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We show how to derive several families of accelerating universe solutions to an Einstein-Aether gravity

theory. These solutions provide possible descriptions of inflationary behavior in the early universe and

late-time cosmological acceleration.
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I. INTRODUCTION

There has been renewed interest in Lorentz-violating
theories of gravity and their consequences for experimental
gravity and cosmology. Donnelly and Jacobson [1] have
provided a systematic construction of an Einstein-Aether
gravity theory of this sort that preserves locality and co-
variance in the presence of an additional Lorentz-violating
(‘‘aether’’) vector field. This determines a preferred rest
frame at each spacetime point, as was also considered by
Gasperini [2], and leads to interesting variations on the
standard picture for the development of large-scale struc-
ture in the Universe that a number of authors have exam-
ined in detail (see Refs. [3–10]). The aether vector field, ua,
and the metric tensor gab together determine the local
spacetime structure. In an isotropic and homogeneous
Friedmann universe with expansion scale factor aðtÞ and
comoving proper time t, the aether field will be aligned
with the cosmic frame and is related to the expansion rate
of the universe by

rcu
b ¼ _a

a
ðgcb � ucubÞ:

The Einstein equations are generalized by the contribution
of an additional stress tensor for the aether field. If the
universe contains a single self-interacting scalar field �,
with a self-interaction potential V that can now be a
function of � and the expansion rate � ¼ 3 _a=a, then the
modified stress tensor of Donnelly and Jacobson [1] is

Tab ¼ ra�rb�� ð12rc�rc�� V þ �V�Þgab: (1)

This corresponds to an effective fluid with pressure p and
density � of the form

Tb
a ¼ diagð�;�p;�p;�pÞ

with

� ¼ 1
2
_�2 þ V � �V�; (2)

p ¼ 1
2
_�2 � V þ �V� � _V� (3)

with Vð�; �Þ where � ¼ 3H ¼ 3 _a=a.
The energy-momentum conservation law,

_�þ 3Hð�þ pÞ ¼ 0; (4)

then remains as in general relativity

€�þ 3H _�þ V� ¼ 0; (5)

while the Friedmann equation is augmented by the contri-
bution of the aether stress to the energy density (8�G ¼
1 ¼ c):

3H2 ¼ � ¼ 1

2
_�2 þ V � �V� � k

a2
; (6)

where k is the usual Friedmann curvature parameter in the
metric (in coordinates ft; r; #; ’g)

ds2 ¼ dt2 � a2ðtÞ
�

dr2

1� kr2
þ r2d#2 þ r2sin2#d’2

�
:

We will now set k equal to zero in what follows.
The energy-momentum tensor, and the forms of the

density and pressure it contains, are reminiscent of the
form required when a simple bulk viscosity is added to a
perfect fluid close to equilibrium [11–13]. However, there
are differences. The addition of a bulk viscosity �ð�Þ to a
fluid with density � and isotropic pressure p is obtained by
effecting the transformation

ð�; pÞ ! ð�; p� ��Þ
in Eq. (4) and the left-hand equality in (6), so the
Friedmann equation of general relativity (3H2 ¼
�� ka�2) is left unaltered but the density conservation
changes. By contrast, the introduction of the aether field is
effected by the transformation

ð�; pÞ ! ð�� �V�; pþ �V� � _V�Þ
which differs from the situation with bulk viscous stresses
in an expanding universe unless V� ¼ 0 and _V� > 0.

II. SIMPLE EXACT SOLUTIONS

Solutions of these equations are of interest in two cos-
mological eras. The first is in the early period where
accelerated ‘‘inflationary’’ expansion might occur for a
finite time interval, solving the traditional horizon, flatness,
and isotropy problems while creating a distinctive inho-
mogeneity spectrum which leaves its gravitational imprint
on the microwave background radiation anisotropy and
statistics. The second is at late times when the universal
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expansion is observed to be accelerating because of the
influence of some gravitationally repulsive stress, aka
‘‘dark energy.’’ It may be important for a viable cosmo-
logical model to exhibit both periods of accelerated expan-
sion in order to be consistent with all astronomical
observations. It is not clear whether a single scalar field
might be responsible for the early- and the late-time accel-
eration and so far there is no compelling cosmological
model in which it is.

We look for a general scale invariant solution of (5) and
(6) in which

Vð�;�Þ¼V0 exp½����þXn
r¼0

ar�
rexp½ðr�2Þ��=2�; (7)

where V0, �, and farg are constants. Note that the series
could be extended to negative r if required.

