Angular correlations in three-jet events in *ep* collisions at HERA

H. Abramowicz,^{45,a} I. Abt,³⁵ L. Adamczyk,¹³ M. Adamus,⁵⁴ R. Aggarwal,⁷ S. Antonelli,⁴ P. Antonioli,³ A. Antonov,³³ M. Arneodo,⁵⁰ V. Aushev,^{26,27} Y. Aushev,^{27,b} O. Bachynska,¹⁵ A. Bamberger,¹⁹ A. N. Barakbaev,²⁵ G. Barbagli,¹⁷ G. Bari,³ F. Barreiro,³⁰ N. Bartosik,^{27,c} D. Bartsch,⁵ M. Basile,⁴ O. Behnke,¹⁵ J. Behr,¹⁵ U. Behrens,¹⁵ L. Bellagamba,³ A. Bertolin,³⁹ S. Bhadra,⁵⁷ M. Bindi,⁴ C. Blohm,¹⁵ V. Bokhonov,²⁶ T. Bołd,¹³ K. Bondarenko,²⁷ E. G. Boos,²⁵ K. Borras,¹⁵ D. Boscherini,³ D. Bot,¹⁵ I. Brock,⁵ E. Brownson,⁵⁶ R. Brugnera,⁴⁰ N. Brümmer,³⁷ A. Bruni,³ G. Bruni,³ B. Brzozowska,⁵³ P. J. Bussey,²⁰ B. Bylsma,³⁷ A. Caldwell,³⁵ M. Capua,⁸ R. Carlin,⁴⁰ C. D. Catterall,⁵⁷ S. Chekanov,¹ J. Chwastowski,^{12,d} J. Ciborowski,^{53,e} R. Ciesielski,^{15,f} L. Cifarelli,⁴ F. Cindolo,³ A. Contin,⁴ A. M. Cooper-Sarkar,³⁸ N. Coppola,^{15,g} M. Corradi,³ F. Corriveau,³¹ M. Costa,⁴⁹ G. D'Agostini,⁴³ F. Dal Corso,³⁹ J. del Peso,³⁰ R. K. Dementiev,³⁴ S. De Pasquale,^{4,h} M. Derrick,¹ R. C. E. Devenish,³⁸ D. Dobur,^{19,i} B. A. Dolgoshein,^{33,j} G. Dolinska,^{26,27} A. T. Doyle,²⁰ V. Drugakov,¹⁶ L. S. Durkin,³⁷ S. Dusini,³⁹ Y. Eisenberg,⁵⁵ P. F. Ermolov,^{34,j} A. Eskreys,^{12,j} S. Fang,^{15,k} S. Fazio,⁸
J. Ferrando,³⁸ M. I. Ferrero,⁴⁹ J. Figiel,¹² M. Forrest,^{20,1} B. Foster,^{38,m} G. Gach,¹³ A. Galas,¹² E. Gallo,¹⁷ A. Garfagnini,⁴⁰
A. Geiser,¹⁵ I. Gialas,^{21,n} L. K. Gladilin,³⁴ D. Gladkov,³³ C. Glasman,³⁰ O. Gogota,^{26,27} Yu. A. Golubkov,³⁴ P. Göttlicher,^{15,o} I. Grabowska-Bołd,¹³ J. Grebenyuk,¹⁵ I. Gregor,¹⁵ G. Grigorescu,³⁶ G. Grzelak,⁵³ O. Gueta,⁴⁵ M. Guzik,¹³ C. Gwenlan,³⁸ T. Haas,¹⁵ W. Hain,¹⁵ R. Hamatsu,⁴⁸ J. C. Hart,⁴⁴ H. Hartmann,⁵ G. Hartner,⁵⁷ E. Hilger,⁵ D. Hochman,⁵⁵ R. Hori,⁴⁷ K. Horton,^{38,p} A. Hüttmann,¹⁵ Z. A. Ibrahim,¹⁰ Y. Iga,⁴² R. Ingbir,⁴⁵ M. Ishitsuka,⁴⁶ H.-P. Jakob,⁵ F. Januschek,¹⁵ M. Jimenez,³⁰ T. W. Jones,⁵² M. Jüngst,⁵ I. Kadenko,²⁷ B. Kahle,¹⁵ S. Kananov,⁴⁵ T. Kanno,⁴⁶ U. Karshon,⁵⁵ F. Karstens,^{19,q} I. I. Katkov,^{15,r} M. Kaur,⁷ P. Kaur,⁷ A. Keramidas,³⁶ L. A. Khein,³⁴ J. Y. Kim,⁹ D. Kisielewska,¹³ S. Kitamura,^{48,s} R. Klanner,²² U. Klein,^{15,t} E. Koffeman,³⁶ P. Kooijman,³⁶ Ie. Korol,^{26,27} I. A. Korzhavina,³⁴ A. Kotański,¹⁴ U. Kötz,¹⁵ H. Kowalski,¹⁵ O. Kuprash,¹⁵ M. Kuze,⁴⁶ A. Lee,³⁷ B. B. Levchenko,³⁴ A. Levy,⁴⁵ V. Libov,¹⁵ S. Limentani,⁴⁰ T. Y. Ling,³⁷ M. Lisovyi,¹⁵ E. Lobodzinska,¹⁵ W. Lohmann,¹⁶ B. Löhr,¹⁵ E. Lohrmann,²² K. R. Long,²³ A. Longhin,³⁹ D. Lontkovskyi,¹⁵ O. Yu. Lukina,³⁴ J. Maeda,^{46,u} S. Magill,¹ I. Makarenko,¹⁵ J. Malka,¹⁵ R. Mankel,¹⁵ A. Margotti,³ G. Marini,⁴³ J. F. Martin,⁵¹ A. Mastroberardino,⁸ M. C. K. Mattingly,² I.-A. Melzer-Pellmann,¹⁵ S. Mergelmeyer,⁵ S. Miglioranzi, ^{15,v} F. Mohamad Idris, ¹⁰ V. Monaco, ⁴⁹ A. Montanari, ¹⁵ J. D. Morris, ^{6,w} K. Mujkic, ^{15,x} B. Musgrave, ¹ K. Nagano, ²⁴ T. Namsoo, ^{15,y} R. Nania, ³ A. Nigro, ⁴³ Y. Ning, ¹¹ T. Nobe, ⁴⁶ U. Noor, ⁵⁷ D. Notz, ¹⁵ R. J. Nowak, ⁵³ A. E. Nuncio-Quiroz,⁵ B. Y. Oh,⁴¹ N. Okazaki,⁴⁷ K. Oliver,³⁸ K. Olkiewicz,¹² Yu. Onishchuk,²⁷ K. Papageorgiu,²¹ A. Parenti,¹⁵ E. Paul,⁵ J. M. Pawlak,⁵³ B. Pawlik,¹² P. G. Pelfer,¹⁸ A. Pellegrino,³⁶ W. Perlański,^{53,z} H. Perrey,¹⁵ K. Piotrzkowski,²⁹ P. Pluciński,^{54,aa} N. S. Pokrovskiy,²⁵ A. Polini,³ A. S. Proskuryakov,³⁴ M. Przybycień,¹³ A. Raval,¹⁵ D. D. Reeder,⁵⁶ B. Reisert,³⁵ Z. Ren,¹¹ J. Repond,¹ Y. D. Ri,^{48,bb} A. Robertson,³⁸ P. Roloff,^{15,v} I. Rubinsky,¹⁵ M. Ruspa,⁵⁰ R. Sacchi,⁴⁹ A. Salii,²⁷ U. Samson,⁵ G. Sartorelli,⁴ A. A. Savin,⁵⁶ D. H. Saxon,²⁰ M. Schioppa,⁸ S. Schlenstedt,¹⁶ P. Schleper,²² W. B. Schmidke,³⁵ U. Schneekloth,¹⁵ V. Schönberg,⁵ T. Schörner-Sadenius,¹⁵ J. Schwartz,³¹ F. Sciulli,¹¹ L. M. Shcheglova,³⁴ R. Shehzadi,⁵ S. Shimizu,^{47,v} I. Singh,⁷ I. O. Skillicorn,²⁰ W. Słomiński,¹⁴ W. H. Smith,⁵⁶ V. Sola,⁴⁹ A. Solano,⁴⁹ D. Son,²⁸ V. Sosnovtsev,³³ A. Spiridonov,^{15,cc} H. Stadie,²² L. Stanco,³⁹ A. Stern,⁴⁵ T. P. Stewart,⁵¹ A. Stifutkin,³³ P. Stopa,¹² S. Suchkov,³³ G. Susinno,⁸ L. Suszycki,¹³ J. Sztuk-Dambietz,²² D. Szuba,²² J. Szuba,^{15,dd} A. D. Tapper,²³ E. Tassi,⁸ J. Terrón,³⁰ T. Theedt,¹⁵ H. Tiecke,³⁶ K. Tokushuku,^{24,ee} O. Tomalak,²⁷ J. Tomaszewska,¹⁵ T. Tsurugai,³² M. Turcato,²² T. Tymieniecka,^{54,ff} M. Vázquez,^{36,v} A. Verbytskyi,¹⁵ O. Viazlo,^{26,27} N. N. Vlasov,^{19,gg} O. Volynets,²⁷ R. Walczak,³⁸ W. A. T. Wan Abdullah,¹⁰ J. J. Whitmore,⁴¹ L. Wiggers,³⁶ M. Wing,⁵² M. Wlasenko,⁵ G. Wolf,¹⁵ H. Wolfe,⁵⁶ K. Wrona,¹⁵ A. G. Yagües-Molina,¹⁵ S. Yamada,²⁴ Y. Yamazaki,^{24,hh} R. Yoshida,¹ C. Youngman,¹⁵ A. F. Żarnecki,⁵³ L. Zawiejski,¹² O. Zenaiev,¹⁵ W. Zeuner,^{15,v} B. O. Zhautykov,²⁵ N. Zhmak,²⁶ C. Zhou,³¹ A. Zichichi,⁴ Z. Zolkapli,¹⁰ M. Zolko,²⁷ and D. S. Zotkin³⁴

(ZEUS Collaboration)

¹Argonne National Laboratory, Argonne, Illinois 60439-4815, USA

²Andrews University, Berrien Springs, Michigan 49104-0380, USA

- ³INFN Bologna, Bologna, Italy
- ⁴University and INFN Bologna, Bologna, Italy

⁵Physikalisches Institut der Universität Bonn, Bonn, Germany

⁶H. H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom

⁷Panjab University, Department of Physics, Chandigarh, India

⁸Calabria University, Physics Department and INFN, Cosenza, Italy

⁹Institute for Universe and Elementary Particles, Chonnam National University, Kwangju, South Korea

¹⁰Jabatan Fizik, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

¹¹Nevis Laboratories, Columbia University, Irvington on Hudson, New York 10027, USA

¹²The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

¹³AGH-University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland

¹⁴Department of Physics, Jagellonian University, Cracow, Poland

¹⁵Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

¹⁶Deutsches Elektronen-Synchrotron DESY, Zeuthen, Germany

¹⁷INFN Florence, Florence, Italy

¹⁸University and INFN Florence, Florence, Italy

¹⁹Fakultät füur Physik der Universität Freiburg i. Br, Freiburg i. Br, Germany

²⁰School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

²¹Department of Engineering in Management and Finance, University of the Aegean, Chios, Greece

²²Hamburg University, Institute of Experimental Physics, Hamburg, Germany

²³Imperial College London, High Energy Nuclear Physics Group, London, United Kingdom

²⁴Institute of Particle and Nuclear Studies, KEK, Tsukuba, Japan

²⁵Institute of Physics and Technology of Ministry of Education and Science of Kazakhstan, Almaty, Kazakhstan

²⁶Institute for Nuclear Research, National Academy of Sciences, Kyiv, Ukraine

²⁷Department of Nuclear Physics, National Taras Shevchenko University of Kyiv, Kyiv, Ukraine

²⁸Kyungpook National University, Center for High Energy Physics, Daegu, South Korea

²⁹Institut de Physique Nucléaire, Université Catholique de Louvain, Louvain-la-Neuve, Belgium

³⁰Departamento de Física Teórica, Universidad Autónoma de Madrid, Madrid, Spain

³¹Department of Physics, McGill University, Montréal, Québec, Canada H3A 2T8

³²Meiji Gakuin University, Faculty of General Education, Yokohama, Japan

³³Moscow Engineering Physics Institute, Moscow, Russia

³⁴Moscow State University, Institute of Nuclear Physics, Moscow, Russia

^aAlso at Max Planck Institute for Physics, Munich, Germany, External Scientific Member

^bMember of National Technical University of Ukraine, Kyiv Polytechnic Institute, Kyiv, Ukraine

^cMember of National University of Kyiv-Mohyla Academy, Kyiv, Ukraine

^dAlso at Cracow University of Technology, Faculty of Physics, Mathematics and Applied Computer Science, Poland

