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Recently we have constructed the conformal gravity with metric and torsion, finding the gravitational

field equations that give the conservation laws and trace condition; in the present paper we apply this

theory to the case of ELKO matter field, proving that their spin and energy densities once the matter field

equations are considered imply the validity of the conservation laws and trace condition mentioned above.
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I. INTRODUCTION

That conformal gravity is important is due to a number of
reasons: mathematically, its Lagrangian is unique as proven
byWeyl; physically, its renormalizability was addressed by
Stelle [1]; phenomenologically, it provides an explanation
for darkmatter as discussed byMannheim and Kazanas [2];
spontaneous conformal symmetry breaking has been
studied [3,4]. On the other hand, a complete theory of
gravity possesses beside the curvature also the torsion ten-
sor, arising as gauge strengths of rotations and translations in
the gauge theory of the Poincaré group [5]; in this way the
full coupling to both energy and spin density tensors may be
established [6]. Therefore, we have that metric as well as
torsion conformal transformations have to be defined [7]. In
a very recent paper, we have found a curvature with metric
and torsion that is conformal in (1þ 3)-dimensional space-
times, constructing the conformal metric-torsional theory
by giving the system of gravitational field equations and the
corresponding conservation laws and trace condition for the
spin and energy densities [8,9].

Now, a few years ago, a new form of matter was intro-
duced, and called ELKO from the acronym of the German
Eigenspinoren des LadungsKonjugationsOperators, desig-
nating eigenspinors of the charge-conjugation operator;
ELKO fields are spin- 12 fermions of Majorana type: since

ELKOs are topologically neutral, they display nonlocality
[10,11]. In order for ELKO fields to possess mass they have
to obey second-order derivative matter field equations,
meaning that their mass dimension is 1 [12,13]. That
ELKO are Majorana fields with scalarlike mass dimension
endows them with interesting properties, and their possible
applications ranging from particle physics to cosmology
have been addressed in various works such as those given
in literature in Refs. [14–42].

In this paper, we shall apply the above-mentioned theory
of conformal gravity with curvature and torsion to the case
of ELKO matter fields: after a brief introduction of the
geometrical background we will discuss how to construct
an ELKO action that is conformally invariant; its variation
will give the ELKO spin and energy densities with matter

field equations, with which we will check that both con-
servation laws and trace condition are valid indeed.
Eventually we will discuss how to ensure the conformal
invariance then both curvature and torsion tensors are in
fact necessary in the case of the ELKO matter model.

II. CONFORMAL CURVATURE AND DERIVATIVE

Here we follow the convention about geometry as in [8],
and for matter as in [9].
We only recall that for a given � and defining ln� ¼ �

the torsion and metric tensors have conformal transforma-
tions,

Q�
�� ! Q�

�� þ qð��
�@��� ��

�@��Þ (1)

g�� ! �2g��; (2)

so that for the metric-compatible connection ��
�� the

conformal transformation is a consequence of (1) and (2);
in terms of metric and connection it is possible to introduce
the Minkowskian metric �ij and a basis of vierbein ei�
together with the antisymmetric spin connection !ij

� and
their conformal transformation is given in terms of the
previous ones: eventually we introduce the �a matrices so
to define the 1

4 ½�a;�b� ¼ �ab matrices through which the

connection �� and its conformal transformation are as-

signed, and covariant derivatives D� for ELKO fields may

be defined. The ELKO and ELKO dual conformal trans-
formation is

� ! ��1� �
: ! ��1�

:
(3)

as ELKO and ELKO dual are Majorana fields with scalar-
like mass dimension.
The Riemann-Cartan metric-torsional curvature tensor

G�	
� is defined as it is customary. The commutator of

spinorial covariant derivatives is

½D�;D
�� ¼ Q�
�
D��þ 1

2G
��

�
���� (4)

and once the curvature is defined, this is a geometric
identity.
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The metric-torsional curvature tensor can be modified as
in the following:

M��
� ¼ G��
� þ
�
1� q

3q

�
ðQ�Q�
� �Q�Q�
�Þ (5)

since this is the form whose irreducible part

T��
� ¼ M��
� � 1

2
ðM�½
g��� �M�½
g���Þ

þ 1

12
Mðg�½
g��� � g�½
g���Þ (6)

is conformally covariant in (1þ 3)-dimensional space-
times. However, because the ELKO field is a Majorana
spinor with a peculiar mass dimension, from the covariant
derivative of ELKO the construction of a kinetic term that
is also conformally invariant is not a straightforward pro-
cedure, as we discuss next.

