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We study supersymmetric vacua of the N ¼ 1 cascading SUðMþ pÞ � SUðpÞ gauge theory with

flavor—the theory on p D3-branes and M wrapped D5-branes at the tip of the conifold, and Nf flavor

D7-branes wrapping a holomorphic four-cycle inside the conifold. The Coulomb branch of the moduli

space is inherited from the pure gauge theory without flavor and was thoroughly studied in the past.

Besides, there is a Higgs branch where some D3- and/or D5-branes dissolve in the D7-branes forming the

worldvolume gauge instantons. We study the Higgs branch both from the field theory and the bulk point

of view. On the classical level the moduli space is closely related to the one of the N ¼ 2 C2=Z2

orbifold theory, in particular, certain vacua of the N ¼ 1 theory are related to noncommutative

instantons on the resolved C2=Z2. On the quantum level the Higgs branch acquires corrections due to

renormalization of the Kähler potential and nonperturbative effects in field theory. In the bulk this is

encoded in the classical D7-brane geometry. We compute the vacuum expectation value (VEV)s of the

protected operators and the field theory RG flow and find an agreement with the parallel computations in

the bulk.
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I. INTRODUCTION

The low-energy theory on D3-branes at a conifold sin-
gularity, studied by Klebanov and Witten (KW) in [1], has
attracted significant attention during the last decade. This
is the N ¼ 1 SUðNÞ � SUðNÞ gauge theory with bifun-
damental fields and a superpotential. Although the theory
is strongly coupled, it has a simple gravity dual in the sense
of the AdS/CFT correspondence [2–4]. Thanks to the
simplicity of the original setup and a multitude of possible
variations, the KW theory has become a standard arena to
study different theoretical and phenomenological phe-
nomena. Let us mention here some of the main features
that can be easily engineered within the conifold. The basic
KW theory [1] is conformal. After the gauge group is
modified to SUðN þMÞ � SUðNÞ, the resulting
Klebanov-Strassler (KS) theory exhibits a rich dynamics
[5–8]. There is a logarithmic RG flow, which is UV com-
plete without a UV fixed point, and the theory has a chiral
anomaly [9]. The flow takes place through a ‘‘cascade’’ [8]
of Seiberg dualities [10] with many effective descriptions
at different scales. At low energy there is spontaneous
chiral symmetry breaking and confinement. The theory
asymptotes to pure SUðMÞ Super-Yang-Mills (SYM) in
the IR [8]. The theory is conjectured to have a meta-stable
vacuum that dynamically breaks supersymmetry at an ex-
ponentially low scale [11], which might be relevant for
phenomenological models [12]. Moreover, this theory is a
natural setup for models of cosmological inflation [13,14].
Adding ‘‘flavors,’’ i.e. fields in the (anti)fundamental rep-
resentation, modifies the theory such that it asymptotes in
the IR to Super-QCD (SQCD) with quartic superpotential,
and the moduli space develops a Higgs branch. One can

study the Veneziano limit of this theory [15,16] which
exhibits confinement and screening of charges [17] in the
IR, and a ‘‘duality wall’’ in the UV [16]. The gravity dual
setup admits modes with localized wave functions [18]
which might be relevant for the Randall-Sundrum scenario
[19,20]. This list can go on and on.
In this paper we focus on the flavored theory. In particu-

lar, we study supersymmetric vacua of the cascading
SUðN þMÞ � SUðNÞ theory with flavor—the theory on
N D3-branes, M fractional D3-branes (wrapped D5s), and
Nf flavor D7-branes inside the conifold, building on a

similar analysis of the unflavored case [21]. To make use
of the known holographic dual to the pure gauge theory, we
keep the number of flavors Nf much smaller (though

possibly large) than the number of colors N þM through-
out the paper. We focus on the vacua that are directly
related to the presence of flavor fields—the Higgs branch
of the moduli space—which we study using conventional
field theory tools as well as the dual holographic descrip-
tion. The N ¼ 1 supersymmetry is not enough to protect
the Higgs branch from quantum corrections. Although the
general structure of the classical moduli space stays intact,
particular properties of vacua, such as VEVs of various
observables, get quantum corrections. The main goal of
this paper is to perform a thorough analysis of Higgs vacua
including quantum effects on both sides of the duality and
demonstrate how nonperturbative effects in field theory are
manifest through the classical geometry in the bulk.
The general structure of the moduli space is clear from

the bulk point of view. If the background has mobile
D3-branes, there is a Coulomb branch associated with their
motion on the conifold. When some D3-branes reach the
D7s, they can dissolve into worldvolume non-Abelian
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gauge ‘‘instantons’’ [22] with moduli that correspond to
the Higgs branch. Besides, there could be a (pseudo)-
Kähler deformation of the conifold metric dual to the
baryonic branch of the moduli space. There are also dis-
connected branches. For instance, we can create extra D5
and D3-charge by putting worldvolume flux at the tip of the
D7s (to preserve the total charge one would need to adjust
the flux at the conifold tip). Also, the mobile D3-branes can
turn into Ramond-Ramond (RR) 5-form flux at the price of
‘‘shortening the throat.’’ We will find that all such configu-
rations have counterpart vacua in field theory.

Our main interest is in the vacua associated with flavors,
i.e. the D7-branes in the bulk. The D7-branes we consider
wrap a holomorphic four-cycle � which has the same
topology and complex structure as the Eguchi-Hanson
space, albeit with a nonconventional non-Ricci-flat metric.
As outlined above, the Higgs branch(es) are dual to non-
trivial supersymmetric worldvolume gauge configurations
on the D7s. In many cases we get conventional instantons,
i.e. anti-self-dual gauge field configurations. These instan-
tons on � bear close resemblance with the conventional
instantons onC2=Z2 as the two spaces coincide as complex
manifolds, and so should coincide the Higgs branches of
the two theories in most cases. The relation can be seen in
field theory: any Higgs branch solution to the N ¼ 2
F- and D-term equations is also a solution to the N ¼ 1
classical vacuum equations. However in certain cases the
N ¼ 1 supersymmetric gauge configurations satisfy non-
linear equations [23]. Such instantons are not anti-self-dual
and a prioriwe can not say much about their moduli space.
Using the dual field theory we show that these instantons
are related to the noncommutative instantons on C2=Z2.

Although to explicitly find non-Abelian instantons in the
N ¼ 1 case is a difficult task, we find the explicit solu-
tions for the Abelian Uð1Þ instantons together with the
corresponding classical and quantum vacua in the dual
field theory—in particular we solve the ADHM equations
of theN ¼ 2 C2=Z2 orbifold theory. Thus we completely
cover the case of the field theories with Nf ¼ 1. This

allows us to compute the quantum corrections in field
theory and compare the results with gravity. For generic
Nf the non-Abelian instantons will emerge but we do not

expect this to introduce any qualitatively new feature.
The RG flow of the theory, except in very special situ-

ations, is controlled by a cascade of Seiberg dualities
[16,24], in a similar but more articulated way than in the
unflavored KS case [8,25].1 A new feature is that, as
we change the effective description at each step of the
cascade, we also get a nontrivial map between the various
Higgs branches of the moduli space. The Seiberg duality
on gravity side is manifest through the large gauge

transformation of the B-field which nicely reproduces the
map between the vacua.
Finally, we consider the fully backreacted supergravity

solutions for smeared (possibly massive and with world-
volume flux) D7-branes on the conifold [15–17,31]. We
exploit such solutions to study the RG flow and show that
gravity exactly reproduces the field theory NSVZ
�-functions [32] in all vacua.
The paper is organized as follows. In Sec. II, we review

the conformal KW and the cascading KS theories without
flavor, gaining enough familiarity to be ready to add probe
flavor D7-branes in Sec. III. First, we digress to consider
the N ¼ 2 C2=Z2 orbifold theory, which gives us basic
intuition about the moduli space of instantons. Then, we
move to study the D7-branes inside the conifold, and find
the solutions to the linearized perturbations of the world-
volume gauge fields thus building the AdS/CFT dictionary
in the sense of [3,4]. Finally, we explicitly construct the
Uð1Þ instantons for D7-branes in all SUSY vacua of the
KW/KS theories and calculate the VEVs of the protected
operators from the flavor sector. In Sec. IV, we go beyond
the probe approximation and compute the backreaction of
the flavor branes on the geometry in the Veneziano large N
limit, withNf=N small but fixed. To solve the equations we

place the D7s in a way that preserves the isometries of the
conifold. We read off the RG flow, corrected by the flavors,
to compare with the dual gauge theory later in section VI.
This ends the gravity analysis. In Sec. V, we study the
moduli space using N ¼ 1 field-theory techniques. We
first consider the action of Seiberg duality, then we perform
a classical analysis of the moduli space and eventually we
include quantum effects. Finally, Sec. VI is devoted to the
comparison between gravity and field-theory results. We
draw our conclusions in Sec. VII. Various computations are
exiled to appendixes.

II. REVIEW: PURE SUðMþNÞ�SUðNÞ THEORY

This section is a review of the unflavored conifold
theories and might be skipped by a reader familiar with
the subject. A thorough discussion of these theories can be
found in [21,33,34].

A. Review of the KW theory

Following [1] we start by placing a stack ofN D3-branes
at the tip of the conical singularity

X4
i¼1

z2i ¼ 0: (2.1)

The resulting field theory on the D3-branes is an N ¼ 1
superconformal quiver gauge theory with gauge group
SUðNÞ � SUðNÞ and global symmetry SUð2ÞA �
SUð2ÞB �Uð1ÞR �Uð1Þbaryon. Besides the vector multip-

lets there are bifundamental fields A�, B _� in the ðN; �NÞ and
ð �N;NÞ representations with charges ð2; 1; 12 ; 1Þ and

1Also the N ¼ 2 C2=Z2 orbifold theory admits cascading
RG flows [26–30] although the physics is different than in the
N ¼ 1 case.

FRANCESCO BENINI AND ANATOLY DYMARSKY PHYSICAL REVIEW D 85, 046004 (2012)

046004-2



ð1; 2; 12 ;�1Þ under the global symmetry group, and a super-

potential

WKW ¼ 1
2h�

��� _� _� TrA�B _�A�B _�: (2.2)

At the conformal point the theory is always strongly
coupled, and the conformal manifold is described by
hðg1; g2Þ [25].

The moduli space can be found from the F- and D-
flatness conditions. The former implies the matrix equation

���� _� _�A�B _�A�B _� ¼ 0: (2.3)

It is convenient to introduce the new variables

w _�� ¼ w1 w3

w4 w2

 !
¼ ffiffiffi

h
p

B _�A�; (2.4)

where the prefactor has been introduced for convenience,
and rewrite the F-flatness condition in the form
detw _�� ¼ 0. This coincides with the conifold Eq. (2.1).
Assuming the matrices A, B are diagonal, the F-flatness
condition describes the motion of N D3-branes on the
singular conifold. The D-flatness condition is

A1A
y
1 þ A2A

y
2 � By

1B1 � By
2B2 ¼ U1

Ay
1A1 þ Ay

2A2 � B1B
y
1 � B2B

y
2 ¼ U1;

(2.5)

where both identity matrices are N � N and U is a
constant. For U ¼ 0, a generic solution—up to gauge
equivalencies—describes N points on the singular coni-
fold; for U � 0 the solution describes N points on the
resolved conifold. The resolved conifold is the singular
conifold with S2 blown up at the tip. Instead of
detw _�� ¼ 0 the space is described by the equation

ðw _��Þ
�1

�2

 !
¼ 0 (2.6)

with ð�1; �2Þ 2 CP1. For wi � 0, the space is bi-
holomorphic to (2.1), while at wi ¼ 0, we have a non-
trivial CP1. The resolved conifold has the same complex
structure as the singular conifold but different metric [35].

The dual geometry in ten dimensions is a warped prod-
uct of Minkowski space and the Ricci-flat conifold

ds210 ¼ h�1=2dx2 þ h1=2d~s26: (2.7)

In fact there is a one-parameter family of Ricci-flat
metrics on (2.1). The simplest one is the cone over the
T1;1 (a homogeneous Sasaki-Einstein space)

d~s26 ¼ dr2 þ r2ds2
T1;1 : (2.8)

T1;1 can be defined as a quotient SUð2Þ�SUð2Þ
Uð1Þ which makes

the global SUð2ÞA � SUð2ÞB symmetry manifest [it is
also invariant under Uð1ÞR]. The remaining global
Uð1Þbaryon of the field theory is not geometrical.

Topologically, T1;1 ffi S2 � S3, and one can define the
generators of H2ðT1;1;ZÞ and H3ðT1;1;ZÞZ

S2
!2 ¼ 4�;

Z
S3

!3 ¼ 8�2: (2.9)

Metrically, T1;1 can be represented as a Uð1Þ fibration
over S2 � S2. The geometry (2.7) and (2.8) is the sin-
gular conifold. It is invariant under the Z2 symmetry that
flips the sign of z4. This symmetry exchanges the two S2

in the base of T1;1. On the field theory side, this sym-

metry exchanges A� $ By
_� accompanied by a charge

conjugation. This symmetry flips the sign of U and is
spontaneously broken if U � 0. Hence, the singular
conifold corresponds to the vacuum with U ¼ 0. The
vacua with U � 0 correspond to the resolved conifold
geometry [36].
The supergravity background is of the GKP type [37]

and the warp factor depends only on the location of the
D3-branes on the conifold:

� ~r2h ¼ ð4�2�0Þ2 XN
i2D3-branes

�ð6Þðx� xiÞ; (2.10)

where tilde corresponds to the unwarped metric d~s26. The

AdS5 � T1;1 solution corresponds to h ¼ L4

r4
, i.e. all

D3-branes located at the singularity r ¼ 0. As evident
from the field theory, the D3-branes can move anywhere
on the conifold. The corresponding background is
given by (2.7), (2.8), (2.9), and (2.10) and the RR
form C4 ¼ h�1dx0 ^ . . . ^ dx3.
In the case with U � 0 in (2.5), the D3-branes can still

freely move, and the warp factor is determined by (2.10).
If all D3-branes are smeared on the S2 at the tip,
SUð2ÞA � SUð2ÞB is preserved but the solution is singular
[38]; if the D3-branes are localized, the solution is regular
but the global symmetries are broken [39].
In the dual geometry the gauge couplings are controlled

by the value of the dilaton e� and the flux of the B-field
through S2

1

g21
þ 1

g22
¼ 1

4�e�
;

1

g21
� 1

g22
¼ 1

2�e�

�
b� 1

2
ðmod 1Þ

�
;

(2.11)

where we defined b ¼ 1
4�2�0

R
S2

B2. The background with

vanishing B-field corresponds to g1 ¼ 1 and b ¼ 1=2
corresponds to g1 ¼ g2

B. Review of the KS theory

The conformal SUðNÞ � SUðNÞ KW theory can be
generalized to SUðN þMÞ � SUðNÞ gauge group. The
theory is no longer conformal but instead experiences a
cascade of Seiberg dualities, each decreasing the rank of
the gauge groups by M. Each description gives rise to a
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branch of perturbative vacua given by the deformed coni-
fold equation

X4
i¼1

z2i ¼ detw _�� ¼ �; (2.12)

wherew _�� is defined as in (2.4) and the constant � is related
to the scales �1;2 of the gauge sector. The eigenvalues of

w _�� parametrize the locations of D3-branes on the de-
formed conifold. The chiral Uð1ÞR symmetry is broken to
Z2M by the anomaly, and further spontaneously broken to
Z2 by a gaugino condensate that gives rise toM vacua. The
remaining Z2 stays unbroken. The whole moduli space is
the collection of the mesonic branches [21]

Moduli space ¼ �k
l¼0 �M

r¼1 SymN�lMðCr;lÞ; (2.13)

where k ¼ ½N=M�� is the number of steps in the cascade,2 r
labels the values of the gaugino condensate, and Cr;l is
the deformed conifold with the deformation parameter

�r;l ¼ �0e
2�iðr=MÞIl=M [21,40]. The RG-invariant parameter

I of the field theory is dual to the string-coupling constant
I ¼ e2�i�. In the regime gsM � 1, when supergravity is

valid Il=M ¼ 1 at the leading order in 1
gsM

. Since all branches

with different r are equivalent, in what follows we drop the
index of the deformation parameter r, l and assume real �.

In the special case N ¼ kM, the IR gauge group reduces
to SUð2MÞ � SUðMÞ and this requires a special treatment.
The strongly coupled SUð2MÞ group has as many colors as
flavors, and its moduli space is described by mesons
M _�� ¼ B _�A� and baryons

A ¼ 1

ðM!Þ2 �i1���i2M�
j1���jM�k1���kM ðA1Þi1j1 . . .

� ðA1ÞiMjM ðA2ÞiMþ1

k1
. . . ðA2Þi2MkM

B ¼ 1

ðM!Þ2 �
i1���i2M�j1���jM�k1���kM ðB1Þj1i1 . . .

� ðB1ÞjMiM ðB2Þk1iMþ1
. . . ðB2ÞkMi2M ; (2.14)

which are singlets of SUðMÞ � SUð2ÞA � SUð2ÞB, subject
to the quantum constraint detM _�� �AB ¼ �4M

1 . The
constraint can be enforced by a Lagrange multiplier X
and the superpotential

Weff ¼ WKW þ XðdetM _�� �AB��4M
1 Þ: (2.15)

There are two distinct branches resulting from (2.15). If
X � 0, F-flatness requires A ¼ B ¼ 0 and w _�� must
satisfy detw _�� ¼ �. This is one of the mesonic branches
discussed before. If X ¼ 0, the F-flatness condition re-
quires M _�� ¼ 0 and hence AB ¼ ��4M

1 . This is the
baryonic branch. It has one complex dimension and
can be parametrized by the VEV of the baryons.

Therefore, in (2.13) the possible factor Sym0ðCr;kÞ is as-

sumed to be the baryonic branch C.
The gravity dual of the SUðMþ NÞ � SUðNÞ theory is

the Klebanov-Strassler solution [8], possibly generalized
by extra mobile D3-branes. It is of the GKP type with
metric (2.7) and RR five-form, where d~s26 is the Ricci-flat
metric on the deformed conifold. Besides, the solution also
has RR and NSNS three-forms. The solution is engineered
by placing M fractional D3-branes and N regular D3-
branes at the conifold singularity and is characterized by

1

4�2�0
Z
S3

F3 ¼ M (2.16)

while F5 is running. The pure KS solution has no mobile
D3-branes and it is invariant under the Z2 symmetry.
Hence, it corresponds to the pointA ¼ B of the baryonic
branch [27]. The rest of the baryonic branch is given by the
BGMPZ solutions [41]. They have metric ds210 ¼
e2Adx2 þ ds26, where e

�2Ads26 is some pseudo-Kähler met-

ric on the deformed conifold, running dilaton and the
3-form flux is not imaginary-self-dual. The VEV of the
baryonsA,B is related to the D-term parameterU. Below
the scale of baryon VEV the gauge symmetry is broken to
SUðMÞ. That is why for large U, the geometry near the tip
approaches the MN solution [42,43] dual to the SUðMÞ
SYM [21,41,44].
To describe the solutions dual to the mesonic branch we

need to introduce mobile D3-branes on the conifold. As in
the KW case, the extra p D3s only affect warp factor and
5-form flux, through the same Eq. (2.10) where now
htot ¼ hKS þ h.3 While the original solution is dual to
SUððkþ 1ÞMÞ � SUðkMÞ, the new one is dual to
SUððkþ1ÞMþpÞ�SUðkMþpÞ. Unless p ¼ 0ðmodMÞ,
the two theories are different. The new theory does not
have a baryonic branch. If we put D3-branes on the
BGMPZ solution, SUSY is broken and the baryonic
branch is lifted by a potential that returns the system to
the vacuum described by the KS solution with mobile
D3-branes [21]. If p ¼ 0ðmodMÞ, the new solution de-
scribes one of the mesonic branches of the original
SUððkþ 1ÞMÞ � SUðkMÞ theory.
In conclusion, let us mention here that besides the

regular Klebanov-Strassler gravity background discussed
above there is an ‘‘approximate’’ version of this back-
ground found by Klebanov and Tseytlin (KT) [7]. This
background approaches KS in the UV but is singular in the
IR. Although it does not correctly describe physics at low
energies, it is simpler and gives a good approximation
when the scale of energies is much larger than the internal
scale � of the field theory. We will make use of this
background in Sec. IV where we discuss the backreaction
of the D7-branes on the geometry.

2We define ½x�� as the largest integer less than or equal to x. 3Such background can be solved explicitly [45,46].
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III. D7-BRANES IN PROBE APPROXIMATION

In this section, we add probe D7-branes to the conifold
backgrounds. In particular, we explicitly construct the
Abelian Uð1Þ instantons which are dual to the Higgs vacua
in the field theory with Nf ¼ 1.

A. Warm up: Z2 orbifold of N ¼ 4 SYM with hypers

Before adding D7-branes to the conifold theory, let us
consider a simpler but closely related example of the
N ¼ 2 Z2 orbifold of N ¼ 4 SYM with flavors. We
start with the N ¼ 4 SUðNÞ SYM theory which lives on
N D3-branes. Then, we add a small number Nf � N of

D7-branes [47] that span the Minkowski space R3;1 and
wrap the holomorphic noncompact cycle � ¼ C2 	 C3:
they add Nf hypermultiplets in the fundamental represen-

tation, and break SUSY to N ¼ 2. Choosing coordinates
z1, z2, z3 on C3, the embedding � ¼ fz3 ¼ mg introduces
hypermultiplets of mass m. The D3-branes are free to
move on C3, and their positions parametrize the Coulomb
branch. When k D3-branes reach the D7s, they can dis-
solve into them if Nf > 1 turning to k non-Abelian UðNfÞ
instantons. This corresponds to Higgsing SUðNÞ !
SUðN � kÞ. The field theory analysis of the moduli space
relies on the F- and D-term equations

½�1;�2� þQ ~Q ¼ 0;

½�1;�
y
1 � þ ½�2;�

y
2 � þQQy � ~Qy ~Q ¼ 0

(3.1)

together with �3 ¼ m for the k� k block of the N � N
matrices �i. These equations exactly coincide with the
ADHM description of the moduli space of k UðNfÞ in-
stantons—the worldvolume gauge instantons on the D7s
[22,48]. The equivalence between field vacuum equations
and the ADHM construction (see [49] for a pedagogical
review) is at the core of the holographic description of the
Higgs branch. Besides the moduli space itself, it can be
extended to various observables in field theory: the moduli
space metric, chiral operators, etc [50–53].

