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Supernova explosions provide the most sensitive probes of neutrino propagation, such as the possibility

that neutrino velocities might be affected by the foamy structure of space-time thought to be generated by

quantum-gravitational effects. Recent two-dimensional simulations of the neutrino emissions from core-

collapse supernovae suggest that they might exhibit variations in time on the scale of a few milliseconds.

We analyze simulations of such neutrino emissions using a wavelet technique, and consider the limits that

might be set on a linear or quadratic violation of Lorentz invariance in the group velocities of neutrinos of

different energies, v=c ¼ ½1� ðE=M�LV1Þ� or ½1� ðE=M�LV2Þ2�, if variations on such short time scales

were to be observed, where the mass scales M�LVi might appear in models of quantum gravity. We find

prospective sensitivities to M�LV1 � 2� 1013 GeV and M�LV2 � 106 GeV at the 95% confidence level,

up to 2 orders of magnitude beyond estimates made using previous one-dimensional simulations of core-

collapse supernovae. We also analyze the prospective sensitivities to scenarios in which the propagation

times of neutrinos of fixed energies are subject to stochastic fluctuations.
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I. INTRODUCTION

Supernovae provide some of the most sensitive probes of
neutrino physics [1], as exemplified by studies of the
neutrinos detected after emission from SN 1987a [2].
Excellent prospects for improving these studies would be
offered by a future galactic core-collapse supernova.
Crucial inputs into estimates of the prospective sensitivities
of such studies are provided by supernova simulations. In
the past, these simulations have mainly been one-
dimensional, i.e., implicitly assuming that the collapse is
spherically symmetric. Clearly, more realistic simulations
are desirable, and more recently two-dimensional hydro-
dynamic models, i.e., implicitly assuming only cylindrical
symmetry, have become available, in which multigroup,
three-flavor neutrino transport has been treated by different
(relatively sophisticated) approximations [3–5]. These
have revealed several interesting features, the most rele-
vant for our analysis being the appearance of fast time
variations in the neutrino emission [4,5], as seen in the top
panel of Fig. 1. It was shown that these could be observable
in the IceCube experiment [6], and could exhibit a quasi-
periodicity of Oð10Þ ms, similar to the natural time scale
of reverberations associated with hydrodynamic instabil-
ities in the supernova core. It is desirable to confirm
the predicted appearance of such features in neutrino
emissions from core-collapse supernovae through more
detailed simulations, in particular, in three dimensions.1

Nevertheless, we find these features sufficiently interesting
and well motivated to consider the sensitivity to effects in
neutrino propagation that would become available if such
rapid time variations were in fact to be observed.
The most obvious such effect is that of neutrino mass.

Nonzero masses cause neutrinos to travel at less than the
speed of light, by an amount that decreaseswith increasing
neutrino energy. This causes any time structure that ap-
pears simultaneously in emissions over a range of energies
to spread out before arrival at the Earth, an effect that was
exploited to set an upper limit on neutrino masses using
data from SN 1987a [9]. Though an interesting demonstra-
tion of principle, that limit was not competitive with labo-
ratory and cosmological limits, and even the increase in
sensitivity suggested by the more recent two-dimensional
simulations seems unlikely to be competitive.
Another possibility is to use the neutrino emissions from

core-collapse supernovae to constrain effects on neutrino
propagation such as might be induced by ‘‘foamy’’
quantum-gravitational fluctuations in the fabric of space-
time [10]. Such space-time foam effects could include a
refractive index (i.e., a change in the neutrino or photon
velocity that depends on energy) [11–15], dispersion in
propagation at fixed energy [16], and a loss of coherence
[17]. Models suggest that any such effects should increase
with increasing neutrino energy E, being proportional, e.g.,
to E=M�LV1 or ðE=M�LV2Þ2, where the mass scales M�LVi

might originate from quantum gravity. As such, they would
be easily distinguishable, in principle, from the effect on
neutrino propagation of a neutrino mass. Estimates have
been given [15] of the possible sensitivity to such effects1For first steps in this direction, see [7,8].
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that could be provided by a core-collapse supernova
explosion in our Galaxy, e.g., sensitivity to M�LV1�
2� 1011 GeV or M�LV2 � 2� 105 GeV for a refractive
index >1, corresponding to increasingly subluminal
propagation of energetic neutrinos. These prospective
sensitivities are considerably greater than those offered
by terrestrial long-baseline neutrino experiments [18]: the
latters’ beams have much finer time structures, but they are
handicapped by their much shorter propagation distances.

The estimates above were based on the earlier simula-
tions of the core collapse of a supernova that yielded
emissions over a period of seconds without any finer
time structure. A priori, the observation of time structures
on the scale of Oð10Þ ms in the neutrino emissions from
core-collapse supernovae, as suggested by more recent
two-dimensional simulations [4,5], would provide the pos-
sibility to constrain foamy effects on neutrino propagation
a couple of orders of magnitude more sensitively than was
previously estimated. In this paper, we use such a simula-
tion to estimate the prospective sensitivity to a neutrino
refractive index and dispersion in propagation at fixed
energy, applying a wavelet analysis to the simulated neu-
trino signals published in [5].

We find that the prospective sensitivities to novel effects
in neutrino propagation would indeed be enhanced by 2
orders of magnitude if the neutrino signals from core-
collapse supernovae do exhibit the fine-scale time struc-
tures suggested by two-dimensional simulations. In the
first instance, these sensitivities may be expressed for
energy-dependent time shifts �l or dispersions at fixed
energy, both expressible in units of s=MeVl for effects /
El. Knowing the distance from any given supernova, these
sensitivities may be translated into sensitivities to model
parameters such as the M�LVl introduced above.
Hypothesizing a typical distance of 10 kpc we find, for
example, sensitivities to M�LV1 � 2� 1013 GeV and
M�LV2 � 106 GeV at the 95% confidence level. We em-
phasize these sensitivities could immediately become
lower limits if time structures are observed. The absence
of such time structures could provide upper limits if the
predictions by two-dimensional simulations of short time
structures could be validated, assuming that no astrophys-
ical effect during propagation could wash out the effect.
This subject has become much more topical during the

