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centrally extended Newton-Hooke symmetry without rotations. This symmetry allows us to extend Kohn’s
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‘‘Bargmann’’ framework. The separation of the center-of-mass motion into that of a guiding center and

relative motion is derived by a generalized chiral decomposition.
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I. INTRODUCTION

The relationship between the ability to split off the
center-of-mass motion, the idea of a ‘‘guiding center’’
and its connection with some form of generalized
Galilean, or Newton-Hooke-type, ‘‘kinematic symmetry’’
[1,2] has been the subject of a number of recent papers
[3–5]. In the presence of magnetic fields this is the subject
of Kohn’s theorem [6] and its variants. The use of the
guiding center approximation in plasma physics is well
known. Less well explored is the application of these ideas
to gravitational physics. It is true that the idea of a guiding
center is well established in galactic dynamics [7], but its
connection with kinematic symmetries does not appear to
have been explored before. The purpose of the present
paper is to fill that gap in the literature.

The oldest example of what we have in mind are Hill’s
equations for the Earth-Moon-Sun system [8,9]. However
with the development of our understanding of the structure
of the galaxy, it was realized that similar equations hold for
the motion of stars around the Milky Way [7,10–12].
Understanding many-electron atoms in the old quantum
theory leads to the same equations and its failure to deal
with the helium was the notorious stumbling block that led
to the development of modern quantum mechanics. In
more recent times there has been a revival of interest in
semiclassical models of many-electron atoms [13] and
muonic atoms [14].

The plan of the paper is as follows. In Sec. II we
introduce and derive Hill’s equations. In Sec. III we ana-
lyze their symmetry group and its relation to the center-
of-mass motion and, in particular (in the planar case), show
that it is five-dimensional. In Sec. IV we obtain the
Lie algebra using its vector field generators acting in the
Newton-Cartan spacetime. In Sec. V we pass to a
Hamiltonian treatment and show that the Poisson algebra

of moment maps is an extension by two central elements.
In Sec. VI we provide the Eisenhart-Duval [15–19] lift of
the system to a 3þ 1-dimensional metric with Lorentz
signature which is not conformally flat, as we show ex-
plicitly. In Sec. VIII we give an alternative interpretation of
the Hill system in terms of a Landau problem in an aniso-
tropic oscillator and in Sec. IX we use this representation
to give a ‘‘chiral decomposition’’ using the methods of
[20,21]. Section X describes some possible variants and
extensions of our results and the last section is a short
conclusion.

II. HILL’S EQUATIONS

As a model for the Earth-Moon-Sun system [8,9], or for
a cluster of stars moving around the galaxy in an approxi-
mately circular orbit [7,10–12], one has the following
equations:

mað €xa � 2! _ya � 3!2xaÞ ¼
X
b�a

Gmambðxb � xaÞ
jxa � xbj3

;

mað €ya þ 2! _xaÞ ¼
X
b�a

Gmambðyb � yaÞ
jxa � xbj3

;

mað€za þ!2zaÞ ¼
X
b�a

Gmambðzb � zaÞ
jxa � xbj3

:

(1)

These equations are valid in a suitable rotating coordinate
system. For the Earth-Moon-Sun system, for example, x1
can be the position of the Earth and x2 can be that of the
Moon. The motion of the Sun is neglected, and the remnant
of its influence on the Earth-Moon pair is represented, in
the first-order approximation, by the repulsive anisotropic
harmonic term [22] in the first equation, where

!2 ¼ GM

R3
(2)

is the angular velocity of a circular Keplerian orbit lying in
the z ¼ 0 plane and having radius R. The linear-in-velocity
terms correspond to the Coriolis force induced in a rotating
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coordinate system. The right-hand sides represent the
gravitational interactions between the Earth and the Moon.