III. CONFORMAL GRAVITYAND MATTER:
ELKO FIELDS

When treating the conformal spinor field, the simplest
example of Dirac field is such that due to its mass dimen-
sion 3

2 its first-order derivative kinetic term and conformal

transformations makes it conformally invariant in a trivial
way [9].
The same cannot hold in this case, since ELKO are

Majorana fields with mass dimension 1: although they a
special type of spinor, their peculiar mass dimension makes
them more analogous to scalars both about their dynamical
properties and in terms of their conformal transformation;
so for ELKO like scalar fields, the second-order derivative
kinetic term jD�j2 is such that the conformal transforma-
tion (3) produces the appearance of additional extra terms in
the action. However, we may take advantage of the fact that
geometrical fields like the torsion traceQ� and themodified
curvature trace M under their conformal transformations
produce the appearance of similar types of additional terms
in the action: therefore for ELKO as well as for scalars, if
beside the kinetic term also these extra terms are added, then
specific fine-tunings may be assumed for which all addi-
tional terms cancel exactly, yielding for this improved
kinetic term in the action the conformal invariance. A quick
inventory gives possible terms that can be taken and a long
although straightforward calculation shows that a specific
fine-tuningmay actually be chosen in order for the action to
be conformally invariant if given by

S ¼
Z �

Lgravity þD��
:
D��þ aD��

:
���D��þ

�
aqþ q� 1

3q

�
ðD��

:
����� �

:
���D��ÞQ�

þ
�
4� 3aþ 3qa� 24pþ 24pq

12q

�
D��

2Q�

þ
�
7� 3a� 6qþ 3aq2 þ 3q2 � 24p� 24pqþ 48pq2

36q2

�
�2Q�Q

� þ p�2M

�
jejdV (7)

with parameters a and p and where it is over the volume of the spacetime that the integral is taken. By varying (7) we get
the spin and energy densities

S
�� ¼ 1

2
ðD
�

:
����� �

:
���D
�Þ þ a

2
ðD��

:
��
����� �

:
����
�D��Þ þ

�
1� q� aq

6q

�
ðD��

:
����

� �
:
���D

��Þg�½�g��
 �
�
4� 3aþ 3aq� 24p

24q

�
D��

2g�½�g��
 �
�
1� q� aq

6q

�
Q��

:f��
;���g�

þ
�
7� 3a� 6qþ 3q2 þ 3aq2 � 22p� 29pqþ 48pq2

36q2

�
Q½�g��
�2 � pQ
���2 (8)

T�
 ¼ ðD
�
:
D��þD��

:
D
�Þ þ aðD
�

:
���D��þD��

:
���D
�Þ � ðD��

:
D��þ aD��

:
���D��Þg
�

þ
�
1� q� aq

3q

�
D�ðD��

:
������

:
���D

��Þg�½�g
�� �
�
4� 3aþ 3qa� 24pþ 24pq

12q

�
D�D��

2g�½�g
��

þ
�
1� q� aq

3q

�
Q�ðD
�

:
������

:
���D
�Þ �

�
7� 3a� 6qþ 3q2 þ 3aq2 � 24pþ 24pq2

18q2

�
D�ð�2Q�Þg�½�g
��

þ
�
4� 3aþ 3qa� 24pþ 24pq

12q

�
Q�D
�2 þ

�
7� 3a� 6qþ 3q2 þ 3aq2 � 24pþ 24pq

36q2

�
Q�Q

��2g�


� 2pð1� qÞ
3q

ðQ�Q
 þQ�
�Q�Þ�2 þ 2p

�
M�
 � 1

2
g�
M

�
�2 (9)
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along with the matter field equations

D2�þQ
D
�þ a��
D�D
�þ
�
aq� 2qþ 2

3q

�
Q��

�
D
�þ
�
aqþ q� 1

3q

�
D�Q
�

�
�

þ
�
4� 3aþ 3qa� 24pþ 24pq

12q

�
D�Q

��

�
�
7� 3a� 18qþ 9aq� 6aq2 þ 3q2 � 24pþ 48pq� 24pq2

36q2

�
Q�Q

��� pM� ¼ 0 (10)

as a simple although quite laborious computation would
show.

It is possible to see that the spin and energy densities (8)
and (9) so soon as the conformal matter field equations (10)
are accounted have conservation laws

D�S
�
� þQ�S

�
� þ 1
2T

½
�� ¼ 0 (11)

D
T

� þQ
T


� � T
�Q
�
� þ S�
�G

�
�� ¼ 0 (12)

and the trace condition

ð1� qÞðD
S�
�
 þQ
S�

�
Þ þ 1
2T



 ¼ 0; (13)

where the commutator of covariant derivatives has been
used; when a geometrical background is conformally in-
variant there is the loss of one degree of freedom realized
by the introduction of the trace condition as a constraint:
such a constraint has the structure of a conservation law

and it is therefore dynamically implemented in the confor-
mal theory of gravitation for ELKO matter fields.

IV. CONCLUSION

We have considered the conformal theory of gravity
discussing the case of ELKO matter fields, of which we
have obtained the spin and energy density tensors along
with the matter field equations, showing that the spin and
energy densities, when the matter field equations are taken,
satisfy both conservation laws and trace condition; we have
to stress that, among all possible values of the conformal
parameters q, a, p, there exists no possible choice for
which the presence of torsion can be removed altogether:
if a conformal gravity that beside curvature has also torsion
is important in itself, a conformal curvature-torsional
gravitational theory is necessary for applications to the
ELKO matter model.
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