finalization of this paper, with the publication of an analy-
sis of OPERA data [19] using a technique similar to that
developed in [15]. This reports possible superluminal neu-
trino propagation with velocity exceeding that of light, c,
by an amount �v: �v=c� 2:5� 10�5, corresponding to
M�LV1 � 1:1� 106 GeV orM�LV2 � 5:6� 103 GeV [20],
smaller than the lower limits established in [15] using
SN1987a data. Thus, a simple power law fit jointly to the
SN1987a data and OPERA �vwould probably require an
energy dependence steeper than E2, in apparent conflict
with the energy spectrum of the neutrino events measured
by OPERA. The superluminal neutrino interpretation of
the OPERA data is subject to many other experimental and
phenomenological constraints, and one should not assume
that it will survive further scrutiny. Nevertheless, this
episode heightens awareness of the importance of probing
fundamental principles such as the universality of the
velocity of light as sensitively as possible, and our analysis
based on two-dimensional simulations of supernova
explosions shows that they could provide unparalleled
sensitivity to novel effects in neutrino propagation.

II. INGREDIENTS IN THE ANALYSIS

A. Quantum-gravity models for non-standard
neutrino propagation

As mentioned in the Introduction, various possibilities
for nonstandard neutrino propagation are suggested by
phenomenological models based on approaches to quan-
tum gravity [15,17]. This is because such models entail
microscopic fluctuations of space-time, due to curvature
fluctuations and/or, in certain theories, space-time defects.
Specifically, in brane theories based on string theory [14],
the latter may be modeled as pointlike structures that cross
the brane Universe from the bulk, giving space-time a
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FIG. 1 (color online). Top panel: The time series of the neu-
trino emission from the two-dimensional simulation of a core-
collapse supernova found in [5]. The time profile is sampled in
1024ð210Þ. bins.Middle panel: The local wavelet power spectrum
of the neutrino emission time series, obtained using the Morlet
wavelet function (12) normalized by 1=�2. The vertical axis is
the Fourier period (in seconds), and the horizontal axis is the time
of the neutrino emission. The red contours enclose regions that
differ from white noise at greater than the 95% confidence level.
The cone of influence, where edge effects become important, is
indicated by the concave solid lines at the edges of the support of
the signal. Comparing the width of a peak in the wavelet power
spectrum with this decorrelation time, one can distinguish be-
tween a spike in the data (possibly due to random noise) and a
harmonic component at the equivalent Fourier frequency. Bottom
panel: The average power in the 0.002–0.003 s band. The dashed
line is the 95% confidence level obtained from (28).

ELLIS et al. PHYSICAL REVIEW D 85, 045032 (2012)

045032-2



foamy nature at microscopic scales. In our current state of
knowledge of string theory, the string scale is essentially a
free parameter to be constrained by low-energy phenome-
nology, and, in particular, by constraints on nonstandard
neutrino propagation.

1. Modified dispersion relation

One of the most explored avenues for experimental
probes of (some models of) space-time foam is to search
for Lorentz violation induced in the propagation of matter
particles by their interactions with this foamy space-time
medium. In certain string-inspired models of foam, the
presence of a medium affects the dispersion relations of
certain species of matter particles [14,16]. In the simplest
formulation of the effects of the foam, in a first approxima-
tion only electrically neutral particles interact with the
medium, so that photons and neutrinos are the most sensi-
tive probes of such models. In these models, the modifica-
tion of a particle’s dispersion relation is a consequence of
the microscopic Lorentz violation induced by the recoil of a
space-time defect during its nontrivial interaction with the
open-string state that represents the particle excitation in a
brane Universe [14,16]. In the case of photon propagation,
this effect is manifested as a vacuum refractive index. For
purely string-theoretical reasons, the induced refractive
index is subluminal, implying that, if a beam of photons
with different energies is emitted simultaneously from a
source, the arrival times of more energetic photons will be
delayed compared to their lower-energy counterparts.2

In the case of neutrinos, regarded as (almost) massless
particles, a similar effect might be expected, namely, a
delayed arrival of the more energetic neutrinos from cos-
mic sources, assuming that the neutrinos of different en-
ergies are emitted (almost) simultaneously. One may
therefore consider foam-induced Lorentz violation that is
expressed via a neutrino group velocity, vg, that may

depend either linearly or quadratically on the energy of
the neutrino:

vg=c ¼ 1� ðE=M�LVlÞl; l ¼ 1 or 2: (1)

As discussed in [15], lower limits on M�LVl may be ob-
tained by requiring that narrow peaks in neutrino emission
over a range of energies not be broadened significantly, or
even washed out, and this is the strategy advocated here
using emissions from a supernova.

2. Dispersion of a wave packet

A second effect that may also be induced by quantum-
gravity foam models is a spread in the width of the wave
packet, which may depend on the neutrino energy. This
could arise from an energy-dependent neutrino velocity of

the type discussed above, or from a stochastic spread in
neutrino velocities at fixed energy [16].
Consider, for example, a neutrino wave packet that is

Gaussian in the ‘‘approximately’’ light-cone variable
x� vgt, where the group velocity vg ¼ d!=d� is near

the speed of light for the relativistic, almost massless
neutrinos that we consider here, allowing for a generic
dispersion relation ! ¼ !ð�Þ with � � j ~�j being the spa-
tial momentum amplitude. For neutrinos that are almost
massless, the analysis is similar to that given in [16]. The
square of the neutrino amplitude is given in general by

jfðx; tÞj2 ¼ A2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2t2

ð�x0Þ4
q exp

�
� ðx� vgtÞ2
2ð�x0Þ2½1þ �2t2

ð�x0Þ4�
�
; (2)

where j�x0j is the spread at t ¼ 0, � ¼ 1
2 ðd2!=d2�Þ, and

we assume that the neutrino wave packet has a Gaussian
distribution in the approximately light-cone variable
x� vgt.