Then, we take a Z2 orbifold of � ¼ C2. The resulting
geometry is singular, but it can be smoothened out.
One can parametrize C2=Z2 by two complex variables
ðw1; w2Þ subject to identification ðw1; w2Þ 
 ð�w1;�w2Þ.
Alternatively, one can introduce invariant coordinates
z1;2 ¼ ðw2

1 � w2
2Þ=2, z3 ¼ iw1w2, subject to the constraintP

3
i¼1 z

2
i ¼ 0. The singular orbifold admits a simultaneous

deformation of the complex structure

X3
i¼1

z2i ¼ � (3.2)

and a resolution: both replace the singularity by a finite size
S2. This is the smooth Eguchi-Hanson space. Deformation

and resolution are measured by the self-dual forms !ð2;0Þ

and Jð1;1Þ:

Z
S2

!ð2;0Þ � 	C ¼ �;
Z
S2

Jð1;1Þ ¼ 	R: (3.3)

The resolution and deformation parameters 	R, 	C trans-
form as a triplet under SUð2ÞR that rotates the complex
structures on the hyper-Kähler Eguchi-Hanson space.
Since the deformed/resolved orbifold has an exceptional

2-cycle S2, it admits Uð1Þ instantons. Hence, the orbifold
theory has a Higgs branch even for Nf ¼ 1. In general, the

UðNfÞ instantons on C2=Z2 are characterized by the first

and second Chern classes

ch 1¼ 1

2�

Z
S2

TrF; ch2¼ 1

8�2

Z
C2=Z2

TrF^F (3.4)

and the conjugacy class of the monodromymatrix 
̂: Z2 !
UðNfÞ. The latter is defined as follows. One considers a

radial section S3=Z2 of the orbifold at infinity, where
F ¼ 0, and computes the holonomy 
̂ ¼ Pexpi

H
@� A 2

UðNfÞ along the generator @� of �1ðS3=Z2Þ ¼ Z2. Such

a matrix must satisfy 
̂2 ¼ 1, and its conjugacy class is
a gauge-invariant observable.
The gauge instantons on the D7s’ worldvolume are

D3-branes on their Higgs branch, dissolved in the D7s.
The corresponding moduli space was analyzed from the
D-brane point of view in [54], showing that it agrees
with the ADHM construction put forward by Kronheimer
and Nakajima [55] (see also [56,57] for a review). As in
the case of pure SUðNÞ SYM with flavor, we can re-
produce the ADHM quiver and equations by analyzing
the vacuum equations of the field theory. The Z2 orbifold
gives an SUðNÞ � SUðNÞ quiver theory with NfL left

and NfR right flavors, Nf ¼ NfL þ NfR. Invariance

under the Z2 orbifold action dictates that only the non-
diagonal N � N blocks of �1;2 are nonvanishing, while

�3 is block diagonal:

�� ¼ 0 A�

���B
� 0

 !
; �3 ¼

�3 0

0 � ~�3

 !
: (3.5)

The fields with index � ¼ 1, 2 are doublets of a flavor
SUð2Þ symmetry, while SUð2ÞR acts on ðA; ByÞ as a
doublet. The resulting superpotential is

W ¼ �3ðA�B
� �QL

~QLÞ þ ~�3ðB�A� þQR
~QRÞ; (3.6)

where sum over � is implicit.
The N D3-branes can freely move on C3=Z2 � C, real-

izing the Coulomb branch; when the D3s reach the D7s
they can dissolve, turning into instantons, and Higgsing
part of the gauge symmetry. Let us denote with k1;2 the

ranks of the broken symmetry. They might be different,
corresponding to the presence of D5-branes dissolved in
the D7s and wrapping the 2-cycle of C2=Z2. The Higgsed
directions of �3, are the k1 � k1 and k2 � k2 blocks

where �3, ~�3 are equal to m multiplied by the k1 � k1
and k2 � k2 identity matrices to allow nontrivial values of
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flavor fields. Eliminating �3, the F- and D-term equations
describing the Higgs branch effectively represent the
quiver in Fig. 1, which we will concisely denote as
NfL � k1 � k2 � NfR.

To present the F- and D-term equations in a concise form
we define the combinations

C� ¼ B�

A�y

 !
; PL ¼ �QL

~Qy
L

 !
; PR ¼ QR

~Qy
R

 !
;

(3.7)

and use the Pauli matrices

�� ¼ 0 1

1 0

 !
;

0 �i

i 0

 !
;

1 0

0 �1

 !

to represent the F-term and D-term equations in a SUð2ÞR
covariant form

Cy
���C

� þ PL��P
y
L ¼ �	L

�;

C��

�C

y
� þ PR�



�P

y
R ¼ �	R

�:
(3.8)

Here, y acts on gauge indices, while transposition of
SUð2ÞR indices is implicit. In general, 	L, 	R should be
understood as some parameters of the solution. In the case
of the UðNÞ �UðNÞ orbifold theory these are the Fayet-
Iliopoulos (FI) terms. If k1 ¼ k2 ¼ N, i.e. there is no
remaining unbroken gauge group, 	L and 	R can be turned
on independently. Otherwise, 	L ¼ 	R ¼ 	 as follows
from the components of (3.8) with trivial Q. In the bulk,
the triplet 	� controls the resolution/deformation ofC2=Z2

as seen from (3.3).
In components, the Eqs. (3.8) are

A�B
� �QL

~QL ¼ 	C;

A�A
�y � By

�B� þQLQ
y
L � ~Qy

L
~QL ¼ 	R;

B�A� þQR
~QR ¼ 	C;

B�By
� � A�yA� þQRQ

y
R � ~Qy

R
~QR ¼ �	R;

(3.9)

where we defined 	R � 	3, 	C ¼ �ð	1 � i	2Þ=2.
The relation between the ranks NfL, NfR, k1, k2 in field

theory and the properties of the instanton in the bulk is
as follows. The conjugacy class of the monodromy matrix

̂ defines splitting of Nf into NfL;R. Since 
̂2 ¼ 1, its

eigenvalues are �1 and NfL;R ¼ Trð1� 
̂Þ=2. The ranks

k1, k2 are related to the Chern classes (3.4) as follows [54]:
4

ch 1 ¼ 2ðk1 � k2Þ � NfL; ch2 ¼ k2 þ
NfL

4
: (3.10)

Finally, the dimension of the moduli space of instantons
with given ch1;2 and 
̂, i.e. k1, k2, NfL;R, is equal to

dimM ¼ 4ðNfLk1 þ NfRk2 � ðk1 � k2Þ2Þ: (3.11)

The quiver in Fig. 1 as well as its space of vacuums are
invariant under a Z2 flip that exchanges the left and right
groups: k1 $ k2 and NfL $ NfR. Although such symme-

try is trivial in the field theory, it acts nontrivially on the
space of instantons. It multiplies 
̂ by �1 and transforms
the Chern classes as

ch 1 ! �Nf � ch1; ch2 !
Nf

4
þ ðk1 þ k2Þ � ch2:

(3.12)

The relation between geometric properties of instantons
and ranks k1, k2, NfL;R of the quiver provides a simple

holographic picture. The splitting of flavors into left and
right is determined by the worldvolume gauge field on the
D7s and the corresponding monodromy matrix 
̂. Above
the scale m the field theory has gauge group SUðNÞ �
SUðNÞ with Nf hypermultiplets, while below m the gauge

theory is pure SUðN � k1Þ � SUðN � k2Þ. The resulting
low-energy gauge theory is described holographically by
minðN � k1; N � k2Þ D3-branes and jk1 � k2j D5-branes
wrapping homologically nontrivial S2 of C3=Z2.
To get some intuition about how k1, k2, NfL;R are related

to the instanton charges, let us consider a simple Abelian
instanton of charge n, i.e. a Uð1Þ gauge field with ch1 ¼ n.

The charge n is an integer while one finds ch2 ¼ n2

4 and


̂ ¼ ð�1Þn [54]. We have two distinctive cases. When
n ¼ 2r� 1 is odd the quiver is

1� r2 � rðr� 1Þ � 0; (3.13)

while when n ¼ 2r is even the quiver is

0� rðrþ 1Þ � r2 � 1: (3.14)

The explicit matrices that solve the quiver equations in
these cases can be found in Sec. VB.
After we developed some intuition in the N ¼ 2 case

we return our attention to the conifold geometry in the next
section.

B. Geometry of the D7-brane embedding

Throughout this paper we consider D7-branes along the
so-called Kuperstein embedding [58]—a holomorphic
noncompact 4-cycle � defined by

FIG. 1. ADHM quiver describing instantons on the Eguchi-
Hanson space C2=Z2. We will concisely refer to this quiver as
NfL � k1 � k2 � NfR.

4Our description differs from the one in [54] by the sign in the
definition of ch1 and a Z2 flip of the quiver.
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z4 ¼ �ffiffiffi
2

p ¼ const: (3.15)

If we start with the C2=Z2 � C N ¼ 2 case and the usual
D7-brane discussed in the previous subsection and intro-
duce the massive deformation of the orbifold theory that
leads via the RG flow to the conifold theory, the original
D7-brane results in a D7-brane embedded along (3.15)
[24]. This provides us with the field content and super-
potential of the flavor sector. A stack of k D7-branes

introduces k flavors of hypermutiplets ~Q, Q in the funda-
mental of one of the gauge groups, with superpotential of
the form

Wflavor 
 ~QðA1B1 þ A2B2 ��ÞQþ ~QQ ~QQ: (3.16)

We will be more precise in Secs. V and VI, clarifying also
under which gauge group the quarks are charged.

The embedding (3.15) preserves the antidiagonal
SUð2ÞAB of the global SUð2ÞA � SUð2ÞB symmetry. In
what follows we assume that the deformation parameter
� and mass � are nonzero. The corresponding limits of
singular conifold � ¼ 0 or zero mass embedding z4 ¼ 0
are straightforward.

The 4-cycle � has the complex structure of C2=Z2 with
deformation parameter �� z24

X3
i¼1

z2i ¼ �� z24: (3.17)

As we discussed in Sec. III A, at infinity this space ap-
proaches a cone over S3=Z2, and given a flat bundle on it
one can construct a monodromy matrix 
̂ ¼ Pexpi

H
@�A

whose conjugacy class is a gauge-invariant. We can also
think of S3=Z2 as a Hopf S1 fibration over S2, with S1

shrinking at the tip of � while S2 staying finite. Hence, �
can support Abelian flux.

We can parametrize � by the radial coordinate of the
conifold

X4
i¼1

jzij2 � r3 � � cosht; (3.18)

which takes value in the range r3 � jz4j2 þ j�� z24j, to-
gether with some angular coordinates on S3=Z2. In prac-
tice, it is convenient to use the one-forms g5, dzi of the full
conifold geometry pulled back on �. In terms of the usual
conifold coordinates, let us define

g5 ¼ dc � X
i¼1;2

cos�id’i; Voli ¼ sin�id�i ^ d’i:

(3.19)

Expressing z3 through z1, z2 one finds the following useful
relations [23]:

�1

2
dg5^dg5j�¼fðtÞdt^g5^dg5j�

¼4jz4 cosht� �z4j2
�2sinh4tjz3j2

dz1^d�z1^dz2^d�z2j�;

(3.20)

where the function

fðtÞ ¼ � jz4 cosht� �z4j2
sinhtð�sinh2t� 2jz24j coshtþ z24 þ �z24Þ

(3.21)

is defined through a0=a ¼ �2f, and aðtÞ is a ‘‘volume’’ of
� at the given radius tZ
S3=Z2 at t

g5 ^dg5 ¼ 32�2aðtÞ

¼ 32�2 �sinh
2t� 2jz24jcoshtþ z24 þ �z24

�sinh2t
:

(3.22)

Let us remark that on the deformed conifold the 2-form
dg5 is singular at the tip, as one can check by computing
the norm jdg5j2 using the inverse metric: the magnitude
diverges as 1=t2 (while g5 is regular). In the case of the
massless embedding z4 ¼ 0, the pullback of dg5 is like-
wise singular at the tip. Therefore when expressing a gauge
field on �, we should be careful to ensure that the coeffi-
cient in front of dg5 vanishes. Let us stress that the ge-
ometry of � on the deformed conifold is regular when
z4 ¼ 0, and all physical quantities should be continuous in
this limit.
A similar subtlety arises in the resolved conifold case.

Since at the tip one of the 2-spheres in the base S2 � S2 of
T1;1 [asUð1Þ fibration] vanishes, the corresponding volume
form—say Vol2—diverges. This again can be checked by
computing jVol2j2. As a result, both 2-forms

dg5 ¼ Vol1 þ Vol2; !2 ¼ 1

2
ðVol1 � Vol2Þ (3.23)

are divergent at the tip of the resolved conifold. An easy
way to avoid the difficulty is to combine dg5 and !2 at the
tip into the volume form Vol1 ¼ 1

2dg5 þ!2 which is well-

defined. We also remark that the limit z4 ! 0 in the re-
solved conifold case is smooth. The complex Eq. (3.17) of
� has the C2=Z2 singularity, however, the resolution of the
conifold induces a resolution of�, and in fact the blown-up
2-sphere of the conifold coincides with the blown-up
2-sphere of �.

C. Gauge field on the D7-brane
and AdS/CFT dictionary

In this section we solve the linearized equations for
SOð3Þ invariant fluctuations of the worldvolume fields
on � and identify them with field theory operators accord-
ing to the AdS/CFT correspondence. We will be mainly
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concerned with the UV (large r) behavior of the bulk
fields, therefore, we will work in the singular conifold
limit � ¼ 0. We can introduce a set of real coordinates r,
XI, YI (with I ¼ 1; � � � ; 4) on the conifold

zI ¼ r3=2ðXI þ iYIÞ; (3.24)

where XI, YI are subject to the constraints

X2 ¼ Y2 ¼ 1
2; X � Y ¼ 0: (3.25)

The base T1;1 of the singular conifold is represented as the
product of two 3-spheres with an orthogonality condition
and metric

ds2
T1;1 ¼ 2

3
ðdX2 þ dY2Þ � 2

9
ðXdY � YdXÞ2: (3.26)

In order to introduce local coordinates on � and calcu-
late the induced metric, we represent the conifold as a
foliation of the Kuperstein embeddings parametrized by
X4, Y4, the radial coordinate r and three angular coordi-
nates ti. First, we fix

z4 ¼ �ðrÞffiffiffi
2

p ¼ r3=2ðX4 þ iY4Þ: (3.27)

We can think of this equation with X4, Y4ðrÞ as a parame-
trization of a generic SOð3Þ-invariant embedding �. Then,

we arbitrarily choose5 Xð0Þ
I , Yð0Þ

I , for I ¼ 1, 2, 3 such that
the constraints (3.25) are satisfied. Then, we introduce the
angular coordinates ti as the ‘‘Euler angles’’ of the SOð3Þ
rotation which transforms the point Xð0Þ þ iYð0Þ into some
other point on S3=Z2. We can use the conventional 3� 3
generators Ti of soð3Þ embedded into the upper left corner
of the 4� 4 matrix acting on zI as follows:

X þ iY ¼ etiT
iðXð0Þ þ iYð0ÞÞ: (3.28)

Clearly, this transformation leaves z4 invariant. Then, the
tangent vector is

dðXþ iYÞ ¼ dtiT
iðX þ iYÞ þ @ðX þ iYÞ

@X4

dX4

þ @ðX þ iYÞ
@Y4

dY4: (3.29)

The one-forms dti are the left-invariant one-forms ei on
S3 ffi SUð2Þ calculated at the origin

ei ¼ dti þ �ijktjdtk þOðt2Þ: (3.30)

To obtain the expression valid everywhere on S3=Z2 we
can simply substitute dti by ei. Now, if we substitute (3.29)
into the conifold metric ds26 ¼ dr2 þ r2ds2

T1;1 with (3.26),

we obtain the metric in terms of ðr; X4; Y4; tiÞ. If we instead
interpret X4, Y4 as radial functions defined by the generic
SOð3Þ-invariant embedding �ðrÞ, we obtain the induced
metric on �. In the special case � ¼ const the unwarped
metric on � is

ds2� ¼ 4r3 � j�j2
4ðr3 � j�j2Þdr

2 þ r3 � j�j2
3r

e21

þ r2

3
e22 þ

4r3 � j�j2
9r

e23: (3.31)

Our next step is the quadratic action for the fluctuation
of the worldvolume gauge field given byZ

d4xdr

�
1

2

ffiffiffi
g

p
gABgA

0B0
FAA0FBB0 � h�1PfF

�
:

Here, the indices A, B run through the Minkowski and
internal r, ei directions. The induced metric gAB is a
warped product of the flat Minkowski metric and the
metric (3.31) on �. The Pfaffian PfF is calculated with
the 4� 4 matrix FAB with all indices taken along the
internal directions r, ei.
We are focusing on the lowest SUð2Þ-invariant modes in

the KK expansion. The corresponding worldvolume gauge
field can always be brought to the form

A ¼ A�ðr; x�Þdx� þ Aiðr; x�Þei; (3.32)

with vanishing component along dr. To fix the residual
gauge symmetry we require the Minkowski vector A� to be

transverse, @�A� ¼ 0, therefore, A splits into a transverse

space-time vector and three space-time scalars. The effec-
tive Lagrangian (to be integrated over space-time and
radius from r3 ¼ j�j2 to infinity) for A� is

L A�
¼ 4ðr3 � j�j2Þj@rA�j2 þ hð4r3 � j�j2Þj@�A�j2:

(3.33)

The Lagrangian for the scalars Ai is

LAi
¼ 1

2h
ð
iAi þ 
�1

i A0
iÞ2 þ

ð4r3 � j�j2Þ
2ðr3 � j�j2Þ


�2
i j@�Aij2


2
1 ¼

3

2r
; 
2

2 ¼
3r2

2ðr3 � j�j2Þ ;


2
3 ¼

ð4r3 � j�j2Þ
2rðr3 � j�j2Þ : (3.34)

The linear in derivative term h�1Ai@rAi in LAi
comes

from the CS term in the action. Eventually, the
Lagrangian for the perturbation �� of the geometrical
profile, i.e. � ¼ constþ ��, is

L �� ¼ 4r2ðr3 � j�j2Þ
ð4r3 � j�j2Þ j@r��j2 þ hr2j@���j2: (3.35)

5We chose the parametrization Xð0Þ
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2� X2

4

q
, Xð0Þ

2 ¼ 0,

Xð0Þ
3 ¼ 0 and Yð0Þ

1 ¼ �X4Y4=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2� X2

4

q
, Yð0Þ

2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2� X2

4 � Y2
4

q
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1=2� X2

4Þ
q

, Yð0Þ
3 ¼ 0.

FRANCESCO BENINI AND ANATOLY DYMARSKY PHYSICAL REVIEW D 85, 046004 (2012)

046004-8



We can now analyze the resulting equations for the
fluctuations A�, Ai, �� and identify the dual field theory

operators. As a by-product we will also find the mass
spectra for the corresponding mesons in the KW case.

Using the explicit form of the KW warp factor h ¼ L4

r4
,

we find the asymptotic static (space-time independent)
solutions

A1 ¼ c1r
�3=2 þ c2r

�5=2;

A� ¼ c1 þ c2r
�2 þOðr�5Þ;

A2 ¼ ðr3 � j�j2Þ�1=2ðc1 þ c2r
�1Þ;

�� ¼ c1 þ c2r
�1 þOðr�4Þ;

A3 ¼ ðr3 � j�j2Þ�1=2r�1=2

�
c1 þ c2

�
logrþ j�j2

12r3

��
:

(3.36)

The asymptotic behavior in AdS5 of a canonically normal-
ized field �ðrÞ dual to an operator of dimension � is6

�ðrÞ 
 csourcer
��4þs þ cVEVr

��þs; (3.37)

where s ¼ 0 for a scalar and s ¼ 1 for a vector. This
reveals that the vector A� is dual to an operator of dimen-

sion 3 (the conserved current J� of the flavor Uð1Þ sym-

metry) and the scalar A3 is dual to an operator of dimension

2 (the bottom component jQ2j � j ~Q2j of the Uð1Þ current
multiplet). These operators, as we show in Sec. III D, are
manifestly related in the bulk by a SUSY transformation.

We usedQ, ~Q for the bottom component of the correspond-
ing chiral superfields.

The real and imaginary parts of �� are degenerate since
� is dual to a complex chiral superfield in field theory. It
follows from (3.36) that �� corresponds to operators of
dimension either 3=2 or 5=2. To distinguish between the
two [36] we notice that, because of the superpotential

(3.16), � couples to the operator
R
d2� ~QQ of dimension

5=2, and by AdS/CFT this is the operator dual to ��. The
fluctuations A1, A2 (which after an appropriate change of
variables satisfy the same equation) combine into a com-

plex scalar dual to the bottom component ~QQ—an opera-
tor of dimension 3=2.