These equations are obtained as follows [23,24]. Let
r, �0, z be cylindrical coordinates centered on the Sun or
on the galactic center which has a mass M so large com-
pared with those of the other moving masses that it may be
assumed to remain at rest in an inertial coordinate system.
Let x, y, z be coordinates with respect to a rotating coor-
dinate system whose origin lies on the Keplerian orbit with
r ¼ R, �0 ¼ !t, z ¼ 0. The x axis is taken to be radial so
that r ¼ Rþ x, and the y axis is taken to be tangential to
the orbit. The forces acting on each particle, whose comov-
ing coordinates are xa, consist of their mutual gravitational
attractions and the attraction due to the gravitational po-
tential produced by the galaxy,

U ¼ �X
a

GMmaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðRþ xaÞ2 þ y2a þ z2a
p : (3)

To quadratic accuracy in xa, ya, za,

U ¼ �X
a

GMma

R

�
1� xa

R
� 1

2

y2a þ z2a
R2

þ x2a
R2

�
; (4)

which implies that the force is to linear accuracy,

�rU ¼ X
a

ma!
2ð�Rþ 2xa;�ya;�zaÞ: (5)

Substitution in Newton’s equations of motion now gives
Hill’s equations (1).

Strictly speaking the equation originally considered by
Hill was a special planar case for two bodies in which the
position of the Earth x1 was assumed to be at rest x1 ¼ 0
and the position of the Moon x2 thus to satisfy

€x2 � 2! _y2 � 3!2x2 ¼ � Gm1x2

ðx22 þ y22Þ3=2
;

€y2 þ 2! _x2 ¼ � Gm1y2

ðx22 þ y22Þ3=2
:

We omit henceforth the z variables and work in the plane.
We mention however that the more general case where
motion in the z direction is allowed has important applica-
tions, either to the Earth-Moon-Sun system (see Ref. [9])
or in semiclassical treatments of the helium atom [13] or
muonic atoms [14].

III. SYMMETRIES AND CENTER-OF-MASS
MOTION

In addition to the discrete symmetries of parity and time
reversal,

xaðtÞ ! �xaðtÞ and

ðxaðtÞ; yaðtÞÞ ! ðxað�tÞ;�yað�tÞÞ; (6)

Hill’s equations admit a continuous four-parameter family
of Abelian symmetries, since they are invariant under
‘‘translations and boosts’’ [3–5,21],

x a ! xa þ aðtÞ: (7)

Inserting into the Hill equations and putting (with some
abuse of notations) a ¼ ðx; yÞ allows us to infer that to be a
symmetry requires

€x� 2! _y� 3!2x ¼ 0; €yþ 2! _x ¼ 0: (8)

The simplest way to solve these equations is to derive
the left equation with respect to time and then use the right
equation to eliminate €y to yield an oscillator equation for _x,
d2 _x=dt2 ¼ �!2 _x. Thus

xðtÞ ¼ A

!
sin!t� B

!
cos!tþ x0:

Putting xðtÞ into the second equation and integrating pro-
vides us with yðtÞ; testing the pair xðtÞ; yðtÞ on our original
system fixes the integration constants to yield

xðtÞ ¼ A

!
sin!t� B

!
cos!tþ x0

yðtÞ ¼ 2
A

!
cos!tþ 2

B

!
sin!t� 3

2
!tx0 þ y0:

(9)

Then

!2ðx� x0Þ2
A2 þ B2

þ!2ðy� y0 þ 3
2!x0tÞ2

4ðA2 þ B2Þ ¼ 1 (10)

shows that the trajectories are ellipses centered at ðx0; y0 �
3
2!x0tÞ with major axes lying along the y direction. The

ratio of the semimajor to the semiminor axis is 2:1, and the
centers drift along the y direction with constant speed 3

2!x0
in the direction of its major axis; see Fig. 1.
At this point, it is legitimate to wonder what is the

interest of studying the properties of (8), which only de-
scribe some property of the system but not the physical
system itself. A justification comes from observing that, as
a consequence of the linearity of the left-hand side of (1)
and because the gravitational forces on right-hand side of
these equations satisfy Newton’s third law, the center of
mass,

15 10 5 �5 �10 �15

1
2

FIG. 1. Trajectory of the center of mass in the Hill problem.
The straight horizontal line in the middle indicates the trajectory
of the guiding center about which the center of mass performs
‘‘flattened elliptic motion.’’
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X ¼ x
y

� �
¼
P

a maxaP
a ma

; (11)

(with another abuse of notation) satisfies exactly the same
equations (8). The latter describes therefore more than a
‘‘property.’’

