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We construct exactly solvable models of twisted carbon nanotubes via supersymmetry, by applying the

matrix Darboux transformation. We derive the Green’s function for these systems and compute the local

density of states . Explicit examples of twisted carbon nanotubes are produced, where the backscattering is

suppressed and bound states are present. We find that the local density of states decreases in the regions

where the bound states are localized. Dependence of bound-state energies on the asymptotic twist of the

nanotubes is determined. We also show that each of the constructed unextended first-order matrix systems

possesses a proper nonlinear hidden supersymmetric structure with a nontrivial grading operator.
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I. INTRODUCTION

The importance of solvable models in physics is enor-
mous. We can acquire qualitative understanding of the
complicated realistic systems by analyzing simplified
models that grab the essence of a physical reality. These
models can serve as a test field for approximative methods
or can be used as initial solvable systems in a perturbative
treatment. In this paper, we will focus on the construction
and analysis of exactly solvable models described by the
(1þ 1)-dimensional Dirac equation.

Such systems lie in the overlap of the quantum field
theory with the condensed matter physics. The one-
dimensional Dirac Hamiltonian appears in the study of
the gap equation of the 1þ 1-dimensional version of the
Nambu-Jona-Lasinio (chiral Gross-Neveu) model [1–3] or
in the study of the fractionally charged solitons [4,5]. It is
used in the effective description of the nonrelativistic
fermions: in Ref. [6], the Hamiltonian describes fermions
coupled to solitons in the continuum model of a linear
molecule of polyacetylene. It is employed in the analysis
of the quasiparticle bound states associated with the planar
solitons in superfluid 3He [7]. It appears in the description
of inhomogeneous superconductors [8] and in the analysis
of the vortex in the extreme type-II superconductors in the
mean field approximation [9]. Last but not least, it is used
in the description of carbon nanotubes. In the low-energy
regime, the band structure obtained by the tight-binding
approach can be approximated very well with the use of the
one-dimensional Dirac operator [10,11]. The stationary
equation [12]

ði�2@x þ �1ðxÞ�1Þ� ¼ �� (1)

describes dynamics of the low-energy charge carriers in
single-wall carbon nanotubes in presence of a magnetic
field [13,14].

The Green’s function (or its spatial trace called
diagonal resolvent or Gorkov Green’s function) plays an
important role in the above-mentioned systems. It is used

in solution of the gap equation [1] or in the extremal
analysis of the effective action [2] in quantum field
systems. It is employed in computation of the free energy
of the inhomogeneous superconductors [15]. It serves
in derivation of the local density of states (LDOS), the
quantity that can be measured in carbon nanostructures by
the spectral tunneling microscopy [16,17]. The results
obtained in this paper will be primarily discussed in the
latter context.
The carbon nanotubes are cylinders of small radius

rolled up from graphene. They can be classified as either
metallic or semiconducting, in dependence on their elec-
tronic properties. When no external potential is present, the
semiconducting nanotube has a spectral gap which is re-
lated to a constant value of the potential, �1 ¼ py � 0,

where py is the value of the canonical momentum in the

compactified direction. For �1 ¼ py ¼ 0, the nanotube is

metallic as it has no gap in the spectrum. In this case, an
infinitesimally small excitation is sufficient to move the
electrons from valence to conduction band. The actual
value of py is related to the orientation of the crystal lattice

in the nanotube, see, e.g., Refs. [13,14,18].
We suppose that the potential �1ðxÞ is smooth on the

scale of the interatomic distance. Otherwise, it would be
necessary to work with an extended, 4� 4, Hamiltonian
that would describe mixing of the states between the
valleys associated with two inequivalent Dirac points
[19,20]. The matrix degree of freedom of � in Eq. (1) is
the so-called pseudospin and is associated with the two
triangular sublattices that build up the hexagonal structure
of the graphene crystal; the wave function with either spin
up or down is identically zero on one of the sublattices.
The inhomogeneous magnetic field can appear due to an

external source. Alternatively, it can emerge as a conse-
quence of mechanical deformations of the lattice. Let us
make this point clear. Deformation of the lattice is
described by the vector d ¼ ðdxðx; yÞ; dyðx; yÞÞ which rep-

resents displacement of the atoms in the crystal. The
associated strain tensor sij is defined as
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sxx¼@xdx; syy¼@ydy; sxy¼ syx¼
@xdyþ@ydx

2
: (2)

The effective Dirac Hamiltonian which describes dynamics
of quasiparticles in the low-energy regime gets the form
�2ði@xþ�2ðxÞÞþ�1ðpyþ�1ðxÞÞþ1�0, where we fixed

the Fermi velocity vF ¼ 1. The gauge fields are related to
the strain tensor (2) in this way: �2ðxÞ¼ðsxx�syyÞ,
�1ðxÞ ¼ 2sxy, and �0ðxÞ ¼ sxx þ syy up to multiplicative

constants, see Refs. [14,21,22].
In this context, the potential �1ðxÞ in Eq. (1) can be

interpreted as the gauge field generated by the twist per-
pendicular to the axis of the metallic nanotube. The angle
of the twist #ðxÞ is related to the displacement d ¼
ð0;R�1ðxÞdxÞ by dyðxÞ ¼ r#ðxÞ, where r is a radius of

the nanotube. In this way, the constant potential �1ðxÞ ¼
�> 0 can be associated with a linear displacement
d ¼ ð0; �xÞ that would be generated by the constant twist
illustrated in Fig. 1. It opens a gap in the spectrum of the
metallic nanotube; however, it does not confine charge
carriers. Indeed, constant potential can be understood as
a mass term in the Hamiltonian describing the free particle.