The leading asymptotic A1;2 
 r�3=2 is dual to the VEV

of ~QQ, while the subleading A1;2 
 r�5=2 to the source of
~QQ in the Lagrangian. Was one interested in calculating
the mass spectrum of the corresponding meson excitations,
such boundary conditions would lead to a complication
because one would have to ensure that the subleading
asymptotic vanishes. It is more convenient to calculate
the spectrum of the superpartner ��, since four-
dimensional SUSY guarantees the degeneracy of masses

within the multiplet. In the bulk, this follows from the
SUSY Quantum Mechanics transformation that relates
the equations for �� and A1;2 and also for A� and A3.

D. SUSY in the bulk and SUSY QM
7To see how the supersymmetric quantum mechanics

works, let us consider a family of one-dimensional effec-
tive actions of the form

S ¼
Z

drðFc 02 �Hc 2 �m2Gc 2Þ; (3.38)

where F, H, G are functions of r and 0 denotes derivative
with respect to r. To bring the corresponding EOM to the

canonical form we perform the change of variables c ¼
�ffiffiffi
F

p resulting in

�00 � V� ¼ �m2 G

F
�; V ¼ F00

2F
� F02

4F2
�H

F
:

(3.39)

In fact, the potential V can be expressed as

V ¼ W 0 þW2 �H

F
; (3.40)

with the function W given by

W ¼ 1

2
ðlogFÞ0 þ

�
F

�
constþ

Z r
F�1

���1
: (3.41)

In all cases below, the ‘‘const’’ in the formula above will
be infinite and W ¼ 1

2 ðlogFÞ0.
If H ¼ 0, then V is entirely captured by the superpoten-

tial W. In this case, the Eq. (3.39) can be written in a form
that makes the SUSY QM explicit

Q1Q2� ¼ �m2�; (3.42)

with

Q1 ¼ �

�
d

dr
þW � ðlog�Þ0

�
;

Q2 ¼ �

�
d

dr
�W

�
; �2 ¼ F

G
:

(3.43)

Clearly, Eq. (3.42) has a superpartner which shares the
same mass spectrum (up to a possible zero-mode m ¼ 0)

Q2Q1� ¼ �m2�: (3.44)

This equation can be written in the canonical form (3.39)

using new functions ~F, ~H, ~G. In this case, ~F= ~G ¼ F=G and
the new potential is

6There might be logarithms in (3.37) as in A3 from (3.36) if the
two series expansions overlap.

7We thank D. Melnikov for his input on the following
subsection.
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~V ¼ ~F00

2 ~F
� ~F02

4 ~F2
� ~H

~F
¼ ð�W 0 þW2Þ þ �00 � 2W�0

�
:

(3.45)

Let us apply this to the equations for A�, Ai, ��. We

start with the equations for A1;2 and cast them in the form

(3.39). It turns out that for both modes the potential V
vanishes and the equations coincide

�00 ¼ �m2L4 ð4r3 � j�j2Þ
4ðr3 � j�j2Þr4 �: (3.46)

The equation governing the complex scalar �� brought to
the canonical form is:

�00 ¼ � 9rð16r6 þ r3j�j2 � 8j�j4Þj�j2
4ðr3 � j�j2Þ2ð4r3 � j�j2Þ2 �

�m2L4 ð4r3 � j�j2Þ
4ðr3 � j�j2Þr4 �: (3.47)

This equation is the SUSY QM partner of (3.46): if we
compute the effective potential for the superpartner of
(3.47) using (3.45) and

F ¼ 4ðr3 � j�j2Þr2
ð4r3 � j�j2Þ ; H ¼ 0;

�2 ¼ F

G
¼ 4ðr3 � j�j2Þr4

ð4r3 � j�j2Þ ;
(3.48)

we find that ~V vanishes and we arrive at (3.46).
The equation for A� written in a canonical form is

�00 ¼ 3rðr3 � 4j�2jÞ
4ðr3 � j�j2Þ2 ��m2L4 ð4r3 � j�j2Þ

4ðr3 � j�j2Þr4 �:

(3.49)

Using H ¼ 0 and F ¼ 4ðr3 � j�j2Þ we can calculate the
potential for the superpartner equation arriving at

�00 ¼ � 2ð2r6 � 10r3j�j2 � j�j4Þ
r2ð4r3 � j�j2Þ2 �

�m2L4 ð4r3 � j�j2Þ
4ðr3 � j�j2Þr4 �; (3.50)

which is the equation for A3 written in a canonical form.
Notice that SUSY QM relates the equations for ðA�; A3Þ

and ðA1;2; ��Þ for any warp factor h, because supersym-

metry is unbroken for any distribution of D3-branes on the
conifold.

Now let us briefly address the question of computing the
four-dimensional spectrum of A1;2. The leading asymptotic

behavior of � following from (3.46) is � ¼ c1 þ c2r. To
calculate the spectrum numerically, say by shooting, one
needs to impose the exotic boundary condition that � does
not have a constant part at infinity while may have the
linearly divergent term. In practice this is difficult to
control. Instead of dealing with (3.46) one can calculate

the spectrum of Eq. (3.47). It has the same asymptotic
behavior but the conventional boundary condition, i.e. �
may go to a constant at infinity but should not diverge.
This gives the following spectrum for m2 (in units of

j�j4=3L�4): 3:6; 19:3; . . . A similar but less severe problem
arises while dealing with the Eq. (3.50) for the A3 fluctua-
tions. The asymptotic behavior of the wave function is

� ¼ r1=2ðc1 þ c2 logrÞ. The subleading term is only loga-
rithmically suppressed and to impose the boundary condi-
tion of vanishing c2 in practice may require a very large
cutoff. It is better instead to deal with the Eq. (3.49) which

results in the asymptotic behavior � ¼ c1r
�1=2 þ c2r

3=2.
The boundary condition is simply that � vanishes at in-
finity yielding the spectrum of masses m2 (in units of

j�j4=3L�4): 6:6; 24:7; . . . The lightest mode of the vector
multiplet happens to be heaver than the one of the scalar
multiplet.

E. Asymptotics of the worldvolume gauge field in KS

Knowing the asymptotic behavior in the KW case is
usually good enough to deal with the KS and BGMPZ
solutions as well, because these solutions—up to logarith-
mic corrections—approach the KW background at large
radius. The corrections are not important when the leading
and subleading asymptotics have two different powers of r.
This is not the case for A3. Therefore, we repeat the
analysis of the UV behavior for this mode in the case of
the deformed conifold. The leading UV behavior is not
sensitive to the value of � and therefore we put it to zero,
significantly simplifying the calculation. The cycle � can
be parametrized by the radial coordinate t and the angles
�1 ¼ �2 � �, �1 ¼ �2 � �, c . Using the relation be-
tween e3 and g5 (for the singular conifold case)

g5 ¼ r3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3 � j�j2

r3

s
e3; (3.51)

the gauge field A ¼ A3ðr; x�Þe3 can be written as A ¼
	ðt; x�Þg5. The Lagrangian for the static (Minkowski-
independent) 	ðtÞ is

L ¼
Z 1

0
dt

1

2hðtÞ ð
		þ 
�1
	 	0Þ2;


	ðtÞ ¼
ffiffiffi
2

3

s
sinhtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinhðtÞ coshðtÞ � t
p :

(3.52)

The resulting equation (with the restored x�-dependence)
is a superpartner, in the sense of the SUSY QM discussed
before, of the equation for the vector mode discussed
in [59], and such relation holds for any warp factor hðtÞ.
The EOM for 	 has two solutions. The subleading

solution that corresponds to the VEV of the operator

jQ2j � j ~Q2j represents the anti-self-dual flux on the D7
and does not break supersymmetry
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	ðtÞ ¼ c1ðcoshðtÞ sinhðtÞ � tÞ�1=3: (3.53)

The general asymptotic behavior at infinity in the KS
case is

	ðtÞ ¼ ðc1 þ c2ð4t� 1Þ2Þe�2t=3 þOðe�5t=3Þ: (3.54)

The leading solution has an extra t
 logr compared
with (3.36), as can be understood in the KT limit from

(3.34) using the warp factor h
 L4

r4
logr.

Something interesting occurs when we turn on the bar-
yonic branch parameter U. The corresponding background
is the BGMPZ solution that approaches the KS solution at
infinity, but this does not guarantee that the asymptotic of
the fields on the D7 are the same. The BGMPZ solution
approaches the KS solution slowly enough to create a
nontrivial source at large r for some fluctuations of the
worldvolume fields. This happens to A3, and not to A1;2.

When U � 0 the B-field acquires an extra term

BBGMPZ ¼ BKS þ 
0dg5 þOðU2Þ;

0 ! U

2
ðt� 1Þe�2t=3:

(3.55)

The new term has exactly the structure to couple to 	 as
both fluctuations correspond to the operators of dimension
2—the bottom components of the Uð1Þbaryon and Uð1Þflavor
currents. Therefore, 
 causes a nonhomogeneous term in
the linearized equation for 	, and the asymptotic behavior
takes the form

	 ¼
�
c1 þ c2ð4t� 1Þ2 þ 3U

16
ð2t� 1Þ

�
e�2t=3 þOðe�5t=3Þ:

(3.56)

This is the bulk manifestation of the mixing between
Uð1Þbaryon and Uð1Þflavor.

F. SOð3Þ invariant flux on the D7-brane

In this section we will find a general expression for the
real SOð3Þ-invariant closed (1, 1) 2-form F1;1 ¼ dA on
�: fz4 ¼ constg, which combines with the pullback of B
to form the gauge-invariant flux F ¼ P½B� þ 2��0F on
the D7. Supersymmetry requires F to be of (1, 1)-type,
therefore we require F to be (1, 1) as well.

There are four (1, 1) SOð3Þ-invariant 2-forms on � that
can be combined with arbitrary r-dependent real coeffi-
cients �1, �2, �1, �2

F1;1 ¼ FI þ FII;

FI ¼ ið�1dzi ^ d�zi þ �2 �zidzi ^ zjd�zjÞ;
(3.57)

FII ¼ i�ijkð ��zi � �zi�Þdzj ^ d�zk; (3.58)

where we introduced a complex � ¼ �1 þ i�2. The con-
straint dF1;1 ¼ 0 boils down to the two independent

equations dFI ¼ dFII ¼ 0. The first can be rewritten in
terms of the 1-forms dt, g5 and dg5 using

�z idzi ¼ r3

2

�
3
dr

r
þ ig5

�
: (3.59)

The only possible closed combination is exact

FI ¼ dAI; AI ¼ 	ðtÞg5: (3.60)

The second constraint implies (now0 stands for a deriva-
tive with respect to r3)

2�þ ½�0ðr3 � jz4j2Þ þ ��0ðz24 � �Þ� ¼ 0: (3.61)

The general solution is

� ¼ �n

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z24 � �

q
ðr3 � jz4j2 þ jz24 � �jÞ2

þ i
m

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z24 � �

q
ðr3 � jz4j2 � jz24 � �jÞ2 ; (3.62)

with n, m real coefficients.
Locally, we can express FII as FII ¼ dAII, in terms

of an SOð3Þ-invariant potential AII. The most general
ansatz is

A II ¼ ��ijkzi �zjdzk þ c:c: (3.63)

The constraint that dAII be of (1, 1)-type gives the
equation for �

ððr3 � jz4j2Þ2 � jz24 � �j2Þ�0 þ 2ðr3 � jz4j2Þ� ¼ 0;

(3.64)

with solution

� ¼ C0

ðr3 � jz4j2Þ2 � jz24 � �j2 : (3.65)

To relate the complex constant C0 to n, m we compute
dAII and cast it in the form (3.58): i�¼ ��þðr3�
jz4j2Þ ��0 þðz24��Þ�0. Eventually, comparing with (3.62)

we find C0 ¼ 1
2 ðm� inÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�z24 � ��

q
.

If m � 0, FII is singular at the tip of � and should be
discarded. If m ¼ 0, FII is regular but AII is still singular
at the tip because FII is cohomologically nontrivial on S2.

We can parameterize the tip as zi ¼ ixi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z24 � �

q
in terms

of real coordinates xi with
P

3
i¼1 x

2
i ¼ 1. Then, FII ¼

n
4 �ijkxidxj ^ dxk which givesZ

S2
FII ¼ 2�n: (3.66)

Quantization requires n to be an integer. Notice that in the
resolved conifold case FII is proportional to the Betti-form
!2 on T1;1 (3.23)
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!2 ¼ � i

r6
�ijklzi �zjdzk ^ d�zl (3.67)

pulled back on �: FII ¼ n
2P½!2�. This confirms that FII is

cohomologically nontrivial.
We are interested in the Page D3- and D5-charge in-

duced by the worldvolume gauge field on the D7-brane.
The D3-charge is given by the integral of the current JD3 ¼
F5 � B ^ F3 þ 1

2B ^ B ^ F1 on T1;1, and the contribution

from the D7 is given by the difference between the tip of
the D7 at rmin and very large radius: ð4�2�0Þ2ND3 ¼R
r¼1 JD3 �

R
r¼rmin

JD3 ¼
R
M dJD3. Using dJD3 ¼

ð2��0Þ2 1
2F ^ F ^ �D7

2 (where �D7
2 is a 2-form delta-

function localized on the D7), we get

ND3 ¼ 1

8�2

Z
�
F ^ F: (3.68)

The computation is performed in Appendix B and the
result is

ND3 ¼ n2

4
: (3.69)

The D5-charge is given by the integral of the current
JD5 ¼ F3 � B ^ F1 on S3 	 T1;1, and the contribution
from the D7 is ð4�2�0ÞND5 ¼

R
r¼1 JD5 �

R
r¼rmin

JD5 ¼R
S3�Rþ dJD5. Using dJD5 ¼ ð2��0ÞF ^ �D7

2 , we get

ND5 ¼ 1

2�

Z
�¼�\ðS3�RþÞ

F: (3.70)

The computation is performed in Appendix B and the
result is

ND5 ¼ n

2
: (3.71)

As we saw in Sec. III A, another gauge-invariant is the
conjugacy class of the Wilson loop 
̂ ¼ P exp i

H
A, com-

puted at large radius over the noncontractible contour
@� ¼ S1 on S3=Z2. Note that such class is invariant under
regular gauge transformations but can change under large
gauge transformations of B. To compute 
̂we integrate the
field strength over �, which for a single D7-brane coincides
with the calculation of the D5-charge (see Appendix B for
details)


̂ ¼ ei
H

A ¼ e2�iND5 ¼ ð�1Þn: (3.72)

Eventually, we interpret n from the field theory point of
view. ExpandingAII at infinity and comparing the leading

r�3=2 asymptotic with (3.36) we find that n corresponds to
the VEV

~QQ ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z24 � �

q
: (3.73)

The expectation value of jQ2j � j ~Q2j depends on the 1=r2

asymptotic of 	 and varies in different cases. Let us note
here that identifying the asymptotic behavior with the

VEVs of the field theory operators as outlined in
Sec. III C is too naive because different operators may
have the same quantum numbers and mix. Generically,
this happens when 
̂ is nontrivial, so that some extra fields
are turned on at the boundary and the AdS/CFT dictionary
needs to be corrected. We will return to this problem in
Sec. VIA.
Let us now consider in more details various setups and

find explicitly the corresponding Abelian Uð1Þ instantons.

G. Singular conifold

Consider the singular conifold with a D7-brane along
�: fz4 ¼ �=2g and an arbitrary distribution of D3-branes.
The latter only affect the warp factor which does not alter
the supersymmetry condition for the D7-brane flux:

P½J� ^F ¼ 0; F 2;0 ¼ 0; (3.74)

with F ¼ P½B� þ 2��0F. The Kähler form on the singu-
lar conifold

J ¼ dðkg5Þ; k ¼ r2

6
; (3.75)

is of the form (3.57) and is orthogonal to the flux of type
(3.58), see (B4). The B-field of the KW solution has the
form B ¼ ��0b!2, where !2 is given in (3.67) and its
pullback is of the form (3.58), so it is automatically primi-
tive. Therefore, FII is not constrained and the resulting
differential equation for 	 can be easily solved

	 ¼ 	0

ak
; (3.76)

with 	0 a constant. The resulting 	 is singular at rmin either
because aðrminÞ ¼ 0 when � � 0 or kð0Þ ¼ 0 in the mass-
less case � ¼ 0. Hence, we must set 	0 ¼ 0. The only
surviving degree of freedom is the integer n that parame-
trizes the flux FII (3.62).
Empowered by the AdS/CFT dictionary developed in

Sec. III C, we derive that the background with n units of D7
worldvolume flux is dual to a vacuum with VEVs

jQ2j � j ~Q2j ¼ 0; ~QQ ¼ nz4: (3.77)

In fact, this is correct only when 
̂ ¼ 1 (so that there are no
Wilson lines at the boundary), otherwise we should expect
corrections to the AdS/CFT dictionary. Such corrections
comes from the mixing of the operators above with other
operators with the same quantum numbers, for instance,

jQ2j � j ~Q2j can mix with jA2j � jB2j, while ~QQ can mix
with �1. This effect equally applies to all other cases
considered below. We will return to the matching of
VEVs between the two sides of the duality in Sec. VIA.

H. Resolved conifold

Next, consider the resolved conifold with a D7-brane
along �: fz4 ¼ �=2g and an arbitrary distribution of
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D3-branes. The Kähler form compared with (3.75) con-
tains an extra term a2Vol1

J ¼ dðkg5Þ þ a2

2
dg5 þ a2!2; k ¼ r2

6
: (3.78)

The B-field is

B ¼ ��0b½!2 þ 1
2dðfgg5Þ�; (3.79)

where fg is some radial function. The 2-form!2 is singular

at the tip of the resolved conifold, and the extra piece
makes B regular provided that fgð0Þ ¼ 1 [similarly to

	ð0Þ ¼ n=4 in the massless z4 ¼ 0 case]. At infinity,
fg ! 0 to match the singular conifold case. The function

fg is a pure gauge degree of freedom and is not fixed by the

EOM. We choose it such that a trivial gauge field F ¼ 0
preserves supersymmetry

fg ¼ a2

2kðrÞ þ a2
: (3.80)

Since P½!2� can be expressed as FII with n ¼ 2, m ¼ 0,
we can absorb fg into 	 and impose primitivity of F

	þ b

2
fg ¼ a2

4

bþ n
2

kþ a2=2
þ a�1 	0

kþ a2=2
: (3.81)

If z4 � 0, the second term is divergent at rmin due to a�1

and we must set 	0 ¼ 0. The first term is nontrivial and we
derive

jQ2j � j ~Q2j ¼ n
a2

2
; ~QQ ¼ nz4: (3.82)

If z4 ¼ 0, we cannot use (3.81) because it was obtained
by simplifying a0 on both sides and a0 ¼ 0 in this case: we
need to do the analysis anew. First, we set 	ð0Þ ¼ n=4 to
avoid a singularity of F1;1 at the tip, and now

R
tip F

1;1 ¼
2�n. Since FII is zero away from the tip, P½J� ^F ¼ 0
implies

	þ b

2
fg ¼ 	0

kðrÞ þ a2=2
: (3.83)

To satisfy 	ð0Þ ¼ n=4 we choose 	0 ¼ a2

4 ðbþ n
2Þ and find

again (3.82) with � ¼ 0. As discussed at the end of
Sec. III B, the z4 ¼ 0 limit is smooth. Moreover, the solu-
tion (3.83) is such that the coefficient in front of dr ^ g5 in
F at r ¼ 0 vanishes: ð	þ b

2 fgÞ0ð0Þ ¼ 0.

I. Deformed conifold

In the deformed conifold case, on the KS background
the Kähler from is

J¼dðkdg5Þ; kðtÞ¼ ðcoshðtÞsinhðtÞ� tÞ1=3; (3.84)

which has the form (3.57). The B-field is

BKS ¼ h2ðtÞ coshðtÞ
2i�ijklzi �zjdzk ^ d�zl

�4 sinht cosht
; (3.85)

where h2ðtÞ is a suitable function, and B has the form
(3.58). Therefore, n is not constrained and 	ðtÞ must
satisfy the differential equation giving

	ðtÞ ¼ 	0

aðtÞkðtÞ ; (3.86)

which coincides with (3.53) when � ¼ 0. This is singular
at tmin and hence 	 ¼ 0, leaving only n as free parameter.
Correspondingly, we derive

jQ2j � j ~Q2j ¼ 0; ~QQ ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z24 � �

q
: (3.87)

J. BGMPZ solutions

The BGMPZ solutions [41], based on SUð3Þ-structure
geometries, have a more complicated �-symmetry condi-
tion. The computation for the type I flux (3.57) was carried
out in [23]—here we add the type II flux (3.58). The
�-symmetry condition reads

U

2
ðJ ^ J �F ^F Þ þ e2AJ ^F j� ¼ 0; (3.88)

where U is the parameter along the baryonic branch and A
is the warp factor. The pseudo-Kähler form J is the sum of
two terms of type I and II:

e2AJ ¼ UB� d½ð�þU
Þg5�; B ¼ BKS þ 
dg5;

� ¼ U
e2�aðt cosht� sinhtÞ

2ða coshtþ 1Þ (3.89)

and so is F

F ¼ BKS þ 
dg5 þ dð	g5Þ þ FIIðnÞ: (3.90)

Here, BKS is given by (3.85) but with some different
function h2ðtÞ. The term BKS ^ FII identically vanishes,
and we get a differential equation for 	:

� 1

a

d

dt

�
a

�
ð	þ 
Þ2 þ 2�

U
ð	þ 
Þ þ

�
e�2�h22sinh

2t

� �2

U2
ðe�2� � 1Þ

��
þ n2jz24 � �j

8ðr3 � jz4j2 þ jz24 � �jÞ
�
¼ 0:

(3.91)

The equation can be integrated, in terms of a constant c0.

