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We study the behavior of a scalar field coupled to a noncommutative black hole which is described by a

�-cylinder Hopf algebra. We introduce a new class of realizations of this algebra which has a smooth limit

as the deformation parameter vanishes. The twisted flip operator is independent of the choice of

realization within this class. We demonstrate that the R-matrix is quasi-triangular up to the first order

in the deformation parameter. Our results indicate how a scalar field might behave in the vicinity of a black

hole at the Planck scale.
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I. INTRODUCTION

Noncommutative geometry offers a framework for de-
scribing the quantum structure of space-time at the Planck
scale [1]. Einstein’s theory of general relativity together
with the uncertainty principle of quantum mechanics leads
to a class of models with space-time noncommutativity
[2,3]. The smooth space-time geometry of classical general
relativity is thus replaced with a Hopf algebra at the Planck
scale. There are many examples of such Hopf algebras
including the Moyal plane, �-space and Snyder space.
The analysis of [2,3] does not suggest any preferred choice
among these models.

Further insight about the possible features of the space-
time algebra at the Planck scale comes from the analysis of
noncommutative black holes. The algebraic structure asso-
ciated with a noncommutative black hole can be revealed
by studying a simple toy model, such as the noncommuta-
tive deformation of the BTZ black hole [4,5]. The resulting
space-time algebra resembles a noncommutative cylinder
[6,7], belonging to the general class of �-deformed space-
time [8–11]. The appearance of the �-cylinder algebra is
not restricted to the deformation of the BTZ black hole
alone. Such an algebra describes noncommutative Kerr
black holes [12] within the framework of twisted gravity
theories [13–15]. It also appears in the context of non-
commutative FRW cosmologies [16]. In addition, the
�-Minkowski algebra is relevant in models of doubly-
special relativity and in the analysis of astrophysical data
from the GRB’s [17–30]. This wide-ranging appearance of
the �-cylinder algebra suggests that it captures certain
generic features of noncommutative gravity and black
holes and is therefore an interesting toy model to explore
Planck scale physics.

In this paper we shall investigate certain features of the
�-cylinder algebra using a scalar field as a simple probe. In

order to study quantum field theory in any space-time, it is
essential to specify the statistics of the quantum field. It has
been known for a long time that quantum gravity can admit
exotic statistics [31–33]. More recently, the idea of twisted
statistics and the associated R-matrices have appeared in
the context of quantum field theories in noncommutative
space-time [34–39], including the �-deformed spaces
[40–49]. To this end, it is useful to work with realizations
of the �-space and the associated star products [50–54]. In
this paper we introduce a new class of realizations of the
�-cylinder algebra which has a smooth limit as the defor-
mation parameter vanishes, which is different from the
previous discussion in the literature [6,7]. In addition, we
obtain the twisted flip operator and show that it is inde-
pendent of the particular choice of realization within the
class of realizations considered here.
For the commutative theories of gravity, probing a black

hole space-time with a scalar field yields rich information
about the underlying geometry [55–57]. In our context, this
amounts to studying a scalar field coupled to the �-cylinder
algebra [42,45–47,49,58]. Here we analyze this problem
for a class of realizations of the �-cylinder algebra that has
a smooth limit as the deformation parameter vanishes. We
find that the creation and annihilation operators appearing
in the mode expansion of the scalar field satisfy a twisted
oscillator algebra. This provides an initial glimpse as to
how a scalar field might behave in the vicinity of a black
hole at the Planck scale.
This paper is organized as follows. In Sec. II we review

certain features of the noncommutative black holes that are
relevant for our work. In Sec. III we discuss the realizations
of the �-Minkowski algebra and introduce a new class of
realizations for the �-cylinder algebra that has a smooth
limit as the deformation parameter vanishes. We also dis-
cuss the star products and the twists associated with this
algebra. In Sec. IV we discuss the twisted statistics and the
R-matrices for the realizations discussed here. The twisted
oscillator algebra for the class of realizations considered is
derived in Sec. V. In Sec. VI we conclude the paper with
some discussions and an outlook.
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II. NONCOMMUTATIVE BLACK HOLES

We start by reviewing certain features of noncommuta-
tive BTZ black hole [4,5] which are useful for our analysis.
In the commutative case, the metric for a non-extremal
BTZ black hole in terms of the Schwarzschild like coor-
dinates ðr;�; tÞ is given by [59,60]

ds2 ¼
�
M� r2

‘2
� J2

4r2

�
dt2 þ

�
�Mþ r2

‘2
þ J2

4r2

��1
dr2

þ r2
�
d�� J

2r2
dt

�
2
; (1)

where 0 � r <1,�1< t <1, 0 � �< 2�, andM and
J are, respectively, the mass and spin of the black hole and
� ¼ �1=‘2 is the cosmological constant. Here we restrict
our attention to the non-extremal case, where the two
horizons r� are given by

r2� ¼ M‘2

2

�
1�

�
1�

�
J

M‘

�
2
�ð1=2Þ�

: (2)