In general, the electromagnetic field causes nontrivial
scattering of the quasiparticles and can even cause the
appearance of bound states in the system [23]. It is well
known that the quasiparticles in metallic nanotubes are not
backscattered by electrostatic potential. This is understood
as a manifestation of the Klein tunneling [24], and it has
been discussed extensively in the literature [20,25]. It was
found recently that the phenomenon can be attributed
to the peculiar supersymmetric structure that relates the
Hamiltonian of the system to that of the free Dirac
particle [18].

Here, we will construct exactly solvable models de-
scribed by Eq. (1) where, despite the presence of the
effective magnetic field, the scattering will be reflection-
less and the bound states will be confined in the regions
where the twist gets altered. In the construction, the tech-
niques known in the supersymmetric quantum mechanics
will be employed. We will focus to the spectral properties
and Green’s function of the new systems. The latter one
will be used for computation of the LDOS. Wewill provide
an analytical formula for bound-state energies in depen-
dence on the twist of the nanotubes.

The work is organized as follows. In the next section, we
briefly review the construction of solvable models based on
the Darboux transformation with focus on the application
in the context of carbon nanotubes. Then, the formulas for
Green’s function and LDOS of these models are provided.

We discuss reflectionless systems and present two models
of twisted carbon nanotubes. The last section is left for the
discussion.

II. SPECTRAL DESIGN VIA DARBOUX
TRANSFORMATIONS

We summarize here the main points of the construction
of new solvable models which is based on the intertwining
relations. This scheme is well-known in the context of
supersymmetric (SUSY) quantum mechanics [26]. There,
the intertwined second-order Schrödinger operators give
rise to the supersymmetric Hamiltonian while the inter-
twining operator, identified as the Crum-Darboux trans-
formation, is associated with the supercharges of the
system. In the current case, we will discuss briefly the
technique in the context of the first order, one-dimensional
Dirac equation. We refer to Ref. [27] for more details.
Let us have a physical system described by a solvable

Hermitian Hamiltonian

h ¼ i�2@x þ � (3)

with real and symmetric matrix potential � ¼ �ðxÞ and x
extending to the whole real axis. The physical eigenstates
(solutions complying with prescribed boundary condi-
tions) form a basis of the Hilbert space. Besides, the
(formal) solutions of the stationary equation hu ¼ �u are
supposed to be known for any complex �.
We define the operator L by

L ¼ U
@

@x
U�1 ¼ 1@x �U0U�1; (4)

where U0 ¼ @U=@x. The matrix U ¼ ðu1; u2Þ is a chosen
solution of the equation hU ¼ U�, where the matrix � ¼
diagð�1; �2Þ has fixed real elements. The vectors u1ð2Þ
satisfy hu1ð2Þ ¼ �1ð2Þu1ð2Þ and are chosen to be real. They

form the kernel of L, LU ¼ 0 and do not need to be

physical. Next, we define the Hermitian operator ~h with
the potential term explicitly dependent on u1 and u2 and
corresponding eigenvalues �1 and �2,

~h ¼ hþ i½�2; U
0U�1� ¼ �2h�2 þ �2½�2; U�U�1�

¼ �2h�2 þ
�
uT1�1u2
detU

�3 � uT1�3u2
detU

�1

�
ð�1 � �2Þ:

(5)

We used here the identity

1 @x ¼ �i�2ðh��Þ; (6)

which will be employed extensively in the following text.
Notice that as long as u1 and u2 correspond to the

same eigenvalue �1 ¼ �2, ~h reduces to a unitary trans-

formed seed Hamiltonian, ~h ¼ �2h�2, for any �. The
Hamiltonians (3) and (5) satisfy the following intertwining
relations mediated by L and Ly:

FIG. 1 (color online). The nanotube with the twist correspond-
ing to dy � x. In the untwisted nanotube, the black line would be

straight (horizontal).
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Lh ¼ ~hL; Ly ~h ¼ hLy: (7)

The conjugate operator Ly can be written as Ly ¼ �@x þ
V 0V�1 where V ¼ ðUyÞ�1 ¼ ðv1; v2Þ. The columns v1 and

v2 satisfy Lyv1ð2Þ ¼ 0 and are solutions of ~hv1ð2Þ ¼
�1ð2Þv1ð2Þ. There holds

~hV ¼ V�:

Each of the equations ðh� �Þ’ ¼ 0 and ð~h� �Þ~’ ¼ 0
has two independent formal solutions; let us denote them

c �, �� and ~c �, ~��, respectively. For � � �1ð2Þ, the opera-
tors L and Ly work as one-to-one mappings between the

two subspaces spanned by c �, �� and ~c �, ~��. They trans-
form the (formal) eigenvectors of h into the formal eigen-

vectors of ~h and vice versa.
Let us consider now the four-dimensional subspace

spanned by the solutions of ðh� �1ð2ÞÞ’ ¼ 0. Two of the

solutions, the vectors u1 and u2, compose the matrixU. We
can use the other two vectors to define the matrix U ¼
ðu1; u2Þ, which satisfies hU ¼ U� but is not annihilated by
L. Similarly, we can define the matrix V ¼ ðv1; v2Þ from
the solutions of ð~h� �1ð2ÞÞ~’ ¼ 0 which satisfies ~hV ¼
V�, but no linear combination of v1 and v2 is annihilated
by Ly. The intertwining operators then transform the ma-
trices as LU� V, LyV �U. Hence, we get LyLU ¼
LyLU ¼ LLyV ¼ LLyV ¼ 0. The latter equalities can
be understood as the implication of the alternative presen-
tation for the products of the intertwining operators,

LLy¼ð~h��1Þð~h��2Þ; LyL¼ðh��1Þðh��2Þ: (8)

The spectrum of ~h is identical with the spectrum of h up to
a possible difference in the energy levels �1 and/or �2.

These energies are in the spectrum of either h or ~h if and
only if the associated eigenvectors comply with the bound-
ary conditions of the corresponding stationary equation.
We will discuss specific examples where the spectrum of

the new Hamiltonian ~h contains additional discrete ener-
gies that are absent in the spectrum of h. The eigenvector
~�k of ~h corresponding to the energy level �k � �1, �2 can
be expressed in terms of L and the eigenvectors �k of h
(h�k ¼ �k�k),

~� k ¼ L�kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�k � �1Þð�k � �2Þ
p ; ~h ~�k ¼ �k

~�k:

When defined in this way, the probability densities of ~�k

and �k coincide.

It is worth noticing that the system ~h inherits integrals
of motion of h. Indeed, if S commutes with h, then the

operator ~S ¼ LSLy generates a symmetry of ~h, ½~h; ~S� ¼ 0.
We will discuss this point in more detail in the context of
the reflectionless models.

The potential term of ~h in Eq. (5) ceases to have a direct
interpretation in the context of carbon nanotubes with the
radial twist. As we are interested in the analysis of, namely,

such systems, we require ~h to be equivalent to the
Hamiltonian in Eq. (1); the term proportional to either �1

or�3 in Eq. (5) should vanish. As these coefficients depend
both on the potential of the seed Hamiltonian h and on its
eigenvectors, it is rather difficult to meet this requirement
in general. Instead, let us consider two special cases.
First, let us fix the initial Hamiltonian as

hI ¼ i�2@x þm�3 þ�1�1; (9)

where m> 0. We take �1 ¼ m and �2 ¼ 0 and denote
UI � U ¼ ðu1; u2Þ and VI � V ¼ ðv1; v2Þ, where explic-
itly u1 ¼ ðu11; 0ÞT , u2 ¼ ðu12; u22ÞT , and

UI ¼ u11 u12
0 u22

� �
; VI ¼

1
u11

0
�u12
u11u22

1
u22

 !
: (10)

Comparison of the two matrices tells that if u1 (or u2) is a

bound state of h, then v1 (or v2) cannot be bound state of ~h;

vice versa, if v1 (or v2) is a bound state of ~h, then u1 (or u2)
is not normalizable. Using Eq. (5) and uT1�1u2= detUI ¼ 1,

we get the Hamiltonian ~hI,

~h I ¼ i�2@x �
�
�1 þm

u12
u22

�
�1; (11)

with the required form of the potential.
In the second case, we take the seed Hamiltonian as

hII ¼ i�2@x þ ð�1 þmÞ�1 (12)

and fix �1 ¼ ��2 > 0. The vectors u1ð2Þ are chosen as

u1¼ðu11;u21ÞT and u2¼�3u1. They satisfy uT1�1u2 ¼ 0.
The matrices UII � U and VII ¼ V are in this case

UII ¼ u11 u11
u21 �u21

� �
; VII ¼ 1

2

u�1
11 u�1

11

u�1
21 �u�1

21

� �
; (13)

and the Hamiltonian (5) acquires the form

~h II ¼ i�2@x �
�
�1 þm� �1

u211 þ u221
u11u21

�
�1: (14)

We can deduce that if u1 is a bound state of h, so is the
vector u2, and neither v1 or v2 can be normalized; vice

versa, if v1 and v2 are bound states of ~h, the vectors u1 and
u2 are not normalizable.
In the end of the section, let us notice that there is an

alternative interpretation in dealing with the intertwining
relations and the involved operators. Inspired by the SUSY
quantum mechanics, we can define the extended, first-
order matrix operators

H ¼
~h 0

0 h

 !
; Q1¼

0 L

Ly 0

 !
; Q2¼ i

0 L

�Ly 0

 !
; (15)

which establish the N ¼ 2 (nonlinear) supersymmetry.
The grading operator � ¼ diagð1;�1Þ classifies the
Hamiltonian H as bosonic (½H ;�� ¼ 0), while both
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Q1 and Q2 ¼ i�Q1 are fermionic, fQa;�g ¼ 0 for
a ¼ 1, 2.