This choice of potential subsumes the simple cases with
Vð�;�Þ ¼ fð�Þ�2 of Kanno and Soda [14] and Vð�;�Þ ¼
fð�2Þ of Zlosnik, Ferreira, and Starkman [7] considered
earlier for specific purposes, but does not include the
choice Vð�;�Þ ¼ 1

2m
2�2 þ��� explored in Ref. [1] in

the context of inflationary models where V exhibits a
minimum in �.

There exist exact power-law solutions of (5) and (6) with

� ¼ 2

�
lnt; (8)

a ¼ tB; (9)

� ¼ 3
_a

a
¼ 3Bt�1:

With these choices in (7) we have

Vð�;�Þ ¼ V0 þ Sn
t2

;

where Sn is the finite series of constants:

Sn � Xn
r¼0

arð3BÞr: (10)

We see that

V� ¼
Xn
r¼0

ar�
r�1r exp½ðr� 2Þ��=2� � Rn

t2
;

where the finite series,

Rn �
Xn
r¼0

rarð3BÞr�1; (11)

is a constant. We note also that

V� ¼ ��V0 exp½����

þ Xn
r¼0

ar�
r

�
r� 2

2

�
� exp½ðr� 2Þ��=2�

¼ �

t2
ðTn � V0Þ;

where the finite series

Tn ¼ Xn
r¼0

ar

�
r� 2

2

�
ð3BÞr (12)

is a constant.
We see from these definitions that

Sn þ Tn ¼ 3BRn

2
: (13)

Substituting these expressions for V, V�, and V� into

Eqs. (5) and (6), we can obtain the algebraic constraints
needed to determine B in terms of the constants V0, �, and
ai which specify the potential completely.
From Eq. (6) we obtain

3B2 ¼ 2

�2
þ V0 þ Sn � 3BRn;

and from Eq. (5) we have

� 2

�
þ 6B

�
� �V0 þ �Tn ¼ 0:

Solving these, using Eq. (13), we find

B ¼ 2

�2
� Rn

2
(14)

and

V0 ¼ 3B2 � 2

�2
� Sn þ 3BRn ¼ Tn þ 2

�2
ð3B� 1Þ: (15)

We note some interesting special cases. When the ai are
all zero, so Rn ¼ Sn ¼ Tn ¼ 0, the potential is the familiar
exponential potential [15–17] and there is a power-law

inflationary solution when � <
ffiffiffi
2

p
:

ai ¼ 0; 8i:B¼ 2=�2 � 1

3
; V0 ¼ 2

�2

�
6

�2
�1

�
� 0:

In general, we see that we can have power-law inflation so
long as

B ¼ 2

�2
� Rn

2
> 1:

It is instructive to look at a particular illustrative example.
Suppose that only a2 is nonzero and the potential simplifies
to

Vð�;�Þ ¼ V0 exp½���� þ a2�
2 ¼ V0 þ Sn

t2
;

then

Rn ¼ 6Ba2; Sn ¼ 9B2a2; Tn ¼ 0;

and
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B ¼ 2

�2ð1þ 3a2Þ
;

V0 ¼ 2

�2
ð3B� 1Þ ¼ Bð3B� 1Þð1þ 3a2Þ:

Here, we see explicitly the requirement on the coupling
parameter a2 for inflation to occur. We note that it is
possible for a2 � 0 to create inflationary expansion (i.e.,
B> 1) in cases where the same value of � would not lead
to inflation when the aether field is absent. Similar prop-
erties are shared by the general case when all the ai are
nonzero.

III. FURTHER EXACT SOLUTIONS

The general system of equations we have solved also
simplifies in ways that permit phase portraits to be created
if required. If we differentiate the Friedmann equation we
get

6H _H ¼ _� €�þV�
_�þ V�

_�� V�
_�� �

d

dt
ðV�Þ;

6H _H ¼ _� €�þV�
_�� �ðV��

_�þ V��
_�Þ;

2 _H ¼ � _�2 � _�V�� � 9H _HV��

and

3H2 ¼ 1
2
_�2 þ V � �V�

€�þ 3H _�þ V� ¼ 0:

In order to solve the last three equations, suppose V has a
general separable form,

Vð�;�Þ ¼ Uð�Þ þ�fð�Þgð�Þ;
then

3H2 ¼ 1
2
_�2 þUþ�gðf� �f�Þ;