The BTZ black hole can also be obtained by quotienting
the manifold Ads3 or SLð2;RÞ by a discrete subgroup of its
isometry. A noncommutative version of the BTZ black
hole can be realized by a quantum deformation of Ads3
or SLð2;RÞ in such a way that is compatible with the
quotienting [4,5]. In the resulting noncommutative theory,
the coordinates r, � and t are replaced by the correspond-

ing operators r̂, �̂ and t̂ respectively, which no longer
commute but satisfy the algebra

½ei�̂; t̂� ¼ �ei�̂ ½r̂; t̂� ¼ ½r̂; ei�̂� ¼ 0; (3)

where the constant � is proportional to ‘3=ðr2þ � r2�Þ. The
algebra (3) is so constructed that its cetral elements are
kept invariant under the action of the isometry group of the
BTZ black hole [4]. We therefore see that the noncommu-
tative BTZ black hole is equivalent to a noncommutative
cylinder.

From (3) we find that the operator r̂ is in the center of the
algebra. What is perhaps not so obvious is that the operator

e�2�it̂=� also belongs to the center of this algebra. As a
result, in any irreducible representation of (3), the element

e�2�it̂=� is proportional to the identity,

e�2�it̂=� ¼ ei�1; (4)

where the constant parameter � 2 R mod (2�). Equation
(4) implies that in any irreducible representation of (3),
the spectrum of the t̂ operator is quantized [6,7,61] and is
given by

spec t̂ ¼ n�� ��

2�
; n 2 Z: (5)

As mentioned before, a similar algebra as in (3) appears
in the noncommutative generalization of the rotating Kerr
black hole [12] as well as for the noncommutative version
of the FRW cosmology [16]. For the rest of this paper we

shall consider the algebra in (3) as a prototype for non-
commutative black holes and study its properties.

III. REALIZATIONS OF �-MINKOWSKI SPACE

A. Generalities

We start by recalling certain general properties of the
�-Minkowski algebra relevant for our analysis. The opera-
tors corresponding to coordinates on �-deformed noncom-
mutative space satisfy the relation

½x̂�; x̂�� ¼ iða�x̂� � a�x̂�Þ; (6)

where a0; a1; a2; . . . ; an�1 appearing in (6) are real con-
stant parameters describing a deformation of Minkowski
space. It is understood that the Greek indices run through
the set f0; 1; . . . ; n� 1g, and the Latin indices run through
the subset f1; 2; . . . ; n� 1g with the summation over re-
peating indices assumed.
Next we introduce derivative operators with the

properties

½@�; @�� ¼ 0; (7)

½@�; x̂�� ¼ ���ð@Þ; (8)

where the functions ���ð@Þ in derivatives here provide

realizations of noncommutative coordinates in the
auxiliary Hilbert space H ðR1;3; d4xÞ, which is spanned
by the ordinary commutative coordinates

½x�; x�� ¼ 0; ½@�; x�� ¼ ���: (9)

We also define a shift operator which satisfy

½Z; x̂�� ¼ ia�Z; ½Z; @�� ¼ 0: (10)

The realizations of noncommutative coordinates can
then be written in the form [50,51]

x̂ � ¼ x	�	�ð@Þ: (11)

We restrict our attention to deformation parameters
with zero spatial components, a� ¼ a0�0�, a0 � 0.

Then the commutation relations become

½x̂i; x̂j� ¼ 0; ½x̂0; x̂j� ¼ ia0x̂j; (12)

The algebra (12) admits the realization of the type (11),
which also includes the class of noncovariant realizations
given by [62]

x̂ 0 ¼ x0c ðAÞ þ ia0xk@k
ðAÞ; (13)

x̂ i ¼ xi’ðAÞ; 
 ¼ ’0

’
c þ 1; (14)

whereA ¼ �ia0@0. The above realization is parametrized
by two real-analytic functions ’ and c satisfying the
boundary conditions ’ð0Þ ¼ c ð0Þ ¼ 1 and ’0ð0Þ is finite.
The shift operator has the form
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Z ¼ e�ðAÞ; �ðAÞ ¼
Z A

0

dt

c ðtÞ : (15)

The derivatives @� generate the action on �-space coor-

dinates, which, together with angular momenta form a
deformed Poincaré algebra that has a Hopf algebra struc-
ture. The deformed coproducts are given by

�A ¼ ��1 � lnðZ � ZÞ: (16)

and

�@0 ¼ i

a0
�A;

�@i ¼ ’ð�AÞ
�

@i
’ðAÞ � 1þ Z � @i

’ðAÞ
�
;

(17)

�Z ¼ Z � Z:

We note that the coproduct of Mij is undeformed.

