJL model in SUð3Þ are done within the
cutoff regularization scheme. The only exception is the
paper by Bernard and Vautherin [45], where anyway an
approximate expression for the I2ðmi;mj;q

2Þ integral is

used. Therefore, we have performed a new fit of the model
parameters. The SUð3Þ NJL model gives a very good
description for the meson properties [49], but one has to
be careful, since it does not include confinement. To avoid
problems, we impose a value ofmu > m�=2. The details of

the model [whose Lagrangian is given by Eq. (A1)] are
given in the Appendix. Here it is worthwhile to recall only
that the model has five parameters, which can be chosen as
the current quark masses, �u and �s, the dressed quark
masses, mu and ms, and the cutoff parameter, �. Our
strategy for the fits has been: i) the mu mass has been fixed
to 275 MeV; ii)�u and� are determined by fittingm� and
f�; iii) �s and ms are chosen looking for an overall good
description of the strange sector. In Table I two different
sets of the relevant quantities, obtained by the above de-
scribed fitting procedure, are reported. It is seen that their
experimental values are reproduced very well. In Set I, we
have imposed the additional condition for the resulting eta
mass: m� � 2mu. In this set, a very good description of

masses in the strange sector is obtained, but paying the
price of a worse description of fq;s� . In Set II, the descrip-
tion of the masses is slightly worse, but the fq;s� are very
well reproduced. One should notice that, in going from
SUð2Þ to SUð3Þ within the NJL model, the number of
parameters moves from three to five. One has therefore at
hand two more parameters for explaining three new
masses, three new decay constants and a new quark con-
densate. Actually, for calculating the �DA only mu and �,
which have the same value in both sets, are needed, to-
gether with ms, which changes from 430 MeV in Set I to
435 MeV in Set II. With respect to these quantities, the
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predictions of the model are therefore reasonably stable.
The results for the �DA are presented for the following
values of the parameters: � ¼ 740 MeV, mu ¼ 275 MeV
and ms ¼ 435 MeV. It may be useful to reiterate that the
obtained values of fq;s� are not relevant for the present
calculation, because we used the experimental ones.

In Fig. 1, the �DA are shown. We observe that
�q

�ðx; Q2
0Þ is peaked around the central point x ¼ 0:5while

�s
�ðxÞ is relatively flat. This is a consequence of the masses

of quarks u and d, which are close to half the mass of the
eta, while it is not the case for the mass of the strange
quark. What is clearly seen is the following reasonable
feature: the less bound is a system, the more narrow is its
DA around the point x ¼ 0:5.

Our DAs have an infinite expansion in terms of the
Gegenbauer polynomials. The firsts coefficients aq;s� , de-
fined in Eq. (28), at Q2

0 ¼ 1 GeV2 are

aq2 ¼ 0:134 as2 ¼ 0:377

aq4 ¼ 0:352 as4 ¼ 0:245
(31)

The as� coefficients are close to the values predicted by a

flat distribution. On the other hand, we observe that
aq2 < aq4 , at variance with what is commonly used in the

field. This feature is due to the narrow structure of �q
�ðxÞ.

We can compare our results with the values used by other
authors. The aq2 and as2 coefficients are to be compared to

the parameter B ¼ 0:3 used in Ref. [24].
In Ref. [11] the values a12 ¼ �0:06� 0:06, a82 ¼�0:07� 0:04 and a�2 ¼ 0:22� 0:06 are given, but at

Q2 ¼ 4 GeV2. From Eq. (31) and using �1
� ¼

ð5�q
� þ�s

�Þ=6 and �8
� ¼ ð5�q

� � 2�s
�Þ=3 we obtain

a12ð1 GeV2Þ ¼ 0:17 a82ð1 GeV2Þ ¼ �0:028: (32)

Evolving these results we have

a12ð4 GeV2Þ ¼ 0:14 a82ð4 GeV2Þ ¼ �0:022: (33)

The value for a82 is therefore consistent with that used in
Ref. [11], while some difference is found for the value of
a12. In the pion case, if we use a flat distribution at Q2

0 ¼
1 GeV2, a value a�2 ð4 GeV2Þ ¼ 0:31 is obtained. In
Ref. [25] it has been noted that the values for these pa-
rameters found in [11] suggest a very large SUð3Þ breaking
between the DA of the �0 and the one of �8, and a very
little Uð1Þ symmetry breaking between �8 and �1. Our
results show the same structure as those of Ref. [11], at
least for a82 and for the big difference between a�2 and a82.
The origin of this difference is in the small value of aq2 due
to the narrow structure of�q