Contrary to the SUSY quantum mechanics based on the
second-order matrix Hamiltonian, here, both the
Hamiltonian H and the supercharges Q1;2 are the first-

order differential operators. The associated (nonlinear)
superalgebra

½H ;Qa�¼0; fQa;Qbg¼2�abðH ��1ÞðH ��2Þ (16)

encodes the intertwining relations (7) together with the
factorization (8).

III. GREEN’S FUNCTION AND LDOS FOR THE
TWISTED NANOTUBES

We shall derive the formula for the Green’s function of ~h
in terms of the intertwining operator L and the Green’s
function of the initial Hamiltonian h. In the end of the
section, we will discuss the explicit form of the LDOS for

the systems described by ~hI and ~hII of the form (11) and
(14) corresponding to the twisted carbon nanotubes.

Let us start with the Hermitian Hamiltonian h ¼
i�2@x þ�ðxÞ. The potential term is required to be real
and symmetric. The (generalized) eigenstates�� of h have
to satisfy the following boundary conditions:

h��¼���; ��ðxÞjx!�1�f�ð�;xÞ; �2R: (17)

The symbol ‘‘�’’ means here that the elements of the
eigenvector �� are proportional asymptotically to the
function f�ðx; �Þ. We prefer to leave the boundary con-
ditions unspecified explicitly at the moment. They will be
discussed for the reflectionless models later in the text.

The Green’s function associated with the Hamiltonian h
is defined as a solution of the equation

ðh� �ÞGðx; y;�Þ ¼ �ðx� yÞ; � 2 C: (18)

It has to satisfy the same boundary conditions as the eigen-
states of h, i.e. the matrix elements of the Green’s function
are proportional to f�ð�; xÞ in the limit x ! �1. Being
effectively the inverse of (h� �), the Green’s function is
not well-defined for � from the spectrum �ðhÞ of h. It has
simple poles for� corresponding to discrete energies. If� is
in the continuous spectrum, then we can find the limit
G�ðx; y;�Þ ¼ lim�!0Gðx; y;�� i�Þ, see, e.g., Ref. [28].

The differential equation in Eq. (17) has two formal inde-
pendent solutions c �ðxÞ and ��ðxÞ for any � 2 C. For � =2
�ðhÞ, we can fix c � and �� such that each of the functions
complies with the boundary condition in one of the bounda-
ries; i.e. we fix c �ðxÞjx!þ1 � fþðx; �Þ and ��ðxÞjx!�1 �
f�ðx; �Þ. These functions can be employed in the construc-
tion of the Green’s function in the following way:

Gðx;y;�Þ¼ c �ðxÞ��ðyÞT�ðx�yÞþ��ðxÞc �ðyÞT�ðy�xÞ
Wðc �;��Þ ;

(19)

where � is the step function. The quantity

Wðc ; �Þ ¼ ic ðxÞT�2�ðxÞ (20)

is the analog of the Wronskian for the Dirac equation. It is
constant for two independent solutions c � and �� corre-
sponding to the eigenvalue � of h. Indeed, direct calculation
with the use of Eq. (6) shows that @xWðc ; �Þ ¼ 0. The
Green’s function defined in Eq. (19) then solves Eq. (18)
and manifestly satisfies the prescribed boundary conditions
for x ! �1.

Let us pass to the system described by ~h and construct its
Green’s function with the use of Eq. (19). We suppose that
L transforms appropriately the boundary conditions
associated with h to the boundary conditions prescribed

for the eigenstates of ~h. We can define the functions
~c �¼ Lc �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð���1Þð���2Þ
p and ~��¼ L��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð���1Þð���2Þ
p . They solve

~h ~c �¼� ~c �, ~h~�� ¼ �~�� and satisfy the prescribed bound-
ary condition in þ1 or �1, respectively. The Green’s

function associated with ~h can be written then as

~Gðx;y;�Þ¼
~c �ðxÞ~��ðyÞT�ðx�yÞþ ~��ðxÞ ~c �ðyÞT�ðy�xÞ

Wð ~c �; ~��Þ
¼ 1

Wðc �;��Þ
�ðLc �ÞðxÞðL��ÞTðyÞ�ðx�yÞ

ð���1Þð���2Þ
þðL��ÞðxÞðLc �ÞTðyÞ�ðy�xÞ

ð���1Þð���2Þ
�
: (21)

We used the fact that the Wronskian is invariant with

respect to the Darboux transformation (4), Wð ~c �; ~��Þ ¼
Wðc �; ��Þ. We refer to Ref. [1] or Ref. [29], where the
proof of this relation can be found. Let us mention that the
a different supersymmetric approach to Green’s functions
of Dirac operators was examined in Ref. [30], where a
modification of the standard supersymmetry (based on
second-order Hamiltonians) was discussed.