B. Smooth realizations of the �-cylinder algebra

We now focus on the algebra relevant for the noncom-
mutative black hole introduced in Sec. II. Our aim is to
investigate a version of �-deformed noncommutative
space, where the only space coordinate is compactified to
a circle, a type of manifold known as noncommutative
cylinder. The noncommutative cylinder is generally speci-
fied by the three noncommutative coordinates, t̂, ẑ and ẑy,
which can be considered as noncommutative versions of
the real parameter t and two complex parameters z ¼ �ei�

and its complex conjugate �z ¼ �e�i�, respectively1

½ẑ; ẑy� ¼ 0; ½t̂; ẑ� ¼ a0ẑ; ½t̂; ẑy� ¼ �a0ẑ
y: (18)

These operators satisfy the same constraint equation as in
the commutative case, namely ẑẑy ¼ �2. It is easy to see
that the algebra (18) can be recovered from (6) by restrict-
ing description effectively to only two noncommutative
coordinates, x̂0 � t̂, x̂1 � ẑ and by letting deformation
parameter a0 to change into�ia0. This simple prescription
accommodates for the compactification of the only space
coordinate present in the model. This algebra (18) admits a
class of realizations which has a smooth limit, which is
given by

ẑ ¼ �ei�eihðAÞ; (19)

ẑ y ¼ �e�i�e�ihðAÞ; (20)

t̂ ¼ tc ðAÞ � ia0@�
ðAÞ; (21)

with functions c , h satisfying the boundary conditions
hð0Þ ¼ 0 and c ð0Þ ¼ 1, respectively. Additionally, hðAÞ

is understood to be a hermitian operator hðAÞy ¼ hðAÞ.
Consistency requires that


ðAÞ ¼ c ðAÞ dh
dA

þ 1: (22)

The shift operator Z is then a unitary operator, Z�1 ¼ Zy,
which is given by

Z ¼ eþi
R
ðdt=c ðtÞÞ (23)

and has the properties

½Z; t̂� ¼ a0Z; ½Z; ẑ� ¼ ½Z; ẑy� ¼ 0: (24)

Note that in Eq. (19), instead of exponential operator eihðAÞ,
one could generally choose some function ’ðAÞ, such that
’yðAÞ’ðAÞ � 0, to comply with the general form (14). In
this case one would have ẑẑy ¼ �2’yðAÞ’ðAÞ. There are
two particularly interesting situations where the results,
together with the implication on statistics, can be given
in full detail. These situations include choices i) c ðAÞ ¼ 1
and ii) 
ðAÞ ¼ 
0, 
0 being some constant. The first
choice is elaborated for �-Minkowski space in [48,50,52]
and for the second one an appropriate analysis has been
done in [63].

C. Star product

For each ’-realization and corresponding ordering of
the �-Minkowski algebra, there exists a unique star prod-
uct ?’, twist operator F ’ and a coproduct �’. The star

product in ’ realization between two functions f and g in
the algebra of functions on Rn, is generally given by

f ?’ g ¼ m0ðF ’f � gÞ; (25)

where m0 is the multiplication map in the Hopf algebra,
namely,m0ðf � gÞ ¼ fg andF ’ is the twist element. This

can also be written in the form [50,52]

ðf ?’ gÞðxÞ ¼ lim
u!x

m0ðex	ð�’��0Þ@	fðuÞ � gðuÞÞ; (26)

where the coproduct �’ for translation generators is given

in (17) and

�0ð@Þ ¼ @ � 1þ 1 � @ (27)

is the untwisted coproduct. The coproduct �’ can also be

obtained by twisting the primitive coproduct �0,

�’ ¼ F�1
’ �0F ’; (28)

where the twist element F ’ follows from rearranging the

operator ex
	ð�’��0Þ@	 with the help of certain mathematical

identity [17].
We shall now restrict to the case iÞc ðAÞ ¼ 1. The cop-

roduct in this case can be obtained from Eq. (17) by
specializing it to c ðAÞ ¼ 1. This coproduct then directly
determines the star product in �-space, according to
relation (26), which finally allows us to identify the
corresponding twist operator as