We emphasize that our statement relies on the equality
of the inertial and passive gravitational mass, ma, for
objects with significant self-gravitation. In other words,
both the center-of-mass decomposition and Galilean sym-
metry depend on the so-called strong equivalence principle
[4,18]. It has been verified experimentally by lunar laser
ranging to very high accuracy using the Nordtvedt effect
for the Sun-Earth-Moon system. If

mpassive

minertial
¼ 1� �N

EG

c2minertial

; (12)

where EG is the gravitational self-energy, then

j�Nj � ð4:4� 4:5Þ � 10�4: (13)

Since EG

c2minertial
¼ 4:6� 10�10 for the Earth and 2:1� 10�10

for the Moon, the strong equivalence principle is satisfied
to better than one part in 1013 [25].

Below we focus our attention at the symmetry alias
center-of-mass equation (8).

The general solution (9) is composed of two particular
cases.

Let us choose first x0 ¼ y0 ¼ 0; then the trajectory is an
ellipse centered at the origin, and oriented along the y
direction,

XþðtÞ ¼ X1þðtÞ
X2þðtÞ

� �
¼

A
! sin!t� B

! cos!t

2 A
! cos!tþ 2 B

! sin!t

 !
: (14)

Putting A ¼ B ¼ 0 provides us instead with

X�ðtÞ ¼
X1�ðtÞ
X2�ðtÞ

 !
¼ x0

� 3
2!tx0 þ y0

 !
: (15)

The particular form of this solution comes from a delicate
balance between the harmonic and the inertial forces which
precisely cancel,

3!2�1iX1� þ 2!"ij _Xj� ¼ 0; (16)

so that the particle drifts perpendicularly to the harmonic
field with constant velocity. Anticipating what comes be-
low in Sec. VIII, we call it a Hall motion.

As it will be explained in Sec. IX, the first of these
particular solutions, namely X�, describes the guiding
center, and the second, Xþ, describes the relative motion
around it.

IV. VECTOR FIELDS AND ALGEBRA

The planar symmetry group is generated by the space-
time vector fields,

K1þ ¼ 1

!
ðsin!t@x þ 2 cos!t@yÞ

K2þ ¼ 1

!
ð� cos!t@x þ 2 sin!t@yÞ

K1� ¼ @x � 3

2
!t@y K2� ¼ @y H ¼ @t:

(17)

Here the vector fields Ki�, i ¼ 1; 2 generate the infinitesi-
mal time-dependent symmetries (7), and H represents
infinitesimal time translations. The nontrivial brackets are

½H;K1þ� ¼ �!K2þ;

½H;K2þ� ¼ þ!K1þ;

½H;K1�� ¼ � 3

2
!K2�:

(18)

Normalizing the total mass to unity,
P

ama ¼ 1, the
Lagrangian for the center of mass is

L ¼ 1
2ð _x2 þ _y2Þ �!ðy _x� x _yÞ þ 3

2!
2x2: (19)

The mechanical momenta px ¼ _x and py ¼ _y do not

Poisson-commute, fpx; pyg ¼ 2!. The Hamiltonian is

H ¼ 1
2ðp2

x þ p2
yÞ � 3

2!
2x2: (20)

It is Liouville integrable since H, and the dual momentum
�py ¼ _yþ 2!x mutually commute [24].

V. MOMENT MAPS FOR HILL’S EQUATIONS

Following [3], we find the conserved quantities

�1þ ¼ 1

!
ðpx sin!tþ 2py cos!tþ 3!x cos!tÞ;

�2þ ¼ 1

!
ð�px cos!tþ 2py sin!tþ 3!x sin!tÞ;

�1� ¼
�
px � 1

2
!y

�
� 3

2
!tðpy þ 2!xÞ;

�2� ¼ py þ 2!x:

(21)

Recovering the generating vector fields in (17) as

� K ¼ f�; xg@x þ f�; yg@y
can be viewed as a consistency check.
Note that the Poisson algebra does not coincide with the

Lie algebra (18) since �1þ and �2þ and �1� and �2� do not
Poisson-commute but their brackets give rather two central
extensions,

f�1þ; �2þg ¼
1

!
; f�1�; �2�g ¼ � 1

2
!: (22)

The other bracket relations (18) are unchanged. Thus the
conserved quantities realize two commuting copies of
Heisenberg algebras. Evaluating the moment maps on the
solutions (9) gives
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�1þ ¼ B