The eigenvectors of ~h can be written as

~c �¼Lð�;xÞc �; Lð�;xÞ¼�i�2

��UðxÞ�U�1ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið���1Þð���2Þ
p ;

(22)

where we used Eq. (6) again. This allows us to rewrite the
Green’s function (21) in particularly simple form:

~Gðx; y;�Þ ¼ Lð�; xÞGðx; y;�ÞLTð�; yÞ: (23)

Hence, ~Gðx; y;�Þ can be obtained by purely algebraic
means without the use of any differential operator; it can
be obtained just by multiplication ofGðx; y;�Þ with simple
matrix operators (22).
The local density of states 	ðx; �Þ associated with h is

computed in the following manner:

	ðx; �Þ ¼ � 1



lim

Im�!0þ
ImTrGðx; x;�Þ; (24)

where the trace is taken over the matrix degrees of free-

dom. Using Eq. (23), we can write LDOS ~	 for ~h as
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~	ðx;�Þ¼� 1



lim

Im�!0þ
ImTrðLð�;xÞTLð�;xÞGðx;x;�ÞÞ: (25)

Notice that the formulas (23) and (25) are valid for a
general class of the seed Hamiltonians with real and sym-
metric potential.

In the literature (see, e.g., Refs. [1,2,15]), the operator
Gðx; x;�Þ is called Gorkov Green’s function or diagonal
resolvent of h. The Green’s function of the Schrödinger
operators and generalized Sturm-Liouville equation was
studied in Refs. [31,32] in the context of intertwining
relations.

We turn our attention to the systems represented by ~hI
and ~hII which describe the carbon nanotubes with the radial
twist. It is supposed that theGreen’s functions of bothhI and
hII are known. We denote themGIðx; y;�Þ andGIIðx; y;�Þ.
The operators LIð�; xÞ and LIIð�; xÞ based on UI and UII,
respectively, acquire the particularly simple form

L Ið�; xÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð��mÞp 0 ��

�mþ � m u12
u22

 !

and

L IIð�; xÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2 � �2

1Þ
q �1

u21
u11

��

� ��1
u11
u21

 !
:

The trace of the ~GI can be computed directly in terms of the
vectors u1 and u2. A straightforward computation gives

Trð ~GIðx;x;�ÞÞ¼g0� m

��m
g3þm2g0ðuy1u1Þðuy2u2Þ

2�ð��mÞðdetUIÞ2

þ m2uy1u1
2�ð��mÞðdetUIÞ2

�
�
�g3u

y
2�3u2þg1

��m

m
uy2�1u2

�
: (26)

Here, we used the abbreviated notation g0 ¼ TrGIðx; x;�Þ
and gj ¼ Trð�jGIðx; x;�ÞÞ for j ¼ 1, 3. We can obtain a

similar expression for the trace of the ~GIIðx; x;�Þ:

Trð ~GIIðx;x;�ÞÞ¼g0þ 2�2
1g0ðuy1u1Þ2

ð�2��2
1ÞðdetUIIÞ2

þ 2�2
1u

y
1u1

ð�2��2
1ÞðdetUIIÞ2

�
�
�g3u

y
1�3u1�g1

�

�1

uy1�1u1

�
: (27)

The notation used here is like in Eq. (26) with the replace-
ment of GIðx; x;�Þ by GIIðx; x;�Þ.

IV. PERFECT TUNNELING IN THE TWISTED
CARBON NANOTUBES

There exists an exceptional class of exactly solvable

systems whose Hamiltonian ~h is intertwined with the

Hamiltonian of the free particle. The peculiar and simple
properties of the latter model are manifested in these sys-
tems as well. In particular, they share the trivial scattering
characteristics of the interaction-free model, i.e. they are
reflectionless. The eigenstates of both the free-particle sys-
tem and the reflectionless models are subject to the same
boundary conditions; the scattering states have to be oscil-
lating in the infinity while the bound states should decay
exponentially for jxj ! 1. Additionally, the reflectionless
systems inherit the integral of motion that in the free-
particle system plays the role of generator of translations.
The stationary equation h� ¼ ��, where h ¼ i�2@x þ

m�3, is translationally invariant, i.e. the Hamiltonian com-
mutes with p ¼ �i@x. We can find the common eigen-
states of h and p. The latter operator distinguishes the two
scattering states corresponding to each doubly degenerate
energy level. It annihilates the singlet states uþ ¼ ð1; 0ÞT
and u� ¼ ð0; 1ÞT which correspond to the edges � ¼ �m
of the positive and negative part of the continuous spec-
trum (which are called the conduction and the valence
band, respectively, in the context of nanotubes). The in-
volved operators close the nonlinear superalgebra

½p; h� ¼ 0; fp; pg ¼ 2ðh�mÞðhþmÞ; (28)

which is graded by the parity operator � ¼ R�3

(RxR ¼ �x, �2 ¼ 1). Let us stress that this supersymmet-
ric structure is completely different from Eq. (16). In this
case, the supersymmetry is rather hidden; the two-fold
degeneracy of energy levels, distinguished by the integral
of motion p, emerges within the spectrum of the unex-
tended Hamiltonian h.