We see immediately in (2) that the quadratic term � in
the dispersion relation does not affect the motion of the
peak, but only the spread of the Gaussian wave packet:

j�xj ¼ �x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2t2

ð�x0Þ4
s

; (3)

which therefore increases with time. The quadratic term �
also affects the peak amplitude of the wave packet: the
latter decreases as the spread (3) increases, in such a way
that the integral of jfðx; tÞj2 is constant.
If the neutrinos were exactly massless, then, as in the

case of photons, the quantity � would receive nonzero
contributions only from anomalous terms in the dispersion
relation due to quantum gravity of the form (1) [16]. In the
linear case, l ¼ 1, such corrections would be independent
of the energy of the neutrino. In the presence of small
neutrino masses, m � �, there are always contributions to
� from terms of the form

� ¼ m2

�3
; m � �: (4)

Such terms contribute to the spread of the wave packet, but
decrease with the neutrino momentum, in contrast to
quantum-gravity effects that are expected to be constant
or to increase as functions of the neutrino energy (momen-
tum), depending whether the energy dependence of the
refractive index is linear or quadratic.
Hence, we may parametrize the spread � generically as

in (3), with the parameter � having a power-law depen-
dence on the neutrino momentum �:

� ¼ m2

�3
� lðlþ 1Þ �l�1

Ml
�LVl

; (5)

with l ¼ 1 or 2, where the stochastic case is denoted by the
tilde in the suffix of the quantum-gravity scale. To leading

2As a bonus, this avoids any constraints due to the emission of
Čerenkov radiation by energetic photons [21].
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order in the small neutrino mass, we may replace k by the
(average) neutrino energy E of the wave packet. This effect
leads to a potentially independent way of detecting space-
time foam [10], although we find that it is not competitive
with limits coming directly from time-of-flight measure-
ments, as discussed below.

3. Wave-packet spread induced by stochastic fluctuations
in neutrino velocities

Another phenomenon that may also be induced by
quantum-gravity foam models is stochastic fluctuation in
the velocities of different neutrinos with the same energy
[16]. As an example how this type of effect might arise
from space-time foam, we consider the possibility of light-
cone fluctuations.

In the string-inspired models of space-time foam that we
consider here, these may be induced by the summation
over world-sheet surfaces with higher-genus topologies.
These result in an effective stochastic fluctuation of the
light-cone of order [16]

�c� 8g2s
E

Msc
2
; (6)

whereMs is the string scale, gs is the string coupling, andE
is the average energy of the massless (or, in the case of the
neutrino, almost massless) probe.

Light-cone fluctuations of the form (6) would also lead
to a spread in the Gaussian wave packet, which is distinct
from the spread induced by the refractive index (3). The
spread induced by light-cone fluctuations would be linear
in the quantum-gravity scale, as seen from (6). Such an
effect would lead to a stochastic spread in the arrival times
of photons or neutrinos of order

��t ¼ L

c�
E; � � Msc

2

8g2s
; (7)

where L is the distance of the observer from the source.3

We emphasize that, in contrast to the variation (1) in the
refractive index—which refers to photons of different en-
ergies—the fluctuation (7) characterizes the statistical
spread in the velocities of particles of the same energy.
We note that the stochastic effect (7) is suppressed com-
pared to the linear (n ¼ 1) refractive index effect (1) by an
extra power of the string coupling gs (we recall that, in the
string model, M�LV1 / Ms=gs).

The light-cone fluctuation effects may be thought of as
inducing a time-independent spread � in a neutrino wave
packet that can be parametrized as (see later)

P ðtÞ � e�ððt�t0Þ2=2�2Þ; (8)

where

�2 ¼ �2
0 þ c21

El

Ml

�fLVl
; l ¼ 0 or 1: (9)

The expression (8) is distinct from the relativistic Gaussian
wave packet used above and in [16]. In the latter case, the
stochastic light-cone fluctuations already affect the spread
(3) j�x0j2 at t ¼ 0, which then may be identified with the
�2 in (9).

B. Two-dimensional simulation of a
core-collapse supernova

The analysis presented in this paper is based on the
results of a two-dimensional, i.e., axisymmetric, core-
collapse simulation for a 15M� star computed with the
high-density equation of state of Lattimer and Swesty [22].
The properties of the neutrino signal calculated in this
model were discussed in detail in [5].
Unlike one-dimensional, i.e., spherically symmetric,

models, the neutrino emission during the post-bounce ac-
cretion phase exhibits rapid time variability because of
anisotropic mass flows in the accretion layer around the
newly formed neutron star. These flows are a consequence
of convective overturn as well as the standing accretion-
shock instability (SASI; [23]), which lead to large-scale,
nonradial mass motions in the layer between the protoneu-
tron star surface and the accretion shock. Locally enhanced
mass infall to the compact remnant and asymmetric com-
pression create hot spots that can produce transiently neu-
trino radiation that is more luminous and with a harder
spectrum, emitted in preferred directions. Temporal varia-
tions of the luminosities and mean energies are expected to
persist during the whole accretion phase, which can last
hundreds of milliseconds. For electron neutrinos and anti-
neutrinos, such variations could yield fractional changes of
10% and even higher during the most violent phases of
core activity in two-dimensional models with no or only
slow rotation [4,5]. The corresponding effects are some-
what damped for muon and tau neutrinos, because a
smaller fraction of these neutrinos is produced in the outer
layers of the protoneutron star where asymmetric accretion
causes the largest perturbations.
The fluctuating neutrino emission has been shown to

trigger a clearly detectable signature in the response of the
IceCube detector in the case of a neutrino burst from a
future Galactic supernova. Peaks of the power spectrum of
the event rate are expected at the typical frequencies of the
SASI and convective activity (between several tens of Hz
and roughly 200 Hz) [5].
While a softer nuclear equation of state (allowing for a

more compact protoneutron star) seems to favor larger
signal amplitudes [5], several other sources of uncertainty
in the model predictions need to be mentioned. One con-
cerns the neutrino transport description that is used, which

3In our analysis below, we may ignore effects associated with
the expansion of the Universe, as we are dealing with neutrinos
from galactic supernovae.
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even in the most sophisticated current multidimensional
(two- or three-dimensional) models cannot be handled
without approximations. In Ref. [5], neutrino predictions
were obtained in a scheme in which the full energy depen-
dence of the transport problem was accounted for (includ-
ing Döppler shifting, gravitational redshifting, and
neutrino redistribution in energy space by scattering reac-
tions) but the two dimensionality of the transport was
treated in a ‘‘ray-by-ray’’ approximation. This means that
the spatial transport was described by N spherically sym-
metric (radial) problems withN being the number of lateral
grid zones, and it implies that the directional averaging or
smoothing of the neutrino emission due to radiation re-
ceived by an observer from different areas of the emitting
surface is underestimated. However, in Ref. [5] also data
averaged over hemispheres (northern, southern, equatorial)
were considered, which still led to easily detectable sig-
natures. Moreover, the basic effects discussed in [5] were
confirmed by true multiangle two-dimensional transport
results in Ref. [4], though with the limitation of not includ-
ing energy-bin coupling due to the effects mentioned
above. We note also that flavor oscillations between ��e

and muon or tau antineutrinos, whose emission variations
have lower amplitudes, reduces the modulations of the
event rate in the IceCube detector only moderately.