!
; �2þ ¼ � A

!
;

�1� ¼ � 1

2
!y0; �2� ¼ 1

2
!x0;

(23)

which shows that they are indeed constants of the motion.
Hence �2� ¼ 1

2!x0 commutes with the HamiltonianH, and

is related to the (conserved) x coordinate of the center of
the revolving ellipse. In terms of the conserved quantities,
the Hamiltonian reads

H ¼ !2

2
ðð�1þÞ2 þ ð�2þÞ2Þ �

3

2
ð�2�Þ2

¼ 1

2
ðA2 þ B2Þ � 3

8
!2x20: (24)

One thus has

fH;�1þg ¼ �!�2þ fH; �2þg ¼ þ!�1þ

fH; �1�g ¼ � 3

2
!�2� fH; �2�g ¼ 0:

(25)

The �, although explicitly time-dependent, are however
conserved, d�dt ¼ @�

@t þ f�;Hg ¼ 0.

VI. EISENHART-DUVAL LIFT

Following the procedure described in [3,16,18] we lift
the Hamiltonian to that of a massless particle in 3þ 1
spacetime dimensions. The calculation is straightforward
and we just give the result. The 4-metric is given by

ds2 ¼ dx2 þ dy2 þ 2dtðdvþ!ðxdy� ydxÞÞ
þ 3!2x2dt2; (26)

where v is a new, ‘‘vertical’’ coordinate [16].
As pointed out in Ref. [18], the 2! terms in (26) admit a

two-fold interpretation. In the present context here, they
can be viewed as representing inertial forces in our rotating
coordinate system. In Sec. VIII below they will be inter-
preted as an external magnetic field. Its null-geodesics
project onto ‘‘ordinary’’ spacetime according to the
center-of-mass (alias symmetry) equations of motion (8).

Equation (26) is a Ricci-flat 3þ 1-dimensional
Lorentzian metric with covariantly constant null Killing
vector field,

� ¼ @v; (27)

i.e., a ‘‘Bargmann space’’ [16].
The Bargmann framework is particularly convenient for

describing the symmetries. Our symmetry transformations
lift indeed to the Bargmann metric (26) as isometries. Let
us assume that (7) satisfies the symmetry condition (8).
Completing (9) with

v ! v� 1
2ða � _aþ 2 _a � xþ 2!a� xÞ; (28)

a tedious calculation shows that the Bargmann metric (26)
is left invariant.
Working infinitesimally, the vector fields (17) lift as

~K1þ ¼ 1

!
ðsin!t@xþ2cos!t@yÞþ ðxcos!tþysin!tÞ@v;

~K2þ ¼ 1

!
ð�cos!t@xþ2sin!t@yÞþ ðxsin!t� ycos!tÞ@v;

~K1� ¼ @x�3

2
!t@yþ

�
�3

2
!2xtþ1

2
!y

�
@v;

~K2� ¼ @yþ!x@v; (29)

whose Lie brackets are found to be

f ~K1þ; ~K2þg ¼ � 1

!
�; f ~K1�; ~K2�g ¼ 1

2
!�; (30)

which are, up to sign those (22) satisfied by the associated
conserved quantities [26].
The lifted symmetries realize hence not original Lie

algebra structure (18) but rather their central extension
with �, the generator of vertical translations, as the central
element.

VII. BARGMANN SPACES WITH
NEWTON-HOOKE SYMMETRY

The origin of Newton-Hooke symmetry has been under-
stood for a long time [16]: the Bargmann space of an
isotropic harmonic oscillator with time-dependent spring
constant kðtÞ is

dx2 þ dy2 þ 2dtdv� kðtÞðx2 þ y2Þdt2; (31)

and the massless dynamics ‘‘upstairs’’ projects on the
oscillator dynamics ‘‘downstairs.’’ Newton-Hooke symme-
try is represented by the isometries of this metric, and
is indeed a subgroup of � ¼ @v-preserving conformal
transformations—the latter forming the (centrally ex-
tended) Schrödinger group.
The metric (31) is, furthermore, Bargmann-conformally

flat, i.e., it can be mapped conformally onto
four-dimensional Minkowski space by a �-preserving
transformation.
Bargmann-conformally related metrics share the same

symmetries; a conformally flat Bargmann metric admits
therefore the same (namely Schrödinger) symmetry as a
free particle.
Now we describe, following Refs. [17,19,27,28], these