�ðxÞ, originated by the fact that
mu is close to m�=2. At the same time, a small value of aq2
explains a small value for a12. One should remember that
the present scheme reproduces the SUð3ÞF and Uð3ÞF
symmetry breaking in the pseudoscalar meson sector.
The results of Eq. (32) are also in good agreement with

those from [23,50]. In the latter references, the authors give
their results for Q2

0 ¼ 1 GeV2 in terms of the quantities Bq
2

and Bg
2 , defined in [50] and related to our expressions as

follows: a12ð1GeV2Þ¼�Bq
2þBg

2=102 and a82ð1 GeV2Þ ¼
�Bq

2 . Using the numerical results of Ref [23], we have

FIG. 1 (color online). The DA for the q (upper panel) and s
(lower panel) flavor in the � meson, at the initial scale Q2

0 ¼
1 GeV2 (dotted line) and after evolution to the scale Q2 ¼
50 GeV2 (full line). The asymptotic behavior is also shown for
comparison (dashed line).

TABLE I. We show results for two different parametrizations of the NJL model for several physical quantities, together with their
experimental or phenomenological values. Explicit expressions for these are reported in the Appendix. The masses and the quark
condensate are given in MeV.

�s ms h�ssi1=3 mK m� m�0 fK=f� fq�=f� fs�=f�

Set I 171.2 430 �186 497 541 1157 1.07 0.603 �0:664
Set II 184.2 435 �184 515 554 1148 1.07 0.832 �0:840
Exp. �194 495 548 958 1.18 0.828 �0:848
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a12ð1 GeV2Þ ¼ 0:149� 0:048 and a82ð1 GeV2Þ ¼
�0:0425� 0:0175, to be compared to our results,
Eq. (32). In these papers, the coupling of a two gluon state
to the singlet �qq component of the � mesons is introduced
explicitly, providing a contribution, Bg

2 , which is an im-

portant part of the final result. In absence of gluons, the
symmetry Uð1Þ is not broken. In our case, the Uð1Þ sym-
metry is broken through the ’t Hooft interaction term [51]
introduced in the Lagrangian (A1), making our results
consistent with those of Refs. [23,50].

As stated at the end of the previous section, once the
�DA has been obtained at the scale Q2

0 and evolved to Q2

according to Eqs. (26)–(28), the only remaining unknown
for the evaluation of the �TFF according to Eq. (19) is the
constant C3 of the higher twist term. To this aim, three
different scenarios have been considered, corresponding to
a contribution from this term to the form factor at Q2

0 ¼
1 GeV2 of 10% (C3 ¼ 1:02 � 10�2 GeV3), 20% (C3 ¼
2:04 � 10�2 GeV3) and 30% (C3 ¼ 3:06 � 10�2 GeV3).
The cutoff parameterM varies between 487MeV, forC3 ¼
1:02 � 10�2 GeV3, 557 Mev, for C3 ¼ 2:04 � 10�2 GeV3,
and 638 MeV, C3 ¼ 3:06 � 10�2 GeV3. We show in Fig. 2
the obtained result for �TFF and in Fig. 3 a detail of the
region between Q2 ¼ 0 and Q2 ¼ 10 GeV2.

The results for the �TFF, shown in Figs. 2 and 3, exhibit
a very good description of the experimental data in the
whole kinematic region. For completeness we have in-
cluded in the figures the C3 ¼ 0 case and the asymptotic

vale for the �TFF, Q2F����ðQ2Þ ¼ ð5 ffiffiffi
2

p
fq� þ 2fs�Þ ¼

0:181 GeV. It may be interesting to notice that the value
of the asymptotic �TFF is very close to the value of the

asymptotic �TFF, Q2F����ðQ2Þ ¼ ffiffiffi
2

p
f� ¼ 0:185 GeV.