^eAlso at Łódź University, Poland

^fNow at Rockefeller University, New York, NY 10065, USA

^gNow at DESY group FS-CFEL-1

^hNow at University of Salerno, Italy

ⁱNow at Istituto Nucleare di Fisica Nazionale (INFN), Pisa, Italy

^jDeceased

^kNow at Institute of High Energy Physics, Beijing, China

¹Now at Biodiversität und Klimaforschungszentrum (BiK-F), Frankfurt, Germany

^mAlexander von Humboldt Professor; also at DESY and University of Oxford

ⁿAlso affiliated with DESY, Germany

^oNow at DESY group FEB, Hamburg, Germany

^pNée Korcsak-Gorzo

^qNow at Haase Energie Technik AG, Neumünster, Germany

^rAlso at Moscow State University, Russia

^sNow at Nihon Institute of Medical Science, Japan

^tNow at University of Liverpool, United Kingdom

^uNow at Tokyo Metropolitan University, Japan

^vNow at CERN, Geneva, Switzerland

^wNow at Queen Mary University of London, United Kingdom

^xAlso affiliated with University College London, United Kingdom

^yNow at Goldman Sachs, London, United Kingdom

^zMember of Łódź University, Poland

^{aa}Now at Department of Physics, Stockholm University, Stockholm, Sweden

^{bb}Now at Osaka University, Osaka, Japan

^{cc}Also at Institute of Theoretical and Experimental Physics, Moscow, Russia

^{dd}Also at FPACS, AGH-UST, Cracow, Poland

^{ee}Also at University of Tokyo, Japan

^{ff}Also at Cardinal Stefan Wyszyński University, Warsaw, Poland

^{gg}Now at Department of Physics, University of Bonn, Germany

^{hh}Now at Kobe University, Japan

³⁵Max-Planck-Institut für Physik, München, Germany

³⁶NIKHEF and University of Amsterdam, Amsterdam, Netherlands

³⁷Physics Department, Ohio State University, Columbus, Ohio 43210, USA

³⁸Department of Physics, University of Oxford, Oxford, United Kingdom

³⁹INFN Padova, Padova, Italy

⁴⁰Dipartimento di Fisica dell' Università and INFN, Padova, Italy

⁴¹Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA

⁴²Polytechnic University, Sagamihara, Japan

⁴³Dipartimento di Fisica, Università 'La Sapienza' and INFN, Rome, Italy

⁴⁴Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, United Kingdom

⁴⁵Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics, Tel Aviv University, Tel Aviv, Israel

⁴⁶Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

⁴⁷Department of Physics, University of Tokyo, Tokyo, Japan

⁴⁸Tokyo Metropolitan University, Department of Physics, Tokyo, Japan

⁴⁹Università di Torino and INFN, Torino, Italy

⁵⁰Università del Piemonte Orientale, Novara, and INFN, Torino, Italy

⁵¹Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7

⁵²Physics and Astronomy Department, University College London, London, United Kingdom

⁵³Faculty of Physics, University of Warsaw, Warsaw, Poland

⁵⁴National Centre for Nuclear Research, Warsaw, Poland

⁵⁵Department of Particle Physics and Astrophysics, Weizmann Institute, Rehovot, Israel

⁵⁶Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA

⁵⁷Department of Physics, York University, Ontario, Canada M3J 1P3

(Received 30 November 2011; published 27 March 2012)

Three-jet production in deep inelastic ep scattering and photoproduction was investigated with the ZEUS detector at HERA using an integrated luminosity of up to 127 pb⁻¹. Measurements of differential cross sections are presented as functions of angular correlations between the three jets in the final state and the proton-beam direction. These correlations provide a stringent test of perturbative QCD and show sensitivity to the contributions from different color configurations. Fixed-order perturbative calculations assuming the values of the color factors C_F , C_A , and T_F as derived from a variety of gauge groups were compared to the measurements to study the underlying gauge group symmetry. The measured angular correlations in the deep inelastic ep scattering and photoproduction regimes are consistent with the admixture of color configurations as predicted by SU(3) and disfavour other symmetry groups, such as SU(N) in the limit of large N.

DOI: 10.1103/PhysRevD.85.052008

PACS numbers: 12.38.Qk, 13.60.-r, 13.85.-t, 13.87.-a

I. INTRODUCTION

Quantum chromodynamics (QCD) is based on the non-Abelian group SU(3) which induces the self-coupling of the gluons. Investigations of the triple-gluon vertex (TGV) were carried out at LEP [1,2] using angular correlations in four-jet events from Z^0 hadronic decays. At HERA, the effects of the different color configurations arising from the underlying gauge structure can be studied in a clean way in three-jet production in neutral current (NC) deep inelastic scattering (DIS) and photoproduction (γp). These measurements provide complementary information to that already obtained in e^+e^- annihilation since they are probing the gauge structure in a different environment, a hadron-induced reaction, and are sensitive to new color configurations.

Neutral current DIS at high Q^2 ($\gg \Lambda^2_{QCD}$, where Q^2 is the virtuality of the exchanged photon) up to leading order (LO) in the strong coupling constant, α_s , proceeds as in the quark-parton model ($Vq \rightarrow q$, where $V = \gamma^*$ or Z^0) or via the boson-gluon fusion ($Vg \rightarrow q\bar{q}$) and QCD-Compton $(Vq \rightarrow qg)$ processes. Photoproduction is studied at HERA by means of ep scattering at low four-momentum transfers $(Q^2 \approx 0)$. In γp reactions, two types of QCD processes contribute to jet production at LO [3,4]: either the photon interacts directly with a parton in the proton (the direct process) or the photon acts as a source of partons which scatter off those in the proton (the resolved process).

A subset of resolved subprocesses with two jets in the final state is described by diagrams with a TGV; however, such events are difficult to distinguish from two-jet events without such a contribution. Three-jet final states in direct γp processes also contain contributions from TGVs and are easier to identify. Since three-jet production in NC DIS proceeds via the same diagrams as in direct γp , such processes can also be used to investigate the underlying gauge symmetry. Examples of diagrams contributing to the four color configurations are shown in Fig. 1: (A) double-gluon bremsstrahlung from a quark line, (B) the splitting of a virtual gluon into a pair of final-state gluons, (C) the production of a $q\bar{q}$ pair through the exchange of a virtual

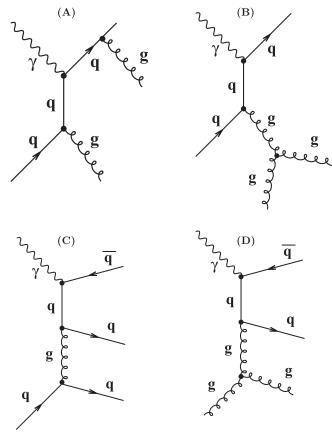


FIG. 1. Examples of diagrams for the photoproduction of three-jet events through direct-photon processes and in NC DIS three-jet events in each color configuration: (A) double-gluon bremsstrahlung from a quark line; (B) the splitting of a virtual gluon into a pair of final-state gluons; (C) the production of a $q\bar{q}$ pair through the exchange of a virtual gluon emitted by an incoming quark; (D) the production of $q\bar{q}$ pair through the exchange of a virtual gluon arising from the splitting of an incoming gluon.

gluon emitted by an incoming quark, and (D) the production of a $q\bar{q}$ pair through the exchange of a virtual gluon arising from the splitting of an incoming gluon.

Other possible diagrams and interferences correspond to one of the four configurations. The production rate of all contributions is proportional to the so-called color factors, C_F , C_A , and T_F , which are a physical manifestation of the underlying group structure. For QCD, these factors represent the relative strengths of the processes $q \rightarrow qg$, $g \rightarrow$ gg, and $g \rightarrow q\bar{q}$. The contributions of the diagrams of Fig. 1 are proportional to C_F^2 , $C_F C_A$, $C_F T_F$, and $T_F C_A$, respectively, independent of the underlying gauge symmetry. It should be noted that the $T_F C_A$ contribution, which arises from gluon-induced processes, is not present in e^+e^- annihilation and is investigated here for the first time.

Three-jet cross sections were previously measured in γp [5] and in NC DIS [6,7]. The shape of the measured cross sections was well reproduced by perturbative QCD (pQCD) calculations and a value of α_s was extracted [6]. In

this paper, measurements of angular correlations in threejet events in γp and NC DIS are presented. The comparison between the measurements and fixed-order $\mathcal{O}(\alpha_s^2)$ and $\mathcal{O}(\alpha_s^3)$ perturbative calculations based on different color configurations provides a stringent test of pQCD predictions directly beyond LO and gives insight into the underlying group symmetry. Phase-space regions where the angular correlations show potential sensitivity to the presence of the TGV were identified.

II. THEORETICAL FRAMEWORK

The dynamics of a gauge theory such as QCD are completely defined by the commutation relations between its group generators T^i ,

$$[T^i, T^j] = i \sum_k f^{ijk} \cdot T^k,$$

where f^{ijk} are the structure constants. The generators T^i can be represented as matrices. In perturbative calculations, the average (sum) over all possible color configurations in the initial (final) states leads to the appearance of combinatoric factors C_F , C_A , and T_F , which are defined by the relations

$$\begin{split} \sum_{k,\eta} T^k_{\alpha\eta} T^k_{\eta\beta} &= \delta_{\alpha\beta} C_F, \sum_{j,k} f^{jkm} f^{jkn} = \delta^{mn} C_A \\ \sum_{\alpha,\beta} T^m_{\alpha\beta} T^n_{\beta\alpha} &= \delta^{mn} T_F. \end{split}$$

Measurements of the ratios between the color factors allow the experimental determination of the underlying gauge symmetry of the strong interactions. For SU(N), the predicted values of the color factors are

$$C_A = N$$
, $C_F = \frac{N^2 - 1}{2N}$ and $T_F = 1/2$,

where *N* is the number of color charges. In particular, SU(3) predicts $C_A/C_F = 9/4$ and $T_F/C_F = 3/8$. In contrast, an Abelian gluon theory based on U(1)³ would predict $C_A/C_F = 0$ and $T_F/C_F = 3$. A non-Abelian theory based on SO(3) predicts $C_A/C_F = 1$ and $T_F/C_F = 1$.

The $\mathcal{O}(\alpha_s^2)$ calculations of three-jet cross sections for direct γp and NC DIS processes can be expressed in terms of C_A , C_F , and T_F as [8]:

$$\sigma_{ep \to 3\text{jets}} = C_F^2 \cdot \sigma_A + C_F C_A \cdot \sigma_B + C_F T_F \cdot \sigma_C + T_F C_A \cdot \sigma_D, \qquad (1)$$

where $\sigma_A, \ldots, \sigma_D$ are the partonic cross sections for the different contributions (see Fig. 1).

III. DEFINITION OF THE ANGULAR CORRELATIONS

Angular-correlation observables were devised to distinguish the contributions from the different color configurations. They are defined in terms of the three jets with highest transverse energy in an event and the beam direction as:

- (i) θ_H , the angle between the plane determined by the highest-transverse-energy jet and the beam and the plane determined by the two jets with the second-highest and third-highest transverse energy [9]. For three-jet events in e_p collisions, the variable θ_H was designed [9] to be sensitive to the TGV in quark-induced processes [see Fig. 1(b)];
- (ii) α_{23} , the angle between the two lowest-transverseenergy jets; the jets are ordered according to decreasing transverse energy. This variable is based on the angle $\alpha_{34}^{e^+e^-}$ for $e^+e^- \rightarrow 4$ jets [2], which distinguishes between contributions from doublebremsstrahlung diagrams and diagrams involving the TGV;
- (iii) β_{KSW} , the angle defined via the equation $\cos(\beta_{\text{KSW}}) = \cos[\frac{1}{2}(\angle[(\vec{p}_1 \times \vec{p}_3), (\vec{p}_2 \times \vec{p}_B)] + \angle[(\vec{p}_1 \times \vec{p}_B), (\vec{p}_2 \times \vec{p}_3)])]$, where $\vec{p}_i, i = 1, ..., 3$ is the momentum of jet *i* and \vec{p}_B is a unit vector in the direction of the proton beam. This variable is based on the Körner-Schierholz-Willrodt angle $\Phi_{\text{KSW}}^{e^+e^-}$ for $e^+e^- \rightarrow 4$ jets [10], which is sensitive to the differences between $q\bar{q}gg$ and $q\bar{q}q\bar{q}$ final states;
- (iv) $\eta_{\text{max}}^{\text{jet}}$, the maximum pseudorapidity¹ of the three jets.

IV. EXPERIMENTAL SET-UP

The data samples used in this analysis were collected with the ZEUS detector at HERA and correspond to an integrated luminosity of $44.9 \pm 0.8(65.1 \pm 1.5) \text{ pb}^{-1}$ for e^+p collisions taken during 1995–97 (1999–2000) and $16.7 \pm 0.3 \text{ pb}^{-1}$ for e^-p collisions taken during 1998–99. During 1995–97 (1998–2000), HERA operated with protons of energy $E_p = 820(920)$ GeV and positrons or electrons² of energy $E_e = 27.5$ GeV, yielding a centerof-mass energy of $\sqrt{s} = 300(318)$ GeV.

A detailed description of the ZEUS detector can be found elsewhere [11,12]. A brief outline of the components that are most relevant for this analysis is given below. Charged particles were tracked in the central tracking detector (CTD) [13], which operated in a magnetic field of 1.43 T provided by a thin superconducting solenoid. The CTD consisted of 72 cylindrical drift-chamber layers, organized in nine superlayers covering the polar-angle region $15^{\circ} < \theta < 164^{\circ}$. The transverse-momentum resolution for full-length tracks was parametrized as $\sigma(p_T)/p_T = 0.0058 p_T \oplus 0.0065 \oplus 0.0014/p_T$, with p_T in GeV. The tracking system was used to measure the interaction vertex with a typical resolution along (transverse to) the beam direction of 0.4 (0.1) cm and to cross-check the energy scale of the calorimeter.

The high-resolution uranium-scintillator calorimeter (CAL) [14] covered 99.7% of the total solid angle and consisted of three parts: the forward (FCAL), the barrel (BCAL), and the rear (RCAL) calorimeters. Each part was subdivided transversely into towers and longitudinally into one electromagnetic section (EMC) and either one (in RCAL) or two (in BCAL and FCAL) hadronic sections (HAC). The smallest subdivision of the calorimeter was called a cell. Under test-beam conditions, the CAL single-particle relative energy resolutions were $\sigma(E)/E = 0.18/\sqrt{E}$ for electrons and $\sigma(E)/E = 0.35/\sqrt{E}$ for hadrons, with *E* in GeV.

The luminosity was measured from the rate of the bremsstrahlung process $ep \rightarrow e\gamma p$. The resulting smallangle energetic photons were measured by the luminosity monitor [15], a lead-scintillator calorimeter placed in the HERA tunnel at Z = -107 m.

V. DATA SELECTION AND JET SEARCH

A three-level trigger system was used to select events online [12,16]. At the third level, jets were reconstructed using the energies and positions of the CAL cells. Events with at least one (two) jet(s) with transverse energy in excess of 10(6) GeV and pseudorapidity below 2.5 were accepted. For trigger-efficiency studies, no jet algorithm was applied and events with a total transverse energy, excluding the energy in the eight CAL towers immediately surrounding the forward beampipe, of at least 25 GeV were selected in the γp sample; for the NC DIS sample, events were selected in which the scattered-electron candidate was identified using localized energy depositions in the CAL.