The Hamiltonian ~h inherits a modified version of the
nontrivial integral of motion p. It can be found by dressing
of the initial symmetry operator,

~p ¼ LpLy; ½~p; ~h� ¼ 0: (29)

It annihilates the states v1 and v2 together with the vectors
~v� which are defined as ~v� ¼ Lu�. The operator ~p, like p
in the free-particle model, reflects the degeneracy of the
spectrum; it can distinguish the scattering states corre-
sponding to the same energy level. The superalgebra (28)
can be recovered in the modified form

½~p; ~h�¼0; f~p; ~pg¼2ð~h2�m2Þð~h��1Þ2ð~h��2Þ2: (30)

Hence, the square of ~p is the spectral polynomial of ~h. It is
worth noticing that the same algebraic structure, the hidden
supersymmetry, was discussed in detail for both relativistic
and nonrelativistic finite-gap systems in Refs. [33–36]. In
this context, the integral ~p can be identified as the Lax

operator of the system represented by ~h.

A. Single-kink system

The first model will be derived with the use of the seed
Hamiltonian hI in Eq. (9) with �1ðxÞ ¼ 0,
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hI ¼ i�2@x þm�3:

We will compute its LDOS and discuss the realization of
the parity operator of the hidden supersymmetry.

We require that the new Hamiltonian ~h has a single
bound state with zero energy. To meet this requirement,
we fix the matrix UI as

UI ¼
ffiffiffiffi
2

m

s
1 � sinhmx
0 coshmx

� �
;

and the intertwining operator L as

LI ¼ 1@x þm
0 1
0 � tanhmx

� �
: (31)

The explicit form of the matrix VI is then

VI ¼
ffiffiffiffi
m

2

r
1 0

tanhmx sechmx

� �
:

The associated Hamiltonian ~hI then reads

~h I ¼ i�2@x þm�1 tanhmx: (32)

The operator ~hI has the normalized bound state v2

v2 ¼
�
0;

ffiffiffiffi
m

2

r
sechmx

�
T
:

Let us notice that the operator (32) appears in the descrip-
tion of many physical systems, e.g. in the continuummodel
for solitons in polyacetylene [6] or in the analysis of the
static fermionic bags of the Gross-Neveu model [2].

We can use Eq. (24) together with Eq. (26) to compute
the LDOS of the system. It acquires the following simple
form:

~	 Iðx; �Þ ¼ 2j�j2 �m2sech2mx

2
j�j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�2 �m2jp �ð�2 �m2Þ: (33)

The presence of the step function � reflects that fact that the
imaginary part of Eq. (26) for j�j<m is zero, and, hence,
	ðx; �Þ vanishes identically. The formula (33) can be
rewritten with the use of the LDOS of the free particle

	Iðx; �Þ ¼ j�j



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�2 �m2jp �ð�2 �m2Þ

and the density of probability of the bound state v2,

~	 Iðx; �Þ ¼ 	Iðx; �Þ
�
1� m

j�j2 v
y
2v2

�
: (34)

The coefficient of the second term is just the difference of

the densities of states of h and ~h,

Z
R
ð	I � ~	IÞdx ¼ m�ð�2 �m2Þ


j�j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�2 �m2jp :

Let us notice that the difference of densities of states for
Dirac particle on the finite interval with Dirichlet boundary
conditions was discussed in Ref. [29].

The hidden superalgebra (30), closed by ~hI and ~pI ¼
LIpL

y
I , reads explicitly

½~hI; ~pI� ¼ 0; f~pI; ~pIg ¼ 2ð~hI �mÞ3 ~h2I ð~hI þmÞ:
The parity operator ~� ¼ R�3,

~�2 ¼ 1, classifies ~hI and ~pI

as, respectively, bosonic and fermionic operators, ½~hI; ~�� ¼
f~pI; ~�g ¼ 0.
The potential in Eq. (32) can be associated with the

displacement vector d ¼ ð0; ln coshmxÞ. The correspond-
ing twist of the metallic nanotube is illustrated in Fig. 2.
Hence, the nanotube is twisted in one direction up to the
center (origin) where the orientation of the twist gets
changed.

B. Double-kink model

Here, we construct the system with two bound states. We
shall employ the scheme discussed in Eqs. (12)–(14).
Fixing �1ðxÞ ¼ 0 in Eq. (12), we get the free-particle
Hamiltonian

hII ¼ i�2@x þm�1:

We choose the components of UII as

u11 ¼ 1ffiffiffi
k

p coshkx; u21 ¼ 1ffiffiffi
k

p coshðkxþ aÞ;

where

a ¼ 1

2
log

m� k

mþ k
; k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � �2

1

q
; 0< �1 <m:

The intertwining operator acquires a diagonal form

LII ¼ 1@x � k
tanhðkxÞ 0

0 tanhðkxþ aÞ
� �

: (35)

The formula (14) then provides the explicit form of the

Hamiltonian ~hII:

~hII ¼ i�2@xþ
�
�mþ�1

cosh2kxþcosh2ðkxþaÞ
coshkxcoshðkxþaÞ

�
�1

¼ i�2@xþðm�ktanhkxþk tanhðkxþaÞÞ�1: (36)

The potential term is asymptotically equal to m�1. The
system has two bound states represented by the normalized
vectors v1 and v2 ¼ �3v1, where

v1 ¼
ffiffiffi
k

p
2

ðsechkx; sechðkxþ aÞÞT:

FIG. 2 (color online). The metallic nanotube with the twist
associated with dy � ln coshmx and the Hamiltonian (32). In the

untwisted nanotube, the black line would be straight.
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Notice that the equation (36) appeared in the analysis of the
Dashen, Hasslacher, and Neveu kink-antikink baryons in
Gross-Neveu model [37].