It is also clear that, at variance with what happens in the
� case, to explain the eta data someC3 contribution may be
needed only in the region around Q2 ¼ 20–30 GeV2.
Anyway, a complete discussion is obtained only by com-
paring the present results for the �TFF with those of
Ref. [8]. In the � case, the C3 contribution was crucial to
reproduce the data in the regionQ2 ¼ 10–20 GeV2 and the
calculated �TFF crossed the asymptotic curve quite early
(around Q2 ¼ 10 GeV2Þ and with a significative slope. In
the � case, the situation is less dramatic: the higher twist
term improves the TFF description only slowly, and the
theoretical result crosses softly the asymptotic value
around Q2 ¼ 40 GeV2.
Another interesting point is the stability of the parame-

ters. In calculating the �TFF, we have adopted a procedure
independent from that used in Ref. [8], namely, C3 and M
have been fitted using the � data only. The parameters
used in both calculations have been �QCD ¼ 0:226 GeV
and Q0 ¼ 1 GeV. Otherwise, in Ref. [8], a fully
model-independent calculation was performed, choosing
��ðxÞ ¼ 1 on the basis of chiral symmetry. Here one is
forced to choose a model for the description of the �DA at
Q2

0, and C3 and M have been fixed within this model,

independently from the � case. Despite this, the result
obtained in the two calculations are quite consistent.
Varying the weight of the higher twist term from 10% to
30% produces a change in C3 from 1:02 � 10�2 GeV3 to
3:06 � 10�2 GeV3 in the � case, to be compared to a
variation of C3 from 0:99 � 10�2 GeV3 to 2:98 �
10�2 GeV3 in the � case. The agreement is impressive.
On the other hand, we found for the mass parameter a

wider variation. In the � case one gets M ¼ 560�
70 MeV, taking into account the uncertainty in C3, to be
compared to M ¼ 620� 70 MeV for the � case. Despite
these differences, the results can be considered perfectly
consistent with each other. The difference in the central
value of M could imply that, for the pion, a larger contri-
bution from the transverse momentum is expected with

FIG. 2 (color online). Calculation of the transition form factor
via the �DA with M ¼ 0:557 GeV, C3 ¼ 2:0410�2 GeV3 and
using Q2

0 ¼ 1 GeV2 (full line) compared with the available

experimental data [2,36]. The gray region describes the indeter-
minacy on C3. The dashed line represents the result obtained
taking C3 ¼ 0. The dotted line corresponds to the asymptotic
value for the form factor.

FIG. 3 (color online). The same as in Fig. 2, but in the low-
virtuality region.
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respect to that for the eta particle. It is indeed what has
been obtained in Refs. [11,24]. The values of M could be
compared with the value of hk?i given by P. Kroll [11],
hk?i ’ 710 MeV for the pion and hk?i ’ 390–440 MeV
for the eta. It can be also compared with the �� parameter
used by [24], which is related with the width of the
Gaussian distribution of transverse momentum used by
these authors, with the values �� ¼ 668 MeV for the
u-quark and�� ’ 530 MeV for the s-quark. A comparison
of our parameters, based on a quark-flavor decomposition
of the relevant quantities (DAs, decay constants), with
those used in Ref. [22], obtained within a singlet-octet
decomposition, is instead rather involved. The spirit of
the present calculation and those of Refs. [22,24] are rather
different. In our calculation, the known QCD evolution of
the DA governs the Q2 dependence of the form factor. The
same Q2 dependence is obtained, in Refs. [22,24], through
the kT dependence assumed for the light cone wave func-
tion of the mesons. It is therefore significant that the two
approaches provide similar results, describing probably,
using different tools, a similar mechanism.

In the present discussion, the result on ��ðqÞ ! P�,
reported by BABAR for a timelike q2 ¼ 112 GeV2,
q2F����ðq2Þ ¼ 0:229� 0:030� 0:008 GeV, has not

been included. The reason is that the kinematics and dy-
namics of this process are different from the ones studied
here. There is no symmetry relating F���Pðq2Þ at one point
q2 to F���PðQ2Þ in the pointQ2 ¼ �q2. The coincidence is

in the asymptotic value, which has been predicted for

this process to be [40] �q2F���Pðq2Þ ¼
ffiffiffi
2

p
fPð1�

5�sðq2Þ=3�Þ, when the contribution coming from the
�sðq2Þ term could be disregarded. In the present scheme
we obtain Q2F���PðQ2Þ ¼ 0:19 GeV at Q2 ¼ 112 GeV2,

which implies a very slowly growing behavior of the TFF
even for these high values of the virtuality.

In closing this section, it is useful to list items that
prevent us from using the same formalism for the descrip-
tion of the�0TFF. First of all, as has been previously noted,
the NJL does not include confinement. Therefore, if one
uses the same expression, Eq. (24), in the �0 case, an
imaginary part will appear in the DA at some value of x.
Secondy, the �0 is basically a singlet state and it can mix
strongly with the two gluons’ state or, later, with some c �c
component. These ingredients are not included in the
present formalism.