In the offline selection, a reconstructed event vertex consistent with the nominal interaction position was required and cuts based on tracking information were applied to reduce the contamination from beam-induced and cosmic-ray background events. The selection criteria of the γp and NC DIS samples were analogous to previous publications [17,18].

The selected γp sample, based on the 1995–2000 data, consisted of events from ep interactions with $Q^2 < 1 \text{ GeV}^2$ and a median $Q^2 \approx 10^{-3} \text{ GeV}^2$. The event sample was restricted to the kinematic range 0.2 < y < 0.85, where y is the inelasticity.

The k_T cluster algorithm [19] was used in the longitudinally invariant inclusive mode [20] to reconstruct jets in the measured hadronic final state from the energy deposits in

¹The ZEUS coordinate system is a right-handed Cartesian system, with the *Z* axis pointing in the proton-beam direction, referred to as the "forward direction," and the *X* axis pointing towards the center of HERA. The coordinate origin is at the nominal interaction point. The pseudorapidity is defined as $\eta = -\ln(\tan \frac{\theta}{2})$, where the polar angle θ is taken with respect to the proton-beam direction.

²Here and in the following, the term "electron" denotes generically both the electron (e^{-}) and the positron (e^{+}) .

the CAL cells (calorimetric jets). The axis of the jet was defined according to the Snowmass convention [21].

For γp events, the jet search was performed in the $\eta - \phi$ plane of the laboratory frame. Corrections [17,22] to the jet transverse energy, E_T^{jet} , were applied to the calorimetric jets as a function of the jet pseudorapidity, η^{jet} , and E_T^{jet} and averaged over the jet azimuthal angle. Events with at least three jets of $E_T^{jet} > 14$ GeV and $-1 < \eta^{jet} < 2.5$ were retained. Direct γp events were further selected by requiring $x_{\gamma}^{obs} > 0.8$, where x_{γ}^{obs} , the fraction of the three jets with highest E_T^{jet} , is defined as

$$x_{\gamma}^{\text{obs}} = \frac{1}{2yE_e} (E_T^{\text{jet1}} e^{-\eta^{\text{jet1}}} + E_T^{\text{jet2}} e^{-\eta^{\text{jet2}}} + E_T^{\text{jet3}} e^{-\eta^{\text{jet3}}}).$$

The final γp data sample contained 1888 events.

Events from NC DIS interactions were selected from the 1998–2000 data. Two samples were studied: $Q^2 >$ 125 GeV² and 500 < $Q^2 <$ 5000 GeV². For both samples, $|\cos \gamma_h|$ was restricted to be below 0.65, where γ_h , which corresponds to the angle of the scattered quark in the quark-parton model, is defined as

$$\cos\gamma_h = \frac{(1-y)xE_p - yE_e}{(1-y)xE_p + yE_e}$$

and x is the Bjorken variable.

For NC DIS events, the k_T jet algorithm was applied after excluding those cells associated with the scatteredelectron candidate and the search was conducted in the Breit frame. The Breit frame [23] is the frame in which the exchanged virtual boson is purely spacelike, with 3-momentum $\mathbf{q} = (0, 0, -Q)$, providing a maximal separation between the products of the beam fragmentation and the hard interaction. Jet transverse-energy corrections were computed using the method developed in a previous analysis [18,24]. Events were required to have at least three jets satisfying $E_{T,B}^{\text{jet1}} > 8$ GeV, $E_{T,B}^{\text{jet2,3}} > 5$ GeV, and $-2 < \eta_B^{\text{jet}} < 1.5$, where $E_{T,B}^{\text{jet}}$ and η_B^{jet} are the jet transverse energy and pseudorapidity in the Breit frame, respectively. The final NC DIS data sample with $Q^2 > 125(500 < Q^2 < 5000)$ GeV² contained 1095 (492) events.

VI. MONTE CARLO SIMULATION

Samples of Monte Carlo (MC) events were generated to determine the response of the detector to jets of hadrons and the correction factors necessary to obtain the hadron-level jet cross sections. The hadron level is defined by those hadrons with lifetime $\tau \ge 10$ ps. For the NC DIS sample, the MC events were also used to correct the measured cross sections for QED radiative effects and the running of α_{em} .

The generated events were passed through the GEANT 3.13-based [25] ZEUS detector- and trigger-simulation programs [12]. They were reconstructed and analyzed by

the same program chain as the data. The k_T jet algorithm was applied to the MC simulated events using the CAL cells in the same way as for the data. The jet algorithm was also applied to the final-state particles (hadron level) and the partons available after the parton shower (parton level).

The programs PYTHIA 6.1 [26] and HERWIG 6.1 [27] were used to generate γp events for resolved and direct processes. Events were generated using GRV-HO [28] for the photon and CTEQ4M [29] for the proton parton distribution functions (PDFs). In both generators, the partonic processes are simulated using LO matrix elements, with the inclusion of initial- and final-state parton showers. Fragmentation into hadrons is performed using the Lund string model [30] as implemented in JETSET [26,31] in the case of PYTHIA, and a cluster model [32] in the case of HERWIG.

Neutral current DIS events including radiative effects were simulated using the HERACLES 4.6.1 [33] program with the DJANGOH 1.1 [34] interface to the hadronization programs. HERACLES includes corrections for initial- and final-state radiation, vertex and propagator terms, and two-boson exchange. The QCD cascade is simulated using the color-dipole model (CDM) [35] including the LO QCD diagrams as implemented in ARIADNE 4.08 [36]; additional samples were generated with the MEPS model of LEPTO 6.5 [37]. Both MC programs use the Lund string model for the hadronization. The CTEQ5D [38] proton PDFs were used for these simulations.

VII. FIXED-ORDER CALCULATIONS

The calculations of direct γp processes used in this analysis are based on the program by Klasen, Kleinwort, and Kramer (KKK) [39]. The number of flavors was set to five; the renormalization, μ_R , and factorization scales, μ_F , were set to $\mu_R = \mu_F = E_T^{\text{max}}$, where E_T^{max} is the highest E_T^{jet} in an event. The calculations were performed using the ZEUS-S [40] parameterizations of the proton PDFs; α_s was calculated at two loops using $\Lambda_{\overline{MS}}^{(5)} = 226$ MeV, which corresponds to $\alpha_s(M_Z) = 0.118$. These calculations are $\mathcal{O}(\alpha_s^2)$ and represent the lowest-order contribution to three-jet γp . Full $\mathcal{O}(\alpha_s^3)$ corrections are not yet available for three-jet cross sections in γp .

The calculations of NC DIS processes used in this analysis are based on the program NLOJET++ [41], which provides $\mathcal{O}(\alpha_s^2)$ and $\mathcal{O}(\alpha_s^3)$ predictions for three-jet cross sections. The scales were chosen to be $\mu_R = \mu_F = Q$. Other parameters were set as for the γp program.

In general, the programs mentioned above are very flexible and provide observable-independent computations that allow a complete analytical cancellation of the soft and collinear singularities encountered in the calculations of jet cross sections. However, these programs were written assuming the SU(3) gauge group and the different ingredients necessary to perform a calculation according to

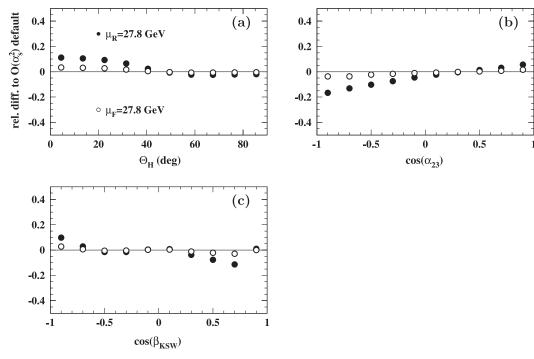


FIG. 2. Relative difference between the $\mathcal{O}(\alpha_s^2)$ normalized cross-section calculations with $\mu_R = 27.8$ GeV and the calculations with $\mu_R = E_T^{\text{max}}$ (dots) and between the $\mathcal{O}(\alpha_s^2)$ calculations with $\mu_F = 27.8$ GeV and the calculations with $\mu_F = E_T^{\text{max}}$ (open circles) in γp as functions of (a) θ_H , (b) $\cos(\alpha_{23})$ and (c) $\cos(\beta_{\text{KSW}})$. These calculations do not include corrections for hadronization effects.

Eq. (1) were not readily available. The programs were rewritten in order to disentangle the color components to make separate predictions for $\sigma_A, \ldots, \sigma_D$.

The k_T jet algorithm was applied to the partons in the events generated by KKK and NLOJET++ in order to compute the jet cross-section predictions. Thus, these predictions refer to jets of partons. Since the measurements refer to jets of hadrons, the calculations were corrected to the hadron level. The multiplicative correction factors, defined as the ratios between the cross section for jets of hadrons and that for jets of partons, were estimated using the MC samples described in Sec. VI. The normalized cross-section calculations (see Sec. VIII for the definition of the cross sections) changed typically by less than $\pm 5(10\%)$ for the predictions in γp (NC DIS) upon application of the parton-to-hadron corrections. Therefore, the effect of the parton-to-hadron corrections on the angular distributions is small. In NC DIS processes, other effects not accounted for in the calculations, namely Z^0 exchange, were also corrected for using the MC samples.

The predictions for jet cross sections are expressed as the convolution of the PDFs and the matrix elements, which depend on α_s . Both the PDFs and α_s evolve with the energy scale. In the calculations performed for this analysis, QCD evolution via the DGLAP and the renormalization group equations, respectively, were used. These evolution equations also depend on the color factors. This procedure introduces an additional dependence on the color factors with respect to that shown in Eq. (1); this dependence is suppressed by considering normalized cross sections. The remaining dependence was estimated by comparing to calculations with fixed μ_F or μ_R , i.e. no evolution of the PDFs or α_s was allowed. The values chosen for μ_F and μ_R were the mean values of the data distributions, $\langle E_T^{\text{max}} \rangle_{\text{data}} = 27.8 \text{ GeV}$ for γp and $\sqrt{\langle Q^2 \rangle_{\text{data}}} = 31.3(36.6) \text{ GeV}$ for NC DIS with $Q^2 > 125(500 < Q^2 < 5000) \text{ GeV}^2$.

Figure 2 shows the relative difference of the $\mathcal{O}(\alpha_s^2) \gamma p$ normalized cross-section calculations with $\mu_F (\mu_R)$ fixed³ to those in which $\mu_F = E_T^{\text{max}} (\mu_R = E_T^{\text{max}})$ as a function of the angular variables studied. Figs. 3(a) and 3(b) show the same relative difference for the $\mathcal{O}(\alpha_s^2)$ NLOJET++ calculations for $Q^2 > 125 \text{ GeV}^2$.

Very small differences are observed for the μ_F variation. Sizeable differences for the μ_R variation are seen in some regions; in particular, a trend is observed for the relative difference as a function of $\eta_{\text{max}}^{\text{jet}}$: this trend is due to the fact that the mean values of Q^2 in each bin of $\eta_{\text{max}}^{\text{jet}}$ increase as $\eta_{\text{max}}^{\text{jet}}$ decreases.

These studies demonstrate that the normalized cross sections have little sensitivity to the evolution of the PDFs. It should be noted that there is a remaining dependence on the color factors through the relative

³When μ_F was fixed, μ_R was allowed to vary with the scale, and vice-versa.

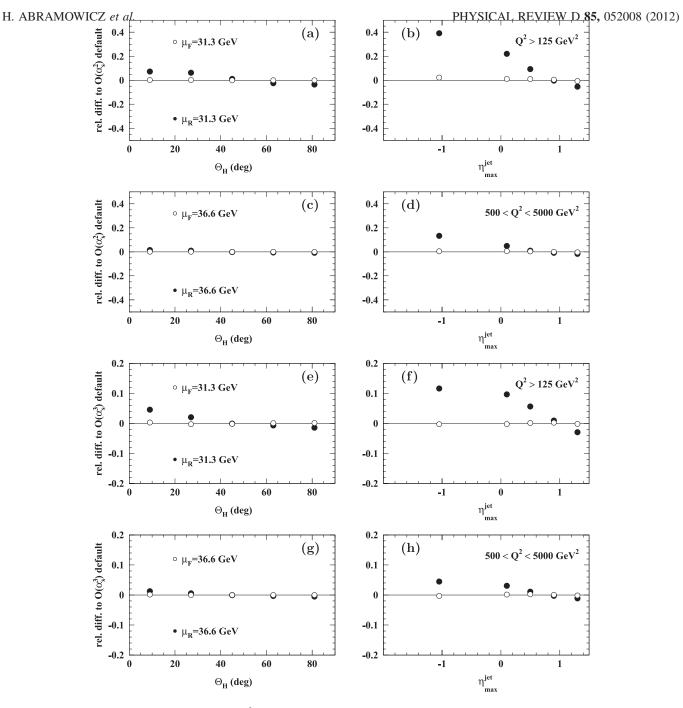


FIG. 3. Relative difference between the $\mathcal{O}(\alpha_s^2)$ normalized cross-section calculations with fixed μ_R and the calculations with $\mu_R = Q$ (dots) and between the $\mathcal{O}(\alpha_s^2)$ calculations with fixed μ_F and the calculations with $\mu_F = Q$ (open circles) in NC DIS for $Q^2 > 125 \text{ GeV}^2$ as functions of (a) θ_H and (b) $\eta_{\text{max}}^{\text{jet}}$; (c) and (d) show the corresponding relative differences for $500 < Q^2 < 5000 \text{ GeV}^2$. (e), (f), (g) and (h) show the corresponding relative differences using the $\mathcal{O}(\alpha_s^3)$ calculations. All these calculations do not include corrections for hadronization effects.

contributions of quark- and gluon-induced processes as obtained in the extraction of the PDFs, in which the values of SU(3) were assumed.⁴ There is still some sensitivity to the running of α_s . Figures 3(c) and 3(d) show the relative

difference for $500 < Q^2 < 5000 \text{ GeV}^2$. The restriction of the phase space further reduces the dependence on the running of α_s ; thus, this region is more suitable to extract the color factors in NC DIS at $\mathcal{O}(\alpha_s^2)$. At $\mathcal{O}(\alpha_s^3)$ [see Figs. 3(e) to 3(h)], the effect due to the running of α_s is already very small for $Q^2 > 125 \text{ GeV}^2$. Therefore, the wider phase-space region can be kept in an extraction of the color factors at $\mathcal{O}(\alpha_s^3)$.