The local density of states in the current system can be
computed directly with the use of Eq. (27). We get

~	IIðx; �Þ

¼
j�jð1� k2

2ð�2��2
1Þ
ðsech2kxþ sech2ðkxþ aÞÞÞ



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijm2 � �2jp �ð�2 �m2Þ:

Likewise, in the preceding example, it can be written as the
LDOS of the free particle corrected by the term propor-
tional to the probability density of the bound states,

~	 IIðx; �Þ ¼ 	IIðx; �Þ
�
1� 2kvy

1v1

ð�2 � �2
1Þ
�
; (37)

where 	IIðx; �Þ ¼ 	Iðx; �Þ. This time, the difference of the
densities of states is

�DOS ¼
Z
R
ð	0 � 	1Þdx ¼ 2kj�j�ð�2 �m2Þ



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijm2 � �2jp ð�2 � �2

1Þ
:

The hidden superalgebra associated with the system,

½~hII; ~pII� ¼ 0; f~pII; ~pIIg ¼ 2ð~h2II �m2Þð~h2II � �2
1Þ2;

is graded by the operator ~� ¼ RR��1, where R�fðxÞ ¼
fðxþ �ÞR�, R�R ¼ RR�� ¼ RðR�Þ�1, and � ¼ � a

k .

This grading operator (represented in another form) was
also discussed in Ref. [35].

The vector potential in Eq. (36) corresponds to the
displacement dy ¼ mx� ln coshkxþ ln coshðkxþ aÞ.
The corresponding twist of the metallic nanotube does
not change its orientation asymptotically, see Fig. 3 for
illustration.

We can find another physically interesting setting de-

scribed by ~hII. We can divide the vector potential in
Eq. (36) into two parts. The first part is associated with

the asymptotically vanishing twist of the nanotube, ~�T ¼
�k tanhkxþ k tanhðkxþ aÞ. The second part is constant,
~�MG ¼ m, and corresponds to the homogeneous external
magnetic field which is parallel with the axis of the nano-

tube. Hence, ~hII describes the metallic nanotube which is
asymptotically free of twists; however, the external con-
stant magnetic field is present. See Fig. 4 for illustration.

The uniform external field opens a gap of the width 2m
in the spectrum while the asymptotically vanishing twist
induces two bound states in the gap. The model allows us
to compute the bound-state energies as a function of an

asymptotic (global) twist. Indeed, the twist associated

with ~�T is

dy ¼ ln
coshðkxþ aÞ

coshkx
: (38)

The asymptotic twist corresponds to

�d ¼ j lim
x!1dy � lim

x!�1dyj ¼ 2jaj ¼ � ln
m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � �2

1

q
mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � �2

1

q :

(39)

The dependence of the bound-state energies on �d then
acquires the following simple form:

�1 ¼ �2m
eð�d=2Þ

1þ e�d
(40)

and is plotted in Fig. 5.
Up to now, the twisted nanotubes were considered to be

metallic. The analysis can be extended to semiconducting
nanotubes without any difficulties; a constant, nonzero,

part of the vector potential ~�1 has to be associated with
the internal characteristics (the orientation of the hexago-
nal lattice) of the nanotube. Let us notice in this context
that the metallic nanotube can be converted into the semi-
conducting one just by switching on the constant magnetic

FIG. 3 (color online). The metallic nanotube with the twist

associated with dy �mxþ lncoshðkxþaÞ
coshkx and the Hamiltonian (36).

FIG. 4 (color online). The nanotube associated with the
Hamiltonian (36) and the twist corresponding to Eq. (38). The
constant part of the magnetic field in Eq. (36), ~�MG ¼ m, can be
attributed to the external magnetic field or to the semiconducting
character of the nanotube.

2 4 6
d

1

1

m

FIG. 5 (color online). The spectrum of the Hamiltonian (36).
The asymptotic twist of the nanotube (39) induces bound states
of energies (40). The parameter m is proportional to the inverse
of the radius of the nanotube, see Ref. [43].
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flux parallel to the axis of the nanotube. This fact was
experimentally confirmed in Ref. [38] and coined as
Aharonov-Bohm oscillations of the carbon nanotubes.
Turning back to Eq. (36), we can interpret the
Hamiltonian as the energy operator of the semiconducting

nanotube with a radial twist associated to ~�T . The constant

part py � ~�MG of the potential appears due to the semi-

conducting nature of the nanotube.