V. CONCLUSIONS

In this paper, the �TFF has been discussed in a formal-
ism which connects a low-energy description of the hadron
involved with a high-energy description based on a QCD
perturbative formulation. The two descriptions are
matched at some scale Q2

0. The scheme has been applied

to describe the parton and generalized parton distributions
with notable success [28–30,32,35] and, in particular, to

the �TFF in [8]. The formalism therefore selects two
regions of virtuality, separated at Q2

0. For Q
2 <Q2

0, use

has been made of the experimental parametrization of the
�TFF data. This has been done to avoid model dependence
in this region. At Q2 >Q2

0, use has been made of a high-

virtuality description, which incorporates the following
important physical ingredients: i) a �DA obtained in the
NJL model; ii) a mass cutoff in the definition of the �TFF
from the �DA,M, [3] which, interpreted from the point of
view of constituent models, takes into account the con-
stituent mass, transverse momentum effects and also
higher twist effects; iii) an additional higher twist term
into the definition of the �TFF in the high-virtuality de-
scription, parametrized by a unique constant, C3; iv) the
two descriptions have to match at a virtuality Q2

0, a scale

which is universal and should be the same for all
observables.
In Sec. II it has been shown that the dominant, twist-two,

expression for the pseudoscalar TFF, given in Eq. (14) has
to be corrected, for including higher twist effects. The
minimal correction would be the one given in Eq. (19).
The �DA atQ2

0 has been obtained in the NJL model. For

that, the parameters have been adjusted for a good repro-
duction of the � sector with the Pauli-Villars regulariza-
tion. The obtained fits represent an overall good
description of the strange sector, not only for the masses,
but also for the meson decay constants. It is worthwhile to
stress that, in going from SUð2Þ to SUð3Þ, the number of
parameters is increased by two, while the number of new
physical quantities, included in Table I, is seven. The
obtained DAs in this model show consistency with other
analyses, where the DAs are parametrized [11,23,24].
Using Q0 ¼ 1 GeV as matching point, the higher-

virtuality results of the �TFF are well reproduced. The
C3 term turns out to be relatively small. Its effect is to
reduce the value of the contribution to the twist-two �TFF
only for Q2 < 5 GeV2. Its value, C3 ¼ 2:04 � 10�2 GeV3

for a 20% of higher twist contamination at Q2
0, is in perfect

agreement with the one obtained for the �TFF in Ref. [8],
C3 ¼ 1:98 � 10�2 GeV3. Moreover, the results are very
stable with respect to variations of this parameter.
The value obtained for M ¼ 560 MeV is comparable

with that of the pion case in Ref [8], M ¼ 620 MeV. The
relative high value of M in both cases can be understood
thinking that it includes the constituent quark mass, the
mean value of the transverse quark momentum and other
higher twist contributions. In turn, the higher value of M
for the � than for the � can be related to the fact that the
contribution of the quark transverse momentum in the �
case is expected to be more important with respect to the �
case [11,24].
The calculation proves that all the BABAR results can be

accommodated in the present scheme, which only uses
standard QCD ingredients and low-virtuality data. It must
be emphasized that, in order to have a good description for
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both � and �, higher twist effects are important, as the
modification from Eq. (14) to Eq. (19) signals. It must be
also noted that the matching scale is as high as 1 GeV, a
feature already found in the description of parton distribu-
tions when precision was to be attained. With these ingre-
dients, the calculation shows an excellent agreement with
the data.

Let us conclude by stressing that we have justified the
formalism developed in Ref. [8] to describe the �TFF and
we have extended it to the �TFF. The idea of the approach
is that one can use models or effective theories to describe
the nonperturbative sector, and QCD to describe the per-
turbative one. In here, we have preferred to use data for the
low-virtuality sector to avoid model dependence, but in
building the �DA at Q2

0 we have used the NJL model.

Higher twist effects (parametrized in our case by M and
C3) are small but crucial in order to attain an excellent
description of the � and � experimental results.
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APPENDIX A: THE SUð3Þ NJL MODEL FOR
PSEUDOSCALAR MESONS

In calculating the �DA, the minimal extension of the
NJL model for describing pseudoscalar mesons in SUð3Þ,
proposed in Ref. [52], has been used

L ¼ �qðxÞði6@��ÞqðxÞ þG
X8
a¼0

½ð �q�aqÞ2 þ ð �qi�5�
aqÞ2�

� K½detð �qð1þ �5ÞqÞ þ detð �qð1� �5ÞqÞ�; (A1)

where � ¼ diag½�u;�d;�s� is the matrix of the current
quark masses and �a, a ¼ 0; . . . ; 8, are the SUð3Þ gener-
ators. SUð2Þ will be considered a good symmetry, and,
therefore, �u ¼ �d. As is well-known, the first conse-
quence of the scalar interaction term is to provide the
constituent quark masses, mu ¼ md, ms, different from
the current ones. The main results are summarized here,
while the reader is referred to Sec. IV-B of Ref. [38] for
details.