The largest uncertainty in current model predictions
results from the two-dimensional nature of the most de-
tailed simulations. Three-dimensional modeling of stellar
core collapse is still in its infancy, and well-resolved
simulations with energy-dependent neutrino transport are
currently not available. First steps in this direction were
reported in Ref. [7], but the models are either not evolved
for interestingly long post-bounce times or the employed
numerical resolution is poor and the neutrino data are not
conclusive with respect to the effects discussed here. In
constrast, Ref. [8] employed a simpler, energy-averaged
(‘‘grey’’), ray-by-ray neutrino transport approximation and
could follow the evolution of collapsing stellar cores in
three dimensions over several hundred milliseconds of
post-bounce accretion, through explosion, into the subse-
quent neutrino cooling of the nascent neutron star. The
radiated neutrino signal as visible by a distant observer was
evaluated in [8] and also revealed variations with time on
the scale of a few milliseconds, however with an amplitude
of several percent only, instead of the 10% or more found
in two-dimensional simulations.

An analysis of the detectable consequences is in
progress. Whilst in a two-dimensional simulation the ex-
istence of a symmetry axis directs the SASI sloshing
motions of the shock and of the accretion flows, these
motions are similar in all directions in three dimensions
and thus appear to develop smaller amplitude in any par-
ticular direction, leading to a reduced fractional fluctuation
of the observable neutrino emission. It should be noted,
however, that the existing three-dimensional models still

contain severe approximations and do not explore the
range of interesting possibilities. In particular, they do
not include the effects of rotation in the stellar core, which
even for slow rates could significantly influence the growth
of SASI spiral modes [24].
We base our analysis here on the more mature two-

dimensional simulations, though adopting a somewhat opti-
mistic point of view, in thatwedetermine themaximal effects
that can be expected within the detailed two-dimensional
models currently available. We therefore consider (north-)
polar emission (i.e., no averaging of luminosities and spectra
over a wider range of latitudes) of electron antineutrinos, as
predicted by the 15M� simulation with the relatively soft
equation of state of Lattimer and Swesty in Ref. [5]. Possible
flavor conversions between electron antineutrinos andheavy-
lepton antineutrinos are ignored.

C. Detector response to the time-varying
SN neutrino signal

As was discussed in detail in [5], IceCube or a future
megaton-class water Čerenkov detector would be very
promising for detecting the time-varying neutrino signal
from a future galactic SN. Such detectors are designed to
detect a large number of Čerenkov photons produced by
neutrino events, and a single photon produced by a given
neutrino can tag its arrival time. Hence the term ‘‘event’’
can be used interchangeably to refer to photon or neutrino
detection. In the case of a SN at the fiducial distance of 10
kpc assumed here, the photon detection rate can be as high
as �103=ms. This is similar to the intrinsic background
rate estimated for IceCube. A megaton-scale water
Čerenkov detector would achieve neutrino detection rates
similar to IceCube and, in addition, would provide event-
by-event information. Therefore, IceCube may serve as a
benchmark detector for estimating a typical detection rate
achievable for a time-varying SN neutrino signal.4

A schematic model of the IceCube detector response to a
SN neutrino signal was used in [5] to estimate the detection
rate, including efficiencies, for Čerenkov photons originat-
ing from the dominant inverse-beta reaction ��e þ p !
nþ eþ:

R ��e ¼114ms�1
L ��e

1052 ergs�1

�
10 kpc

D

�
2
�

Erms

15MeV

�
2
; (10)

where L ��e
and D are the SN luminosity and distance,

respectively. The definition [5]

E2
rms � <E3>

<E>
(11)

is used, where the average is to be taken over the neutrino
distribution function. This estimate for the photon count

4For the Super-Kamiokande detector with fiducial volume 22.5
kt, the corresponding neutrino detection rate is approximately 2
orders of magnitude smaller, but essentially background free.
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rate uses an approximate inverse-beta cross section
of � ¼ 9:52 	 10�44 cm2ðE ��e

=MeV2Þ.
We assume in our analysis that the neutrino data col-

lected from a supernova explosion will consist of a list of
individual neutrino events with measured energies Ei and
arrival times ti, as motivated by the fact that a low-energy
water Čerenkov or scintillator detector is able to register
the time ti of every event with high precision. The results of
the simulation performed along the line of Sec. II B and
described extensively in [5] are presented as a set of
primary energy fluxes within time periods of durations ’
3–5 ms, and each individual flux can be represented by a
black-body spectrum with a given value of the mean en-
ergy. The fluxes are mapped into the photon counting rates
using the benchmark detector response rate (10). Knowing
the mean and total energy of neutrinos leading to the
photon counting rate in each time period, we assign
statistically to each event a specific time of emission and
energy. The distribution of one implementation of such
neutrino time-energy assignments folded with the bench-
mark detector response (10) is presented in Fig. 2. In order
to obtain robust estimates of the sensitivities to novel
effects in neutrino propagation as discussed below, we
make a number of different implementations of the neu-
trino emission, all with independent statistical realizations
of the thermal spectra. We then apply a technique based on
wavelet transforms to these implementations, and analyze
statistically the sensitivities to new physics that they
may have.