Schrödinger-conformally flat spaces. In D ¼ dþ 2> 3
dimensions, conformal flatness is guaranteed by the van-
ishing of the conformal Weyl tensor,

C��
�	 ¼ R��

�	 � 4

D� 2
�
½�
½�R

��
	�

þ 2

ðD� 1ÞðD� 2Þ�
½�
½��

��
	�R: (32)
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Now R���	�
� � 0 for a Bargmann space, implying

some extra conditions on the curvature. Inserting the iden-
tity ��R

��
�	 ¼ 0 into C��

�	 ¼ 0, using the identity

��R
�
� � 0 (R�

	 � R��
�	), we find

0 ¼ �½��R
�
	 � �	R

�
�� þ R

D� 1
½���

�
	 � �	�

�
��:

Contracting again with �	 and using that � is null, we end
up with R���

� ¼ 0. Hence the scalar curvature vanishes,

R ¼ 0. Then the previous equation yields �½�R�
	� ¼ 0 and

thus R�
	 ¼ �	�

� for some vector field �. Using the sym-
metry of the Ricci tensor, R½��� ¼ 0, we find that � ¼ %�

for some function %. We finally get the consistency relation

R�� ¼ %����: (33)

The Bianchi identities (r�R
�
� ¼ 0 since R ¼ 0) yield

��@�% ¼ 0, i.e. % is a function on spacetime. The confor-

mal Schrödinger-Weyl tensor is hence of the form

C��
�	 ¼ R��

�	 � 4

D� 2
%�½�

½��
���	�: (34)

It is noteworthy that Eq. (33) is the Newton-Cartan field
equation with %=ð4
GÞ as matter density. Equation (33)
also implies that the transverse Ricci tensor of a
Schrödinger-conformally flat Bargmann metric necessarily
vanishes, Rij ¼ 0 for each t.

Further results are only worked out for total Bargmann
dimension D ¼ 4. Since the transverse space is d ¼
2-dimensional, Rij ¼ 0 implies that the latter is (locally)

flat and we can choose gij ¼ gijðtÞ. Then a change of

coordinates ðx; t; vÞ ! ðGðtÞx; t; vÞ, where G ¼ ðGijÞ is

the square-root matrix �abG
a
i G

b
j ¼ gij, casts our

Bargmann metric into the form

dx2 þ dy2 þ 2dt½dvþA � dx� � 2Udt2: (35)

Now we turn to determining all such conformally flat
4-metrics. The nonzero components of the Weyl tensor of
(35) are

Cxyxt¼�Cytts¼�1
4@xB; Cxyyt ¼þCxtts¼�1

4@yB;

Cxtxt¼�1
2½@tð@yAy�@xAxÞ�Ax@yB;�þ 1

2½@2x�@2y�U;

Cytyt¼ 1
2½@tð@yAy�@xAxÞ�Ay@xB�� 1

2½@2x�@2y�U;

Cxtyt¼ 1
2½@tð@xAyþ@yAxÞþ2@x@yU�
� 1

4ðAx@x�Ay@yÞB:
Then Schrödinger-conformal flatness requires

Ai ¼ 1
2�ijBðtÞxj þ ai; r� a ¼ 0;

@ta ¼ 0; Uðt; xÞ ¼ 1
2CðtÞr2 þ FðtÞ � xþ KðtÞ: (36)

Note, in passing, that Eq. (33) automatically holds in this
case, because

Rxt ¼ 2Cxtts ¼ 0; Ryt ¼ 2Cytts ¼ 0: (37)

The only nonvanishing component of the Ricci tensor is

Rtt ¼ �@tðr �AÞ � 1
2B

2 � �U ¼ �1
2BðtÞ2 � 2CðtÞ:

(38)

The metric (36) describes a uniform magnetic field BðtÞ,
an [attractive or repulsive, CðtÞ ¼ �!2ðtÞ] isotropic oscil-
lator and a uniform force field FðtÞ in the plane. All fields
may depend arbitrarily on time. It also includes a curl
free vector potential aðxÞ that can be gauged away if the
transverse space is simply connected: ai ¼ @if and the
coordinate transformation ðt; x; vÞ ! ðt; x; vþ fÞ results
in the ‘‘gauge’’ transformation Ai ! Ai � @if ¼
� 1

2B�ijx
j. If, however, space is not simply connected,

we can also include an external Aharonov-Bohm-type
vector potential, explaining the o(2, 1) conformal symme-
try of a magnetic vortex [29].
Our ‘‘one-sided’’ anisotropic oscillator here does not

qualify therefore its Weyl tensor does not vanish due to
the anisotropy,

½@2x � @2y�U � 0 for Uðx; tÞ ¼ �3
2!