By defining the integrals

I1ðmÞ ¼ i
Z d4p

ð2�Þ4
1

ðp2 �m2 þ i�Þ ; I2ðmi;mj; q
2Þ ¼ i

Z d4p

ð2�Þ4
1

ðp2 �m2
i þ i�Þ½ðp� qÞ2 �m2

j þ i�� ; (A2)

the constituent masses are given by

mu ¼ �u þ 16GNcmuI1ðmuÞ þ 32KN2
cmuI1ðmuÞmsI1ðmsÞ; ms ¼ �s þ 16GNcmsI1ðmsÞ þ 32KN2

c½muI1ðmuÞ�2;
(A3)

where Nc is the number of colors. The vacuum expectation
values for the condensates of the quarks of flavor qi are

h �qiqii ¼ 4miI1ðmiÞ � 4�iI1ð�iÞ; (A4)

where the expectation value of the �qq in the perturbative
vacuum has been substracted from the expectation value in
the true vacuum. The last term in Eq. (A4) is negligible in
the u� d quark sector, while it becomes important in the
strange sector.

The next step is the description of the pseudoscalar
states. For the pion and kaon case, by defining the
quantities

K3 ¼ Gþ 2NcKmsI1ðmsÞ;
K6 ¼ Gþ 2NcKmuI1ðmuÞ;

(A5)

and

Dðmi;mj; q
2Þ ¼ I1ðmiÞ þ I1ðmjÞ

þ ððmi �mjÞ2 � q2ÞI2ðmi;mj; q
2Þ; (A6)

one has that the pion and kaon masses are obtained solving
the equations:

1� 8NcK3Dðmu;mu;m
2
�Þ ¼ 0;

1� 8NcK6Dðmu;ms;m
2
KÞ ¼ 0:

(A7)

The couplings of the pion and the kaon to the quarks are
given by

g2�qq ¼
�
4Nc

d

dq2
Dðmu;mu; q

2Þ
��1

q2¼m2
�

;

g2Kqq ¼
�
4Nc

d

dq2
Dðmu;ms; q

2Þ
��1

q2¼m2
K

;

(A8)

and the decay constants are
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F� ¼ �4Ncg�qqmuI2ðmu;mu;m
2
�Þ; (A9)

FK ¼ 2NcgKqq

m2
K

fðms þmuÞDðmu;ms;m
2
KÞ

� 2muI1ðmuÞ � 2msI1ðmsÞg; (A10)

where F�;K ¼ f�;K=
ffiffiffi
2

p
.

The� particle deserves a more careful discussion, due to
its mixing with the �0 particle. Working in the flavor basis,
one can define

Kq ¼ G� 2NcKmsI1ðmsÞ;
Kqs ¼ �2

ffiffiffi
2

p
NcKmuI1ðmuÞ;

K ¼ KqG� K2
qs:

(A11)

The interaction in the �� �0 sector can be described by
the expression

ði�5�
iÞ½Mij�ði�5�

jÞ; (A12)

with i, j ¼ q, s, �q ¼ diag½1; 1; 0�, �s ¼ diag½0; 0; ffiffiffi
2

p �
and the interaction matrix is given by

½Mij� ¼ 1

D�

aqq aqs
aqs ass

� �
; (A13)

with

aqq ¼ 2ðKq � 8KNcDðms;ms; q
2ÞÞ;

ass ¼ 2ðG� 8KNcDðmu;mu; q
2ÞÞ; aqs ¼ 2Kqs;

D�ðq2Þ ¼ ðaqqass � a2qsÞ=ð4KÞ: (A14)

The � mass is obtained solving the equation

D�ðm2
�Þ ¼ 0: (A15)