D. Wavelet analysis technique

We use a wavelet transform technique (see [25] for a
review) to analyze the neutrino time series generated by the
simulated supernova explosion, as it is well adapted to

capturing possible signatures of nonstationary power at
many different frequencies.
Consider a time series, xn, n ¼ 0; . . . ; N � 1, in bins of

equal width �t. The wavelet transform is based on a
wavelet function, c 0ð�Þ, that depends on a dimensionless
‘‘time’’ parameter �. To be admissible as a wavelet trans-
form, this function must have zero mean and be localized
in both time and frequency space. In choosing the wavelet
function, there are several factors which should be
considered:
Nonorthogonality: The term ‘‘wavelet function’’ may be

applied generically to either orthogonal or nonorthogonal
wavelets. In orthogonal wavelet analysis, the number of
convolutions at each scale is proportional to the width of
the wavelet basis at that scale. This produces a wavelet
spectrum that contains discrete blocks of wavelet power,
and is useful for signal processing as it gives the most
compact representation of the signal. Unfortunately for
time series analysis, an aperiodic shift in the time series
produces a different wavelet spectrum. Conversely, a non-
orthogonal analysis is highly redundant at large scales,
where the wavelet spectrum at adjacent times is highly
correlated. The term ‘‘wavelet basis’’ refers only to an
orthogonal set of functions, and an orthogonal basis im-
plies the use of the discrete wavelet transform, whereas
nonorthogonal wavelet functions can be used with either
discrete or continuous wavelet transforms. A nonorthogo-
nal transform is useful for the analysis of time series where
smooth, continuous variations in wavelet amplitude are
expected, and is used in this study.
Complexity: A real wavelet function provides only a

single component, and can be used to isolate peaks or
discontinuities. On the other hand, a complex wavelet
function provides information about both the amplitude
and phase, and is better adapted for capturing oscillatory
behavior. This is the choice made in this paper.
Width: For concreteness, the width of a wavelet function

is defined as the e-folding ‘‘time’’ of the wavelet ampli-
tude. The resolution of a wavelet function is determined by
the balance between the width in real space and the width
in Fourier space. A narrow (in time) function will have
good time resolution but poor frequency resolution, while a
broad function will have poor time resolution, but good
frequency resolution.
Shape: The wavelet function should reflect the type of

feature present in the time series. For time series with sharp
jumps or steps, one would choose a boxcarlike function,
whereas for a smoothly varying time series one would
choose a smooth function such as a damped cosine. If
one is primarily interested in wavelet power spectra, then
the choice of wavelet function is not critical, and one
function will give qualitatively similar results to another.
Among common nonorthogonal wavelet functions, the

Morlet wavelet is complex and contains a number of oscil-
lations sufficient to detect narrow features of the power
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FIG. 2 (color online). The distribution of times and energies
assigned to individual neutrinos in one statistical realization of
the thermal spectra found in the simulation [5].
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spectrum, and is the choice made here. It consists of a plane
wave modulated by a Gaussian function in a variable �:

c 0ð�Þ ¼ ��1=4ei!0�e��2=2; (12)

where !0 is a dimensionless frequency.
The continuous wavelet transform of a discrete sequence

xn is defined as the convolution of xn with a scaled and
translated version of c 0ð�Þ 5:

WnðsÞ ¼ �N�1
n0¼0

xn0c


�ðn0 � nÞ�t

s

�
: (13)

By varying the wavelet scale s and translating along the
localized time index n, one can construct a picture showing
both the amplitude of any features versus the scale and how
this amplitude varies with time. Although it is possible to
calculate the wavelet transform using (13), it is convenient
and faster to perform the calculations in Fourier space.

To approximate the continuous wavelet transform, the
convolution (13) should be performed N times for each
scale, where N is the number of points in the time series.
By choosing N points, the convolution theorem allows us
to perform all N convolutions simultaneously in Fourier
space using a discrete Fourier transform:

x̂ k ¼ 1

N
�N�1

n¼0 xne
�2�ikn=N; (14)

where k ¼ 0; . . . ; N � 1 is the frequency index. In the
continuous limit, the Fourier transform of a function

c ðt=sÞ is given by ĉ ðs!Þ. According to the convolution
theorem, the wavelet transform is the Fourier transform of
the product:

WnðsÞ ¼ �N�1
k¼0 x̂kc


ðs!kÞei!kn�t; (15)

where !k ¼ þ 2�k
N�t and � 2�k

N�t for k � N
2 and k > N

2 ,

respectively.
As already mentioned, following the criteria for select-

ing wavelets for a particular task described above, in this
paper we process the neutrino signal using Morlet wavelets
(12) of frequency !0, which takes the form

ĉ 0ðs!Þ ¼ ��1=4Hð!Þe�ðs!�!0Þ2=2 (16)

after the Fourier transform, where Hð!Þ is the Heaviside
function: Hð!Þ ¼ 1 if !> 0, and zero otherwise. The
width of this wavelet, defined as the e-folding time of the

wavelet amplitude, is �s ¼
ffiffiffi
2

p
s. The function ĉ 0 is nor-

malized to unity: Z
jĉ 0ð!0Þj2d!0 ¼ 1 (17)

and, in order to ensure that the wavelet transforms (15) at
all scales s are directly comparable to each other and to the

transforms of other time series, the wavelet functions c 0 at
other scales are normalized to have unit energy:

ĉ ðs!kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2�s

�t

�s
ĉ 0ðs!kÞ: (18)

This implies that

�N�1
k¼0 jĉ ðs!kÞj ¼ N: (19)

Using the convolution formula (13), the normalization of
the function c is

c

�ðn0 � nÞ�t
s

�
¼

ffiffiffiffiffi
�t

s

s
c 0

�ðn0 � nÞ�t
s

�
; (20)

and the wavelet power spectrum is defined by jWnðsÞj2. It is
desirable to find a common normalization for the wavelet
spectrum. Using the normalization in (18), and referring to
(15), the expectation value for jWnðsÞj2 is equal to N times
the expectation value for jx̂kj2. For a white-noise time
series, this expectation value is �2=N, where �2 is the
variance. Thus, for a white-noise process, the expectation
value for the wavelet transform is jWnðsÞj2 ¼ �2 for all
n and s.
Once the wavelet function is chosen, it is necessary to

choose a set of scales s to use in (15). For our purposes, it is
convenient to choose discrete scales related by powers of
two:

sj¼2j�js0; j¼0;1; . . . ;J; J¼ 1

�j
log2

�
N�t

s0

�
; (21)