2x2: (39)

The 4-metric (26) cannot be mapped conformally to empty
Minkowski space.
How can it have the Newton-Hooke-type symmetry,

then? There is no contradiction, though. Let us stress that
we did not find here full Newton-Hooke symmetry, only its
time-dependent translational part: rotational symmetry is
plainly broken for the metric (26). The latter does not come
therefore by ‘‘importing’’ from the free case.

VIII. RELATION TO THE LANDAU PROBLEM

Nowwe point out that the center-of-mass Hill system (8)
can also be viewed as a charged anisotropic harmonic
oscillator in a uniform magnetic field described by the
planar Hamiltonian system

fxi; xjg ¼ 0; fxi; pjg ¼ �ij; fpi; pjg ¼ eB"ij;

H ¼ p2

2
þ k1

2
ðx1Þ2 þ k2

2
ðx2Þ2;

(40)

where we still scaled the total mass to unity. Comparing the

equations of motion _� ¼ f�;Hg implying €xi � eB�ij _xj þ
kix

i ¼ 0 (no sum on i in the last term) with (8) shows that
the Hill system can indeed be viewed as a repulsive aniso-
tropic oscillator in a uniform magnetic background with

k1 � k ¼ �3!2; k2 ¼ 0; eB ¼ 2!: (41)

The identity of the two systems relies on the equivalence of
the inertial Coriolis force in a rotating frame with the
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Lorentz force due to an external magnetic field [17,18].
Note also that the condition (16) is then in fact the Hall law,

_X i� ¼ "ij
Ej

B
; (42)

with the identifications eEi ¼ 3!2�1iX1� and eB ¼ 2!.
Let us also stress that the possibility of decomposing the

magnetic field plus oscillator system into center of mass
plus relative motion depends on Galilean [4,30] (more
precisely, on Newton-Hooke [3,5,31]) symmetry, which
requires in turn the Kohn condition charge=mass ¼
constant to hold. Furthermore, as ‘‘charge’’ equals
‘‘mass’’ here, Kohn’s condition is automatically satisfied,
providing us with the required Galilean symmetry.

In Sec. IX, the system will be further analyzed by
decomposing (8) into chiral components along the lines
of [20] as adapted to the Landau problem [21,32].

IX. CHIRAL DECOMPOSITION OF
THE HILL SYSTEM

The problem can further be analyzed by decomposing
our magnetic field plus anisotropic oscillator ½k1 ¼ k;
k2 ¼ 0� system into chiral components, generalizing the
trick of Refs. [20,21]. Define the two planar vectors X� ¼
ðXi�Þ as [33]

p1 ¼ �þX2þ þ ��X2�;

p2 ¼ �þX1þ � �X1�;

X ¼ Xþ þ X�;

(43)

where�� and� are suitable coefficients to be found. The
symplectic form

� ¼ dpi ^ dxi þ eB

2
"ijdxi ^ dxj; (44)

whose associated Poisson bracket is (40), is written as

� ¼ ð��þ � þ þ eBÞdX1þ ^ dX2þ þ ð��� � �
þ eBÞdX1� ^ dX2� þ fð��� � þ þ eBÞdX1þ
^ dX2� þ ð�þ þ � � eBÞdX2þ ^ dX1�g:

The symplectic form splits into two uncoupled ones when

�� þ þ ¼ eB; �þ þ � ¼ eB: (45)

The Hamiltonian becomes in turn

H ¼ 1

2
ð�2þX2þX2þ þ 2þX1þX1þ þ �2�X2�X2� þ 2�X1�X1�Þ

þ k

2
ðX1þX1þ þ X1�X1�Þ þ fð�þ��ÞX2þX2�

þ ðþ� þ kÞX1þX1�g;

which splits into H ¼ Hþ þH� when

�þ�� ¼ 0; þ� þ k ¼ 0: (46)