⁴In order to consider that correlation, an extraction of the PDFs leaving the color factors as free parameters would be necessary, a task which is beyond the scope of the present paper.

ANGULAR CORRELATIONS IN THREE-JET EVENTS IN ...

The following theoretical uncertainties were considered (as an example of the size of the uncertainties, an average value of the effect of each uncertainty on the normalized cross section as a function of θ_H is shown in parentheses for γp , NC DIS with $Q^2 > 125 \text{ GeV}^2$ and NC DIS with $500 < Q^2 < 5000 \text{ GeV}^2$):

- (i) the uncertainty in the modelling of the parton shower was estimated by using different models (see Sec. VI) to calculate the parton-to-hadron correction factors (±2.8%, ±2.9% and ±5.8%);
- (ii) the uncertainty on the calculations due to higherorder terms was estimated by varying μ_R by a factor of 2 up and down ($^{+0.6}_{-0.8}$ %, ± 1.6 % and ± 2.2 %);

- (iii) the uncertainty on the calculations due to those on the proton PDFs was estimated by repeating the calculations using 22 additional sets from the ZEUS analysis [40]; this analysis takes into account the statistical and correlated systematic experimental uncertainties of each data set used in the determination of the proton PDFs $(\pm 0.7\%, \pm 0.2\%$ and $\pm 0.1\%)$;
- (iv) the uncertainty on the calculations due to that on $\alpha_s(M_Z)$ was estimated by repeating the calculations using two additional sets of proton PDFs, for which different values of $\alpha_s(M_Z)$ were assumed in the fits. The difference between the calculations using

ZEUS

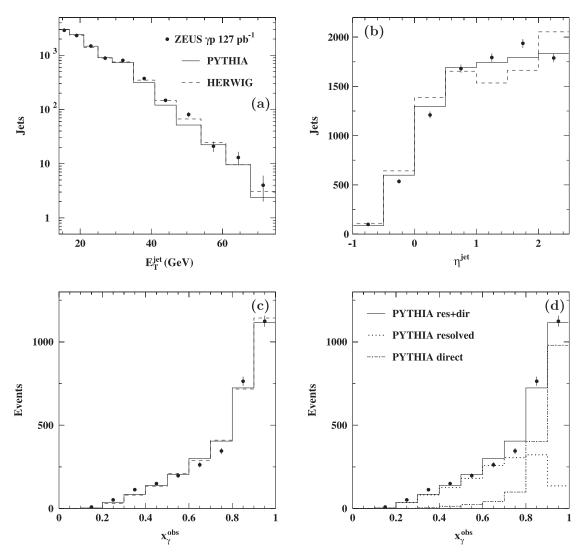


FIG. 4. Detector-level data distributions for three-jet photoproduction (dots) with $E_T^{jet} > 14$ GeV and $-1 < \eta^{jet} < 2.5$ in the kinematic region given by $Q^2 < 1$ GeV² and 0.2 < y < 0.85 as functions of (a) E_T^{jet} , (b) η^{jet} and (c, d) x_{γ}^{obs} . For comparison, the distributions of the PYTHIA (solid histograms) and Herwig (dashed histograms) MC models for resolved plus direct processes normalized to the data are included. In (d), the contributions for resolved (dotted histogram) and direct (dot-dashed histogram) processes from PYTHIA MC are shown separately.

these various sets was scaled to reflect the uncertainty on the current world average of α_s [42] (negligible in all cases);

(v) the uncertainty of the calculations due to the choice of μ_F was estimated by varying μ_F by a factor of 2 up and down (negligible in all cases).

The total theoretical uncertainty was obtained by adding in quadrature the individual uncertainties listed above. The dominant source of theoretical uncertainty is that on the modelling of the parton shower, which is to a large extent correlated bin to bin.

VIII. DEFINITION OF THE CROSS SECTIONS

Normalized differential three-jet cross sections were measured as functions of θ_H , α_{23} , and β_{KSW} using the

1

selected data samples in γp and NC DIS. For NC DIS, the normalized differential three-jet cross section as a function of η_{\max}^{jet} was also measured. The normalized differential three-jet cross section in bin *i* for an observable *A* was obtained using

$$\frac{1}{\sigma} \frac{d\sigma_i}{dA} = \frac{1}{\sigma} \frac{N_{\text{data},i}}{\mathcal{L} \cdot \Delta A_i} \cdot \frac{N_{\text{MC},i}^{\text{had}}}{N_{\text{MC},i}^{\text{det}}},$$

where $N_{\text{data},i}$ is the number of data events in bin *i*, $N_{\text{MC},i}^{\text{had}}(N_{\text{MC},i}^{\text{det}})$ is the number of MC events at hadron (detector) level, \mathcal{L} is the integrated luminosity, and ΔA_i is the bin width. The integrated three-jet cross section, σ , was computed using the formula:

ZEUS

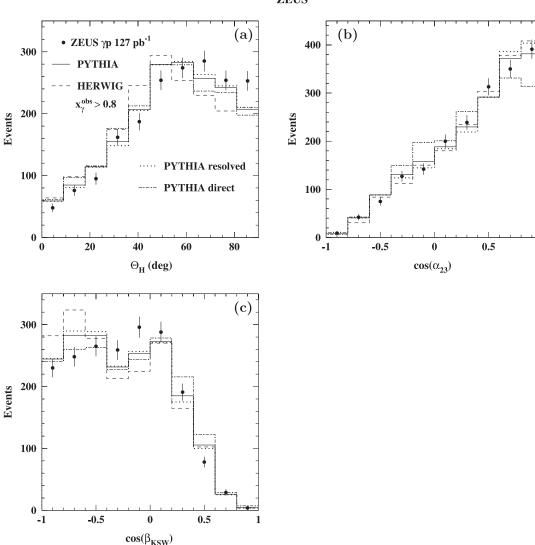


FIG. 5. Detector-level data distributions for three-jet photoproduction (dots) with $E_T^{\text{jet}} > 14 \text{ GeV}$ and $-1 < \eta^{\text{jet}} < 2.5$ in the kinematic region given by $Q^2 < 1 \text{ GeV}^2$, 0.2 < y < 0.85, and $x_{\gamma}^{\text{obs}} > 0.8$ as functions of (a) θ_H , (b) $\cos(\alpha_{23})$, and (c) $\cos(\beta_{\text{KSW}})$ Other details as in the caption to Fig. 4.

ANGULAR CORRELATIONS IN THREE-JET EVENTS IN ...

$$\sigma = \sum_{i} \frac{N_{\text{data},i}}{\mathcal{L}} \cdot \frac{N_{\text{MC},i}^{\text{had}}}{N_{\text{MC},i}^{\text{det}}},$$

where the sum runs over all bins.

For the γp sample, due to the different center-of-mass energies of the two data sets used in the analysis, the measured normalized differential three-jet cross sections were combined using

$$\sigma^{\text{comb}} = \frac{\sigma_{300} \cdot \mathcal{L}_{300} + \sigma_{318} \cdot \mathcal{L}_{318}}{\mathcal{L}_{300} + \mathcal{L}_{318}},$$

PHYSICAL REVIEW D 85, 052008 (2012)

where $\mathcal{L}_{\sqrt{s}}$ is the luminosity and $\sigma_{\sqrt{s}}$ is the measured cross section corresponding to $\sqrt{s} = 300$ or 318 GeV. This formula was applied for combining the differential and total cross sections. The same formula was used for computing the $\mathcal{O}(\alpha_s^2)$ predictions in γp .

IX. ACCEPTANCE CORRECTIONS AND EXPERIMENTAL UNCERTAINTIES

The PYTHIA (MEPS) MC samples were used to compute the acceptance corrections to the angular distributions of the γp (NC DIS) data. These correction factors took into

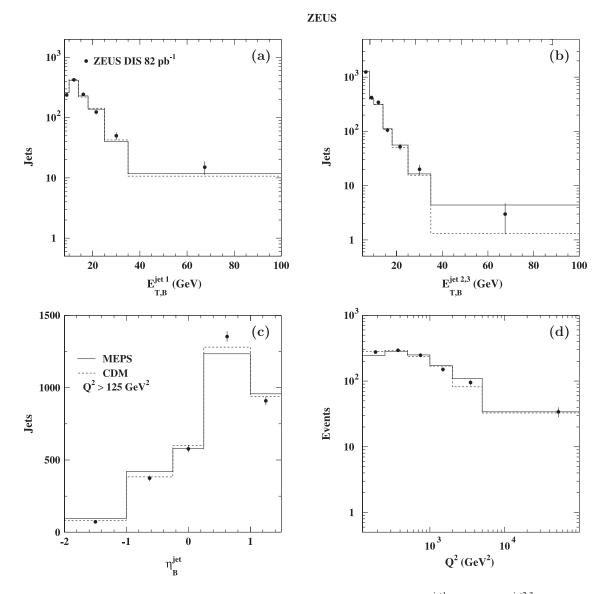


FIG. 6. Detector-level data distributions for three-jet production in NC DIS (dots) with $E_{T,B}^{\text{jetl}} > 8$ GeV, $E_{T,B}^{\text{jet2,3}} > 5$ GeV, and $-2 < \eta_{\text{B}}^{\text{jet}} < 1.5$ in the kinematic region given by $Q^2 > 125$ GeV² and $|\cos \gamma_h| < 0.65$ as functions of (a) $E_{T,B}^{\text{jet1}}$, (b) $E_{T,B}^{\text{jet2,3}}$, (c) $\eta_{\text{B}}^{\text{jet}}$, and (d) Q^2 For comparison, the distributions of the MEPS (solid histograms) and CDM (dashed histograms) MC models normalized to the data are included.

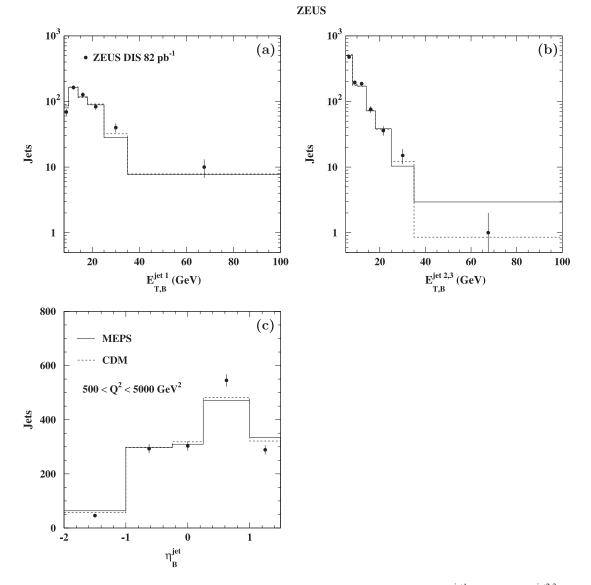


FIG. 7. Detector-level data distributions for three-jet production in NC DIS (dots) with $E_{T,B}^{jet1} > 8 \text{ GeV}$, $E_{T,B}^{jet2,3} > 5 \text{ GeV}$, and $-2 < \eta_B^{jet} < 1.5$ in the kinematic region given by $500 < Q^2 < 5000 \text{ GeV}^2$ and $|\cos \gamma_h| < 0.65$ as functions of (a) $E_{T,B}^{jet1}$, (b) $E_{T,B}^{jet2,3}$, and (c) η_B^{jet} . Other details as in the caption to Fig. 6.

account the efficiency of the trigger, the selection criteria, and the purity and efficiency of the jet reconstruction. The samples of HERWIG and CDM were used to compute the systematic uncertainties coming from the fragmentation and parton-shower models in γp and NC DIS, respectively.

The data E_T^{jet} , η^{jet} , and x_{γ}^{obs} distributions of the γp sample, before the $x_{\gamma}^{\text{obs}} > 0.8$ requirement, are shown in Fig. 4 together with the MC simulations of PYTHIA and HERWIG. Considering that three-jet events in the MC arise only from the parton-shower approximation, the description of the data is reasonable. Figure 4(d) shows the resolved and direct contributions for the PYTHIA MC

separately. It is observed that the region of $x_{\gamma}^{\text{obs}} > 0.8$ is dominated by direct γp events. The remaining contribution in this region from resolved-photon events was estimated using PYTHIA (HERWIG) simulated events to be $\approx 25(31)\%$.