1In the rest of the paper we assume the notation x	 ¼
ðx0 ¼ t; x1 ¼ zÞ and x̂	 ¼ ðx̂0 ¼ t̂; x̂1 ¼ ẑÞ, keeping track with
the notation in terms of cylinder coordinates.
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F ’ ¼ eðN�1Þ lnð’ðA�1þ1�AÞ=’ðA�1ÞÞþð1�NÞðA�1þlnð’ðA�1þ1�AÞ=’ð1�AÞÞÞ; (29)

where N ¼ xi@=@xi � xi@i is the dilatation generator with
summation going over space indices only and A ¼ �a0@0.
When written in terms of cylinder coordinates, these op-
erators look as N ¼ z@z ¼ �i@� and A ¼ �a0@t,
respectively.

We point out that the star product and the twist element
depend explicitly on the choice of the ordering. For
�ðAÞ ¼ e�cA where c 2 R, we obtain a simple interpola-
tion between right ordering (c ¼ 0) and left ordering
(c ¼ 1), with the twist operator given by

F c ¼ e�cN�Aþð1�cÞA�N: (30)

For c ¼ 1
2 , we have a symmetric ordering, which is

completely different from the totally symmetric Weyl
ordering [64]. Using �N ¼ N � 1þ 1 � N, �A ¼
A � 1þ 1 � A, and ½N;A� ¼ 0, it is easy to verify that
the above class of twist operators F c satisfies the
cocycle condition

ðF c � 1Þð� � 1ÞF c ¼ ð1 �F cÞð1 � �ÞF c; (31)

for all c 2 R.

IV. NONCOMMUTATIVE BLACK HOLES
AND PARTICLE STATISTICS

Quantum gravity admits the possibility of unusual
particle statistics, with associated implications for the
spin-statistics connection [31–33]. Within the paradigm
of noncommutative geometry as a possible description of
space-time at the Planck scale [2,3], and the �-Minkowski
algebra as a possible description of a class of noncommu-
tative black holes [4,5,12,16], it is interesting to ask how
the particle statistics would be described in this framework.

Let us first consider the commutative flip operator �0
associated with the exchange of particles, given by

�0ðf � gÞ ¼ g � f; (32)

which satisfies the idempotency property, �20 ¼ 1 � 1. In
the commutative case, the statistics is superselected. This is
expressed by the condition that coproduct �0ð�Þ of any
generator� of the Poincare algebra commutes with the flip
operator �0,

½�0ð�Þ; �0� ¼ 0: (33)

In the noncommutative case, the coproduct of� is given by

�’ð�Þ ¼ F�1
’ �0ð�ÞF ’: (34)

However, the commutative flip operator �0 does not com-
mute with �’ð�Þ. If we assume that particle statistics

continues to be superselected in the noncommutative

case, then we must find a new twisted flip operator which
will commute with �’ð�Þ. Such a twisted flip operator can
be defined and is given by

�’ ¼ F�1
’ �0F ’; (35)

so that the action of deformed symmetry group respects
new statistics

½�’ð�Þ; �’� ¼ 0: (36)

Having defined the twisted flip operator, the symmetriza-
tion and antisymmetrization can now be carried out with
the projection operators 1

2 ð1� �’Þ, respectively. This

would ensure that the twisted statistics of a two particle
state in the � space would remain unchanged under the
action of the twisted symmetry group.
For this particular special class of ’-realizations, the

twist element is given in (29). Using (29) and (35), we
obtain an explicit expression for the twisted flip operator
�’ for the class of realizations c ðAÞ ¼ 1 as

�’ ¼ eN�A�A�N�0: (37)

The last relation makes possible to identify the R-matrix
and the corresponding r-matrix that is given by

r ¼ i

a0
ðN � A� A � NÞ (38)

One can check that this r-matrix satisfies the classical
Yang-Baxter equation.

V. TWISTED OSCILLATOR ALGEBRA
IN THE NONCOMMUTATIVE BLACK

HOLE BACKGROUND

In the commutative theory, probing a black hole geome-
try with a scalar field provides important information about
the space-time structure. Here we initiate a similar study
for the noncommutative black hole. In order to study the
behavior of a quantum field around a noncommutative
black hole, it is essential to know the algebra of the
creation and annihilation operators. Below we obtain the
oscillator algebra in the background of a noncommutative
black hole, for the particular class of realizations discussed
in this paper.
As a starting point we take the relation

f � g ¼ �’ðf � gÞ; (39)

which is consistent with the idempotency property of
the statistics flip operator, �’

2 ¼ 1 � 1. The statistics flip

operator (37) in conjunction with Eq. (39) leads to the
following condition:
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�ðxÞ ��ðyÞ � e�ðA�N�N�AÞ�ðyÞ ��ðxÞ ¼ 0: (40)

It is obvious that condition (40) is independent of the
realization.