where s0 is the smallest resolvable scale and J determines
the largest scale. The choice of a sufficiently small �j
depends on the width in spectral space of the wavelet
function. In the case of the Morlet wavelet, �j � 0:5 is
the largest value that still gives an adequate sampling scale.
In the middle panel of Fig. 1, we use N ¼ 1024, �t ¼
1:785 	 10�4 s, s0 ¼ 2�t, �j ¼ 0:125, and J ¼ 48. We
display in this panel the ‘‘cone of influence,’’ which is
indicated by the concave solid lines at the edges of the
support of the signal: this is the region of the wavelet
spectrum where edge effects become important, defined
as the e-folding time for the wavelet autocorrelation power
at each scale, and that also gives a measure of the decorre-
lation time for a single spike in the time series.
Since the wavelet transform is a bandpass filter with a

known response function (the wavelet function), it is pos-
sible to reconstruct the original time series using either
deconvolution or the inverse filter. In the case considered
here, the reconstructed time series can be represented as
the sum of the real parts of the wavelet transforms over all
scales [26]:

xn ¼ �j
ffiffiffiffiffi
�t

p
Cc 0ð0Þ�

J
j¼0

Re½WnðsjÞ�ffiffiffiffi
sj

p : (22)5The subscript 0 on c has been dropped, in order to indicate
that c has also been normalized (see later).
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The factor c 0ð0Þ removes the energy scaling while the
ffiffiffiffi
sj

p
converts the wavelet transform to an energy density. The
factor C comes from the reconstruction of a � function
from its wavelet transform using the function c 0ð�Þ (12)
and is a constant for each type of wavelet function. The
total energy is conserved by the wavelet transform, and the
equivalent of Parseval’s theorem for wavelet analyses is

�2 ¼ �j�t

CN
�N�1

n¼0 �
J
j¼0

jWnðsjÞj2
sj

: (23)

To determine significance levels for either Fourier or
wavelet spectra, one first needs to choose an appropriate
background spectrum. It is then assumed that different
realizations of the neutrino emission process will be ran-
domly distributed about this mean or expected background,
and the actual spectrum is compared with this random
distribution. For our phenomena, an appropriate back-
ground spectrum could be either white noise (with a flat
Fourier spectrum) or red noise (increasing power with
decreasing frequency). Here, for simplicity we choose a
Gaussian white-noise background spectrum.

We define as follows the null hypothesis for the wavelet
power spectrum: we assume that the time series has a mean
power spectrum, given simply by Pk ¼ 1 in case of the
white noise. If a peak in the wavelet power spectrum
appears significantly above this background spectrum,
then it is considered to be a true feature with a certain
percentage confidence. If xn is a normally distributed
random variable, then both the real and imaginary part of
x̂k are normally distributed. Since the square of a normally
distributed variable is chi-squared distributed with 1 degree
of freedom (DOF), then the jx̂kj2 variable has a chi-squared
distribution with two DOFs, 	2 [27]. In the case that the
original Fourier components are normally distributed, the
wavelet coefficients should also be normally distributed,
while the wavelet power spectrum jWnðsÞj2 should have a
	2
2 distribution. Thus, if the background were truly white

noise, the distribution shown in the middle panel of Fig. 1
would have a 	2

2 distribution for each point of ðt; sÞ. In
summary, assuming a mean background spectrum of white
(red) noise form, the distribution of the Fourier power
spectrum reads

Njx̂kj2
�2

) Pk	
2
2 (24)

at each Fourier frequency index k, with Pk being the mean
spectrum value corresponding to the wavelet scale s at this
index. (Here, the sign ) means ‘‘is distributed as.’’) The
corresponding distribution for the local wavelet power
spectrum is

jWnðsÞj2
�2

) 1

2
Pk	

2
2 (25)

at each time n and scale s. Disregarding the relation
between k and s, the relation (25) is independent of the

wavelet function. After finding an appropriate background
spectrum, simply the white nose in our case, and choosing
a particular confidence level for 	2 such as 95%, one can
then use (25) at each scale and build 95% contour lines, as
seen in the middle panel of Fig. 1.
In order to examine fluctuations in power over a range of

scales ðs1; s2Þ (a band), one can define the scale-averaged
wavelet power as the weighted sum of the wavelet power
spectrum over the scales s1 to s2:

�W 2
n ¼ �j�t

C
�j2

j¼j1

jWnðsjÞj2
sj

: (26)

The scale-averaged wavelet power can be used to examine
modulation of one time series by another, or modulation of
one frequency by another within the same time series.
It is convenient to normalize the wavelet power by the

expectation value for a white-noise time series. From (26),
this expectation value is ð�j�t�2Þ=ðCSavgÞ, where Savg is

defined as

Savg ¼
�
�j2

j¼j1

1

sj

��1
: (27)

Using the normalization factor for white noise, the distri-
bution can be modeled in analogy with (25), namely,

CSavg

�j�t�2
�W2
n ) �P

	2
#

#
; (28)

where the scale-averaged theoretical spectrum is now
given by

�P ¼ Savg�
j2
j¼j1

Pj

sj
; (29)

and 	2
# is the chi-squared distribution with the number of

DOFs #. Note that for white noise the normalization is
such that this spectrum is still unity. The number of DOFs
# in (28) is modeled as

# ¼ 2naSavg

Smid

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
na�j

�j0

�
2

s
; (30)

where Smid ¼ s02
0:5ðj1þj2Þ�j and na¼ j2�j1þ1. The fac-

tor Savg=Smid corrects for the loss of DOFs that arises from

dividing the wavelet power spectrum by the scale in (26).