At infinity, � diverges as �e2t=3 þ U
2 ðt� 1Þ þOðe�2t=3Þ,

while h2 sinht remains finite, therefore only one root of the
quadratic equation is meaningful
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	þ 
 ¼ ��� e��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �U2h22sinh

2t� e2�U2a�1c
q

U
;

(3.92)

cðtÞ ¼ c0 þ n2

8

jz24 � �j
ð� cosht� jz4j2 þ jz24 � �jÞ : (3.93)

At the minimal radius tmin, the functions �, h2 sinht, � are
regular but a�1 is singular, hence to avoid singularities we
set c0 ¼ �n2=16 and the large t asymptotic is

	 ! U
8t2 þ 20tþ 35� 2n2

64
e�2t=3 þOðe�5t=3Þ; (3.94)

in agreement with (3.56). We interpret the asymptotic with

n ¼ 0 as the one corresponding to the vacuum with ~Q ¼
Q ¼ 0 effectively absorbing nontrivial dð	g5Þ into B.
Then, we derive

jQ2j � j ~Q2j ¼ �n2Uj�j4=3
22=332

; ~QQ ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z24 � �

q
:

(3.95)

In the special case z4 ¼ 0, although a � 1 and (3.92)
remains finite at the tip for any c, dg5 is singular at the tip
and we must require 	þ 
 to vanish at t ¼ 0. This fixes c
as in (3.93).

IV. BACKREACTION OF D7-BRANES

In order to extract full information about the dynamics
of the dual field theory, in particular, its RG flow, one has to
go beyond the probe approximation and construct a fully
backreacted gravity solution. To do so for localized
D7-branes is a hard problem. One possibility is to consider
smeared solutions.8 In the Veneziano large Nc limit, with
Nf=Nc � 1 but fixed, the number Nf of D7-branes is large

and one can distribute them uniformly along the angular
directions. This can be done supersymmetrically, and such
a configuration has a precise field theory dual (discussed in
Sec. VI C).

One can consider both massless and massive embed-
dings of D7-branes into the KW, KT, and KS backgrounds
[15–17,31,61–63]. We will consider here massless embed-
dings in KT [16], and move the massive embeddings in KT
with extra worldvolume flux to Appendix C. We consider
an SUð2Þ � SUð2Þ �Uð1Þ invariant ansatz

ds2 ¼ h�ð1=2Þdx23;1 þ h1=2
�
e2u

�
d
2 þ 1

9
g25

�
þ e2g

6

Xðd�2i þ sin2�id’
2
i Þ
�

J ¼ e2u

3
d
 ^ g5 þ e2g

6

X
sin�id�i ^ d’i

� ¼ 1

6
eicþuþ2g

�
d
þ i

3
g5

�
^ ðd�1 þ i sin�1d’1Þ

^ ðd�2 þ i sin�2d’2Þ
�smeared
2 ¼ Nf

4�
dg5 ¼

Nf

4�

X
sin�id�i ^ d’i;

F1 ¼
Nf

4�
g5; B ¼ �0�bð
Þ!2;

H3 ¼ �0�b0ð
Þd
 ^!2; (4.1)

where u, g, b, h are functions of 
 to be determined. 
 is a
new radial coordinate, which ranges from �1 in the deep
IR to 0 at the UV Landau pole. Roughly, 

 log r

rL
where

rL is the radius associated to the Landau pole scale. The
smeared charge distribution 2-form �smeared

2 is essentially
fixed by symmetries, and F1 has been chosen to satisfy

dF1 ¼ �smeared
2 : (4.2)

The ansatz also includes the SUð3Þ-structure of the
conifold: the Kähler form J and the ð3; 0Þ-form � which
refer to the 6d unwarped metric. A first set of SUSY
equations [15,16] is9

�0 ¼ 3Nf

4�
e�; u0 ¼ 3�2e2u�2g�3Nf

8�
e�; g0 ¼ e2u�2g;

(4.3)

while the solution with the proper boundary conditions
is [15]

e� ¼ 4�

3Nf

1

ð�
Þ ; e2u ¼ �6
ð1� 6
Þ�2=3e2
;

e2g ¼ ð1� 6
Þ1=3e2
: (4.4)

Another SUSY equation is H3 ¼ e� 
 6F3, from which

we get

F3 ¼
Nf�

0

4
ð�
Þb0g5 ^!2: (4.5)

8One could consider smearing orientifold planes as well, as
in [60].

9In particular, the SUð3Þ-structure satisfies the relations

dJ ¼ 2ðg0 � e2u�2gÞd
 ^ J ¼ 0;

d� ¼ ð2g0 þ u0 � 3Þd
 ^� ¼ � 1

2
d� ^�:
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Then we have dF ¼ P½H3�, with F 2;0 ¼ 0 and F ^
P½J� ¼ 0. In the massless case P½B� ¼ 0 because
P½!2� ¼ 0, and the only solution is F ¼ 0. That is
because any normalizable flux on � must be supported
on the 2-cycle at the tip, while in the massless case, and
within the KT approximation, such 2-cycle is shrunk to
zero size. Had we considered the KS setup, worldvolume
flux on the massless D7s would be possible.10 Finally, the
Bianchi identity dF3 ¼ H3 ^ F1 fixes

bð
Þ ¼ c1
ð�
Þ þ c2; (4.6)

where c1, c2 are integration constants. The self-dual
5-form flux F5 is fixed by the Bianchi identity dF5 ¼
H3 ^ F3 (where we neglected gravitational corrections
on the D7s), and F5 in turn fixes the warp factor via
C4 ¼ h�1dx0 ^ . . . ^ dx3.

The integration constant c2 is constrained by quantiza-
tion of the Page D5-charge

QD5 ¼ 1

4�2�0
Z
S3
ðF3 � B ^ F1Þ ¼ �Nfc2

2
: (4.7)

This charge is sourced by D5-branes and the worldvolume
flux on D7-branes, and has to be quantized in terms of the
minimal charge in the setup. According to Eq. (6.1), it
must be a semi-integer.11 The integration constant c1 is free
and corresponds to changing the gauge couplings. We will
use this solution in Sec. VI C to extract the RG flow.

V. THE CONIFOLD FIELD THEORY
WITH FLAVORS

The field theory dual to (fractional) D3-branes on the
conifold, as reviewed in Sec. II, is the N ¼ 1 SUðMþ
pÞ � SUðpÞ quiver gauge theory [1,5–8]. The left node

corresponds to wrapped D5-branes, the right node to D5s
each with �1 unit of worldvolume flux. The addition of a
noncompact D7-brane along the embedding �: fz4 ¼
�=2g introduces a pair of quarks Q, ~Q (one ‘‘flavor’’) of

mass
ffiffiffi
h

p
� (the superpotential coupling h appears because

of a choice of normalization). The cycle � contains a
topologically nontrivial S2 and therefore there are two
fractional D7-branes of minimal tension, distinguished by
a monodromy 
̂ at infinity and by the flux at the tip.
Similarly to the N ¼ 2 Z2 orbifold case discussed in
Sec. III A, a pure D7 introduces flavors coupled to the right
node, while a D7 with �1 units of worldvolume flux

introduces flavors to the left node [16,64]. One way to
obtain this result—as well as the superpotential (5.1)—is
to start from the N ¼ 2 orbifold C� C2=Z2 and follow
the RG flow discussed in [1,24]. The precise map between
the D-brane charges and ranks in field theory is given in
Sec. VI.
Summarizing, the gauge theory is a quiver with the

gauge group SUðN1 ¼ Mþ pÞ � SUðN2 ¼ pÞ (we do
not necessarily restrict to N1 � N2) and bifundamental
fields A�, B _� (�, _� ¼ 1, 2) as in the pure conifold theory,
with the addition of NfL flavors charged under SUðN1Þ and
NfR flavors under SUðN2Þ. We set Nf ¼ NfL þ NfR. The

corresponding quiver in Fig. 2 exactly coincides with the
ADHM quiver of the N ¼ 2 Z2 orbifold theory shown in
Fig. 1. To denote this quiver we adapt the same notation as
in Sec. III A

NfL � N1 � N2 � NfR:

The full superpotential is (compare with (3.16))

W0¼hðA1B1A2B2�A1B2A2B1Þ
� ffiffiffi

h
p

�L
~QL

�
A1B1þA2B2� �ffiffiffi

h
p

�
QL

þ�2
L

2
~QLQL

~QLQL�
ffiffiffi
h

p
�R

~QR

�
B1A1þB2A2� �ffiffiffi

h
p

�
QR

��2
R

2
~QRQR

~QRQR; (5.1)

where trace is implicit. Various factors of h have been
inserted for convenience. The coefficients of the quartic
quark terms have specific values, which come from the
N ¼ 2 orbifold theory broken to N ¼ 1 [1,24].12 One
could consider deforming the theory by the marginal op-

erators Tr ~QLQL
~QLQL and Tr ~QRQR

~QRQR. These opera-
tors contain two traces over color indices and therefore
correspond, on the gravity side, to a change of boundary

conditions for the modes dual to Tr ~QLQL, Tr ~QRQR [65].
If the superpotential is ignored, the instanton factors re-
lated to the 1-loop-exact holomorphic (RG-invariant)
�-functions13 are

FIG. 2. Quiver of the flavored conifold theory.

10In Sec. V, we discuss the corresponding field theory. For
� ¼ 0, classically there are no vacua corresponding to a non-
trivial worldvolume flux. Those vacua reappear, though, in the
quantum theory which, on the gravity side, corresponds to the
KS background.
11Alternatively, one could compute the charge 1

4�2�0
R
S3 ðF3 �

B ^ F1 � 2��0A ^ �D7
2 Þ which is sourced by D5-branes only,

and needs to be an integer.

12Precisely, the superpotential (5.1) is obtained from theN ¼ 2
theory with UðNÞ gauge groups. Starting with SUðNÞ gauge
groups, one obtains other termswith different contraction of flavor
indices. The difference is negligible in the large N limit.
13As in [66], we use holomorphic normalization for the gauge
sector, 1

4g2
F ^ 
F, and distinguish between holomorphic

�-functions, where chiral matter fields are not renormalized,
and physical �-functions, where chiral matter fields do have
anomalous dimensions.
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�
3N1�2N2�NfL

1 � �b1
1 ; �

3N2�2N1�NfR

2 � �b2
2 : (5.2)

The non-Abelian symmetries (vectorlike and
nonanomalous) are SUðNfLÞ � SUðNfRÞ � SUð2ÞAB,
where SUð2ÞAB is the antidiagonal subgroup of SUð2ÞA �
SUð2ÞB that preserves A�B _��

� _�. The Abelian symmetries
can be analyzed in the basis of Table I, and the exact
symmetries are the subgroup under which no coupling or
instanton factor is charged. For � ¼ 0, it is Uð1Þb �
Uð1ÞfL �Uð1ÞfR � Zq, where Zq 	 gUð1ÞR and q ¼
gcdð2N1 � 2N2 � NfL; 2N1 � 2N2 þ NfRÞ. � � 0 com-

pletely breaks gUð1ÞR. The generators of the unbroken
symmetries are

Uð1ÞfL;fR ¼Uð1ÞQL;R
�Uð1Þ ~QL;R

;

Uð1Þb ¼Uð1ÞA�Uð1ÞBZq 	 gUð1ÞR
¼Uð1ÞR� 1

2½Uð1ÞAþUð1ÞBþUð1ÞQL
þUð1Þ ~QL

þUð1ÞQR
þUð1Þ ~QR

�; (5.3)

where Uð1Þb is the usual baryonic symmetry of the coni-
fold. It will also be convenient to define

Uð1Þ1 � Uð1Þb þUð1ÞfL
Uð2Þ2 � �Uð1Þb þUð1ÞfR;

(5.4)

which are the ‘‘baryonic symmetries’’ of the two SU
nodes. We can form combinations of couplings that are
invariant under flavor symmetries. They will correspond to
supergravity parameters. First of all we take

L1 � �b1
1 hN2�

NfL

L ; L2 � �b2
2 hN1�

NfR

R (5.5)

with R-charges R½L1� ¼ 2N1 � 2N2 � NfL and R½L2� ¼
�2N1 þ 2N2 � NfR. In the massless case we associate the

following combinations to supergravity fields:

I � L1L2 
 e2�i�;
L1

L2


 exp
Z
S2
ðB2 þ iC2Þ (5.6)

as in [21]. In the massive case we can construct
the dimensionless invariants �NfL1L2 and

��4N1þ4N2þNfL�NfR L1

L2
.

By a field redefinition we can take �L;R ¼ ffiffiffi
h

p
. This will

lead to a simplified form of the superpotential (5.1) which
we will use in what follows.

A. Seiberg duality, parameters and vacua

The field theory with superpotential (5.1) has a remark-
able property to be self-similar under Seiberg duality, up to
a shift of ranks. The superpotential is such that left and
right quarks become simultaneously massless on the
mesonic branch. This must be so, as quarks come from
the D3-D7 strings and what distinguishes left quarks from
right quarks is the flux on the D7s, not the embedding
equation. In fact the coefficients of quartic quark terms are
precisely such that the property that left and right flavors
become simultaneously massless is invariant under the
Seiberg duality. Besides being a map between theories,
the duality is also a map between vacua, e.g. what looks
like a simple vacuum in one description may look compli-
cated in another. We analyze here such issues.
Consider the superpotential W0 (5.1). We perform a

Seiberg duality on the right node SUðN2Þ. The mesons are

M� _� ¼ 1

�
A�B _�; N� ¼ 1

�
A�QR;

~N _� ¼ 1

�
~QRB _�; � ¼ 1

�
~QRQR;

(5.7)

and the dual quarks are

A�!c�; B _�!d _�; ~QR! r; QR! ~r: (5.8)

The magnetic gauge group is SUð2N1 þ NfR � N2Þ. The
magnetic superpotential is W0, written in terms of the
magnetic variables, plus the extra terms M� _�d

_�c� þ
N�~rc

� þ ~N _�d
_�rþ�~rr. On a branch of the moduli space

where the fields M� _�, N�, ~N _�, � are massive, they can be

TABLE I. Basis for the global Abelian symmetries.

Uð1ÞA Uð1ÞB Uð1ÞQL
Uð1Þ ~QL

Uð1ÞQR
Uð1Þ ~QR

Uð1ÞR gUð1ÞR
A 1 0 0 0 0 0 1 1=2
B 0 1 0 0 0 0 1 1=2
QL 0 0 1 0 0 0 1 1=2
~QL 0 0 0 1 0 0 1 1=2
QR 0 0 0 0 1 0 1 1=2
~QR 0 0 0 0 0 1 1 1=2
h �2 �2 0 0 0 0 �2 0

�L 0 0 �1 �1 0 0 �1 0

�R 0 0 0 0 �1 �1 �1 0

� 0 0 0 0 0 0 1 1

�b1
1 2N2 2N2 NfL NfL 0 0 2N1 2N1 � 2N2 � NfL

�b2
2 2N1 2N1 0 0 NfR NfR 2N2 �2N1 þ 2N2 � NfR
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integrated out via their F-term equations. We thus obtain
the superpotential in the dual magnetic theory

Wmag¼ 1

�2h
ðc1d1c2d2�c1d2c2d1Þ

þ 1

�
~QL

�
d1c1þd2c2þ�

ffiffiffi
h

p
�
�
QL�h

2
~QLQL

~QLQL

þ 1

�2h
~r
�
c1d1þc2d2þ�

ffiffiffi
h

p
�
�
rþ 1

2�2h
~rr~rr;

where a constant term has been dropped. We can now
redraw the quiver, flipping it horizontally and performing
a further field redefinition

c� ¼ ���
ffiffiffiffiffiffiffi
�h

p
a� ~r ¼

ffiffiffiffiffiffiffi
�h

p
~qL

~QL ¼ ~qRd
_� ¼ �� _� _�

ffiffiffiffiffiffiffi
�h

p
b _�

r ¼
ffiffiffiffiffiffiffi
�h

p
qL QL ¼ qR:

(5.9)

The resulting superpotential

Wmag ¼ hða1b1a2b2 � a1b2a2b1Þ
� h~qL

�
a1b1 þ a2b2 � �ffiffiffi

h
p

�
qL þ h

2
~qLqL~qLqL

� h~qR

�
b1a1 þ b2a2 � �ffiffiffi

h
p

�
qR � h

2
~qRqR~qRqR

(5.10)

is manifestly identical to the initial one (5.1). Notice that
the flip exchanges both the gauge ranks and the number of
flavors NfR and NfL.

To conclude, we can map mesonic gauge-invariant op-
erators with respect to the dualized node from the electric
theory to the magnetic one:

b _�a� ¼ A�B _� � �� _�QL
~QL ~qLa� ¼ ��

_�
�
~QRB _�

qR ¼ QL ~qLqL ¼ ~QRQR � �ffiffiffi
h

p 1NfR

b _�qL ¼ � _�
�Q�QR ~qR ¼ ~QL: (5.11)

When a Seiberg duality is performed on the left node, the
same formulas hold by exchanging the electric with the
magnetic theory.

Let us now look at the real operators in the bottom
component of current supermultiplets. To simplify the

discussion, consider SQCDnc;nf with quarks Q, ~Q and

baryons B ¼ Qnc , ~B ¼ ~Qnc . The dual description
SQCDnf�nc;nf has quarks q, ~q and baryons b ¼ qnf�nc ,

~b ¼ ~qnf�nc . The map b ¼ �nf�2ncB � �, and similarly for
tilded quantities, implies the following map for the bot-
tom component of the baryonic current multiplet at weak
coupling:

1

nc
ðjQ2j � j ~Q2jÞ ¼ 1

nf � nc
ðjq2j � j~q2jÞ:

Now consider dividing the quarks into two groups: Q !
ðQR;PÞ in number ðnfR; nf � nfRÞ (and similarly for

tilded quarks). This amounts to considering a subgroup
of the global symmetry SUðnfÞ ! SUðnfRÞ � SUðnf �
nfRÞ �Uð1Þaux, and defines a splitting of the dual quarks

q ! ðqR; pÞ. From Uð1Þbaryon and Uð1Þaux, we can con-

struct a symmetry Uð1ÞfR that only gives charge �1 to

QR, ~QR, respectively. From the charges of quarks and
dual quarks we get the map

1

nfR
ðjQ2

Rj � j ~Q2
RjÞ ¼ �nf � nc � nfR

nfRðnf � ncÞ ðjq2Rj � j~q2RjÞ

þ 1

nf � nc
ðjp2j � j~p2jÞ:

If we now translate that relation in terms of our quiver,
we obtain for the bottom components of the current
supermultiplets of Uð1ÞfL;R in the electric description:

j ~Q2
Lj� jQ2

Lj ¼ j~q2Rj� jq2Rjð2N1�N2þNfRÞðj ~Q2
Rj� jQ2

RjÞ
¼ ð2N1�N2Þðj~q2Lj� jq2LjÞþNfRðja2j� jb2jÞ:

(5.12)

B. The classical moduli space

We start our quest of understanding the moduli space
with the classical analysis by finding the space of solutions
of the F-term and D-term equations, modded out by gauge
equivalences. The F-term equations are

0 ¼ B1A2B2 � B2A2B1 � B1QL
~QL �QR

~QRB1

0 ¼ B2A1B1 � B1A1B2 � B2QL
~QL �QR

~QRB2

0 ¼ A2B2A1 � A1B2A2 �QL
~QLA1 � A1QR

~QR

0 ¼ A1B1A2 � A2B1A1 �QL
~QLA2 � A2QR

~QR

0 ¼
�
A1B1 þ A2B2 �QL

~QL � �ffiffiffi
h

p
�

QL ¼ ~QL

�
A1B1 þ A2B2 �QL

~QL � �ffiffiffi
h

p
�

0 ¼
�
B1A1 þ B2A2 þQR

~QR � �ffiffiffi
h

p
�

QR ¼ ~QR

�
B1A1 þ B2A2 þQR

~QR � �ffiffiffi
h

p
�

(5.13)

while the D-term equations following from the canonical
Kähler potential (at the classical level we disregard cor-
rections to the Kähler potential) are
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	11N1
¼ A�A

y
� � By

_�B _� þQLQ
y
L � ~Qy

L
~QL

	21N2
¼ B _�B

y
_� � Ay

�A� þQRQ
y
R � ~Qy

R
~QR:

(5.14)

Here, 	1;2 are free parameters to be determined. If the

global symmetries Uð1Þ1;2 defined in (5.6) are gauged,

then 	1;2 become FI terms. In general, only one linear

combination of 	1;2 can be turned on such that the equa-

tions above are satisfied and supersymmetry is preserved,
and wewill later specify which linear combination depend-
ing on the branch of the moduli space. In the following we
use the notations for the (deformed) conifold introduced in
Sec. II B

C � ¼ fdet
_��
w _�� ¼ �g: (5.15)

The classical moduli space has an intricate structure that
we summarize here. First, there aremesonic directionswhere

A�, B _� take VEV with 	1;2 ¼ 0 and QL;R ¼ ~QL;R ¼ 0. For
suitable choices of N1, N2 there can be a baryonic direction

where A�, B _� take VEV with 	1;2 � 0 while still QL;R ¼
~QL;R ¼ 0. These two branches are essentially the same as

in the unflavored theory. Second, there are instanton-like

directions, when VEVs of QL;R, ~QL;R partially break the

gauge group while preserving N1 � N2. This time, QL;R,
~QL;R have moduli and these branches are continuously

connected with the mesonic/baryonic directions. Finally,
there are Higgsed mesonic directions (only for � � 0)

when QL;R, ~QL;R take VEV and break the gauge group

SUðN1Þ � SUðN2Þ to two smaller SU factors and changing
the difference N1 � N2. These vacua are disconnected from
the previous ones. For both Higgsed mesonic and instanton-
like directions, the low-energy theory with the unbroken
gauge group usually sits in a mesonic vacuum although in
certain cases the parameters 	1;2 can be turned on as well.

Mesonic directions. Up to gauge transformations, the
mesonic vacua are

A� ¼

Að1Þ
�

. .
.

AðpÞ
�

0 . . . 0

..

. ..
.

0 . . . 0

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
BT

_� ¼

Bð1Þ
_�

. .
.