Since our formulas are symmetric in �þ and ��, we can
choose �� ¼ 0 to find

�� ¼ 0; �þ ¼ eBþ k

eB
;

þ ¼ eB; � ¼ � k

eB
:

(47)

With such a choice we will have decomposed our system as

� ¼ �
�
eBþ k

eB

�
dX1þ ^ dX2þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�þ

þ
�
eBþ k

eB

�
dX1� ^ dX2�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

��

;

(48)

H ¼ 1

2

�
eB

�
eBþ k

eB

�
X1þX1þ þ

�
eBþ k

eB

�
2
X2þX2þ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Hþ

þ
�

k

2eB

�
eBþ k

eB

�
X1�X1�

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

H�

: (49)

Note that �þ and �� have opposite signs.
Returning to the Hill problem, inserting the matching

coefficients (41) into (48) and (49) yields

p1 ¼ 1
2!X2þ;

p2 ¼ �2!X1þ � 3
2!X1�;

X ¼ Xþ þ X�;

(50)

and hence

� ¼ �þ þ��

¼
�
�1

2!dX1þ ^ dX2þ
�
þ
�
1
2!dX1� ^ dX2�

�
; (51)

H ¼ Hþ þH�

¼
�
1
2!

2X1þX1þ þ 1
8!

2X2þX2þ
�
�
�
3
8!

2X1�X1�
�
: (52)

The Poisson brackets associated with this symplectic form
show that both sets of coordinates Xiþ and Xi� are non-
commuting,

fX1þ; X2þg ¼
2

!
;

fX1þ; X2�g ¼ fX2þ; X1�g ¼ 0;

fX1�; X2�g ¼ � 2

!
;

(53)

and provide us with the separated equations of motion,
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_X1þ ¼ 1
2!X2þ; _X2þ ¼ �2!X1þ;

_X1� ¼ 0; _X2� ¼ �3
2!X1�;

(54)

whose solution allows us to recover (14) and (15) once
again. The general solution (9) is the sum of the chiral
components, XðtÞ ¼ XþðtÞ þX�ðtÞ.

Here the simpleX� dynamics is that of Hall motion with
constant velocity drift (15). It describes the guiding center.
The Xþ system, whose trajectories are those flattened
ellipses in (14), describes the anisotropic oscillations of
the center of mass about the guiding center.

Having decomposed the center-of-mass alias time-
dependent translation-symmetry equation into chiral com-
ponents, the Newton-Hooke symmetry plainly follows
from those of our chiral solutions. For the separated equa-
tions (54) the initial conditions,

Xþð0Þ ¼ �B=!
2A=!

� �
¼ X1þðtÞ cos!t� 1

2X
2þðtÞ sin!t

2X1þðtÞ sin!tþ X2þðtÞ cos!t

 !
;

(55)

X�ð0Þ ¼ x0
y0

� �
¼ X1�ðtÞ

X2�ðtÞ þ 3
2!tX1�ðtÞ;

� �
; (56)

are plainly constants of the motion. They are in fact pro-
portional to those in Eqs. (21) and (23),

Xþð0Þ ¼ ��1þ
�2�2þ

� �
; X�ð0Þ ¼ 2�2�=!

�2�1�=!

� �
: (57)

X. SOME VARIANTS

The ideas of the present paper may be generalized in
various directions and even applied to areas beyond the
realm of classical gravity to quantum semiclassical treat-
ments of quantum systems. In this section we briefly out-
line some examples.

A. Anisotropy

The application of Hill’s equations to galactic clusters
was first suggested by Bok [10] and by Mineur [11] and
developed by Chandrasekhar [12]. Chandrasekhar did not
assume that the gravitational field of the galaxy was just a
simple monopole. As a result he obtained equations of a
more general form,

mað €xa � 2! _ya � 3!2
1xaÞ ¼

X
b�a

Gmambðxb � xaÞ
jxa � xbj3

mað €ya þ 2! _xaÞ ¼
X
b�a

Gmambðyb � yaÞ
jxa � xbj3

mað€za þ!2
3zaÞ ¼

X
b�a

Gmambðzb � zaÞ
jxa � xbj3

;

(58)

where the z coordinates were restored. One still has the
Abelian symmetry (7) but (8) becomes

€x� 2! _y� 3!2
1x ¼ 0

€yþ 2! _x ¼ 0

€zþ!2
3z ¼ 0

(59)

and (9) is replaced by

x ¼ A

�
sin�t� B

�
cos�tþ x0;

y ¼ 2A
!