III. RESULTS OF THE ANALYSIS

A. Wavelet transforms of the neutrino time series

The neutrino time series found in [5], summing over all
the produced neutrino energies, is shown in the top panel of
Fig. 1.6 We see that it exhibits structures on time scales
below a hundredth of a second that appear, prima facie, to

6The binning is chosen at the level of a good fraction of ms,
which seems to be reasonable for water Čerenkov and scintillator
detectors.
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be far beyond the magnitude of fluctuations that could be
expected from a ‘‘featureless’’ white-noise spectrum. As
discussed in the previous section, the wavelet technique is
very suitable for extracting such structures, and has been
applied in analogous analyses of time structures in photon
emissions from gamma-ray bursters [12]. The middle panel
of Fig. 1 shows the normalized wavelet power spectrum,
jWnðsÞj2=�2, for the time series of the neutrino emission
shown in the top panel. The normalization by 1=�2 gives a
measure of the power relative to white noise, and the colors
represent the significance of the feature compared to a
white-noise spectrum. We see that the wavelet transform
picks out structures in the time series on time scales down
to �2� 10�3 s. Several of these structures in the time
series have high significance, well above the 95% C.L. for
a white-noise spectrum (indicated by red contours). These
can be seen in the bottom panel of Fig. 1, where stuctures
with time scales between 2 and 3 ms are selected. We note,
in particular, the series of structures appearing at times
between 0.22 and 0.34 s after the start. There are also
structures in the band between 7 and 15 ms, and also
appreciable power at longer periods. Since we are inter-
ested in obtaining the best resolution possible, in the
following we focus on the band corresponding to the small-
est range of the scales where significant power is seen,
namely, that between 2 and 3 ms.7

Here, we investigate how these structures would be
smeared out by the energy-dependent refractive index
or by a stochastic spread in the velocities of different
neutrinos with the same energy, the two possibilities
described in the previous section. Specifically, we study
the following possible energy dependences of the neutrino
group velocity vg�:

vg�

c
¼ 1�

�
E

M�LVð1=2Þ

�
1=2

; (31)

vg�

c
¼ 1� E

M�LV1

; (32)

vg�

c
¼ 1�

�
E

M�LV2

�
2
: (33)

We also investigate a possible stochastic effect which may
change the arrival times, t, of individual neutrinos, assum-
ing a Gaussian probability distribution function:

P ðtstochÞ ¼ 1

�
ffiffiffiffiffiffiffi
2�

p exp

�
�ðtstoch � tÞ2

2�2

�
; (34)

as discussed above. Here, � ¼ 
lE
l with constants 
l and

l ¼ 0; 1, and 2.

B. Sensitivity to an energy-dependent refractive
index for neutrinos

Lower limits onM�LVð1=2Þ,M�LV1,M�LV2, and 
l may be

calculated by requiring that the fine-scale time structures in
the wavelet power spectrum do not disappear below the
95% C.L. of significance for a signal above the white-noise
power spectrum. Specifically, for the models (31)–(33) we
apply to every neutrino event an energy-dependent time
shift

�t ¼ �lE
l; (35)

where

�l ¼ L

cMl
�LVl

; (36)

and l ¼ 1
2 ; 1; 2. We then vary �l (M�LVl) and follow the

evolution of the signal in the neutrino time series. If there is
a nontrivial dispersive effect during propagation from the
source, it can be compensated by choosing the ‘‘correct’’
value of the time shift �l, in which case the original time
structure at the source is recovered. On the other hand,
dispersion at the source itself could not, in general, be
compensated by any choice of �l. Quantitatively, the time
structure of the supernova signal is recovered by maximiz-
ing the fraction of the scale-averaged power spectrum
above the 95% C.L. line. In order to calculate a lower limit
on �l in any specific model, we examine the fine-scale time
structures that appear above the 95% C.L. in the bottom
panel of Fig. 1 and find the value of the time-shift parame-
ter (36) at which the signal above the 95% C.L. disappears.
We first study a linearly energy-dependent neutrino

refractive index of the form 1þ ðE=M�LV1Þ. Figure 3 dis-
plays the result of one simulation of the effect of such an
energy-dependent refractive index, sampled in 21 bins
corresponding to different time shifts �1. The vertical
axis shows the strengths of the emissions in the structures
with time scales between 2� 10�3 s and 3� 10�3 s, ap-
plying a linear energy-dependent time shift �1 ¼
4:2� 10�5ðs=MeVÞ. Looking at the structures that occur
between 0.22 and 0.34 s after the start, we find that the
significant portions of these small-scale structures (those
that rise above the 95% fluctuation level for white-noise
background neutrino emission) disappear for time delays
� > 4:20� 10�5ðs=MeVÞ, corresponding to M�LV1 >
2:45� 1013 GeV if a supernova distance L of 10 kpc is
assumed. This sensitivity is 2 orders of magnitude more
sensitive than that found in [15], namely M�LV1 > 2:2�
1011 GeV, based on a one-dimensional simulation of a

7However, we do note that these would be the most endan-
gered by directional averaging of neutrinos streaming in all
directions, as may occur in more complete two-dimensional or
three-dimensional treatments of the neutrino transport. In con-
trast, the time structures connected to the typical SASI and
convective time scales (tens of Hertz up to about 200 Hz) are
likely to survive even in three dimensions (though possibly with
a somewhat reduced amplitude) [7,8]. If the minimum period of
neutrino variability were to increase, the sensitivity of our
analysis would decrease correspondingly.
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core-collapse supernova that did not exhibit the small time-
scale structures seen in Fig. 1.

We have repeated this exercise with 25 different statis-
tical realizations of the neutrino emission, calculating in
each case the amount � of the total signal above 95% C.L.
for different values of �1 sampled in 21 bins. The results of
these 25 realizations can be fit quite well by a Gaussian
distribution, as seen in Fig. 4. (In this and subsequent
figures, we concentrate on the structures with time scales
between 2� 10�3 s and 3� 10�3 s that occur between
0.22 and 0.34 s after the start.) One can see that the position
of the maximum, which defines the value of � that
maximizes the time structures in the signal and is expected
to be zero, is indeed consistent with zero to within a

precision of 10�6ðs=MeVÞ, while the structures are washed
out to below the 1� level at

�1 ¼ 3:85½3:95� � 10�5 s=MeV; (37)

where the number in square brackets ½. . .� is obtained from
a similar analysis of the superluminal case. On the basis of
this analysis, if significant time structures of the type found
in the two-dimensional simulation [5] were to be seen in
IceCube in neutrino data from a core-collapse supernova at
a distance of 10 kpc, one could conclude that