BðpÞ
_�

0 . . . 0

..

. ..
.

0 . . . 0

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
X
�

jAðaÞ
� j2 �X

_�

jBðaÞ
_� j2 ¼ 0 8 a (5.16)

and QL ¼ ~QL ¼ QR ¼ ~QR ¼ 0. Here we assumed
M ¼ N1 � N2 > 0.

At a generic point on the moduli space the gauge group
SUðMþ pÞ � SUðpÞ is broken to SUðMÞ �Uð1Þp�1 �
Weyl (for M> 0). The Uð1Þ factors are diagonally

embedded, SUðMÞ 	 SUðN1Þ and the Weyl group per-
mutes the Uð1Þs. The moduli are characterized by the
coordinates

wa
_�� � ffiffiffi

h
p

BðaÞ
_� AðaÞ

� (5.17)

(
ffiffiffi
h

p
inserted for convenience) which satisfy

det _��w
a
_�� ¼ 0. This gives a symmetric product (because

of the Weyl group) of p copies of the singular conifold

Sym pðC0Þ:
At a generic point, the low-energy spectrum contains
the SUðMÞ gauge multiplet, 3p neutral chiral multiplets
(parametrizing the moduli) and p� 1 Abelian vector
multiplets. The Uð1Þp�1 groups have Nf flavors, generi-

cally of mass
ffiffiffi
h

p ð�� Tr _��w
a
_��Þ. SUðMÞ has NfL fla-

vors of mass
ffiffiffi
h

p
�, which become massless for � ¼ 0,

and quartic superpotential. If we start from the origin of
the mesonic branch with gauge group SUðN1Þ � SUðN2Þ
and give large VEV to only one mesonic component, the
gauge group is broken to SUðN1 � 1Þ � SUðN2 � 1Þ �
Uð1Þ and Uð1Þ gauges the symmetry Uð1Þ1 �Uð1Þ2 ¼
2Uð1Þb þUð1ÞfL �Uð1ÞfR of the low-energy theory. At

the last step, where we are left with SUðMÞ andNfL flavors,

one linear combination of the Uð1Þp�1 gauges Uð1ÞfL.
We have three baryonic symmetries—Uð1Þb and

Uð1ÞfL;R—and we can gauge any linear combination. For

instance, if we gauge Uð1Þb, at low energy we get p
N ¼ 4 Abelian vector multiplets (at special points on
the mesonic branch there will be masslessN ¼ 2 flavors).
We can also add a FI term 	 � 	1 ¼ �	2. If N1 ¼ N2 ¼
N, we have SUSY vacua describing p symmetrized copies
of the resolved conifoldX

�

jAðaÞ
� j2 �X

_�

jBðaÞ
_� j2 ¼ 	 8 a; (5.18)

with QL;R ¼ ~QL;R ¼ 0. To parametrize the tip we need,

besides the mesons, the baryons (2.14). If N1 >N2, super-
symmetry is broken for Nf ¼ 0 but it might be preserved

forNf > 0 if the ranksN1, N2 allow for a Higgsed mesonic

vacuum (discussed below) whose low-energy theory is
SUð ~NÞ � SUð ~NÞ.
Let us comment here on the SUðMÞ nonperturbative

dynamics at low energies if N1 >N2. We will distinguish
between the massless and massive cases in what follows.
We start with the massless case � ¼ 0. Since SUðMÞ 	

SUðN1Þ, to get the instanton factors by scale matching
we give large VEV to N2 components of A, B. Each time
we turn on one component, the breaking pattern is
SUðN1Þ � SUðN2Þ ! SUðN1 � 1Þ � SUðN2 � 1Þ �Uð1Þ.
The SQCDnc;nf theory goes to SQCDnc�1;nf�2 as a result of

a VEV hABi and a mass term hhABi from the superpoten-
tial. In the final expression, the value of VEV cancels out
and we are left with instanton factors

FRANCESCO BENINI AND ANATOLY DYMARSKY PHYSICAL REVIEW D 85, 046004 (2012)

046004-18



�
3N1�2N2�NfL�1

1 low ¼ �
3N1�2N2�NfL

1 h;

�
3N2�2N1�NfR�1

2 low ¼ �
3N2�2N1�NfR

2 h:

Repeating N2 times, we are left with SUðMÞ with NfL

flavors, instanton factor

�3M�NfL ¼ �
3N1�2N2�NfL

1 hN2 (5.19)

and a quartic superpotential W0 ¼ h
2
~QLQL

~QLQL. The dy-

namically generated on-shell superpotential on the mes-
onic branch14 is

WeffðvacuaÞ ¼
2N1 � 2N2 � NfL

2

�ð�2ð3N1�2N2�NfLÞ
1 h2N2þNfLÞ1=ð2N1�2N2�NfLÞ:

(5.20)

In the massive case � � 0, we can discuss two different

scenarios: large or small mass
ffiffiffi
h

p
�. For large mass, we

integrate out the flavors first and obtain the instanton

factors �3N1�2N2

1 low ¼ ð ffiffiffi
h

p
�ÞNfL�

3N1�2N2�NfL

1 and

�3N2�2N1

2 low ¼ ð ffiffiffi
h

p
�ÞNfR�

3N2�2N1�NfR

2 . Then, we break

SUðN2Þ by moving on the mesonic branch, while preserv-
ing unbroken SUðMÞ 	 SUðN1Þ with instanton factor and
on-shell superpotential

�3M ¼ �
3N1�2N2�NfL

1 hN2ð ffiffiffi
h

p
�ÞNfL ;

Weff 
 ð�3MÞ1=M:
(5.21)

For small mass, we break SUðN2Þ on the mesonic
branch first and obtain a massive quartic SQCDN1�N2;NfL

with �
3ðN1�N2Þ�NfL

low ¼ �
3N1�2N2�NfL

1 hN2 . For

ð ffiffiffi
h

p
�Þ2nc�nf � �

3nc�nf
low hnc , the theory is essentially mass-

less and we recover (5.20). In the opposite limit, the theory
has vacua where SUðncÞ is broken to SUðnc � jÞ and the
on-shell superpotential is

Weff 
 ð�3nc�nf
low hj

� ffiffiffi
h

p
�
�
nf�2jÞ1=ðnc�jÞ


 ð�3N1�2N2�NfL

1 hN2þj
� ffiffiffi

h
p

�
�
NfL�2jÞ1=ðN1�N2�jÞ:

(5.22)

For j ¼ 0, we recover the vacua in (5.21). For 1 � j � nc,
we have Higgsed mesonic vacua, more precisely j blocks
with n ¼ �1 (discussed below).

Baryonic direction. These vacua are present if
N1 ¼ ðkþ 1ÞM, N2 ¼ kM. Let us first define the Upper
and Lower ðkþ 1Þ � k matrices [21]

Uk ¼

ffiffiffi
k

p
0 . . . 0 0

0
ffiffiffiffiffiffiffiffiffiffiffiffi
k� 1

p
. . . 0 0

..

. ..
. ..

. ..
.

0 0 . . .
ffiffiffi
2

p
0

0 0 . . . 0 1

0 0 . . . 0 0

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA

Lk ¼

0 0 . . . 0 0

1 0 . . . 0 0

0
ffiffiffi
2

p
. . . 0 0

..

. ..
. ..

. ..
.

0 0 . . .
ffiffiffiffiffiffiffiffiffiffiffiffi
k� 1

p
0

0 0 . . . 0
ffiffiffi
k

p

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
:

(5.23)

They satisfy the quadratic relations

UT
kUk þ LT

kLk ¼ ðkþ 1Þ1k;

UkU
T
k þ LkL

T
k ¼ k1kþ1;

Ukþ1Lk ¼ Lkþ1Uk:

(5.24)

Up to a gauge transformation the classical vacua are
given by

A1 ¼ CUk � 1M; A2 ¼ CLk � 1M;

B1 ¼ B2 ¼ 0; QL;R ¼ ~QL;R ¼ 0:
(5.25)

There is another set with A $ BT. Here, C is an
arbitrary complex number. The vacua (5.25) satisfy the
D-term equations with 	1 ¼ kjCj2, 	2 ¼ �ðkþ 1ÞjCj2
and 	1 $ �	2 when A $ BT. The branches are pa-

rametrized by either the baryon A
 ðA1A2Þkðkþ1ÞM=2

or the antibaryon B
 ðB1B2Þkðkþ1ÞM=2. The origin of
the baryonic branch touches (classically) the origin of
the mesonic branch.
For ~p � N2 modMð¼ N1 � N2Þ � 0, there is no bar-

yonic flat direction. One way to see that is to give mesonic
VEVs to ~p directions. This breaks the gauge group to
SUððkþ 1ÞMÞ � SUðkMÞ �Uð1Þ~p. Although this is very
close to the theory with the baryonic branch discussed
above, the low-energy bifundamentals are charged under
a linear combination of Uð1Þ~p. Hence, the D-term equa-
tions set C ¼ 0 and the resulting vacuum belongs to the
mesonic direction.
Instanton-like directions. This branch is the piece of

the Higgs branch continuously connected to the mesonic

14SQCDnc;nf with quartic superpotential has an intricate struc-
ture [67]. For nf < nc, the number of vacua is ð2nc � nfÞ2nf�1,
all with the same dynamical scale

Weff ¼
2nc � nf

2
ð�2ð3nc�nfÞhnf Þ1=ð2nc�nfÞ:
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directions discussed above. The vacua are in one-to-one
correspondence with a similar Higgs branch in the
N ¼ 2 case, indeed, any solution to the N ¼ 2 C2=Z2

ADHM Eqs. (3.9) with 	L
C ¼ 	R

C ¼ �=
ffiffiffi
h

p
and 	L

R ¼ 	1,

	R
R ¼ 	2 solves the N ¼ 1 Eqs. (5.13) and (5.14). Thus,

all instantons of the N ¼ 2 C2=Z2 theory are present in
the N ¼ 1 conifold theory as well, and the two spaces
have equal dimension.

The instanton-like vacua have a block diagonal form and
can be of the ‘‘Left’’ or the ‘‘Right’’ type. They are
parametrized by two integers (nc � 1, nf � 2) which de-

fine the size of the blocks:

Left : nf � nc � nc � 0; Right: 0� nc � nc � nf:

(5.26)

Moreover, solutions for the blocks exist for any choice of

	1;2. To calculate ~QQ one would need to know an explicit

solution, but the VEVof jQ2j � j ~Q2j follows immediately
from the Eqs. (5.14) and the block size:

jQ2j � j ~Q2j ¼ ncð	1 þ 	2Þ: (5.27)

Depending on the ranks of the unbroken gauge symme-
try, 	1 and �	2 can be zero, equal to each other, linearly
dependent, or arbitrary. The vacua with 	1 þ 	2 � 0 cor-
respond to the noncommutative instantons on C2=Z2 in the
N ¼ 2 case.15

The instanton-like vacua describe D3-branes dissolved
inside the D7-branes. In general the D3-branes can become
point-like instantons and leave the D7s, so these directions
touch the mesonic directions (but not the baryonic one).

Higgsed mesonic directions. Other disconnected
branches of vacua exist in which the two gauge ranks are
broken by an unequal amount. Such vacua have a block
diagonal form nLf � n1c � n2c � nRf with n

1
c � n2c, and in the

classical theory they only exist for � � 0. They are dis-
connected from the mesonic and baryonic branches dis-
cussed before, and for each value of n1c � n2c we get a
different disconnected branch.

Below we focus on the cases with nLf þ nRf ¼ 1, which

correspond to the Abelian instantons (the more general
directions are obtained by ‘‘adding’’ non-Abelian instan-

tons). In this case, either QL, ~QL or QR, ~QR acquire VEV
and this generically forces A�, B _� to acquire VEVas well.
We parametrize the blocks by an integer r 2 Z, and their
dimension is (compare with (3.13) and (3.14))

Left : 1� r2 � rðr� 1Þ � 0

Right: 0� rðrþ 1Þ � r2 � 1:
(5.28)

The case r ¼ 0 coincides with the mesonic flat directions.
The quivers (5.28) can be obtained from the r ¼ 0 case via
a chain of Seiberg dualities discussed in Sec. VI.
Notice that the left gauge rank minus the right gauge

rank equals r, and there is a symmetry that flips left and
right and maps r ! �r. We can parametrize both left and
right blocks by an integer n 2 Z defined as

n ¼
�
2r� 1 left

2r right
, r ¼

�
nþ 1

2

�
�
; (5.29)

where ½x�� is the highest integer equal or smaller than x.
For r � 0, signn ¼ signr. The number n is what appears in
the supergravity description. The blocks contain coeffi-
cients a1; . . . ; aK�1, and we will define K such that
formally aK � 0. The left blocks for r � 1 (1� r2 �
rðr� 1Þ � 0) are given by

A1 ¼ ��

a1U
T
1 0 . . .

a2L2 a3U
T
3 . . .

0 a4L4 . . .

..

. ..
. . .

.

0BBBBBB@

1CCCCCCA

BT
1 ¼ ��

a1U
T
1 0 . . .

�a2L2 a3U
T
3 . . .

0 �a4L4 . . .

..

. ..
. . .

.

0BBBBBB@

1CCCCCCA

A2 ¼ ��

a1L
T
1 0 . . .

�a2U2 a3L
T
3 . . .

0 �a4U4 . . .

..

. ..
. . .

.

0BBBBBB@

1CCCCCCA

BT
2 ¼ ��

a1L
T
1 0 . . .

a2U2 a3L
T
3 . . .

0 a4U4 . . .

..

. ..
. . .

.

0BBBBBB@

1CCCCCCA
~QL ¼ QT

L ¼ � 1 0 . . . 0
	 


;

~QR ¼ QR ¼ 0:

(5.30)

The unknowns16 are a1; . . . ; a2r�2, �, �, and K ¼ 2r� 1.
The right blocks for r � 1 (0� rðrþ 1Þ � r2 � 1) are
given by

15Although the field theory of Sec. III A admits 	1 þ 	2 � 0
only when all gauge symmetry is broken, in the conifold theory
more general situations are possible, for instance, 	1 þ 	2 � 0 is
found on the baryonic branch.

16The number of unknowns is really one less, because we could
reabsorb � into aj. We will fix this redundancy later.
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A1 ¼ ��

a1U1 a2L
T
2 0 . . .

0 a3U3 a4L
T
4 . . .

0 0 a5U5 . . .

..

. ..
. ..

. . .
.

0BBBBBB@

1CCCCCCA

BT
1 ¼ ��

�a1U1 a2L
T
2 0 . . .

0 �a3U3 a4L
T
4 . . .

0 0 a5U5 . . .

..

. ..
. ..

. . .
.

0BBBBBB@

1CCCCCCA

A2 ¼ ��

�a1L1 a2U
T
2 0 . . .

0 �a3L3 a4U
T
4 . . .

0 0 �a5L5 . . .

..

. ..
. ..

. . .
.

0BBBBBB@

1CCCCCCA

BT
2 ¼ ��

a1L1 a2U
T
2 0 . . .

0 a3L3 a4U
T
4 . . .

0 0 a5L5 . . .

..

. ..
. ..

. . .
.

0BBBBBB@

1CCCCCCA
~QL ¼ QL ¼ 0;

~QR ¼ QT
R ¼ � 1 0 . . . 0

	 

:

(5.31)

The unknowns are a1; . . . ; a2r�1, �, �, and K ¼ 2r. The
blocks of one kind with r � �1 are obtained from the
blocks of the other kind with r � 1 by taking the transpose

of A�, B _� and exchanging QL $ QR, ~QL $ ~QR. The left
blocks for r � �1 (1� jrj2 � jrjðjrj þ 1Þ � 0) have
a1; . . . ; a2jrj�1 and K ¼ 2jrj. The right blocks for r � �1
(0� jrjðjrj � 1Þ � jrj2 � 1) have a1; . . . ; a2jrj�2 and

K ¼ 2jrj � 1. In all cases, r � 0 the number of aj’s is

jnþ 1
2 j � 3

2 while K ¼ jnþ 1
2 j � 1

2 .

The D-term equations are solved by arbitrary aj. From

the F-terms we get equations that fix aj’s through the

recursive relation

0 ¼ ja2j � a2jþ1 � ðjþ 3Þa2jþ2 for

j ¼ 1; . . . ; K � 2; aK � 0:
(5.32)

With some choice of normalization the solution is

a2j ¼
ð2K þ 1Þ � ð�1ÞjþKð2jþ 1Þ

jðjþ 1Þ (5.33)

and all aj’s are positive. The other unknowns are give by

�2 ¼ signðrÞ
a21 þ 3a22

¼ 1

4r
;

�2 ¼ ð�1Þnþ1 �ffiffiffi
h

p a21 þ 3a22
a21 � 3a22

¼ � �ffiffiffi
h

p r:

(5.34)

From here we can extract the VEVof the quark bilinear

~Q iQi ¼ �2 ¼ � �ffiffiffi
h

p r; (5.35)

where i ¼ L, R depending on the block, while

jQ2j � j ~Q2j ¼ 0.
Let us note that the explicit solutions above and the ones

in Appendix A 1 (discussed below) also solve the N ¼ 2
C2=Z ¼ 2 ADHM Eqs. (3.9).

The Higgs vacua break the theory at scale ð�=
ffiffiffi
h

p Þ1=2.
Each block reduces color and flavor ranks according to its
dimension (5.28). Below the breaking scale the low-energy
theory SUð ~N1Þ � SUð ~N2Þ can have mesonic or, if ~N2 ¼
kð ~N1 � ~N2Þ, baryonic directions. In the massless � ¼ 0
case, all these vacua collapse to the origin of the mesonic
directions, i.e. since �2 
� all fields are zero. We will see
that in the quantum theory the vacua described above do
not degenerate in the � ! 0 limit and survive as
independent.
Finally, the Higgsed mesonic vacua correspond to D3

and D5-branes dissolved in the D7s. Because of the D5s,
these vacua are not continuously connected with the mes-
onic/baryonic directions.
Higgsed mesonic directions with resolution. The

Higgsed blocks discussed above can be modified to solve
the vacuum equations with generic parameters 	1 and 	2.
Possible constraints on 	1;2 will come from the remaining

components of the D-term equations along the directions
with unbroken gauge symmetry. The explicit solutions
generalizing (5.30) and (5.31) can be found in

Appendix A 1. However, the VEV of jQ2j � j ~Q2j follows
directly from (5.14) and the size of the blocks:

L: Qy
LQL � ~QL

~Qy
L ¼ r2	1 þ rðr� 1Þ	2;

R: Qy
RQR � ~QR

~Qy
R ¼ rðrþ 1Þ	1 þ r2	2:

(5.36)

Notice that the result is independent of �, and indeed such
vacua remain nontrivial in the � ! 0 limit.
If the unbroken gauge group is SUðNÞ � SUðNÞ, one

can turn on 	1 ¼ �	2 in the low-energy theory causing
the VEV

QyQ� ~Q ~Qy ¼ r	1: (5.37)

If it is SU½ðkþ 1ÞM� � SUðkMÞ, the low-energy theory
develops a baryonic branch with ðkþ 1Þ	1 ¼ �k	2 and
the VEV

L: Qy
LQL � ~QL

~Qy
L ¼ r2 � ðkþ 1Þr

kþ 1
	2

R: Qy
RQR � ~QR

~Qy
R ¼ r2 � kr

kþ 1
	2:

(5.38)

Let us comment on k-dependence in (5.38). Different k
values correspond to different steps along the cascading
RG flow of the same theory, therefore, well-defined physi-
cal quantities should not depend on k. The reason why
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(5.38) is k-dependent is that the definitions of Uð1ÞfL and

Uð1ÞfR are not invariant under Seiberg duality—as we saw

in Sec. VA—the precise relation being (5.12). It is a simple
exercise to show that the VEVs (5.38) are a consequence
of the map (5.12). In short, as we go up in energy and
perform a Seiberg duality on the right node, kup ¼ kþ 1
and nup ¼ nþ 1 (exchanging right and left flavors).
Moreover 	

up
2 ¼ kþ2

kþ1	2, as follows analyzing the theory

below the Higgsing scale.