V. DISCUSSION

The expressions (34) and (37) can be written in the
unified form

~	 IðIIÞ ¼ 	IðIIÞ

0
B@1�X

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � �2

j

q
ð�2 � �2

j Þ
vy
j vj

1
CA;

where the sum is taken over the normalized bound states of
~hIðIIÞ annihilated by LIðIIÞ. It manifests a decrease of the

LDOS in the regions where the bound states are localized.
However, it is rather just a peculiar property of the dis-
cussed reflectionless models [39]. In the general case, the

LDOS (27) of ~hII acquires the following form in terms of
the vectors v1 and v2:

Trð ~GIIðx; x;�ÞÞ
¼ TrðGIIðx; x;�ÞÞ

þ 2�2
1v

y
1v1ðg0vy

1v1 þ g3v
y
1�3v1 � g1

�
�1
vy
1�1v1Þ

ð�2 � �2
1ÞðdetVÞ2

:

When hII is equal to the free-particle Hamiltonian, the

coefficient of vy
1v1 reduces to a constant. Nevertheless,

this apparently does not hold in the general case.
We restricted our consideration just to the systems

described by the Hamiltonian ~h ¼ i�2@x þ �1ðxÞ�1.
However, the potential term of the seed Hamiltonian h in
Eq. (3) can acquire a quite generic form, yet the formulas
(23) and (25) for the Green’s functions and for the LDOS
remain valid. Other results are more sensitive to the explicit
form of the potential. The term �2ðxÞ�2 cannot cause any
substantial modifications; it would play just the role of
nonphysical gauge field. On the contrary, impact of the

diagonal term 1�0 þ�3ðxÞ�3 in ~h would be much deeper:

in general, it would break the symmetry �ð~hÞ ¼ ��ð~hÞ of
the spectrum �ð~hÞ of ~h. In the context of Dirac particles in
the carbon nanotubes, the potential �3ðxÞ�3 would have a
different sign for the spin-up and -down components of
wave function, i.e. this potential would change the sign on
the two sublattices that form the crystal. Physical realiza-
tion of such a scenario in the considered condensed matter
system is not clear. It is remarkable that the Darboux
transformation (4) does not alter the form of �0; the new

Hamiltonian ~h shares the same electrostatic potential as the
seed Hamiltonian. We notice that the electrostatic potential
can be also altered via the so-called zeroth-order super-
symmetry, as it was discussed in Ref. [18].
In the discussed systems represented by the stationary

equation (1), the analysis of the bound states can be facili-
tated by the fact that the square of the Dirac Hamiltonian
takes the form�@2x þ�2

1 þ �3�
0
1. The existing tools (see,

e.g., Ref. [40]) for the analysis of the Schrödinger opera-
tors can be exploited to reveal spectral properties of the
Dirac Hamiltonian. In this context, let us mention that
interesting results were obtained by the spectral analysis
of a general class of deformed quantum waveguides de-
scribed by Schrödinger equation [41]. We believe that
similar analysis for the carbon nanostructures described
by the one- or two-dimensional Dirac Hamiltonian would
be fruitful.
The presented analysis is qualitative. Equation (1) is a

good approximation for the quasiparticles in carbon
nanotubes only for a small region of the momentum
space where the linear dispersion relation is valid.
When the gap opened by the pseudomagnetic field in
the spectrum is too big, nonlinear (the so-called trigonal
warping) terms [42] have to be included in the
Hamiltonian. In the article, we neglected surface curva-
ture of the nanotubes. The tubular surface prevents the

-orbitals of the carbon atoms to be parallel to each
other. This implies the presence of additional pseudo-
magnetic fields in the Hamiltonian. However, in the case
of armchair nanotubes, these additional gauge fields can
be transformed out [14].
The examples presented in the text suggest that the

nonuniform radial twist can induce bound states in the
nanotube. In particular, the second model with double-
kink potential provides an interesting qualitative insight
into realistic experimental setting: the nanotube with
asymptotically vanishing twist is immersed into the
homogeneous magnetic field. Besides the explicit
formula (37) for LDOS, the model predicts the appear-
ance of bound states, and the formula (40) fixes their
energies in dependence on the asymptotic twist. The
model can be simply tuned with the use of perturbation
techniques.
The supersymmetry can be very useful for construction

of the models with more complicated (yet asymptotically
constant) twist-inducing richer spectral properties. The
formalism presented in the second section can be re-
peated to produce a chain of solvable Hamiltonians,

h; ~h; ~~h; . . . , by taking the last constructed operator as
the seed Hamiltonian for the new system. These new
solvable systems shall provide insight into the
deformation-induced spectral engineering of carbon
nanotubes. The reflectionless models are particularly
important in this context; they are analytically feasible
and possess nontrivial (super)symmetry, analogous of
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Eqs. (29) and (30). The considered double-kink example
suggests that the number of bound states could be
in a simple relation to the vector potential of the
Hamiltonian; the number of bound states might be
proportional to the number of minima of the po-
tential. Verification of this hypothesis goes beyond the
scope of the current paper and should be discussed
elsewhere.
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