€�þ 3H _�þU� þ�fg� ¼ 0:

There is a family of special solutions for which

f� �f� ¼ C (16)

and so

f ¼ Cþ F� (17)

with C, F constants.
The case considered by Donnelly and Jacobson in [1] is

U ¼ 1
2m

2�2;

f ¼ M�; g ¼ �:

In the case where (16) holds, we can choose

Uð�Þ ¼ U0 exp½���� (18)

so

3H2 ¼ 1
2
_�2 þU0 exp½����;

€�þ 3H _�� �U0 exp½���� þ�ðCþ F�Þg� ¼ 0;

2 _H ¼ � _�2 � _�V�� � 9H _HV��

¼ � _�2 � _��g�f� � 9H _H�gf��:

But in our special case f�� ¼ 0 and f� ¼ F, so

2 _H ¼ _�2 � _��g�F:

The recipe for solving this system is to pick gð�Þ then�ðtÞ;
solve for HðtÞ and hence use tð�Þ to obtain Hð�Þ and find
the constraint on the constants from the Friedmann equa-
tion; see, for example, [18–20] for corresponding results
using this method in general relativistic cosmologies.
Example 1: Pick

f ¼ M�; g ¼ �; � ¼ A ln½tanhð�tÞ�
so

exp½�=A� ¼ tanhð�tÞ;

_� ¼ 2A�cosechð2�tÞ;

2H ¼ 2H0 ����
Z

_�2dt

¼ 2H0 ���þ 2�A2 coshð�=AÞ:
Therefore (if H0 ¼ 0), we have

Uð�Þ ¼ 3�2�2

4
� 3��A2� coshð�=AÞ

þ �2A2½ð3A2 � 2Þcosh2ð�=AÞ þ 2�:
Or, asymptotically, keeping H0 � 0, as t ! 1,

H ! H0 þ �A2

and � has no effect.
Example 2:

� ¼ Acosechð�tÞ;

H ¼ H0 � A�

2 sinhð�tÞ þ
�A2

6
coth3ð�tÞ;

a ¼ a0e
H0t½tanhð�t=2Þ��ðA�=2�Þ½sinhð�tÞ�ðA2=6Þ

� exp

�
�A2

12
coth2ð�tÞ

�

and as t ! 1 we have

a ! a0 exp

�
H0tþ �A2t

6

�
:

Again, � has no effect on the inflation.

BRIEF REPORTS PHYSICAL REVIEW D 85, 047503 (2012)

047503-3



Example 3: If we change the time variable to �, where

d=dt ¼ V1=2d=d�;

and denote d=d� by 0, and put

aðtÞ ¼ exp½	ð�Þ�;
then

�00 þV�

2V
�02 þV�

V
¼ 0; 3	02 ¼ 1

2
�02 þ 1� 3V�

2V1=2
	0

and we have an autonomous system when

V�

V
¼ �� ¼ constant (19)

and

V�

V1=2
¼ � ¼ constant: (20)

This system can be explored by standard phase plane
techniques, although we shall not do that here. These
constraints (19) and (20) are satisfied by the choice

Vð�;�Þ ¼ �2

4
ð�þ �0Þ2 þ V0 exp½����:

Setting �0 ¼ 0 for simplicity, we see there is a particular
exact solution in t time,

aðtÞ/ t2=�
2ð1þ3�Þ; �¼ 2

�
lnðtÞ; V0¼2½6��2ð1þ3�Þ�

�4ð1þ3�Þ ;

which reduces to the familiar power-law inflation model
for an exponential potential when � ¼ 0. However, when
� � 0 we see that the aether field has a strong effect and
enables inflation to occur in situations (�2 > 2) where it is
impossible in the absence of the aether field. The introduc-
tion of �0 � 0 for a combination of power-law and
exponential expansion.

IV. DISCUSSION

We have shown how a series of simple Ansätze allows
exact solutions to be found for Einstein-Aether cosmolo-
gies. These models provide exact descriptions of inflation-
ary dynamics in the very early Universe or the transition to
accelerated expansion at recent cosmological epochs. They
show the explicit contribution of the aether field to creating
accelerated expansion in situations where inflation would
not occur in its absence. They can also be extended to
include simple ‘‘tracker’’ solutions and allow Einstein-
Aether theories to be more closely tested by cosmological
data sets.
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