In a neighborhood of q2 ¼ m2
� the interaction can be

written as

ð� sin��s þ cos��qÞ �g�qq

q2 �m2
�

ð� sin��s þ cos��qÞ

¼ aqq
D�

ð���s þ �qÞð���s þ �qÞ; (A16)

with �� ¼ aqs=aqq. In obtaining the right-hand side of this

equation, use has been made of Eq. (A15), which implies
ass ¼ a2qs=aqq. From (A16) one has

cos� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2�

q ; sin� ¼ ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2�

q ;

g2�qq ¼ �ð1þ �2�Þaqq
dD�=dq

2

��������q2¼m2
�

:

(A17)

For the flavor decay constants, one has

Fq
� ¼ �12g�qq cos�muI2ðmu;mu;m

2
�Þ;

Fs
� ¼ 12g�qq sin�msI2ðms;ms;m

2
�Þ;

(A18)

where Fq;s
� ¼ fq;s� =

ffiffiffi
2

p
.

We need to evaluate the integrals defined in Eq. (A2).
Because of the pointlike character of the interaction, the
Lagrangian Eq. (A1) is not renormalizable and a regulari-
zation procedure for these integrals has to be defined. We
use the Pauli-Villars regularization in order to render the
occurring integrals finite. This means that, for integrals like
the ones defined in Eq. (A2), we make the following
replacement

I1ðmiÞ !
X2
‘¼0

c‘I1ðM‘;iÞ

I2ðmi;mj; q
2Þ ! X2

‘¼0

c‘I2ðM‘;i;M‘;j; q
2Þ

(A19)

with M2
‘;j ¼ m2

j þ ‘�2, c0 ¼ c2 ¼ 1, c1 ¼ �2. Here, for

simplicity, we choose the same � value for the strange and
the nonstrange sector. According to these prescriptions one
finds

I1ðmiÞ ¼ 1

16�2

�
�2M2

1;i ln
M2

1;i

m2
i

þM2
2;i ln

M2
2;i

m2
i

�
; (A20)

I2ðmi;mj; q
2Þ ¼ 1

32�2

X2
‘¼0

c‘

��
ln
M2

1;i

m2
i

þ ln
M2

1;j

m2
j

�

þM2
1;j �M2

1;i

q2
ln
M2

‘;j

M2
‘;i

þ�‘

�
; (A21)

with

�‘ ¼ 2

q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ðM2

‘;i;M
2
‘;j; q

2Þ
q �

arctan
q2 þM2

1;j �M2
1;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��ðM2
‘;i;M

2
‘;j; q

2Þ
q

þ arctan
q2 �M2

1;j þM2
1;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��ðM2
‘;i;M

2
‘;j; q

2Þ
q

�
; (A22)

where �ðM2
‘;i;M

2
‘;j; q

2Þ is the Källén lambda.

Now, we fix the parameters of the model. Looking at the
Lagrangian, we have a five-parameter model,�u,�s,G, K
and �. Nevertheless, it is more intuitive to organize the fit
of the parameters in terms of �u, �s, mu, ms and �, using
Eqs. (A3) to determine G and K. We impose mu ¼
275 MeV, in order to have mexp

� < 2mu. Then, �u and �
are obtained in recovering the values of F� andm�. At this
step one has

�u ¼ 6:69 MeV; mu ¼ 275 MeV;

� ¼ 740 MeV ! m� ¼ 138 MeV;

F� ¼ 92:2 MeV; h �uui ¼ ð�227 MeVÞ3;
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determining the SUð2Þ sector. Then, �s and ms have been
fixed by requiring a good overall fit of masses (mK, m�,

m�0) and decay constants (FK, F
q
�, Fs

�). In Table I two

different sets of parameters are given, together with the
obtained results. Using Set I, by imposing m� � 2mu, a

good agreement for the masses and a slightly less good
agreement for the Fq;s

� is obtained. On the other hand, in
Set II a very good agreement for Fq;s

� is obtained, with a
slightly worse result for the masses.
In the light-front calculation one needs the integral

~I 2ðx;mi; m
2
PÞ ¼ i

Z d4k

ð2�Þ4
�ðx� 1þ kþ

PþÞ
½ðk� PÞ2 �m2

i þ i��ðk2 �m2
i þ i�Þ ¼ ��ðxÞ�ð1� xÞ 1

ð4�Þ2
X2
‘¼1

c‘ ln
m2

i � ð1� xÞxm2
P

M2
‘;i � ð1� xÞxm2

P

:

(A23)

Clearly, all one needs to calculate the �DA are the � and quark masses and the value of the cutoff parameter. For the DA
calculations, the values mu ¼ 275 MeV, ms ¼ 435 MeV, � ¼ 740 MeV and m� ¼ 548 MeV have been chosen.
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