C. Quantum moduli space: 2N2 þNfL < N1

Here we start analyzing how quantum corrections mod-
ify the moduli space. In this and the following sections we
will consider M � 0. The case M< 0 is obtained by
flipping the quiver. The quantum moduli space depends
on the gauge ranks and number of flavors. We start with
2N2 þ NfL < N1, in which case there are no baryonic

directions. The left node goes to strong coupling in the
IR while the right node goes to weak coupling. The left
node is parametrized by its mesons

M ¼
B1A1 B1A2 B1QL

B2A1 B2A2 B2QL

~QLA1
~QLA1

~QLQL

0BB@
1CCA

¼
M11 M12 N1

M21 M22 N2

~N1
~N2 �

0BB@
1CCA: (5.39)

First, we study the dynamics of the left node alone as if
the right node had zero coupling, and then we gauge the
SUðN2Þ group and introduce the corresponding D-term
equations.
Along the moduli space of the left node there is a

dynamically generated Affleck-Dine-Seiberg (ADS)
superpotential [68]

WADS ¼ ðN1 � 2N2 � NfLÞ
�
�

3N1�2N2�NfL

1

detM

�
1=ðN1�2N2�NfLÞ

:

(5.40)

The total effective superpotential is a sum of two terms
Weff ¼ WADS þW0,

W0¼Tr

�
hðM12M21�M11M22Þ�h

�
~N1N1þ ~N2N2� �ffiffiffi

h
p �

�
þh

2
�2�h ~QR

�
M11þM22� �ffiffiffi

h
p

�
QR

�h

2
~QRQR

~QRQR

�
: (5.41)

It will be convenient to introduce a matrixN , equal to the
variation of the classical superpotential with respect to the
mesons

N ij � @W0

@Mji

¼ �h

M22 þQR
~QR �M12 N1

�M21 M11 þQR
~QR N2

~N1
~N2 � �ffiffi

h
p 1��

0BB@
1CCA: (5.42)

The F-term equations therefore are

N ¼
�
�

3N1�2N2�NfL

1

detM

�
1=ðN1�2N2�NfLÞ

M�1; (5.43)

0 ¼
�
M11 þM22 þQR

~QR � �ffiffiffi
h

p
�
QR

¼ ~QR

�
M11 þM22 þQR

~QR � �ffiffiffi
h

p
�
: (5.44)

Calling �� the factor on the right-hand side of the first
equation and multiplying byM on the left and on the right
we get MN ¼ NM ¼ ��12N2þNfL

. This is a counter-
part of the classical F-term equation with a dynamically
generated term. Since the right-hand node is IR free it has a
canonical Kähler potential and the D-term equation is

½M _��;M
y
_���þN _�N

y
_�
� ~Ny

�
~N�þQRQ

y
R� ~Qy

R
~QR ¼ 	21N2

:

(5.45)

The solutions to these equations form a quantum de-
formed version of the mesonic and Higgsed mesonic di-
rections of Sec. VB. They have the same block diagonal
form, each block describing dissolved D3- and D5-branes.
To illustrate how it works we will find the solutions for the
quantum counterparts of the ‘‘Left’’ and ‘‘Right’’ Abelian
Higgs vacua (5.28) (excluding some special cases, the
generic non-Abelian instanton-like directions cannot be
presented in a closed form)

Left : 1� rðr� 1Þ � 0; Right: 0� r2 � 1: (5.46)

Here the ranks refer to UðNfLÞ � SUðN2Þ �UðNfRÞ while
SUðN1Þ is confined. The explicit form of the matrices, for
	2 ¼ 0, is given in Appendix A 2.
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The blocks 0� 1� 0 that correspond to the mesonic
directions along the Coulomb branch (representing mobile
D3-branes) only have VEVs of the mesons M _�� which
satisfyM11M22 �M12M21 ¼ �=h. In terms of the complex
coordinates wa

_�� (5.17), we have

det
_��
wa

_�� ¼ �: (5.47)

The D3-branes move on a deformed conifold with the
deformation parameter �. We are particularly interested
in the quark bilinear. In the ‘‘Left’’ and ‘‘Right’’ cases it
is given by

� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2=4� �

h

s
ð2r� 1Þ � �

2
ffiffiffi
h

p ; or

~QRQR ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2=4� �

h

s
2r;

(5.48)

where the branch cut has been chosen to match the � ! 0
limit of section VB. Finally, we determine �. In the mass-
less case � ¼ 0, all 2N2 þ NfL components of M are of

order
ffiffiffiffiffiffiffiffi
�=h

p
implying

�
 ð�2ð3N1�2N2�NfLÞ
1 h2N2þNfLÞ1=ð2N1�2N2�NfLÞ; (5.49)

which agrees with the semiclassical computation (5.20).
This result does not depend on the particular Higgsed
vacuum. For large mass �2 � � and in the trivial vacuum

M has 2N2 components of order
ffiffiffiffiffiffiffiffi
�=h

p
and NfL of order

�=
ffiffiffi
h

p
, so that

�
 ð�3N1�2N2�NfL

1 hN2ð ffiffiffi
h

p
�ÞNfLÞ1=ðN1�N2Þ; (5.50)

which agrees with the semiclassical result (5.21). It is also
possible to find the solutions to (5.43), (5.44), and (5.45) for
generic values of 	2, as is done in Appendix A 3. The
corresponding VEVs in the ‘‘Left’’ and ‘‘Right’’ cases areX

_�

jN2
_�j �

X
�

j ~N2
�j ¼ rðr� 1Þ	2; or

jQ2
Rj � j ~Q2

Rj ¼ r2	2:
(5.51)

Both agree with the semiclassical computation (5.38) for
k ¼ 0, which makes perfect sense as we are considering
the IR theory which corresponds to the last step of the

cascade. The VEVs of the chiral operators ~QRQR and �
are independent of 	2.

D. Quantum moduli space: 2N2 þNfL � N1

When 2N2 þ NfL � N1 we have to consider three dif-

ferent cases.
Case 2N2 þ NfL ¼ N1. The left-hand node, which runs

to strong coupling in the IR, has baryons and a quantum
deformed moduli space, while the right-hand node is IR

free. We construct the baryons A ¼ A2N2Q
NfL

L , B ¼
B2N2 ~Q

NfL

L which are singlets of SUðN2Þ and SUð2ÞAB.

The quantum deformed moduli space is described by the
superpotential

W ¼ W0 þ XðdetM�AB��2N1

1 Þ; (5.52)

where X is a Lagrange multiplier. Besides the constraint

detM�AB ¼ �2N1

1 , we also get the F-term equations
0 ¼ N þ XðdetMÞM�1, 0 ¼ XA ¼ XB together with
(5.44).
There are two separate branches. The mesonic branch

(characterized by X � 0) where A ¼ B ¼ 0 and there-

fore detM ¼ �2N1

1 . The solutions along this branch are
the same as in the previous section (with the identification
� ¼ X detM). The dynamically generated scale � follows
the same formulas: (5.49) in the massless case, and (5.50)
in the case of large mass and trivial vacuum.
The baryonic branch is characterized by A, B � 0,

while X ¼ 0 and N ¼ 0.17 In particular, M12 ¼ M21 ¼
N _� ¼ ~N� ¼ 0, M11 ¼ M22 ¼ �QR

~QR, and � ¼ � �ffiffi
h

p 1.

The D-term equations and (5.44) force the eigenvalues of
M11 to be either 0 or � �ffiffi

h
p , with rank M11 � NfR. For

NfR < N2—which will be our focus18—this also implies

detM ¼ 0 and therefore AB ¼ ��2N1

1 . Let us compute

the dynamically generated scale in the massless case.
Above the scale �1, the second group SUðN2Þ has 2N1 �
NfR flavors and the instanton factor �

3N2�2N1�NfR

2 ¼
�

�N2�2NfL�NfR

2 . Because of confinement of SUðN1Þ below
the scale �1 it has 4 adjoints and 2NfL þ NfR flavors

(plus singlets), and the same instanton factor. All mesons
receive mass h�2

1, therefore the low-energy theory is a
quartic SQCDN2;NfR

with the instanton factor

�
8N2þ4NfL

1 �
�N2�2NfL�NfR

2 h4N2þ2NfL and an effective super-
potential

Weff 
 ð�16N2þ8NfL

1 �
�2N2�4NfL�2NfR

2

� h8N2þ4NfLþNfRÞ1=ð2N2�NfRÞ: (5.53)

Case 2N2 þ NfL ¼ N1 þ 1. The moduli space of the

strongly coupled left-hand node is described by mesons

and baryons with a superpotential. The baryons �A and �B
are in the fundamental and antifundamental representation
of the flavor group Uð2N2 þ NfLÞ, and we can decompose

them as �A ¼ ðA�; ~F Þ and �B ¼ ðB _�;F Þ, respectively.
The superpotential is

17The matrix ðdetMÞM�1 is the matrix of cofactors of M and
therefore is a smooth function of M.
18For instance, for NfR ¼ N2 there are vacua with j detMj ¼
ð�=

ffiffiffi
h

p Þ2N2þNfL . By suitably tuning � one could obtain
AB ¼ 0, that is no deformation. Indeed, this corresponds
in supergravity to a configuration with singular D7 embedding
�2 ¼ �.
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W ¼ W0 � 1

�
3N1�2N2�NfL

1

ðdetM� �BM �AÞ: (5.54)

The F-term equations are N ¼ �
�ð3N1�2N2�NfLÞ
1

ðM�1 detM� �A �BÞ, 0 ¼ M �B ¼ �AM and (5.44).
The moduli space has two separate branches. On the

mesonic branch detM � 0, therefore �A ¼ �B ¼ 0 and

N ¼ detM

�
3N1�2N2�NfL
1

M�1. The solutions have been described

in Sec. VC, and the scale � is as in (5.49) and (5.50).

There is another branch where �A, �B � 0 and
detM ¼ 0. The F-term equation set

N ¼ � 1

�
3N1�2N2�NfL

1

�A �B : (5.55)

In particular, defining A� ¼ ���A�, B _� ¼ � _� _�B
_�,

we have

M _�� þ � _��QR
~QR ¼ h

�
3N1�2N2�NfL

1

A�B _�;

N _� ¼ h

�
3N1�2N2�NfL

1

� _��A�F ;

� �ffiffiffi
h

p 1�� ¼ ~FF ;

~N� ¼ h

�
3N1�2N2�NfL

1

�� _�
~FB _�;

(5.56)

which formally coincide with (5.11). The superpotential
has the form

W 
 1

h�
3N1�2N2�NfL

1

½det
� _�

A�B _� þ . . .�;

where the missing terms reproduce W0. We get a

N̂fL � N̂1 � N̂2 � N̂fR theory but with ranks

NfR � N2 � 1� NfL:

If 2þ NfR < N2 we can borrow the results from

Sec. V C. Let us consider the � ¼ 0 case. First, we
need to match the scales. To that end we canonically

normalize the baryons �̂A ¼ �A=�N1�1
1 , �̂B ¼ �B=�N1�1

1

getting the coefficient in front of the superpotential

ĥ ¼ 1=ðh�2
1Þ. Then, we match the scale of SUðN2Þ.

Above �1 it has the instanton factor �
3N2�2N1�NfR

2 .

Below �1 it has 4 adjoints and 2þ 2NfL þ NfR fun-

damentals, with the instanton factor �
�N2�2NfL�NfR

low 

�

3N2�2N1�NfR

2 ��4
1 . The 4 adjoints and 2NfL fundamen-

tals get mass h�2
1, so that the scale of the SUðN2Þ

factor is

�̂
3N2�2�NfR

1 
�
8N2þ4NfL�4

1 �
�N2�2NfL�NfRþ2

2 h4N2þ2NfL :

Eventually, we can plug the hatted quantities in (5.49):

�
 ð�2ð8N2þ4NfL�NfR�6Þ
1 �

2ð�N2�2NfL�NfRþ2Þ
2

� h8N2þ4NfLþNfR�2Þ1=ð2N2�2�NfRÞ: (5.57)

Case 2N2 þ NfL > N1 þ 1. All the remaining cases are

very similar to the previous one. First, the mesonic branch
of the SUðN1Þ node (which might or might not be strongly
coupled) is described by the effective Affleck-Dine-
Seiberg superpotential (5.40). Considering Weff ¼
W0 þWADS plus the D-term equations of SUðN2Þ we get
the same type of solutions—(Higgsed) mesonic direc-
tions—as in Sec. VC. The deformation scale is again given
by (5.49) or (5.50).
The analysis above however does not exhaust all sets of

vacua. To find the remaining ones, we dualize the SUðN1Þ
node to a SUð2N2 þ NfL � N1Þ gauge group with mesons

M, dual quarks Â, B̂ and a superpotential

W ¼ W0 þ 1

�
B̂MÂ;

where W0 is expressed in terms of M and QR, ~QR, and
the role of the scale � is explained in [69]. For generic
values of M the dual quarks are massive, the SUð2N2þ
NfL�N1Þ group can be integrated out and we reproduce

Weff ¼ W0 þWADS and the mesonic branch above.
On the other hand, if we integrate out the massive

mesons as in Sec.19 VA, we reproduce the same theory
but with different ranks

NfR � N2 � ð2N2 þ NfL � N1Þ � NfL:

This theory has its own (Higgsed) mesonic vacua, plus
possibly other vacua obtained by further dualizations.
Notice that in the process the quiver is flipped, and mesonic
operators are mapped as in (5.11). Therefore, a vacua

labeled by n̂ in the dual theory has a VEV for ~QQ corre-
sponding to n ¼ n̂þ 1. We will see in Sec. VI what is the
supergravity counterpart of this fact.
To get the dynamically generated scale on the mesonic

vacua we proceed to match the scales. The left-hand

node SUðN1Þ is dualized to SUðN̂2Þ, with N̂2 ¼ 2N2þ
NfL � N1. Choosing the normalization scale � ¼ �1,

we simply have �̂2 ¼ �1. Integrating out the mesons

and rewriting the superpotential in terms of Â, B̂, we get

ĥ ¼ 1=h�2
1. The right-hand node SUðN2Þ is untouched, so

that N̂1 ¼ N2. However, its dynamical scale gets modified.

Above the scale �1 its instanton factor is �
3N2�2N1�NfR

2 .
Below the scale �1 the gauge group has 4 adjoints and
4N2 þ 4Nfl � 2N1 þ NfR flavors, with the instanton

factor �
2N1�5N2�4NfL�NfR

low 
�
3N2�2N1�NfR

2 �
4ðN1�2N2�NfLÞ
1 .

19In Sec. VA, we dualized the right-hand node, going ‘‘up in
energy,’’ and then flipped the quiver. Proceeding backwards we
go ‘‘down in energy,’’ as here. Besides, we used a different
normalization of the mesons M.
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The adjoints and 2NfL fundamentals get mass h�2
1, so that

the low-energy SUðN̂1Þ group has an instanton factor

�̂
2N1�N2�2NfL�NfR

1 
 h4N2þ2NfL�4N1

1 �
3N2�2N1�NfR

2 :

Bringing them all together, we have

N̂fL ¼ NfR; N̂1 ¼ N2;

N̂2 ¼ 2N2 þ NfL � N1; N̂fR ¼ NfL; ĥ ¼ 1

h�2
1

;

�̂
2N1�N2�2NfL�NfR

1 
 h4N2þ2NfL�4N1

1 �
3N2�2N1�NfR

2 ;

�̂2 ¼ �1: (5.58)

One could now plug these values in (5.49), for instance, to
obtain the deformation parameter in the vacua of the theory
dualized once. Proceeding in the same way, one could
obtain � in all other vacua of the theories dualized multiple
times (unfortunately we could not find a closed formula).
Notice, in particular, that at each dualization the parame-
ters of the low-energy theory are related to those of the
high energy theory by

Î ¼ I

ðh�1ÞNfR
; L̂1 ¼ L1I

ðh�1ÞNfR
: (5.59)

VI. COMPARISON: SUPERGRAVITY
VS ELD THEORY

The map between the supergravity solutions presented
in Sec. III and the vacua of the field theories discussed in
Sec. V starts with the UV identification. The parameters
that identify the field theory, at some energy scale, are the
gauge ranks N1;2 and the number of flavors NfL;R. In

supergravity one can compute the Page charges QD3,
QD5, count the number NfðrÞ of D7-branes (we will sup-

press the dependence on r in the following), and measure
the Wilson line 
̂ at some cutoff radius representing the
UV scale.

The relation between the supergravity charges and the
field theory ranks is found with a dictionary. The mutually
BPS probe branes on the conifold are two types of frac-
tional D3-branes (a D5-brane wrapped on the conifold’sS2

and an anti-D5-brane on S2 with�1 units of worldvolume
flux F), each giving rise to one color (vector multiplet) in
the quiver, and two types of fractional D7-branes (both
wrapping the S2, one without and one with �1 units of
worldvolume flux), each giving rise to one flavor (hyper-
multiplet). The fact that the D7 without flux gives one
flavor coupled to the right-hand node (and vice versa)
was first observed in the C2=Z2 N ¼ 2 orbifold case in
[64] (see our Sec. III A). In the conifold case this matches
with the expected RG flow (Sec. VI C). The Page charges
for different D-branes are

D31 D32 D7fL D7fR

QD3 0 1 1
4 0

QD5 1 �1 � 1
2 0

QD7 0 0 1 1

: (6.1)

The charges of the D7s follow from (3.69) and (3.71) (we
neglected gravitational corrections, as we did in Sec. IV).
The map is then

NfL ¼ Trð1� 
̂Þ=2 QD3 ¼ N2 þ 1

4
NfL

N1 ¼ QD3 þQD5 þ 1

4
NfL NfR ¼ Trð1þ 
̂Þ=2

QD5 ¼ N1 � N2 � 1

2
NfL N2 ¼ QD3 � 1

4
NfL (6.2)

and we also define Nf ¼ NfL þ NfR.

This dictionary identifies the field theory description at
some energy scale. It is valid only if the NSNS potential b
defined after Eq. (2.11) is in the range b 2 ½0; 1�.20 If this
condition is not met, we can perform a large gauge trans-
formation b ! b� ½b�� which however shifts the Page
charges.
Let us compute (see Appendix ) how Page charges shift

under a large gauge transformation B ! Bþ �0�!2, i.e.
b ! bþ 1

Q0
D5 ¼ QD5 �

Nf

2
; Q0

D3 ¼ QD3 �QD5 þ
Nf

4
: (6.3)

Since F ¼ P½B� þ 2��0F is gauge-invariant, the large
gauge transformation shifts F ! F� 1

2P½!2� and it af-

fects the Wilson lines 
̂ ! �
̂. We can then compute the
modification of gauge theory ranks associated with such a
shift. Using (6.2) we find that the theory with ranks
ðNfL; N1; N2; NfRÞ is mapped to one with ðNfR;N2; 2N2 þ
NfL � N1; NfLÞ. It is known [16,61,70] that a large gauge

transformation in the bulk corresponds to a Seiberg dual-
ity in field theory. Indeed, the shift of ranks agrees with
Seiberg duality on the SUðN1Þ IR strongly coupled node
and a flip of the quiver. Further evidence of our dictionary
between the Page charges and the ranks comes from the
study of the RG flow in Sec. VI C.
We have identified the field theory (more precisely, the

effective description at some energy scale) dual to the
gravity background. Now we want to identify the correct
vacuum using the following argument. Consider the
background with D7-branes, no worldvolume flux and 0<
b< 1. Such a configuration corresponds to the field theory

20If the B-field is outside the range [0, 1], the mutually BPS
fractional branes of minimal tension are not the ones used to
derive the dictionary, and the dictionary is not correct (e.g. the
holographic formulas do not give real-valued gauge couplings).
One possibility is to construct a corrected dictionary, another is
to perform a large gauge transformation of B, as proposed in the
text.
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with flavors on the right in its trivial vacuum with
~QRQR ¼ 0.21 Let us now crank up the value of b, that is
we change the gauge couplings. When b ¼ 1 the right-
hand node is at infinite coupling and we can move to a dual
description by performing Seiberg duality on the right-
hand node (b ! b� 1). We also flip the quiver (so that
the largest gauge rank is always on the left) and thus the
flavors are now on the left. According to (5.11), the theory

is in a nontrivial vacuum with ~QLQL ¼ ��=
ffiffiffi
h

p
. This is

the Higgsed vacuum labeled by n ¼ 1 in Sec. VB.
Seiberg duality corresponds to a large gauge transfor-

mation in supergravity which includes a shift F ! Fþ
1
2P½!2�. The new background has one unit of worldvolume

flux on each of the D7s while in the dual field theory the
flavors are on the left. We learn that the background with
n ¼ 1 units of worldvolume Abelian flux corresponds to a
theory in the n ¼ 1 Higgsed vacuum. Repeating the argu-
ment (possibly in the opposite direction as well) we re-

cover the quiver dimensions (5.28) and the VEVs of ~QQ
(5.35),22 and conclude that a background with n units of
Abelian worldvolume flux F corresponds to the Higgsed
vacuum labeled by n (5.29).

A. Matching of operator VEVs

Let us compare the expectation values of protected
operators from the flavor sector computed in field theory
and in supergravity. Here we restrict for the moment to the
case with Nf ¼ 1.

We start with the singular conifold, discussed from the
gravity point of view in Sec. III G. The D7-brane affects
the background above�, while below� the background is
unperturbed and the low-energy theory is on the mesonic
branch. The vacua of the theory above � are the classical
(Higgsed) mesonic vacua of Sec. VB, with

~Q iQi ¼ � �ffiffiffi
h

p r; Qy
i Qi � ~Qi

~Qy
i ¼ 0;

where r ¼ ½nþ1
2 �� and i ¼ RðLÞ for n even(odd). In the

case of even n, we have an exact matching with the
supergravity computation (3.77) up to an overall normal-

ization factor h�1=2. This is a universal factor for the

operator ~QQ in all vacua. Such normalization factors are
anyway unavoidable as the kinetic term of Q is not explic-
itly known in field theory.

In the case of odd n, we cannot directly compare with
supergravity: the background has a nontrivial worldvolume
connection A (i.e.Z2 Wilson line 
̂ ¼ �1) at the boundary,
and the AdS/CFT dictionary requires modification. We can
however overcome this problem by exploiting symmetries.

First, we flip the quiver by mappingN1 $ N2,NfL $ NfR,

and ~QQ ! � ~QQ.23 On the gravity side this corresponds to
changing the sign of F3, B, and F. Moreover, since �b is
outside the range [0, 1], we perform a large gauge trans-
formation �b ! �bþ 1. As a result, n ! n0 ¼ �n� 1,
which turns odd n into even n0 and r ! r0 ¼ �r. Since for
even n0 field theory and supergravity match, we have
established agreement for odd n as well.
Let us try to understand what exactly happens when n is

odd. In this case, the gravity computation gives a result
which is shifted, compared to the field theory VEV, by an
n-independent number

~QLQLjfield theory ¼ ~QLQLjgravity � �

2
ffiffiffi
h

p : (6.4)

The interpretation is that, for odd n, the gravity field F is

dual to a mix of the operator ~QLQL with the unity operator

multiplied by �=
ffiffiffi
h

p
, which has the same dimension and

R-charge. We saw in Sec. VA that Seiberg duality mixes
the operators: one has to introduce the shift above to make
this mixing compatible with the large gauge transformation
in the bulk.
In the resolved conifold case, the field theory VEVs are

~Q iQi ¼ � �ffiffiffi
h

p r; Qy
i Qi � ~Qi

~Qy
i ¼ r	1;

while the gravity result is QyQ� ~Q ~Qy ¼ a2n=2 (3.82).
For even n, we have agreement, up to a universal overall
coefficient, as the resolution parameter a2 is proportional
to 	1. We have agreement for odd n as well, by flipping the
quiver and noticing that it maps 	1 $ 	2 ¼ �	1.
As before, for odd n the gravity computation differs

from the field theory VEV by an n-independent constant
shift

Qy
LQL � ~QL

~Qy
Ljfield theory ¼ Qy

LQL � ~QL
~Qy
Ljgravity þ

a2

2
:

(6.5)

Therefore, the operators ~QLQL and jQ2
Lj � j ~Q2

Lj, which
in the N ¼ 2 case form an SUð2ÞR triplet, mix with
the deformation/resolution parameters � and a2ð	Þ of
� ¼ C2=Z2.
In the deformed conifold case, depending on whether or

not there are mobile D3-branes, below � the low-energy
theory is either on the mesonic branch or at the
Z2-invariant point of the baryonic branch. The quantum
analysis of Secs. VC and VD gives us for the theory above
scale � (5.48)

21This is in agreement with the naive holographic map since
there is no worldvolume flux.
22Notice that to derive the VEVs (5.48) of the quantum theory
one would have to include the nonperturbative superpotential
WADS in the analysis of Sec. VA.