Figure 5 shows the data distributions as functions of θ_H , α_{23} , and β_{KSW} together with the simulations of PYTHIA and HERWIG for $x_{\gamma}^{\text{obs}} > 0.8$. The PYTHIA MC predictions describe the data distributions well, whereas the description given by HERWIG is somewhat poorer. It was checked that the angular distributions of the events from resolved processes with $x_{\gamma}^{\text{obs}} > 0.8$ were similar to those from direct processes (see Fig. 5) and, therefore, no subtraction of the

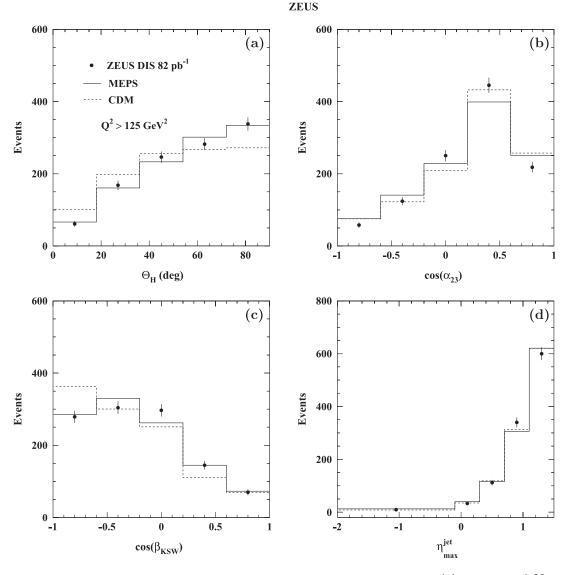


FIG. 8. Detector-level data distributions for three-jet production in NC DIS (dots) with $E_{T,B}^{jet1} > 8 \text{ GeV}$, $E_{T,B}^{jet2,3} > 5 \text{ GeV}$, and $-2 < \eta_B^{jet} < 1.5$ in the kinematic region given by $Q^2 > 125 \text{ GeV}^2$ and $|\cos \gamma_h| < 0.65$ as functions of (a) θ_H , (b) $\cos(\alpha_{23})$, (c) $\cos(\beta_{KSW})$, and (d) η_{max}^{jet} . For comparison, the distributions of the MEPS (solid histograms) and CDM (dashed histograms) MC models normalized to the data are included.

resolved processes was performed when comparing to the fixed-order calculations described in Sec. VII.

The data $E_{T,B}^{\text{jet1}}$, $E_{T,B}^{\text{jet2,3}}$, $\eta_{\rm B}^{\text{jet}}$, and Q^2 distributions of the NC DIS samples are shown in Figs. 6 and 7 for $Q^2 > 125(500 < Q^2 < 5000)$ GeV² together with the MC simulations from the MEPS and CDM models. Both models give a reasonably good description of the data in both kinematic regions. The data distributions of θ_H , α_{23} , $\beta_{\rm KSW}$, and $\eta_{\rm max}^{\rm jet}$ are shown in Figs. 8 and 9 for $Q^2 > 125(500 < Q^2 < 5000)$ GeV². The MEPS MC predictions describe the data distributions well, whereas the description given by CDM is somewhat poorer. A detailed study of the sources contributing to the experimental uncertainties was performed [43]. The following experimental uncertainties were considered for γp (as an example of the size of the uncertainties, an average value of the effect of each uncertainty on the cross-section as a function of θ_H is shown in parentheses):

- (i) the effect of the modelling of the parton-shower and hadronization was estimated by using HERWIG instead of PYTHIA to evaluate the correction factors (± 6.1%);
- (ii) the effect of the uncertainty on the absolute energy scale of the calorimetric jets was estimated by varying E_T^{jet} in simulated events by its uncertainty of

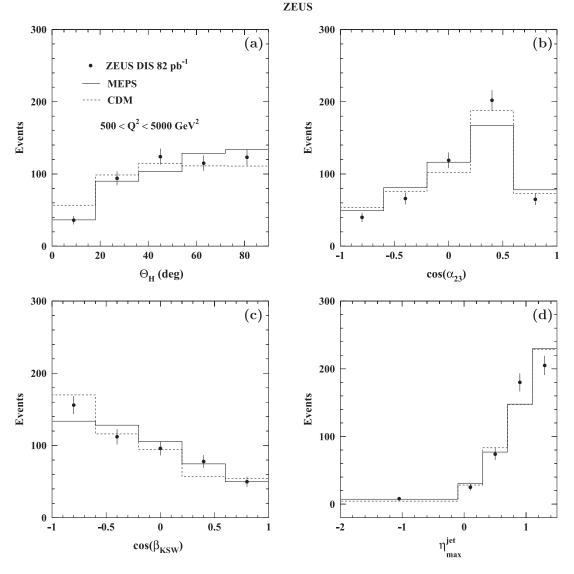


FIG. 9. Detector-level data distributions for three-jet production in NC DIS (dots) with $E_{T,B}^{jet1} > 8 \text{ GeV}$, $E_{T,B}^{jet2,3} > 5 \text{ GeV}$, and $-2 < \eta_B^{jet} < 1.5$ in the kinematic region given by $500 < Q^2 < 5000 \text{ GeV}^2$ and $|\cos \gamma_h| < 0.65$ as functions of (a) θ_H , (b) $\cos(\alpha_{23})$, (c) $\cos(\beta_{KSW})$, and (d) η_{max}^{jet} . Other details as in the caption to Fig. 8.

 $\pm 1\%$. The method used was the same as in earlier publications [17,18,44] ($\pm 1.6\%$);

- (iii) the effect of the uncertainty on the reconstruction of y was estimated by varying its value in simulated events by the estimated uncertainty of $\pm 1\%$ ($\pm 1.0\%$);
- (iv) the effect of the uncertainty on the parametrizations of the proton and photon PDFs was estimated by using alternative sets of PDFs in the MC simulation to calculate the correction factors ($\pm 0.4\%$ and $\pm 2.0\%$, respectively);
- (v) the uncertainty in the cross sections due to that in the simulation of the trigger ($\pm 0.4\%$).

For NC DIS events, the following experimental uncertainties were considered (as an example of the size of the uncertainties, an average value of the effect of each uncertainty on the cross section as a function of θ_H is shown in parentheses for the $Q^2 > 125 \text{ GeV}^2$ and $500 < Q^2 < 5000 \text{ GeV}^2$ kinematic regions):

- (i) the effect of the modelling of the parton shower was estimated by using CDM instead of MEPS to evaluate the correction factors (\pm 5.6% and \pm 9.1%);
- (ii) the effect of the uncertainty on the absolute energy scale of the calorimetric jets was estimated by varying E_T^{jet} in simulated events by its uncertainty of $\pm 1\%$ for $E_T^{\text{jet}} > 10$ GeV and $\pm 3\%$ for lower E_T^{jet} values ($\pm 2.3\%$ and $\pm 1.7\%$);
- (iii) the uncertainties due to the selection cuts were estimated by varying the values of the cuts within

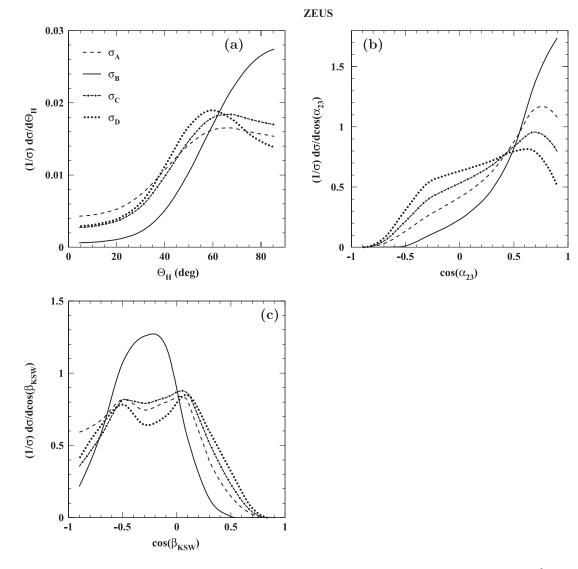


FIG. 10. Predicted normalized differential ep cross sections for three-jet direct-photon processes at $\mathcal{O}(\alpha_s^2)$ integrated over $E_T^{\text{jet}} > 14 \text{ GeV}$ and $-1 < \eta^{\text{jet}} < 2.5$ in the kinematic region defined by $Q^2 < 1 \text{ GeV}^2$ and 0.2 < y < 0.85 as functions of (a) θ_H , (b) $\cos(\alpha_{23})$, and (c) $\cos(\beta_{\text{KSW}})$. In each figure, the predictions for the color components are shown: σ_A (dashed lines), σ_B (solid lines), σ_C (dot-dashed lines), and σ_D (dotted lines). These calculations do not include corrections for hadronization effects.

the resolution of each variable (less than $\pm 1.6\%$ and less than $\pm 4.2\%$ in all cases);

- (iv) the uncertainty on the reconstruction of the boost to the Breit frame was estimated by using the direction of the track associated with the scattered electron instead of that derived from the impact position as determined from the energy depositions in the CAL ($\pm 1.6\%$) and $\pm 1.6\%$);
- (v) the uncertainty in the absolute energy scale of the electron candidate was estimated to be ±1% [45] (± 0.2% and ±0.3%);
- (vi) the uncertainty in the cross sections due to that in the simulation of the trigger ($\pm 0.5\%$) and $\pm 0.5\%$).

The dominant systematic effect comes from the modelling of the parton shower and hadronization, which is to a large extent correlated bin to bin. Nevertheless, the effect of these uncertainties on the normalized differential three-jet cross sections is small compared to the statistical uncertainties for the measurements presented in Sec. X. The systematic uncertainties were added in quadrature to the statistical uncertainties.

X. RESULTS

Normalized differential three-jet cross sections were measured in γp in the kinematic region $Q^2 < 1 \text{ GeV}^2$, 0.2 < y < 0.85, and $x_{\gamma}^{\text{obs}} > 0.8$. The cross sections were determined for jets of hadrons with $E_T^{\text{jet}} > 14 \text{ GeV}$ and

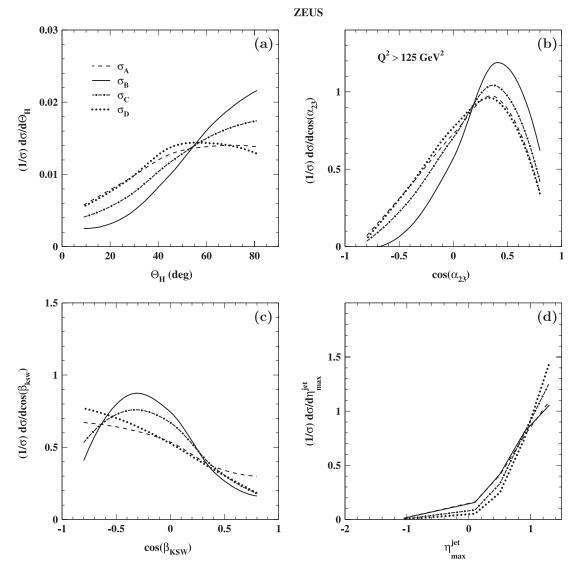


FIG. 11. Predicted normalized differential ep cross sections for three-jet production in NC DIS at $\mathcal{O}(\alpha_s^2)$ integrated over $E_{T,B}^{\text{jetl}} > 8 \text{ GeV}$, $E_{T,B}^{\text{jet2,3}} > 5 \text{ GeV}$, and $-2 < \eta_B^{\text{jet}} < 1.5$ in the kinematic region given by $Q^2 > 125 \text{ GeV}^2$ and $|\cos \gamma_h| < 0.65$ as functions of (a) θ_H , (b) $\cos(\alpha_{23})$, (c) $\cos(\beta_{\text{KSW}})$, and (d) $\eta_{\text{max}}^{\text{jet}}$. Other details are as in the caption to Fig. 10. These calculations do not include corrections for hadronization effects.

 $-1 < \eta^{\text{jet}} < 2.5$. In NC DIS, the cross sections were measured in two kinematic regimes: $Q^2 > 125 \text{ GeV}^2$ and $500 < Q^2 < 5000 \text{ GeV}^2$. In both cases, it was required that $|\cos \gamma_h| < 0.65$. The cross sections correspond to jets of hadrons with $E_{T,B}^{\text{jet1}} > 8 \text{ GeV}$, $E_{T,B}^{\text{jet2,3}} > 5 \text{ GeV}$ and $-2 < \eta_B^{\text{jet}} < 1.5$.

A. Color components and the triple-gluon vertex

Normalized differential three-jet cross sections at $O(\alpha_s^2)$ of the individual color components from Eq. (1), $\sigma_A, \ldots, \sigma_D$, were calculated using the programs described in Sec. VII and are shown separately in Fig. 10 for γp and in Figs. 11 and 12 for NC DIS with $Q^2 > 125(500 < 125)$

 $Q^2 < 5000$) GeV² as functions of the angular variables. In these and subsequent figures, the predictions were obtained by integrating over the same bins as for the data. The curves shown are a result of a cubic spline interpolation, except in the case of $\eta_{\rm max}^{\rm jet}$, for which a linear interpolation was used.

The component which contains the contribution from the TGV in quark-induced processes, σ_B , has a very different shape than the other components for all the angular variables considered, except for $\eta_{\text{max}}^{\text{jet}}$. The other components have distributions in β_{KSW} and θ_H that are similar and are best separated by the distribution of α_{23} in γp . In NC DIS with $500 < Q^2 < 5000 \text{ GeV}^2$, the different color

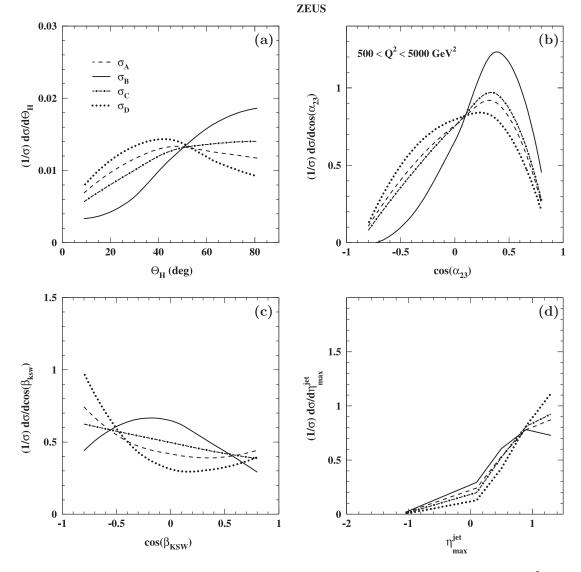


FIG. 12. Predicted normalized differential ep cross sections for three-jet production in NC DIS at $\mathcal{O}(\alpha_s^2)$ integrated over $E_{T,B}^{\text{jetl},3} > 8 \text{ GeV}, E_{T,B}^{\text{jet2},3} > 5 \text{ GeV}$, and $-2 < \eta_B^{\text{jet}} < 1.5$ in the kinematic region given by $500 < Q^2 < 5000 \text{ GeV}^2$ and $|\cos \gamma_h| < 0.65$ as functions of (a) θ_H , (b) $\cos(\alpha_{23})$, (c) $\cos(\beta_{\text{KSW}})$, and (d) $\eta_{\text{max}}^{\text{jet}}$. Other details are as in the caption to Fig. 10. These calculations do not include corrections for hadronization effects.

components as functions of θ_H and β_{KSW} also display different shapes. In particular, the σ_D component, which also contains a TGV, shows a distinct shape for these distributions. This demonstrates that the three-jet angular correlations studied show sensitivity to the different color components.