�2
cos�tþ 2B

!

�2
sin�t� 3!2

1

2!
x0tþ y0;

z ¼ C cos!3tþD sin!3t;

(60)

where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4!2 � 3!2

1

q
is called the epicyclic frequency

and often denoted by �. The ellipses now have ratio of

major to minor axis equal to 2!
� and move with speed

3!2
1

2! x0.

The symmetry is generated by the vector fields

K1 ¼ sin�t@x þ !

�
2cos�t@y

K2 ¼ 2
!

�
sin�t@y � cos�t@x

K3 ¼ @x � 3!2
1

2!
t@y

K4 ¼ @y

K5 ¼ cos!3t@z

K6 ¼ sin!3t@z

H ¼ @t;

(61)

whose nontrivial brackets read

½H;K1� ¼ ��K2 ½H;K2� ¼ þ�K1

½H;K3� ¼ � 3!2
1

2!
K4 ½H;K5� ¼ �!3K6

½H;K6� ¼ !3K5:

(62)

By rescaling the generators, the subalgebra they span may
be seen to be independent of the parameters ! and !1.

B. Electromagnetic variant

We could consider a very heavy, and hence immobile,
nucleus of charge Ze around which electrons of mass m
and charge �e move. The equations of motion would be
identical to those in (1) but with the charges on the right-
hand side replacing the masses and the angular velocity

becoming now !2 ¼ Ze2

mR3 .

This idea has been exploited in atomic physics. The
most basic example being semiclassical treatments of the
helium atom [13]. The idea also extends to muonic atoms
[14].
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C. Time dependence

Oh et al. [34], and Heggie et al. [23,35] mention, in the context of galactic dynamics, a time-dependent version of (1) in
which the radius R is allowed to depend on time. In the planar case these equations are

ma

�
€xa � 2! _ya �

�
3!2 � 2

€R

R

�
xa þ 2!

_R

R
ya

�
¼ X

b�a

Gmambðxb � xaÞ
jxa � xbj3

ma

�
€ya þ 2! _xa �

€R

R
y

�
¼ X

b�a

Gmambðyb � yaÞ
jxa � xbj3

:

(63)

Generalized Galilean invariance (7) still holds but (8)
becomes

€x� 2! _y�
�
3!2 � 2

€R

R

�
xþ 2!

_R

R
y ¼ 0;

€yþ 2! _x� €R

R
y ¼ 0:

(64)

For given RðtÞ this has a four-parameter family of solu-
tions but if one works out the Killing vector fields and takes
the bracket with time translations @t the algebra will not, in
the generic case, close on a finite dimensional Lie algebra,
even if one adds additional generators. The situation is
reminiscent of the one considered in Refs. [36–38].
Details will be presented elsewhere.

XI. CONCLUSION

A remarkable aspect of Hill’s equations is that our
Eq. (8), simultaneously describes time-dependent symme-
tries (7) and the motion of the center of mass. Our solutions
(9) represent therefore the trajectories both of the symme-
try group acting on spacetime, and of the center of mass.

As long as we consider the 3-body problem it would be
physically more important to study the relative-motion
equation (6); the center of mass has little interest for, say,
lunar motions. But Hill’s equations also arise when de-
scribing an electron beam in a synchrotron; guiding center

motion is plainly interesting for the latter, as it is in plasma
physics, or in stellar dynamics [35].
As explained in [3–5], the ability to split off the center-

of-mass motion relies on Galilean (in fact Newton-Hooke)
symmetry. In our case here rotations are broken, but our
time-dependent symmetries suffice.
Moreover, the motion of the center of mass can further

be decomposed into that of the guiding center and relative
motion; the generalization of the chiral decomposition
[20,21,32] is ideally suited for that. It is worth mentioning
that, as in [5,21], our calculations could be extended to
‘‘exotic’’ (i.e. noncommutative) particles.
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