23The flip transformation maps A $ B, and invariance of the
superpotential (5.1) with �L;R ¼ ffiffiffi

h
p

requires h ! �h, ~QQ !
� ~QQ, and

ffiffiffi
h

p
� ! � ffiffiffi

h
p

�, so that �=
ffiffiffi
h

p
is invariant.
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� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2=4� �

h

s
ð2r� 1Þ � �

2
ffiffiffi
h

p ; or

~QRQR ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2=4� �

h

s
2r

and jN2
_�j � j ~N2

�j ¼ 0 or jQ2
Rj � j ~Q2

Rj ¼ 0. For even n, we
have a perfect agreement with the gravity result (3.87):
remarkably, the nonperturbative field theory effects en-
coded in � are precisely reproduced by the geometry of
� embedded in the deformed conifold. For odd n, we
cannot flip the quiver, because the quantum analysis of
Secs. VC and VD assumes that the left-hand node goes to
strong coupling. On the other hand, we can exploit the
dictionary (6.4), derived for the classical vacua, which is an
identification in the UV that does not rely on the IR effects.
Again we find a perfect agreement.

Finally, the resolved deformed conifold (or BGMPZ
background) describes the KS theory on the baryonic
branch. From the gravity computation (3.95), the VEV of

jQ2j � j ~Q2j grows as n2, as opposed to the linear growth
(3.82) in the resolved conifold case. The quadratic in n
behavior is indeed what we find in (5.51) from the quantum
field theory analysis (for odd and even n, correspondingly)X

_�

jN2
_�j �

X
�

j ~N2
�j ¼ n2 � 1

4
	2; and

jQ2
Rj � j ~Q2

Rj ¼
n2

4
	2;

(6.6)

where in the left-hand case we again find an n-independent
shift in the gravity result. The gravity computation is done
in the gauge such that b ¼ 0 at the tip of the deformed
conifold. Hence, this calculation refers to the lowest step in
the cascade of Seiberg dualities, k ¼ 0. Indeed, the quan-
tum VEVs above match the semiclassical computation
(5.38) with k ¼ 0.

B. Theories with Nf > 1 and
noncommutative instantons

When Nf > 1, the moduli space includes the instanton-

like directions (Sec. VB), which represent the mobile D3-
branes dissolved into the D7s forming the conventional
gauge instantons with continuous moduli. On the field
theory side, this picture is backed by the fact that any
solution to the N ¼ 2 C2=Z2 ADHM equations—i.e.
vacuum equations in field theory—is also a solution to
the classical F- and D-term equations in the N ¼ 1 coni-
fold case. On the quantum level, this relation holds in the
� ! 0 limit as the solution to the classical equations solves
the quantum equations in this case as well (see the com-
ment at the beginning of Appendix B. On the gravity side,
the cycle � has the same complex structure as the de-
formed/resolved C2=Z2, hence the moduli spaces of in-
stantons in the two cases share the same complex structure.

Therefore, the parallel with the N ¼ 2 C2=Z2 theory
provides a good qualitative understanding of these vacua.
It is interesting however to consider D7-branes em-

bedded in the BGMPZ background. In this case, the
SUSY condition for the worldvolume gauge field is not
anti-self-duality, but rather a nonlinear deformation of it
(see Sec. III J) so that a parallel to N ¼ 2 instantons is
less straightforward. On the other hand, the classical field
theory analysis of Sec. VB is not sensitive to the low-
energy theory and is valid in all cases. Since the baryonic
vacua of the low-energy theory require ðkþ 1Þ	1 þ
k	2 ¼ 0, i.e. 	1 þ 	2 � 0, the ‘‘nonlinear instantons’’ in
the BGMPZ background are related to the noncommuta-
tive instantons on C2=Z2. This relation helps understand-
ing why the nonlinear instantons in question cannot
shrink to zero size and leave the D7s and become the
mobile D3-branes in the bulk. We know that this indeed
must be the case, because the mobile D3-branes are not
SUSYon the BGMPZ background [21] (see Secs. II B and
VB for a field theory explanation), but this is not apparent
from the SUSY condition (3.88) itself. The relation to
noncommutative instantons partially clarifies this point, as
the noncommutative instantons cannot shrink to zero size
and leave the larger brane as well [71]. It would be
interesting to study the moduli space of the nonlinear
instantons satisfying (3.88) and provide an explicit map,
in the spirit of the Seiberg-Witten map [71], to the non-
commutative instantons on �.
Another interesting question is related to the vacua that

completely break the whole gauge symmetry of the field
theory. These vacua admit generic values of 	1, 	2 and the
form of the F- and D-term equations (or at least theN ¼ 2
ADHM equations) suggest that we are dealing with the
noncommutative instantons. This comment equally applies
to the N ¼ 2 C2=Z2 orbifold theory and to the N ¼ 4
theory broken to N ¼ 2 by flavor. It is tempting to attrib-
ute the appearance of the noncommutative instantons to the
presence of a self-dual B-field in the bulk [72], however,
such B-field is not normalizable [54] and therefore cannot
describe a branch of vacua of the field theory. In fact, since
the whole gauge symmetry is broken, i.e. all D3-branes are
dissolved in the D7s, the probe approximation for D7s
breaks down and we have no control over the geometric
description.

C. The RG flow

Eventually we want to compare the RG flow of gauge
couplings in the large N limit, computed in field theory
with the NSVZ beta-function formula [32], with the
backreacted supergravity solutions of section IV. Those
solutions represent an SUð2Þ � SUð2Þ �Uð1Þ invariant
smeared distribution of D7-branes, which describe a pre-
cise large N field theory dual [15]. In the Veneziano limit
Nf=Nc ¼ fixed, the number Nf of D7-branes is large. Let

us parametrize them with a flavor index U 2 Uð2Þ which
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takes Nf values in Uð2Þ. Each D7-brane has a different

embedding and correspondingly a different superpotential,
e.g. in the ‘‘Right’’ case:

�U ¼ fU� _�w _�� ¼ �g

W0 � �h ~QU
R

�
U� _�B _�A� � �ffiffiffi

h
p

�
QU

R :
(6.7)

In theNf ! 1 limit, the indexU becomes continuous and,

if we uniformly distribute theNf values onUð2Þ, the theory
acquires an extra Uð2Þ ffi SUð2Þ �Uð1Þ symmetry. Since
the running of gauge couplings does not depend on the
details of the superpotential, it will be the same as in the
original theory in (5.1).

At large N1;2, the field theory is quasiconformal and the

anomalous dimensions (at scales much larger than
ffiffiffi
h

p
�)

are fixed by the quartic superpotential (5.1) together with
charge conjugation symmetry

�½A� ¼ �½B� ¼ �½QR;L� ¼ �½ ~QR;L� ¼ �1
2: (6.8)

At scale �, where the effective description has ranks
NfL � N1 � N2 � NfR, the NSVZ formula

@

@ log�

8�2

g2
¼ 3T½G� � X

chiral i

T½ri�ð1� �iÞ (6.9)

gives

@

@ log�

8�2

g21
¼ 3

�
N1 � N2 �

NfL

2

�
;

@

@ log�

8�2

g22
¼ 3

�
N2 � N1 �

NfR

2

�
:

(6.10)

Let us extract the RG flow from the backreacted su-
pergravity solution. First, consider the massless solution
(� ¼ 0) characterized by the dilaton e� (4.4) and the
B-field bð
Þ (4.6). The gauge couplings can be extracted
with the holographic formulas (2.11)

8�2

g21
¼ 2�

e�
b;

8�2

g22
¼ 2�

e�
ð1� bÞ: (6.11)

We obtain

@

@


8�2

g21
¼ �3

Nfc2
2

;
@

@


8�2

g22
¼ 3

Nfðc2 � 1Þ
2

:

(6.12)

The holographic formulas can be applied in a gauge
where b 2 ½0; 1�. If this is not the case, B should be
shifted by a large gauge transformation to meet the con-
dition, and the Page charges shift accordingly. In such a

gauge, from (4.7) and (6.2) we obtain �Nfc2=2 ¼ N1 �
N2 � NfL

2 in terms of the effective description. After iden-

tifying 
 ¼ log�, supergravity precisely reproduces the

NSVZ beta-function. We stress that the fully backreacted
solution is necessary to reproduce the exact NSVZ result.
Finally, consider the backreacted supergravity solution

for massive D7-branes with n units of worldvolume flux
(in the KT approximation) detailed in Appendix C. Again
we need the dilaton (C8) and the B-field (C14). Below the
scale � the dilaton is constant, the B-field is logarithmi-
cally running, and supergravity reproduces the beta-

functions @
@


8�2

g2
1;2

¼ �3ðN1 � N2Þ. At the scale � (that

we called 
 ¼ 
0) the page charges in (C15) jump by

�QD5 ¼ n
2 and �QD3 ¼ n2

4 , according to the breaking

pattern of the Higgsed vacuum. Above the scale �, we
can use the holographic formulas (6.11) writing the result
first in terms of the Page charges (C15) and then in terms
of the ranks using the dictionary (6.2), to exactly repro-
duce the NSVZ result (6.10).

VII. DISCUSSION

In this paper we studied the supersymmetric vacua of the
N ¼ 1 SUðMþ NÞ � SUðNÞ theory with bifundamental
and flavor matter. In the limit Nf � N þM, we used the

dual geometries with probe D7-branes and worldvolume
gauge configurations (instantons) to describe various Higgs
vacua. In the N ¼ 1 case, as opposed to N ¼ 2, super-
symmetry is not powerful enough to prevent quantum
corrections to the Higgs branch. On the gravity side, in
most cases the quantum corrections arise from the defor-
mations of the geometry and of the Kähler potential in the
bulk, affecting the VEVs of the protected operators from
the flavor sector. On the field theory side, instead, the
quantum corrections arise from the nonperturbative con-
tributions to the superpotential and the change of degrees
of freedom: when a gauge group confines, the original
microscopic flavor degrees of freedom are not relevant
anymore and one has to use the low-energy meson
variables.
In theN ¼ 2 case, there is a direct relation between the

bulk description (i.e. the world-volume instantons) and the
field theory description (i.e. the F- and D-term equations),
given by the ADHM construction. Clearly this relation
does not rely on the AdS/CFT correspondence. The oppo-
site is also true: the AdS/CFT duality predicts a one-to-one
correspondence between the field theory vacua and the
configurations in the bulk, but does not outline in details
how to construct the map. The fact that such a direct
relation is known in the N ¼ 2 case is a nice bonus. It
is not immediately clear if such a relation can be found for
N ¼ 1 theories: although the instantons in the bulk do
have some version of the ADHM construction, the corre-
sponding matrix equations are different from the quantum
version of the vacuum equations in field theory.
So far we mainly discussed the quantum corrections

from the field theory point of view. In fact, the N ¼ 1
case can be drastically different from the N ¼ 2 case in
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the bulk as well. When the underlyingN ¼ 1 background
has a complicated structure, the SUSY condition for the
worldvolume gauge fields becomes nonlinear [23,73]. We
saw that when this happens on the conifold, the resulting
nonlinear instantons are related to noncommutative instan-
tons on the same space. It would be very interesting to
study the moduli space of these nonlinear instantons sys-
tematically and investigate if one can find such configura-
tions with some sort of matrix equations in the spirit of the
ADHM construction.
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APPENDIX A: HIGGSED VACUA

In this appendix we give the explicit form of various
vacua discussed in the main text.

1. Classical Higgsed mesonic directions with resolution

The blocks (5.30) and (5.31) of the classical Higgsed
mesonic directions can be generalized to incorporate arbi-
trary parameters 	1 and 	2. The left blocks for r � 1, of
dimension 1� r2 � rðr� 1Þ � 0, are in Table II. The
variables a1; . . . ; a2r�2 (K ¼ 2r� 1), �, � are the same
as in the 	1;2 ¼ 0 case (5.33) and (5.34) and the unknowns

are c0; . . . ; c2r�2. The right-hand blocks for r � 1, of di-
mension 0� rðrþ 1Þ � r2 � 1, are in Table III. Again,
a1; . . . ; a2r�1 (K ¼ 2r),�,� are the same as before and the
new unknowns are c0; . . . ; c2r�1. The blocks of one kind
with r � �1 are obtained from the blocks of the other kind
with r � 1 by taking the transpose of A�, B _� and by

exchanging QL $ QR, ~QL $ ~QR.
The F-term are solved by (5.33) and (5.34) for any

choice of cj’s. It is convenient to define the quantities

xj � j��j2a2j ðc2j � c�2
j Þ: (A1)

TABLE II. Higgsed mesonic vacua with resolution, left-hand blocks.

A1 ¼ ��

c1a1U
T
1 0 . . .

caa2L2 c3a3U
T
3 . . .

0 c4a4L4 . . .

..

. ..
. . .

.

0BBBB@
1CCCCA BT

1 ¼ ��

c�1
1 a1U

T
1 0 . . .

�c�1
2 a2L2 c�1

3 a3U
T
3 . . .

0 �c�1
4 a4L4 . . .

..

. ..
. . .

.

0BBBB@
1CCCCA

A2 ¼ ��

c1a1L
T
1 0 . . .

�caa2U2 c3a3L
T
3 . . .

0 �c4a4U4 . . .

..

. ..
. . .

.

0BBBB@
1CCCCA BT

2 ¼ ��

c�1
1 a1L

T
1 0 . . .

c�1
2 a2U2 c�1

3 a3L
T
3 . . .

0 c�1
4 a4U4 . . .

..

. ..
. . .

.

0BBBB@
1CCCCA

QT
L ¼ �c0ð 1 0 . . . 0 Þ ~QL ¼ �c�1

0 ð 1 0 . . . 0 Þ; ~QR ¼ QR ¼ 0.

TABLE III. Higgsed mesonic vacua with resolution, right-hand blocks.

A1 ¼ ��

c1a1U1 c2a2L
T
2 0 . . .

0 c3a3U3 c4a4L
T
4 . . .

0 0 c5a5U5 . . .

..

. ..
. ..

. . .
.

0BBBB@
1CCCCA A2 ¼ ��

�c1a1L1 c2a2U
T
2 0 . . .

0 �c3a3L3 c4a4U
T
4 . . .

0 0 �c5a5U5 . . .

..

. ..
. ..

. . .
.

0BBBB@
1CCCCA

BT
1 ¼ ��

�c�1
1 a1U1 c�1

2 a2L
T
2 0 . . .

0 �c�1
3 a3U3 c�1

4 a4L
T
4 . . .

0 0 c�1
5 a5U5 . . .

..

. ..
. ..

. . .
.

0BBBB@
1CCCCA BT

2 ¼ ��

c�1
1 a1L1 c�1

2 a2U
T
2 0 . . .

0 c�1
3 a3L3 c�1

4 a4U
T
4 . . .

0 0 c�1
5 a5L5 . . .

..

. ..
. ..

. . .
.

0BBBB@
1CCCCA

~QL ¼ QL ¼ 0; QT
R ¼ �c0 1 0 . . . 0

	 

; ~QR ¼ �c�1

0 1 0 . . . 0
	 


.
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From the D-term equations we get for a left-hand (right-
hand) block the recursive equations

	1 ¼ jxj þ ðjþ 2Þxjþ1 j even ðoddÞ 	K � 0;

�	2 ¼ jxj þ ðjþ 2Þxjþ1 j odd ðevenÞ;
	1ð2Þ ¼ j�j2ðc20 � c�2

0 Þ � 2x1: (A2)

The solution is

xj ¼ ð�1ÞjþKð2K þ 1Þ � ð2jþ 1Þ
8jðjþ 1Þ ð	2 � 	1Þ

� ð�1Þjþn KðK þ 1Þ � jðjþ 1Þ
4jðjþ 1Þ ð	1 þ 	2Þ; (A3)

and the resulting quark bilinears are

L: Qy
LQL � ~QL

~Qy
L ¼ j�j2ðc20 � c�2

0 Þ ¼ 	1 � 2x1

¼ r2	1 þ rðr� 1Þ	2

R: Qy
RQR � ~QR

~Qy
R ¼ j�j2ðc20 � c�2

0 Þ ¼ 	2 þ 2x1

¼ rðrþ 1Þ	1 þ r2	2: (A4)

Besides solving the vacuum equations in theN ¼ 1 case,
the matrices above solve theN ¼ 2ADHM equations and
describe the noncommutative Abelian instantons onC2=Z2

(also see [74]).

2. Quantum deformed Higgsed mesonic directions

When the left-hand gauge group goes to strong coupling,
we describe it using gauge-invariants. For 2N2 þ NfL <

N1 there are only mesons, defined in (5.39), while for
2N2 þ NfL � N1 there are also baryons. Mesons are

always good coordinates on mesonic branches. The

right-hand blocks, of dimension 0� r2 � 1, are in
Table IV. Let us take r > 0, although the same ansatz gives
the solution for both r and �r. The unknowns are
�1; . . .�2r�1, �12; . . .�2r�3;2r�2, �, �. Setting �i ¼ a2i
and �ij ¼ aiaj, we simply have M _�� ¼ B _�A� and the

mesons solve the underformed equations. That would cor-
respond to the classical theory, where mesons are products
of elementary fields. In the quantum theory—as a result of
confinement—the mesons are independent fields.
The D-term Eqs. (5.45) with 	2 ¼ 0 are identically

solved. From the F-term equations, we find

0¼ j�j��jþ1�ðjþ3Þ�jþ2 j¼1; . . . ;2r�3

0¼ð�2kþ�2kþ1Þ2�ð2k�1Þ�2
2k�1;2kþð2kþ3Þ�2

2kþ1;2þ2

k¼1; . . . ;r�1 0��2r�1;2r

0¼1� 2�1

�1þ3�2

� �ffiffiffi
h

p �2¼ 1

�1þ3�2

�¼�3h�4�1�2��2
12

ð�1þ3�2Þ2
: (A5)

The recursive equation for nj is the same as in the classical

case, but the last equation for j ¼ 2r� 2 is missing. As a
result the boundary condition is different.
In the massless � ¼ 0 case, we have to impose

�1 � 3�2 ¼ 0, and after arbitrarily fixing a multiplicative
constant by �1 þ 3�2 � 1, we get �j ¼ 1

jðjþ1Þ and �2k�1;2k

as given below with C1 ¼ 1, C2 ¼ 0. Fixing � in terms of
� we get �4 ¼ ��h�1ð2rÞ2. In the case with generic�, we
proceed as follows: The general solution to the recursive
equations is

TABLE IV. Higgsed mesonic directions with deformation, right-hand blocks.

M11 ¼ �2�2

��1U
T
1U1 ��12U

T
1L

T
2 0 . . .

�12L2U1 �2L2L
T
2 � �3U

T
3U3 ��34U

T
3L

T
4 . . .

0 �34L4U3 �4L4L
T
4 � �5U5U

T
5 . . .

..

. ..
. ..

. . .
.

0BBBB@
1CCCCA

M12 ¼ �2�2

�1U
T
1L1 ��12U

T
1U

T
2 0 . . .

��12L2L1 �2L2U
T
2 � �3U

T
3L3 ��34U

T
3U

T
4 . . .

0 ��34L4L3 �4L4U
T
4 � �5U5L

T
5 . . .

..

. ..
. ..

. . .
.

0BBBB@
1CCCCA

M21 ¼ �2�2

�1L
T
1U1 �12L

T
1L

T
2 0 . . .

�12U2U1 �2U2L
T
2 þ �3L

T
3U3 �34L

T
3L

T
4 . . .

0 �34U4U3 �4U4L
T
4 þ �5L5U

T
5 . . .

..

. ..
. ..

. . .
.

0BBBB@
1CCCCA

M22 ¼ �2�2

��1L
T
1L1 �12L

T
1U

T
2 0 . . .

��12U2L1 �2U2U
T
2 � �3L

T
3L3 �34L

T
3U

T
4 . . .

0 ��34U4L3 �4U4U
T
4 � �5L5L

T
5 . . .

..

. ..
. ..

. . .
.

0BBBB@
1CCCCA

~QR ¼ QT
R ¼ � 1 0 . . . 0

	 

Ni ¼ ~Ni ¼ � ¼ 0.
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�j ¼ C1 þ C2½1� ð�1Þjð2jþ 1Þ�
jðjþ 1Þ

�2
2k�1;2k ¼ C2

1

r2 � k2

4r2k2ð4k2 � 1Þ :
(A6)

Then we determine � and �:

�2 ¼ � �ffiffiffi
h

p �1 þ 3�2

�1 � 3�2

� ¼ �3�2 �1�2 � �2
12

ð�1 � 3�2Þ2
:

(A7)

Notice that only the ratio C1=C2 affects the solution, while
the overall normalization drops out. We should fix C1=C2

to match �, and then determine the full solution and �2 as a
function of �. However, one can directly verify that

�4 ¼ ��þ�2=4

h
ð2rÞ2 ¼ ��þ�2=4

h
n2: (A8)

We take the branch cut in the square root such that

~QRQR ¼ �2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��þ�2=4

h

s
2r; (A9)

which matches with the � ! 0 limit of Sec. 5.2. Notice that
for each choice of matrices, whose size is xed by jrj, the
equations have two solutions corresponding to r and �r.