In γp (NC DIS: $Q^2 > 125 \text{ GeV}^2$, $500 < Q^2 < 5000 \text{ GeV}^2$), the SU(3)-based predictions for the relative contribution of each color component to the total cross section are: (A) 0.13(0.23, 0.30), (B) 0.10 (0.13, 0.14), (C) 0.45(0.39, 0.35) and (D) 0.32(0.25, 0.21). Therefore, the overall contribution from the diagrams that involve a TGV, B and D, amounts to 42(38, 35)% in SU(3).

B. Three-jet cross sections in γp

The integrated three-jet cross section in γp in the kinematic range considered was measured to be

$$\sigma_{ep \to 3jets} = 14.59 \pm 0.34(\text{stat.})^{+1.25}_{-1.31}(\text{syst.})\text{pb.}$$

The predicted $\mathcal{O}(\alpha_s^2)$ integrated cross section, which is the lowest order for this process and contains only direct processes, is $8.90^{+2.01}_{-2.92}$ pb.

The measured normalized differential three-jet cross sections are presented in Fig. 13 and Tables I, II, and III as functions of θ_H , $\cos(\alpha_{23})$, and $\cos(\beta_{\text{KSW}})$. The measured cross section shows a peak at $\theta_H \approx 60^\circ$, increases as $\cos(\alpha_{23})$ increases, and shows a broad peak in the range of $\cos(\beta_{\text{KSW}})$ between -0.5 to 0.1.

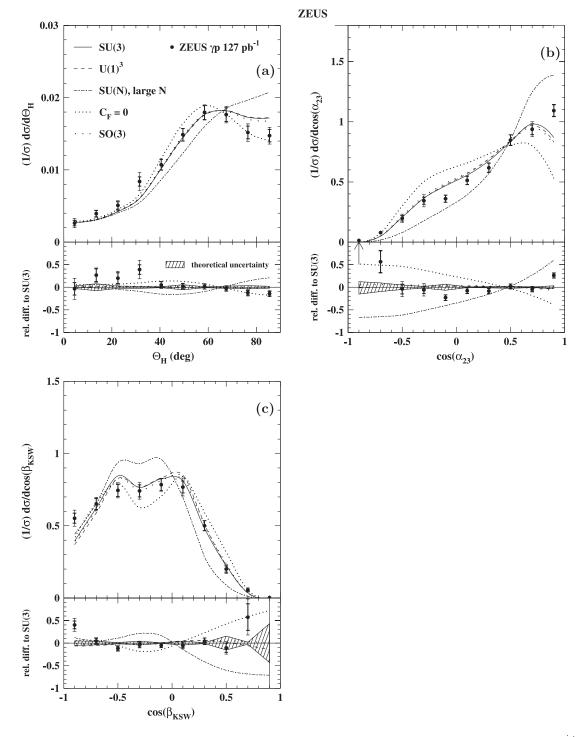


FIG. 13. Measured normalized differential ep cross sections for three-jet photoproduction (dots) integrated over $E_T^{\text{jet}} > 14 \text{ GeV}$ and $-1 < \eta^{\text{jet}} < 2.5$ in the kinematic region defined by $Q^2 < 1 \text{ GeV}^2$, 0.2 < y < 0.85, and $x_{\gamma}^{\text{obs}} > 0.8$ as functions of (a) θ_H , (b) $\cos(\alpha_{23})$, and (c) $\cos(\beta_{\text{KSW}})$. The data points are plotted at the bin centers. The inner error bars represent the statistical uncertainties of the data, and the outer error bars show the statistical and systematic uncertainties added in quadrature. For comparison, the $\mathcal{O}(\alpha_s^2)$ calculations for direct-photon processes based on SU(3) (solid lines), $U(1)^3$ (dashed lines), SU(N) in the limit of large N (dot-dashed lines), $C_F = 0$ (short-spaced dotted lines), and SO(3) (long-spaced dotted lines) are included. The lower part of the figures displays the relative difference to the calculations based on SU(3) and the hatched band shows the relative uncertainty of this calculation.

TABLE I. Normalized differential ep cross section for three-jet photoproduction integrated over $E_T^{\text{jet}} > 14 \text{ GeV}$ and $-1 < \eta^{\text{jet}} < 2.5$ in the kinematic region defined by $Q^2 < 1 \text{ GeV}^2$, 0.2 < y < 0.85, and $x_{\gamma}^{\text{obs}} > 0.8$ as a function of θ_H . The statistical and systematic uncertainties are shown separately. The multiplicative corrections for hadronization effects to be applied to the parton-level QCD differential cross section, C_{had} , are shown in the last column.

θ_H bin (deg)	$(1/\sigma)d\sigma/d\theta_H$	$\delta_{ m stat}$	${\delta}_{ m syst}$	$C_{\rm had}$
0, 9	0.00264	0.00038	±0.00052	0.93
9, 18	0.00393	0.00044	± 0.00021	0.94
18, 27	0.00507	0.00051	+0.00040 -0.00039	1.00
27, 36	0.00838	0.00064	$+0.00105 \\ -0.00104$	0.93
36, 45	0.01071	0.00075	± 0.00023	0.96
45, 54	0.01486	0.00087	+0.00021 -0.00016	0.94
54, 63	0.01795	0.00098	+0.00036 -0.00035	0.95
63, 72	0.01765	0.00095	± 0.00062	0.94
72, 81	0.01517	0.00088	+0.00081 -0.00084	0.94
81, 90	0.01473	0.00086	+0.00075 -0.00077	0.96

TABLE II. Normalized differential ep cross section for three-jet photoproduction integrated over $E_T^{\text{jet}} > 14 \text{ GeV}$ and $-1 < \eta^{\text{jet}} < 2.5$ in the kinematic region defined by $Q^2 < 1 \text{ GeV}^2$, 0.2 < y < 0.85, and $x_{\gamma}^{\text{obs}} > 0.8$ as a function of $\cos(\alpha_{23})$. Other details as in the caption to Table I.

$\cos(\alpha_{23})$ bin	$(1/\sigma)d\sigma/d\cos(\alpha_{23})$	$\delta_{ m stat}$	${\delta}_{ m syst}$	$C_{\rm had}$
-1, -0.8	0.0138	0.0046	±0.00042	1.04
-0.8, -0.6	0.078	0.012	+0.004 -0.003	0.96
-0.6, -0.4	0.198	0.022	+0.026 -0.027	0.95
-0.4, -0.2	0.343	0.029	+0.041 -0.040	0.93
-0.2, 0	0.360	0.029	±0.010	0.97
0, 0.2	0.512	0.034	+0.014 -0.013	0.98
0.2, 0.4	0.618	0.037	+0.015 -0.016	1.00
0.4, 0.6	0.847	0.044	± 0.013	0.99
0.6, 0.8	0.937	0.045	+0.043 -0.042	0.99
0.8, 1	1.092	0.049	+0.019 -0.018	1.02

TABLE III. Normalized differential ep cross section for three-jet photoproduction integrated over $E_T^{\text{jet}} > 14 \text{ GeV}$ and $-1 < \eta^{\text{jet}} < 2.5$ in the kinematic region defined by $Q^2 < 1 \text{ GeV}^2$, 0.2 < y < 0.85 and $x_{\gamma}^{\text{obs}} > 0.8$ as a function of $\cos(\beta_{\text{KSW}})$. Other details as in the caption to Table I.

$\cos(\beta_{\rm KSW})$ bin	$(1/\sigma)d\sigma/d\cos(\beta_{\rm KSW})$	$\delta_{ m stat}$	${\delta}_{ m syst}$	$C_{\rm had}$
-1, -0.8	0.552	0.035	±0.044	0.97
-0.8, -0.6	0.651	0.039	± 0.026	0.99
-0.6, -0.4	0.745	0.042	$+0.032 \\ -0.031$	0.97
-0.4, -0.2	0.741	0.042	± 0.039	0.93
-0.2, 0	0.784	0.042	+0.014 -0.016	0.96
0, 0.2	0.768	0.042	± 0.046	0.95
0.2, 0.4	0.500	0.034	± 0.005	0.94
0.4, 0.6	0.200	0.022	± 0.021	0.95
0.6, 0.8	0.056	0.010	$+0.010 \\ -0.009$	0.85
0.8, 1	0.0029	0.0015	± 0.0037	0.74

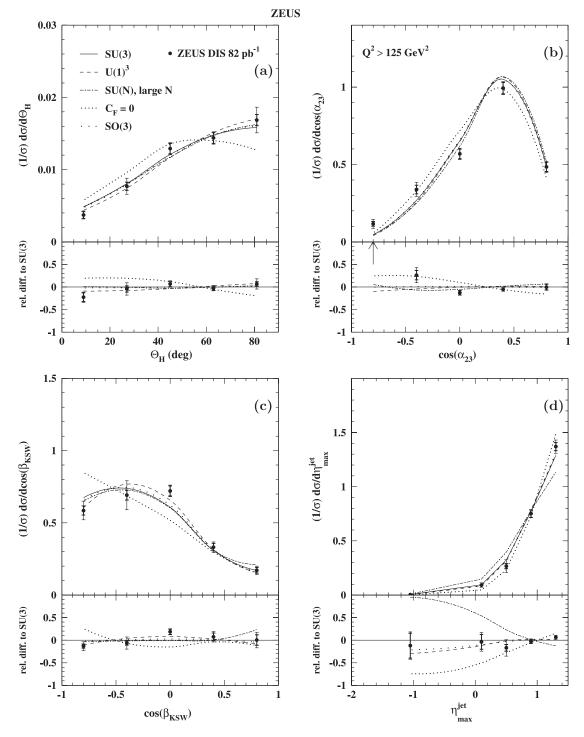


FIG. 14. Measured normalized differential ep cross sections for three-jet production in NC DIS (dots) integrated over $E_{T,B}^{\text{jetl},3} > 8 \text{ GeV}$, $E_{T,B}^{\text{jetl},3} > 5 \text{ GeV}$, and $-2 < \eta_B^{\text{jet}} < 1.5$ in the kinematic region given by $Q^2 > 125 \text{ GeV}^2$ and $|\cos \gamma_h| < 0.65$ as functions of (a) θ_H , (b) $\cos(\alpha_{23})$, (c) $\cos(\beta_{\text{KSW}})$, and (d) $\eta_{\text{max}}^{\text{jet}}$. Other details as in the caption to Fig. 13.

C. Three-jet cross sections in NC DIS

The integrated three-jet cross sections in NC DIS for $Q^2 > 125 \text{ GeV}^2$ and $500 < Q^2 < 5000 \text{ GeV}^2$ were measured to be

$$\sigma_{ep \to 3iets} = 11.48 \pm 0.35 (stat.) \pm 1.98 (syst.) pb$$

and

 $\sigma_{ep \to 3jets} = 5.73 \pm 0.26(\text{stat.}) \pm 0.60(\text{syst.})\text{pb.}$

The predicted $\mathcal{O}(\alpha_s^3)$ integrated cross sections are 14.14 ± 3.40 pb and 6.86 ± 1.77 pb for the two kinematic regions, respectively.

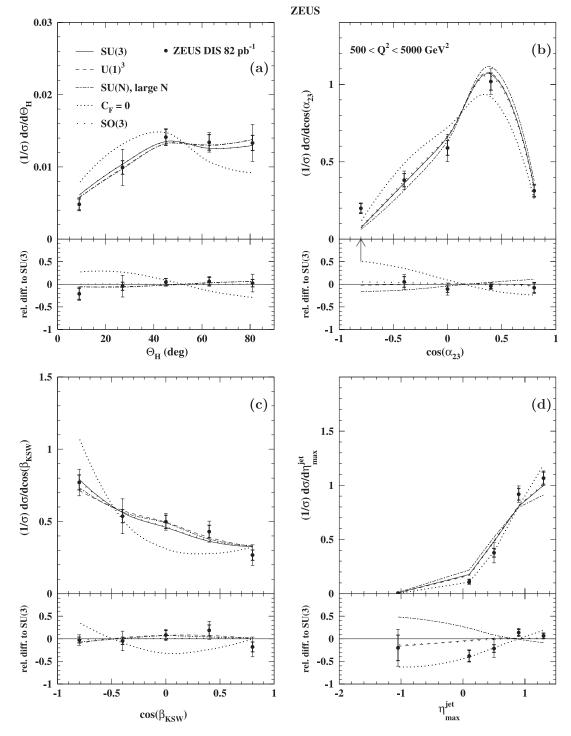


FIG. 15. Measured normalized differential ep cross sections for three-jet production in NC DIS (dots) integrated over $E_{T,B}^{\text{jet1}} > 8 \text{ GeV}, E_{T,B}^{\text{jet2},3} > 5 \text{ GeV}, \text{ and } -2 < \eta_B^{\text{jet}} < 1.5$ in the kinematic region given by $500 < Q^2 < 5000 \text{ GeV}^2$ and $|\cos \gamma_h| < 0.65$ as functions of (a) θ_H , (b) $\cos(\alpha_{23})$, (c) $\cos(\beta_{\text{KSW}})$, and (d) $\eta_{\text{max}}^{\text{jet}}$. Other details are as in the caption to Fig. 13.