M�LV1 > 2:68½2:61� � 1013 GeV (38)

for a neutrino refractive index of the form 1� ðE=M�LV1Þ.
On the other hand, if no such structures were seen, infer-
ring an upper limit on M�LV1 would require strong inde-
pendent confirmation of the structures found in [5], in
particular, by full three-dimensional simulations.
We have repeated this analysis for the case of a quadratic

energy dependence in the refractive index of the form 1�
ðE=M�LV2Þ2, finding the results shown in Fig. 5. In this
case, we find that the structures are washed out to below the
1� level when

�2 ¼ 1:10½1:11� � 10�6 s=MeV2; (39)

where the number in square brackets is again obtained
from a similar analysis of the superluminal case. Hence,
observation of significant time structures [5] in IceCube
would imply that

M�LV2 > 0:97½0:96� � 106 GeV; (40)

if such structures were to be observed in a supernova
explosion at 10 kpc, again with the proviso that inferring
an upper limit onM�LV2 would require strong confirmation
of the structures found in [5], specifically by full three-
dimensional simulations.
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FIG. 3 (color online). The strength of the time-scale structure
of the power spectrum averaged between 0.002 and 0.003 s
disappears below the 95% C.L. of significance after applying a
linear energy-dependent time shift �1 ¼ 4:2� 10�5ðs=MeVÞ.
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Finally, repeating this analysis for the case 1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=M�LVð1=2Þ

q
, we find the results shown in Fig. 6:

�1=2 ¼ 3:10½3:15� � 10�4 s=
ffiffiffiffiffiffiffiffiffiffiffi
MeV

p
; (41)

(again, square brackets denote the superluminal case) cor-
responding to a sensitivity to

M�LVð1=2Þ > 1:11½1:07� � 1022 GeV (42)

if such structures were to be observed in a supernova
explosion at 10 kpc.

C. Sensitivity to a stochastic spread in
neutrino velocities

The possibility of a stochastic spread in the velocities
of individual neutrinos with the same energy can be
investigated in a similar way. As discussed in Sec. II,
the amount of velocity spread � might be energy indepen-
dent, and we consider this possibility as well as possible
linear and quadratic energy dependences of �. As in the
case of an energy-dependent time delay, any of these
possibilities would tend to spread out and reduce the sig-
nificances of the peaks found in the wavelet analysis shown
in Fig. 1.
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FIG. 6. A Gaussian fit to the amount � of the short time-scale
signal above the 95% C.L. calculated for 26 values of the
shift parameters �ð1=2Þ. Each point is obtained as the average

over 25 realizations of the time-energy assignments of individual
neutrinos.
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signal above the 95% C.L. calculated for 13 values of the shift
parameters �stoch2 . Each point is obtained as the average over 35

realizations of the time-energy assignments of individual
neutrinos.

PROBING LORENTZ VIOLATION IN NEUTRINO . . . PHYSICAL REVIEW D 85, 045032 (2012)

045032-11



This effect is seen for � / E in Fig. 7, for the energy-
independent case in Fig. 8, and for� / E2 in Fig. 9. In each
case, we plot results obtained from 35 independent statis-
tical simulations of the neutrino emission signal. We see
that the wavelet peaks are reduced below the 95% C.L.
white-noise level for

�stoch1 ¼ 2:16� 10�5 s=MeV (43)

in the linear case,

�stoch2 ¼ 9:56� 10�7 s=MeV2 (44)

in the quadratic case, and

�stoch0 ¼ 3:59� 10�4 s (45)

in the energy-independent case.8 These sensitivities
correspond to M

�fLV1 > 4:78� 1013 GeV and M
�fLV2 >

1:04� 106 GeV in the energy-dependent cases, for a
supernova explosion at 10 kpc.

IV. CONCLUSIONS AND PROSPECTS

We have shown that the existence of structures with
short time scales in the neutrino emission from a core-
collapse supernova, as suggested by two-dimensional
simulations [5], would open up new possibilities for prob-
ing aspects of the propagation of neutrinos that lie far
beyond the reach of terrestrial experiments, and up to 2
orders of magnitude beyond the sensitivity provided
by previous analyses based on one-dimensional
supernova simulations. This increased sensitivity holds
for possible square-root, linear and quadratic dependences
of the neutrino refractive index, and for both energy-
independent and linear or quadratically dependent
stochastic spreads in the velocities of different neutrinos
with the same energy.

Specifically, if such short time structures are seen in a
supernova explosion at a distance of 10 kpc, one could
infer that

M�LVð1=2Þ > 1:11½1:07� � 1022 GeV; (46)

M�LV1 > 2:68½2:61� � 1013 GeV; (47)

M�LV2 > 0:97½0:96� � 106 GeV; (48)

M
�fLV1 > 4:78� 1013 GeV; (49)

M
�fLV2 > 1:04� 106 GeV; (50)

where the numbers in square brackets correspond to the
superluminal case, and the last two limits correspond to the
possible effects of stochastic fluctuations. In the case of an
energy-independent stochastic spread, one could infer that
�stoch0 < 3:59� 10�4 s.
If such short time structures are not seen, many checks

would be necessary before one could conceivably claim
observation of any unconventional effect in neutrino propa-
gation. In particular, it would be necessary to validate the
predictions of the two-dimensional core-collapse super-
nova simulation on which this analysis is based, specifi-
cally by confirming that short time structures are also
found in full three-dimensional simulations [7,8]. We
hope that the interesting sensitivity to new neutrino physics
discussed in this paper—not to mention OPERA [19]—
will add to the motivation to develop further such simula-
tions and derive robust predictions for neutrino emissions
from core-collapse supernovae.

ACKNOWLEDGMENTS

The work of J. E. and N. E.M. was supported
partly by the London Centre for Terauniverse Studies
(LCTS), using funding from the European Research
Council via the Advanced Investigator Grant No. 267352.
H.-T. J. acknowledges support by the Deutsche
Forschungsgemeinschaft through the Transregional
Collaborative Research Centers under Projects No. SFB/
TR 27 ‘‘Neutrinos and Beyond’’ and No. SFB/TR 7
‘‘Gravitational Wave Astronomy,’’ and the Cluster of
Excellence Project No. EXC 153 ‘‘Origin and Structure
of the Universe’’ (http://www.universe-cluster.de). The su-
pernova simulations were possible by computer time grants
at the John von Neumann Institute for Computing (NIC) in
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