The left-hand blocks, of dimension 1� rðr� 1Þ � 0,
are in Table V. Let us take r > 0, although the same ansatz
gives the solution for both r and �rþ 1. The unknowns
are �1; . . .�2r�2, �23; . . . ; �2r�4;2r�3 � , �, �. Setting

�i ¼ a2i , �ij ¼ aiaj, � ¼ a1 we have M _�� ¼ B _�A�,
~N� ¼ ~QLA�, N _� ¼ B _�QL, and � ¼ ~QLQL as in the un-
deformed equations.

The D-term equations with 	2 ¼ 0 are identically
solved. From the F-term equations we find

0¼ j�j ��jþ1 � ðjþ 3Þ�jþ2 j ¼ 1; . . . 2r� 4

0¼ ð�2kþ1 þ�2kþ2Þ2 � 2k�2
2k;2kþ1 þ ð2kþ 4Þ�2

2kþ2;2kþ3

k¼ 1; . . . ; r� 2 0¼ 1� 2�1

�1 þ 3�2

þ �ffiffiffi
h

p
�2

�2 ¼ 1

�1 þ 3�2

0� �2r�2;2r�1

�¼ �2h�4�1�2 ��2
2 � 4�2

23

ð�1 þ 3�2Þ2

�2 ¼ ð�1 þ�2Þ2 þ�2
2;3

�1 þ 3�2

: (A10)

In the massless � ¼ 0 case, we have to impose
�1 � 3�2 ¼ 0, and after arbitrarily fixing a multiplicative
constant by �1 þ 3�2 � 1, we get �j ¼ 1

jðjþ1Þ and �2k;2kþ1

as given below with C1 ¼ 1, C2 ¼ 0. Fixing � in terms of
� we get �4 ¼ ��h�1ð2r� 1Þ2. In the case with generic
�, we first write down the general solution of the recursive
equations:

�1 ¼ C1 þ C2½1� ð�1Þjð2jþ 1Þ�
jðjþ 1Þ ;

�2
2k;2kþ1 ¼ ðC1 þ 2C2Þ2 rðr� 1Þ � kðkþ 1Þ

ð2r� 1Þ2ð2kþ 1Þ2ðk2 þ kÞ
(A11)

Then we determine � and �:

�2 ¼ �ffiffiffi
h

p �1 þ 3�2

�1 � 3�2

� ¼ �2�2 �1�2 � �2
2 � 4�2

23

ð�1 � 3�2Þ2
:

(A12)

One can verify the following relation:

TABLE V. Higgsed mesonic directions with deformation, left-hand blocks.

M11 ¼ �2�2

�1U1U
T
1 � �2L

T
2L2 ��23L

T
2U

T
3 . . .

�23U3L2 �2
3U3U

T
3 � �4L

T
4L4 . . .

..

. ..
. . .

.

0BB@
1CCA

M12 ¼ �2�2

�1U1L
T
1 þ �2L

T
2U2 ��23L

T
2L

T
3 . . .

��23U3U2 �2
3U3L

T
3 þ �4L

T
4U4 . . .

..

. ..
. . .

.

0BB@
1CCA

M21 ¼ �2�2

�1L1U
T
1 þ �2U

T
2L2 �23U

T
2U

T
3 . . .

�23L3L2 �2
3L3U

T
3 þ �4U

T
4L4 . . .

..

. ..
. . .

.

0BB@
1CCA

M22 ¼ �2�2

�1L1L
T
1 � �2U

T
2U2 �23U

T
2L

T
3 . . .

��23L3U2 �2
3L3L

T
3 � �4U

T
4U4 . . .

..

. ..
. . .

.

0BB@
1CCA

~N1 ¼ NT
1 ¼ ��2 �UT

1 0 . . .
	 


� ¼ �2ð1Þ
~N2 ¼ NT

2 ¼ ��2 �LT
1 0 . . .

	 

~QR ¼ QR ¼ 0.
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�
a2 þ �

2
ffiffiffi
h

p
�
2 ¼ ��þ�2=4

h
ð2r� 1Þ2: (A13)

We take the square root as

� ¼ �2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��þ�2=4

h

s
ð2r� 1Þ � �

2
ffiffiffi
h

p ; (A14)

which matches the � ! 0 limit. Notice that for each choice
of matrices, whose size is fixed by jr� 1

2 j þ 1
2 , the equa-

tions have two solutions corresponding to r and �rþ 1.

3. Quantum deformed higgsed directions
with resolution

The blocks of the previous section can be generalized to
solve the D-term Eq. (5.45) with generic 	2.

The right-hand blocks (n even) are constructed by taking
the ansatz (Table IV) and adding new variables cij in front

of �ij below the diagonal, c�1
ij in front of �ij above the

diagonal, c0 in front ofQR, and c
�1
0 in front of ~QR. The new

variables cancel out of the F-term equations. Let us define

~x 2k�1;2k � j��j4�2
2k�1;2kðc22k�1;2k � c�2

2k�1;2kÞ: (A15)

From the D-term equations we obtain the system:

	2 ¼ ð2k� 1Þ2k~x2k�1;2k � ð2kþ 2Þð2kþ 3Þ~x2kþ1;2kþ2

k ¼ 1; � � � ; r� 1 	2 ¼ j�j2ðc20 � c�2
0 Þ � 6~x12;

~x2r�1;2r � 0: (A16)

The solution is

~x 2k�1;2k ¼ 	2

r2 � k2

2kð4k2 � 1Þ (A17)

from which we extract jQRj2 � j ~QRj2 ¼ r2	2.
The left-hand blocks (n odd) are constructed by taking

the ansatz (Table V) and adding new variables cij in front

of �ij below the diagonal, c�1
ij in front of �ij above the

diagonal, c01 in front of Ni and c�1
01 in front of ~Ni. Let us

define

~x01 ¼ j�2��j2ðc201 � c�2
01 Þ;

~x2k;2kþ1 ¼ j��j4�2
2k;2kþ1ðc22k;2kþ1 � c�2

2k;2kþ1Þ:
(A18)

From the D-term equations, we get the system:

	2 ¼ 2kð2kþ 1Þ~x2k;2kþ1 � ð2kþ 3Þð2kþ 4Þ~x2kþ2;2kþ3

k ¼ 1; � � � ; r� 2 	2 ¼ ~x01 � 12~x23;

~x2r�2;2r�1 � 0: (A19)

The solution is

~x 2k;2kþ1 ¼ 	2

rðr� 1Þ � kðkþ 1Þ
4kðkþ 1Þð2kþ 1Þ (A20)

from which we extract
P

i¼1;2ðjNij2�j ~Nij2Þ¼ rðr�1Þ	2.

APPENDIX B: PAGE CHARGES

Here we compute the Page D3- and D5-charges on the
D7-brane. At some fixed radius r in the bulk the Page
charges are given by (we keep gs ¼ 1 everywhere in text)

QD3ðrÞ ¼ 1

ð4�2�0Þ2
Z
T1;1 at r

F5 � B ^ F3 þ 1

2
B ^ B ^ F1;

QD5ðrÞ ¼ 1

4�2�0
Z
S3 at r

F3 � B ^ F1: (B1)

It will be useful to call the integrands JD3 and JD5‘‘Page
currents.’’ Using the Bianchi identities

dF1 ¼ �D7
2 dF3 ¼ 4�2�0�D5

4 þH3 ^ F1 þF ^ �D7
2

dF5 ¼ ð4�2�0Þ2�D3
6 þH3 ^ F3 þ 1

2
F ^F ^ �D7

2 ;

(B2)

in the absence of nondissolved D3 and D5-branes we find

dJD3 ¼ ð2��0Þ2 1
2
F ^ F ^ �D7

2 ;

dJD5 ¼ ð2��0ÞF ^ �D7
2 ; dJD7 ¼ �D7

2 :

(B3)

Here, �D7
2 is a delta 2-form localized on (and orthogonal to)

the D7s.
The D3-charge is given by the integral of JD3 on T

1;1 and
using Gauss law it reduces to

ND3 ¼ 1

8�2

Z
�
F ^ F:

An important observation is that for any functions 	ðtÞ,
�ðtÞ from (3.60) and (3.58)

FI ^ FIIj� ¼ 0 (B4)

and therefore the integral splits into two parts. The first part
is a full derivative that can be computed at the boundary:
1

8�2

R
� FI ^ FI ¼ 4a	2jr¼1

r¼rmin
. Since 	 ! r�2 for large r,

the contribution at infinity is zero. If we require regularity
of 	 at the tip, the contribution at r ¼ rmin vanishes as well

because aðtminÞ ¼ 0. The only exception is the case z4 ¼
�=

ffiffiffi
2

p ¼ 0 when a � 1. Then the integral gives 4	ð0Þ2. In
the deformed conifold case, 	ð0Þmust vanish because g5 is
not well-defined at the tip; in the resolved conifold case
only the combination 1

2dg5 þ!2 is regular at the tip, hence

	ð0Þ ¼ n
4 . To calculate the second part we notice that

FII ^ FII

2
¼ n2

4

jz24 � �j
ðr3 � jz4j2 þ jz24 � �jÞ2

� dz1 ^ d�z1 ^ dz2 ^ d�z2
jz3j2

; (B5)

and using (3.20) and (3.22) and integrating over t we get
1

8�2

R
� FII ^ FII ¼ n2

4 . The only exception is the resolved

conifold case � ¼ 0 with z4 ¼ 0. In this case, FII vanishes
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everywhere except at the tip and, as follows from (B5), the
second part is zero. We conclude that, in all cases,

ND3 ¼ n2

4
: (B6)

The D5-charge is given by the integral of JD5 on S
3 	 T1;1

and using Gauss law it reduces to

ND5 ¼ 1

2�

Z
�
F; � ¼ � \ ðS3 � RþÞ:

� is a two-submanifold inside � whose radial sections are
circles S1 ¼ � \ S3. Since F¼FIþFII¼dðAIþAIIÞ,
we easily compute 2�ND5 ¼

R
@�ðAI þAIIÞ. The bound-

ary @� is the difference between an S1 at large radius and
an S1 at the tip rmin, where S

1 shrinks into a point.
R
@� AI

vanishes at infinity because 	 goes to zero, and since 	 is
regular at rmin, the contribution there vanishes as well (with
the exception � ¼ z4 ¼ 0). Similarly,

R
@� AII does not

contribute at infinity, but it does at rmin. Although S1

shrinks, the potential AII is singular. To get the answer,
we compute the integral

R
S1 AII at radius r and take r to

rmin. To do that we need to define S1 more explicitly. We
use the coordinates (3.24) but now on the deformed coni-
fold X2 ¼ 1

2 ð1þ �r�3Þ, Y2 ¼ 1
2 ð1� �r�3Þ, X � Y ¼ 0. We

define S3 at the given radius r as follows: we take a point
ðX; YÞ and consider its orbit under the global symmetry
SUð2ÞL. There are many different S3 corresponding to
different initial points, but since F1;1 is closed, ND5 will
not depend on the choice of S3. To understand how S3

intersects �, let us start with ðX; YÞ that actually belongs to
�, i.e. z4 ¼ �=

ffiffiffi
2

p
. There is one particular Uð1Þ 	 SUð2ÞL

that keeps z4 invariant, and its orbit is the desired S1

which is the homologically nontrivial path on S3=Z2.
Such Uð1Þ acts on zi as a rotation around the constant
vector ni, i ¼ 1, 2, 3

dzi ¼
�ijknjzk

j ~nj d�;

ni ¼ �iðzi �z4 � �ziz4 þ �ijkzj �zkÞ;
j ~nj2 ¼ r6 � j�j2:

(B7)

Indeed, dni ¼ 0. Using the explicit form of � we get

A II ¼ �n

2

z4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�z24 � ��

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r6 � j�j2p d�þ c:c: (B8)

Hence, the integral over S1 at the minimal radius r3min ¼jz4j2 þ jz24 � �j gives NII
D5 ¼ n=2. This result is valid

unless z4 ¼ � ¼ 0 when (B8) vanishes.
Now we can return back to the contribution ofR

@�ðrminÞ AI. Using (B7) we find

g5 ¼ 2
½ðr3 � jz4j2Þ2 � j�� z24j2�

r3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r6 � j�j2p d�: (B9)

The integral of AI ¼ 	ðrÞg5 over S1 parametrized by �
located at the minimal radius rmin vanishes, unless z4 ¼ 0
in which case the expression for

R
S1 AI takes the form

4�	ðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
r6�j�j2

r3

q
and in the resolved conifold case � ¼ 0

we simply get NI
D5 ¼ 2	ð0Þ. Taking into account that

	ð0Þ ¼ n=4 and that (B8) and hence NII
D5 vanish in this

case, we get in all cases

ND5 ¼ n

2
: (B10)

Shift of page charges

Let us compute the shift of Page charges under
B ! Bþ ��0!2 (accompanied by F ! F� 1

2P½!2�, i.e.
n ! n� 1). First,

QD5ðrÞ �QD5ð0Þ ¼ 1

4�2�0
Z
S3�I

dJD5

¼ Nf

2�

Z
S3�I

F ^ �D7
2

¼ Nf

2�

Z
�\ðS3�IÞ

F; (B11)

where I is the interval ½0; r� in r, and we have included
the dependence on the number of branes Nf. For r ! 0

the D7s have no effect, therefore �QD5ð0Þ ¼ 0. We con-
clude that

�QD5ðrÞ ¼ �Nf

4�

Z
�\ðS3�IÞ

!2 ¼ �Nf

2
; (B12)

where in the last equality we exploited the computations
of the previous section and took the r ! 1 limit. Then,

QD3ðrÞ �QD3ð0Þ ¼ 1

ð4�2�0Þ2
Z
T1;1�I

dJD3

¼ Nf

8�2

Z
�\ðT1;1�IÞ

F ^ F (B13)

and its variation under a large gauge transformation is

�QD3ðrÞ � �QD3ð0Þ
¼ Nf

8�2

Z
�\ðT1;1�IÞ

�
�!2 ^ Fþ 1

4
!2 ^!2

�
: (B14)

However, this time the variation at r ¼ 0 does not
vanish. Using the fact that for every closed g3 form,R
T1;1 !2 ^ g3 ¼ 4�

R
S3 g3, we get
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�QD3ð0Þ ¼ � 1

16�3�0
Z
T1;1

!2 ^ F3

¼ � 1

4�2�0
Z
S3

F3

¼ �QD5ð0Þ: (B15)

Finally, we use that for every closed g2 form with
compact support on �,

R
�\ðT1;1�IÞ!2 ^ g2 ¼

4�
R
�\ðS3�IÞ g2. Therefore,

�QD3ðrÞ ¼ �QD5ðrÞ þ
Nf

8�2

Z
�\ðT1;1�IÞ

1

4
!2 ^!2

¼ �QD5ðrÞ þ
Nf

4
: (B16)

Again, in the last equality we took the r ! 1 limit.

APPENDIX C: BACKREACTED SOLUTION
WITH MASSIVE FLAVORS AND

WORLDVOLUME FLUX

We can generalize the solutions of Sec. IV to the case of
a massive embedding � � 0, possibly with worldvolume
flux F (the solution without flux has been found in [31]).
The SUð2Þ � SUð2Þ �Uð1Þ invariant ansatz is the same as
in (4.1), but the number of flavors Nf is substituted by a

radial function Nfð
Þ

ds2 ¼ h�ð1=2Þdx23;1 þ h1=2
�
e2u

�
d
2 þ 1

9
g25

�
þ e2g

6

Xðd�2i þ sin2�id’
2
i Þ
�

F1 ¼
Nfð
Þ
4�

g5; B2 ¼ �0�bð
Þ!2;

H3 ¼ �0�b0ð
Þd
 ^!2: (C1)

The unwarped metric is Kähler and hence a SUSYembed-
ding must be holomorphic. To construct holomorphic co-
ordinates on the backreacted background (C1) we proceed
as follows. From the Kähler form J and the metric in (4.1),
we construct the complex structure and the holomorphic
projector

J ¼ 1

2
Jabdx

a ^ dxb; g ¼ gabdx
a � dxb;

J ¼ Jg�1; P ¼ J þ i1
2i

: (C2)

One can check that given an expression for holomorphic
coordinates zjðr; c ; �i; ’iÞ on the usual singular conifold,

the substitution r ! e
 provides holomorphic coordinates

on the backreacted background that satisfyPdzi ¼ dzi and
Pd�zi ¼ 0.
The embeddings we consider are z4 ¼ �=2 and the ones

obtained by the action of SUð2Þ � SUð2Þ �Uð1Þ. Let us
compute the smeared charge distribution. The symmetries
dictate the form of F1 and therefore,

�smeared
2 ¼ dF1

¼ N0
fð
Þ
4�

d
 ^ g5 þ
Nfð
Þ
4�

X
sin�id�i ^ d’i:

(C3)

To determine the function Nfð
Þ, we consider a single

localized embedding in the ensamble, e.g. z4 ¼ �=2, and
integrate an invariant 4-form, e.g. !2 ^!2, on it up to
radius 
. We getZ 


D7
!2 ^!2 ¼ 8�2ð1� 2j�j2e�3
Þ

¼
Z 


ð1=3Þ log2j�j2
48�2j�j2e�3
d
: (C4)

On the other hand, integrating the same 4-form with the
charge distribution �smeared

2 we getZ 

!2 ^!2 ^ �smeared

2 ¼
Z 


8�2N0
fð
Þd
: (C5)

Comparing and solving the differential equation (and mul-
tiplying by the number �Nf of D7-branes) we get

Nfð
Þ ¼ �Nfð1� 2j�j2e�3
Þ � �Nfð1� e�3ð
�
0ÞÞ:
(C6)

We defined 
0 ¼ 1
3 log2j�j2, which is the tip of D7-branes

in the coordinate 
.
The SUSYequations are the same as before. For dilaton

and metric we find

�0 ¼ 3Nfð
Þ
4�

e�;

u0 ¼ 3� 2e2u�2g � 3Nfð
Þ
8�

e�;

g0 ¼ e2u�2g:

(C7)

The solution for the dilaton with the boundary condition
�ð
 ! 0�Þ ¼ þ1 is

e� ¼ 4�

fð
Þ ; (C8)

we introduced the function

fð
Þ ¼
� �Nf½�3
þ e3
0 � e�3ð
�
0Þ� for 
0 � 
 < 0

�Nf½�3
0 � 1þ e3
0� ¼ const � f0 for 
 � 
0

: (C9)
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Notice that fð
Þ � 0 for 
 � 0, and fð0Þ ¼ 0. Moreover, f0ð
Þ ¼ �3Nfð
Þ, so that f0ð
 � 
0Þ ¼ 0 and fð
Þ
is continuous with its first derivative, while its second derivative jumps. For e�ð
�
0Þ � 1 and e3
0 � 1, we get
fð
Þ ’ �3 �Nf
.

Also, u and g can be analytically solved

e2u ¼
�
c �6
þ2e3
0�2e�3ð
�
0Þ

½1�6
þ2e3
0�4e�3ð
�
0Þþe�6ð
�
0Þ�2=3 for 
0 � 
 < 0

e2
 for 
 � 
0

e2g ¼
�
c½1� 6
þ 2e3
0 � 4e�3ð
�
0Þ þ e�6ð
�
0Þ1=3�e2
 for 
0 � 
 < 0

e2
 for 
 � 
0

(C10)

even though we will not need them. We imposed e2u ¼ e2g

at 
 ¼ 
0, while there is still one multiplicative integration
constant c which should be fixed by continuity. One can
check that both functions are positive for 
0 � 
 < 0. For

 � 
0, u ¼ g ¼ 
.

From the SUSY equation H3 ¼ e� 
 6F3, we get

F3 ¼ �0

12
fð
Þb0ð
Þg5 ^!2: (C11)

Then the Bianchi identity dF3 ¼ H3 ^ F1 þF ^ �smeared
2 ,

taking into account that F ¼ n
2P½!2�, gives

1

3
ðfb0Þ0 ¼ Nfb

0 þ N0
fðbþ nÞ (C12)

for 
0 � 
 < 0, where n is the number of flux units, and
ðfb0Þ0 ¼ 0 for 
 < 
0. The equation can be solved on both
sides of 
0 giving [here � is the Heaviside step function
�ðxÞ ¼ 0 for x < 0 and �ðxÞ ¼ 1 for x > 1]

b� ¼ c�1
1

fð
Þ þ c�2



fð
Þ � n�ð�1Þ: (C13)

If we impose continuity of b and b0, we get cþ1 ¼ c�1 þ nf0
and cþ2 ¼ c�2 . Now we put everything together

bð
Þ ¼ ðc1 þ c2
Þf0 � ðfð
Þ � f0Þn
fð
Þ (C14)

For 
 � 
0, bð
Þ ¼ c1 þ c2
 which coincide with the
B-field of the KT solution [7]. Here, c2 ¼ 6Qlow

D5 =f0 is

related to the integer number Qlow
D5 of fractional D3-branes

at the tip, while c1 is a free parameter related to the
difference of gauge couplings (which imposes a constraint
on the 5-form flux by integrality of the Page QD3). For

0 � 
, we can compute the Page charges

QD5 ¼ c2f0
6

þ n

2
Nfð
Þ;

QD3 ¼ QD3ð
 ¼ 
0Þ þ n2

4
Nfð
Þ

(C15)

where partial integration and the SUSY equations have
been used.
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