The measured normalized differential three-jet cross sections in NC DIS for $Q^2 > 125 \text{ GeV}^2$ and $500 < Q^2 < 5000 \text{ GeV}^2$ are presented in Figs. 14 and 15, respectively, as functions of θ_H , $\cos(\alpha_{23})$, $\cos(\beta_{\text{KSW}})$ and $\eta_{\text{max}}^{\text{jet}}$

(see Tables IV, V, VI, and VII). The measured cross sections have similar shapes in the two kinematic regions considered, except for the distribution as a function of $\cos(\beta_{\text{KSW}})$: the cross section decreases as $\cos(\beta_{\text{KSW}})$

H. ABRAMOWICZ et al.

PHYSICAL REVIEW D 85, 052008 (2012)

TABLE IV. Normalized differential ep cross section for three-jet production in NC DIS integrated over $E_{T,B}^{\text{jetl}} > 8$ GeV, $E_{T,B}^{\text{jet2,3}} > 5$ GeV, and $-2 < \eta_B^{\text{jet}} < 1.5$ in the kinematic region given by $|\cos \gamma_h| < 0.65$ and $Q^2 > 125$ GeV² or $500 < Q^2 < 5000$ GeV² as a function of θ_H . The multiplicative corrections applied to the differential measured cross section to correct for QED radiative effects, C_{QED} , is also shown. The multiplicative corrections for hadronization effects and the Z⁰-exchange contribution to be applied to the parton-level QCD differential cross section, C_{had} , are shown in the last column. Other details as in the caption to Table I.

θ_H bin (deg)	$(1/\sigma)d\sigma/d\theta_H$	$\delta_{ m stat}$	$\delta_{ m syst}$	$C_{\rm QED}$	$C_{ m had}$
		$Q^2 > 125 \text{ GeV}^2$	2		
0, 18	0.00372	0.00046	± 0.00031	0.92	0.89
18, 36	0.00770	0.00056	± 0.00095	0.88	0.90
36, 54	0.01291	0.00072	± 0.00045	0.96	0.84
54, 72	0.01438	0.00074	± 0.00042	1.00	0.84
72, 90	0.01686	0.00077	± 0.00160	0.99	0.84
		$500 < Q^2 < 5000 \text{ C}$	BeV ²		
0, 18	0.00481	0.00076	± 0.00048	0.88	0.92
18, 36	0.00993	0.00094	±0.00231	0.95	0.96
36, 54	0.0141	0.0011	± 0.0004	0.92	0.97
54, 72	0.0134	0.0011	± 0.0008	1.03	0.89
72, 90	0.0133	0.0011	± 0.0023	0.96	0.94

TABLE V. Normalized differential ep cross section for three-jet production in NC DIS integrated over $E_{T,B}^{\text{jetl}} > 8 \text{ GeV}$, $E_{T,B}^{\text{jetl},3} > 5 \text{ GeV}$, and $-2 < \eta_B^{\text{jet}} < 1.5$ in the kinematic region given by $|\cos \gamma_h| < 0.65$ and $Q^2 > 125 \text{ GeV}^2$ or $500 < Q^2 < 5000 \text{ GeV}^2$ as a function of $\cos(\alpha_{23})$. Other details as in the caption to Table IV.

$\cos(\alpha_{23})$ bin	$(1/\sigma)d\sigma/d\cos(\alpha_{23})$	$\delta_{ m stat}$	$\delta_{ m syst}$	$C_{\rm QED}$	$C_{\rm had}$
		$Q^2 > 125 \text{ GeV}^2$			
-1, -0.6	0.117	0.015	± 0.025	0.96	0.90
-0.6, -0.2	0.338	0.028	± 0.035	1.01	0.70
-0.2, 0.2	0.568	0.032	± 0.018	0.90	0.78
0.2, 0.6	0.993	0.037	± 0.021	0.95	0.88
0.6, 1	0.484	0.030	± 0.020	1.02	1.01
		$500 < Q^2 < 5000 \text{ GeV}$	72		
-1, -0.6	0.199	0.030	± 0.018	1.04	0.83
-0.6, -0.2	0.381	0.043	± 0.041	0.97	0.75
-0.2, 0.2	0.589	0.047	± 0.074	0.92	0.83
0.2, 0.6	1.018	0.055	± 0.061	0.95	1.07
0.6, 1	0.313	0.036	± 0.022	0.97	1.16

TABLE VI. Normalized differential ep cross section for three-jet production in NC DIS integrated over $E_{T,B}^{\text{jetl}} > 8 \text{ GeV}$, $E_{T,B}^{\text{jetl},3} > 5 \text{ GeV}$, and $-2 < \eta_B^{\text{jet}} < 1.5$ in the kinematic region given by $|\cos \gamma_h| < 0.65$ and $Q^2 > 125 \text{ GeV}^2$ or $500 < Q^2 < 5000 \text{ GeV}^2$ as a function of $\cos(\beta_{\text{KSW}})$. Other details as in the caption to Table IV.

$\cos(\beta_{\rm KSW})$ bin	$(1/\sigma)d\sigma/d\cos(\beta_{\rm KSW})$	$\delta_{ m stat}$	$\delta_{ m syst}$	$C_{\rm QED}$	$C_{ m had}$
		$Q^2 > 125 \text{ GeV}^2$			
-1, -0.6	0.585	0.031	± 0.057	0.92	0.95
-0.6, -0.2	0.691	0.034	± 0.094	0.99	0.88
-0.2, 0.2	0.721	0.035	± 0.020	1.01	0.85
0.2, 0.6	0.332	0.026	± 0.025	0.92	0.74
0.6, 1	0.171	0.020	± 0.022	0.93	0.71
	500	$< Q^2 < 5000 \text{ GeV}^2$			
-1, -0.6	0.770	0.052	± 0.076	0.94	1.04
-0.6, -0.2	0.536	0.045	±0.112	0.93	0.97
-0.2, 0.2	0.497	0.045	± 0.037	1.01	0.94
0.2, 0.6	0.430	0.044	± 0.058	1.01	0.84
0.6, 1	0.267	0.036	± 0.061	0.89	0.78

TABLE VII. Normalized differential ep cross section for three-jet production in NC DIS integrated over $E_{T,B}^{\text{jet1}} > 8$ GeV, $E_{T,B}^{\text{jet2,3}} > 5$ GeV, and $-2 < \eta_B^{\text{jet}} < 1.5$ in the kinematic region given by $|\cos \gamma_h| < 0.65$ and $Q^2 > 125$ GeV² or $500 < Q^2 < 5000$ GeV² as a function of $\eta_{\text{max}}^{\text{jet}}$. Other details as in the caption to Table IV.

$\eta_{\max}^{ ext{jet}}$ bin	$(1/\sigma)d\sigma/d\eta_{ m max}^{ m jet}$	$\delta_{ m stat}$	$\delta_{ m syst}$	$C_{\rm QED}$	$C_{ m had}$
		$Q^2 > 125 \text{ GeV}$	2		
-2, -0.1	0.0042	0.0013	± 0.0006	1.07	0.61
-0.1, 0.3	0.092	0.016	± 0.012	1.17	0.77
0.3, 0.7	0.267	0.024	± 0.054	0.96	0.81
0.7, 1.1	0.751	0.034	± 0.016	0.93	0.83
1.1, 1.5	1.370	0.038	± 0.048	0.96	0.88
	500	$< Q^2 < 5000$ (GeV ²		
-2, -0.1	0.0059	0.0021	± 0.0022	1.14	0.62
-0.1, 0.3	0.110	0.022	± 0.011	0.96	0.77
0.3, 0.7	0.378	0.040	± 0.084	0.96	0.86
0.7, 1.1	0.918	0.054	± 0.052	0.93	0.93
1.1, 1.5	1.066	0.056	±0.035	0.98	1.00

increases for $500 < Q^2 < 5000 \text{ GeV}^2$ whereas for $Q^2 > 125 \text{ GeV}^2$ it shows an approximately constant behavior for $-1 < \cos(\beta_{\text{KSW}}) < 0.25$. The measured cross section as a function of $\cos(\alpha_{23})$ peaks around 0.5 and increases as θ_H and $\eta_{\text{max}}^{\text{jet}}$ increase.

D. Comparison to fixed-order calculations

Calculations at $\mathcal{O}(\alpha_s^2)$ in which each color contribution in Eq. (1) was weighted according to the color factors predicted by SU(3) ($C_F = 4/3$, $C_A = 3$ and $T_F = 1/2$) are compared to the measurements in Figs. 13–17. The theoretical uncertainties are shown in Figs. 13, 16, and 17, as hatched bands. Since the calculations are normalized to unity, the uncertainties are correlated among the points; this correlation is partially responsible for the pulsating pattern exhibited by the theoretical uncertainties. The predictions based on SU(3) give a reasonable description of the data for all angular correlations. For γp , the predictions do not include resolved processes (see Sec. VII), as calculations separated according to the different color factors are not available. Monte Carlo simulations of such processes show that their contribution is most likely to be different from that of direct processes in the fifth and last bin of $(1/\sigma)(d\sigma/d\cos(\alpha_{23}))$ [see Figs. 5(b) and 13(b)].

To illustrate the sensitivity of the measurements to the color factors, calculations based on different symmetry groups are also compared to the data in Figs. 13 to 15. In these calculations, the color components were combined in such a way as to reproduce the color structure of a theory based on the non-Abelian group SU(N) in the limit of large $N (C_F = 1, C_A = 2 \text{ and } T_F = 0)$, the Abelian group U(1)³ $(C_F = 1, C_A = 0 \text{ and } T_F = 3)$, the non-Abelian group SO (3) $(C_F = 1/3, C_A = 3 \text{ and } T_F = 1/3)$ and, as an extreme

choice, a calculation with $C_F = 0$. The shapes of the distributions predicted by U(1)³ in γp are very similar to those by SU(3) due to the smallness of the component σ_B and the difficulty to distinguish the component σ_D . In NC DIS, the predictions of U(1)³ show differences of around 10% with respect to those of SU(3), which are of the same order as the statistical uncertainties. In both regimes, the data clearly disfavor a theory based on SU(*N*) in the limit of large *N* or on $C_F = 0$.

Figs. 16 and 17 show the measurements in NC DIS compared to the predictions of QCD at $\mathcal{O}(\alpha_s^2)$ and $\mathcal{O}(\alpha_s^3)$. This comparison provides a very stringent test of pQCD. The $\mathcal{O}(\alpha_s^3)$ calculations give a very good description of the data. In particular, a significant improvement in the description of the data can be observed for the first bin of the α_{23} distribution [Figs. 16(b) and 17(b)].

XI. SUMMARY AND CONCLUSIONS

Measurements of angular correlations in three-jet γp and NC DIS were performed in ep collisions at HERA using up to 127 pb⁻¹ of data collected with the ZEUS detector. The cross sections refer to jets identified with the k_T cluster algorithm in the longitudinally invariant inclusive mode and selected with $E_T^{\text{jet}} > 14$ GeV and $-1 < \eta^{\text{jet}} < 2.5$ (γp) and $E_{T,B}^{\text{jet1}} > 8$ GeV, $E_{T,B}^{\text{jet2,3}} > 5$ GeV and $-2 < \eta_B^{\text{jet}} < 1.5$ (NC DIS). The measurements were made in the kinematic regions defined by $Q^2 < 1$ GeV², 0.2 < y < 0.85 and $x_{\gamma}^{\text{obs}} > 0.8$ (γp) and $Q^2 > 125$ GeV² or $500 < Q^2 < 5000$ GeV² and $|\cos \gamma_h| < 0.65$ (NC DIS). Normalized differential three-jet cross sections were measured as functions of θ_H , α_{23} , β_{KSW} and $\eta_{\text{max}}^{\text{jet}}$.

The color configuration of the strong interaction was studied for the first time in ep collisions using the angular correlations in three-jet events. While the

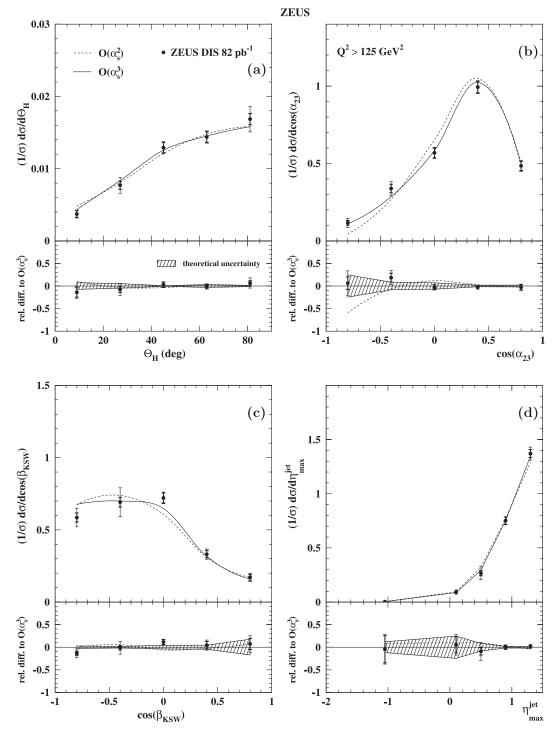


FIG. 16. Measured normalized differential ep cross sections for three-jet production in NC DIS (dots) integrated over $E_{T,B}^{\text{jet1},3} > 8 \text{ GeV}$, $E_{T,B}^{\text{jet2},3} > 5 \text{ GeV}$, and $-2 < \eta_{\text{B}}^{\text{jet}} < 1.5$ in the kinematic region given by $Q^2 > 125 \text{ GeV}^2$ and $|\cos \gamma_h| < 0.65$ as functions of (a) θ_H , (b) $\cos(\alpha_{23})$, (c) $\cos(\beta_{\text{KSW}})$, and (d) $\eta_{\text{max}}^{\text{jet}}$. For comparison, the $\mathcal{O}(\alpha_s^2)$ (dashed lines) and $\mathcal{O}(\alpha_s^3)$ (solid lines) QCD calculations are also included. The hatched band displays the relative theoretical uncertainty of the $\mathcal{O}(\alpha_s^3)$ calculation. Other details are as in the caption to Fig. 13.

extraction of the color factors will require the full analysis of all HERA data and complete $\mathcal{O}(\alpha_s^3)$ calculations, the studies presented in this paper demonstrate the potential of the method. Fixed-order calculations separated according to the color configurations were used to study the sensitivity of the angular correlations to the underlying gauge structure. The predicted distributions of θ_H , α_{23} , and

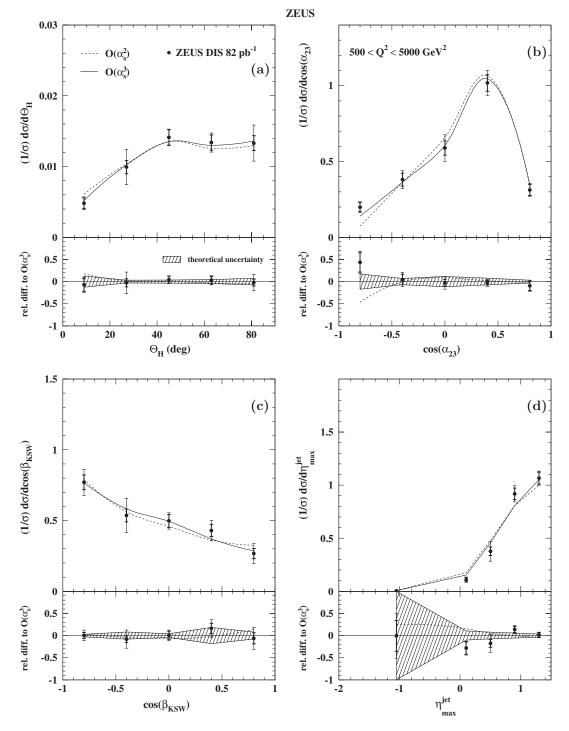


FIG. 17. Measured normalized differential ep cross sections for three-jet production in NC DIS (dots) integrated over $E_{T,B}^{\text{jetl},3} > 8 \text{ GeV}$, $E_{T,B}^{\text{jetl},3} > 5 \text{ GeV}$, and $-2 < \eta_B^{\text{jet}} < 1.5$ in the kinematic region given by $500 < Q^2 < 5000 \text{ GeV}^2$ and $|\cos \gamma_h| < 0.65$ as functions of (a) θ_H , (b) $\cos(\alpha_{23})$, (c) $\cos(\beta_{\text{KSW}})$, and (d) $\eta_{\text{max}}^{\text{jet}}$. For comparison, the $\mathcal{O}(\alpha_s^2)$ (dashed lines) and $\mathcal{O}(\alpha_s^3)$ (solid lines) QCD calculations are also included. The hatched band displays the relative theoretical uncertainty of the $\mathcal{O}(\alpha_s^3)$ calculation. Other details are as in the caption to Fig. 13.

 β_{KSW} clearly isolate the contribution from the triplegluon coupling in quark-induced processes while $\eta_{\text{max}}^{\text{jet}}$ isolates the contribution from gluon-induced processes. The variable α_{23} provides additional separation for the other contributions. Furthermore, the studies performed demonstrate that normalized cross sections in three-jet ep collisions have reduced sensitivity to the assumed evolution of the PDFs and the running of α_s .

H. ABRAMOWICZ et al.

The data clearly disfavor theories based on SU(*N*) in the limit of large *N* or $C_F = 0$. Differences between SU(3) and U(1)³ are smaller than the current statistical uncertainties. The measurements are found to be consistent with the admixture of color configurations as predicted by SU(3). The $\mathcal{O}(\alpha_s^3)$ calculations give a very good description of the NC DIS data.

ACKNOWLEDGMENTS

We thank the DESY Directorate for their strong support and encouragement. We appreciate the contributions to the construction and maintenance of the ZEUS detector of many people who are not listed as authors. The HERA machine group and the DESY computing staff are especially acknowledged for their success in providing excellent operation of the collider and the data-analysis environment. We would like to thank M. Fontannaz, M. Klasen and Z. Nagy for useful discussions. This work was supported by the U.S. Department of Energy, the Italian National Institute for Nuclear Physics (INFN), the German Federal Ministry for Education and Research (BMBF) under Contract No. H09PDF, No. 05h09GUF, and the SFB 676 of the Deutsche Forschungsgemeinschaft (DFG); DESY, Germany; the Science and Technology Facilities Council, United Kingdom; an FRGS grant from the Malaysian government; Presidential grant N-4142.2010.2 for Leading Scientific Schools, by the Russian Ministry of Education and Science through its grant for Scientific Research on High Energy Physics and under Contract No. 02.740.11.0244; the Netherlands Foundation for Research on Matter (FOM); the Israel Science Foundation; the Max Planck Institute for Physics, Munich, Germany; MEIN research grant No. 1 P03B 04529 (2005–2008), Poland; Warsaw University, Poland; the Russian Foundation for Basic Research, Grant 11-02-91345-DFG a; the Polish Ministry of Science and Higher Education as a scientific project No. DPN/N188/DESY/ 2009 and its grants for Scientific Research; the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and its grants for Scientific Research; the Korean Ministry of Education and Korea Science and Engineering Foundation; FNRS and its associated funds (IISN and FRIA) and by an Inter-University Attraction Poles Programme subsidized by the Belgian Federal Science Policy Office; the Spanish Ministry of Education and Science through funds provided by CICYT; the Natural Sciences and Engineering Research Council of Canada (NSERC); and the U.S. National Science Foundation. Any opinion, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

- D. Decamp *et al.* (ALEPH Collaboration), Phys. Lett. B 284, 151 (1992); R. Barate *et al.* (ALEPH Collaboration), Z. Phys. C 76, 1 (1997); A. Heister *et al.* (ALEPH Collaboration), Eur. Phys. J. C 27, 1 (2003); P. Abreu *et al.* (DELPHI Collaboration), Z. Phys. C 59, 357 (1993); Phys. Lett. B 414, 401 (1997); Phys. Lett. B 449, 383 (1999); B. Adeva *et al.* (L3 Collaboration), Phys. Lett. B 248, 227 (1990); M.Z. Akrawy *et al.* (OPAL Collaboration), Z. Phys. C 49, 49 (1991); R. Akers *et al.* (OPAL Collaboration), Z. Phys. C 65, 367 (1995); G. Abbiendi *et al.* (OPAL Collaboration), Eur. Phys. J. C 20, 601 (2001).
- [2] P. Abreu *et al.* (DELPHI Collaboration), Phys. Lett. B 255, 466 (1991).
- [3] C. H. Llewellyn Smith, Phys. Lett. B **79**, 83 (1978); I. Kang and C. H. Llewellyn Smith, Nucl. Phys. **B166**, 413 (1980); J. F. Owens, Phys. Rev. D **21**, 54 (1980); M. Fontannaz *et al.*, Z. Phys. C **6**, 241 (1980).
- [4] W.J. Stirling and Z. Kunszt, *Proceedings of the HERA Workshop*, edited by R.D. Peccei (DESY, Hamburg, Germany, 1987), Vol. 1, p. 331.M. Drees and F. Halzen, Phys. Rev. Lett. **61**, 275 (1988); M. Drees and R. M. Godbole, Phys. Rev. Lett. **61**, 682 (1988); Phys. Rev. D **39**, 169 (1989); H. Baer, J. Ohnemus, and J. F. Owens, Z. Phys. C **42**, 657 (1989); Phys. Rev. D **40**, 2844 (1989).

- [5] J. Breitweg *et al.* (ZEUS Collaboration), Phys. Lett. B 443, 394 (1998); S. Chekanov *et al.* (ZEUS Collaboration), Nucl. Phys. B792, 1 (2008).
- [6] S. Chekanov *et al.* (ZEUS Collaboration), Eur. Phys. J. C 44, 183 (2005).
- [7] C. Adloff *et al.* (H1 Collaboration), Phys. Lett. B **515**, 17 (2001); F. D. Aaron *et al.* (H1 Collaboration), Eur. Phys. J. C **65**, 363 (2010); **67**, 1 (2010).
- [8] P. Aurenche et al., Nucl. Phys. B286, 553 (1987).
- [9] R. Muñoz-Tapia and W. J. Stirling, Phys. Rev. D 52, 3894 (1995).
- [10] J. G. Körner, G. Schierholz, and J. Willrodt, Nucl. Phys. B185, 365 (1981).
- [11] M. Derrick *et al.* (ZEUS Collaboration), Phys. Lett. B 293, 465 (1992).
- [12] ZEUS Collaboration, U. Holm, The ZEUS Detector. Status Report (unpublished), (DESY, 1993), http://wwwzeus.desy.de/bluebook/bluebook.html.
- [13] N. Harnew *et al.*, Nucl. Instrum. Methods Phys. Res., Sect. A **279**, 290 (1989); B. Foster *et al.*, Nucl. Phys. B, Proc. Suppl. **32**, 181 (1993); Nucl. Instrum. Methods Phys. Res., Sect. A **338**, 254 (1994).
- [14] M. Derrick *et al.*, Nucl. Instrum. Methods Phys. Res., Sect. A **309**, 77 (1991); A. Andresen *et al.*, Nucl. Instrum. Methods Phys. Res., Sect. A **309**, 101 (1991); A. Caldwell *et al.*, Nucl. Instrum. Methods Phys.

Res., Sect. A **321**, 356 (1992); A. Bernstein *et al.*, Nucl. Instrum. Methods Phys. Res., Sect. A **336**, 23 (1993).

- [15] J. Andruszków *et al.*, DESY, Report No. DESY-92-066, 1992; M. Derrick *et al.* (ZEUS Collaboration), Z. Phys. C 63, 391 (1994); J. Andruszków *et al.*, Acta Phys. Pol. B 32, 2025 (2001).
- [16] W. H. Smith, K. Tokushuku, and L. W. Wiggers, Proc. Computing in High-Energy Physics (CHEP), Annecy, France, Sept. 1992, edited by C. Verkerk and W. Wojcik (CERN, Geneva, Switzerland, 1992).p. 222.
- [17] S. Chekanov *et al.* (ZEUS Collaboration), Phys. Lett. B 560, 7 (2003).
- [18] S. Chekanov *et al.* (ZEUS Collaboration), Phys. Lett. B 649, 12 (2007).
- [19] S. Catani et al., Nucl. Phys. B406, 187 (1993).
- [20] S.D. Ellis and D.E. Soper, Phys. Rev. D 48, 3160 (1993).
- [21] J. E. Huth et al., Research Directions for the Decade. Proceedings of Summer Study on High Energy Physics, 1990, edited by E. L. Berger (World Scientific, Singapore, 1992), p. 134.
- [22] C. Glasman, Ph.D. thesis, Weizmann Institute of Science, 1995.
- [23] R. P. Feynman, *Photon-Hadron Interactions* (Benjamin, New York, 1972); K. H. Streng, T. F. Walsh, and P. M. Zerwas, Z. Phys. C 2, 237 (1979).
- [24] O. González, Ph.D. thesis, Universidad Autónoma de Madrid, 2002.
- [25] R. Brun et al., Geant3, CERN Technical Report No. CERN-DD/EE/84-1, 1987.
- [26] T. Sjöstrand, Comput. Phys. Commun. 82, 74 (1994); 135, 238 (2001).
- [27] G. Marchesini *et al.*, Comput. Phys. Commun. **67**, 465 (1992); G. Corcella *et al.*, J. High Energy Phys. 01 (2001) 010.
- [28] M. Glück, E. Reya, and A. Vogt, Phys. Rev. D 45, 3986 (1992); 46, 1973 (1992).
- [29] H.L. Lai et al., Phys. Rev. D 55, 1280 (1997).
- [30] B. Andersson et al., Phys. Rep. 97, 31 (1983).

- [31] T. Sjöstrand, Comput. Phys. Commun. **39**, 347 (1986); T. Sjöstrand and M. Bengtsson, Comput. Phys. Commun. **43**, 367 (1987).
- [32] B.R. Webber, Nucl. Phys. B238, 492 (1984).
- [33] A. Kwiatkowski, H. Spiesberger, and H.-J. Möhring, Comput. Phys. Commun. 69, 155 (1992); H. Spiesberger, An Event Generator for *ep* Interactions at HERA Including Radiative Processes (Version 4.6), 1996, http://www.desy.de/hspiesb/heracles.html.
- [34] K. Charchuła, G. A. Schuler, and H. Spiesberger, Comput. Phys. Commun. 81, 381 (1994); H. Spiesberger, Heracles and Djangoh: Event Generation for ep Interactions at HERA Including Radiative Processes, 1998, http://www thep.physik.uni-mainz.de/~hspiesb/djangoh/djangoh.html.
- [35] Y. Azimov *et al.*, Phys. Lett. B 165, 147 (1985); G. Gustafson, Phys. Lett. B 175, 453 (1986); G. Gustafson and U. Pettersson, Nucl. Phys. B306, 746 (1988); B. Andersson *et al.*, Z. Phys. C 43, 625 (1989).
- [36] L. Lönnblad, Comput. Phys. Commun. 71, 15 (1992); L.
 Lönnblad, Z. Phys. C 65, 285 (1995).
- [37] G. Ingelman, A. Edin, and J. Rathsman, Comput. Phys. Commun. 101, 108 (1997).
- [38] H. L. Lai et al., Eur. Phys. J. C 12, 375 (2000).
- [39] M. Klasen, T. Kleinwort, and G. Kramer, Eur. Phys. J. direct C 1, 1 (1998).
- [40] S. Chekanov *et al.* (ZEUS Collaboration), Phys. Rev. D 67, 012007 (2003).
- [41] Z. Nagy and Z. Trocsanyi, Phys. Rev. Lett. 87, 082001 (2001).
- [42] S. Bethke, J. Phys. G 26, R27 (2000); Updated in S. Bethke, Eur. Phys. J. C 64, 689 (2009).
- [43] M. Jiménez, Ph.D. thesis, Universidad Autónoma de Madrid, Spain, 2008.
- [44] M. Wing (on behalf of the ZEUS Collaboration), Proceedings of the 10th International Conference on Calorimetry in High Energy Physics, edited by R. Zhu (World Scientific, River Edge, New Jersey, 2002), p. 767, Also in preprint hep-ex/0206036.
- [45] S. Chekanov *et al.* (ZEUS Collaboration), Eur. Phys. J. C 21, 443 (2001).