In order to acquire further insight of the physics of

�-cylinder, we stick to the particular choice ’ ¼ e�ðA=2Þ ¼
e�ða0@0=2Þ, i.e. hðAÞ ¼ � A

2i . This particular realization cor-

responds to symmetric ordering of coordinates and it gives
rise to a generalized Klein-Gordon equation [49],�

@z@�z � 4

a20
sinh2

�
a0@0
2

�
�m2

�
� ¼ 0; (41)

describing a matter field �ðxÞ which probes a black hole
background. The field�ðxÞ can be decomposed in positive
and negative frequency modes as

�ðxÞ ¼
Z dpzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
z þm2

q ½bð!;pzÞe�ip	x þ byð!;pzÞeip	x�;

(42)

where byð�!;pzÞ ¼ byð
!;pzÞ. Here we have antici-
pated that momentum p is a two-vector p ¼ ðp0; pzÞ,
with two components p0 and pz being canonically con-
jugated to cylinder coordinates t and z, respectively. The
generalized Klein-Gordon Eq. (41) fixes the form of the
dispersion relation

p�
0 ¼ �! ¼ � 2i

a0
sinh�1

�
a0
2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þm2

q �
: (43)

This expression encodes the on-shell condition for the
particles and determines the energies of the positive and
negative frequency modes in the Fourier expansion (42). In
a case we have a product of two bosonic fields �ðxÞ and
�ðyÞ, both having mode expansion (42), a straightforward
application of the Eq. (42) leads to a deformed oscillator
algebra

byðp0; pzÞbðq0; qzÞ � eia0ðq0@pzpzþ@qzqzp0Þbðq0; qzÞbyðp0;pzÞ
¼ ��ð2Þðp� qÞ; (44)

byðp0; pzÞbyðq0; qzÞ
� eia0ð�q0@pzpzþ@qzqzp0Þbyðq0; qzÞbyðp0; pzÞ ¼ 0; (45)

bðp0; pzÞbðq0; qzÞ
� eia0ðq0@pzpz�@qzqzp0Þbðq0; qzÞbðp0; pzÞ ¼ 0: (46)

where the time components of the momenta, p0 and q0, are
given in Eqn. (43).

The creation and annihilation operators satisfying the
above given deformed commutation relations are the ones
appearing in the mode decomposition of the scalar field
satisfying the generalized Klein-Gordon Eq. (41). This
generalized Klein-Gordon equation is invariant under the
�-Poincaré algebra.

Since deformed statistics flip operator is idempotent, we
know that the statistics is governed by the permutation
group and not by the more general braided group. In this
case the Eq. (39) identifies the eigenspace of �’ corre-

sponding to eigenvalue þ1, that is, it describes deformed
bosons, i.e. particles that obey commutation relations
(44)–(46). On the other hand, the projector 1

2 ð1� �’Þ
determines the eigenspace of �’ with eigenvalue �1,

thus defining particles with deformed Fermi-Dirac statis-
tics. As for condition (39), which was shown to lead to the
set of commutatation relations (44)–(46) describing de-
formed bosons, the (anti)commutatation relations obeyed
by deformed fermions can be deduced from the condition

f � g ¼ ��’ðf � gÞ: (47)

The later condition leads to the same type of relations as
(44)–(46), except only for � sign being replaced by the
þ sign. It gives at least a part of the eigenspace for �’ with

eigenvalue �1, thus describing deformed fermions.
The dispersion relation

p2
z þm2 ¼ 4

a20
sinh2

�
a0p0

2i

�
� 2 (48)

is readily obtained from (43). It is valid for both, deformed
bosons and fermions. And even more, with the help of it we
can deduce the form of equation governing dynamics of
deformed fermions by linearizing [65] the Klein-Gordon
Eq. (41). Indeed, the dispersion (48) has the form of
standard energy-momentum relation once we make iden-
tification  ¼ 2

a0
sinhða0p0

2i Þ. This enables us to write down

the Dirac equation in momentum space as

uðp0; pzÞ � 2

a0
sinh

�
a0p0

2i

�
uðp0; pzÞ

¼ ð ~	 	 ~pþ �mÞuðp0; pzÞ; (49)

where 	i ¼ �
0
i, � ¼ 
0 are Dirac 
 matrices and
uðp0; pzÞ is a two-component spinor. Note that in our
1þ 1-dim case ~	 	 ~p ¼ 	1pz and 	i and � reduce to
Pauli matrices and 2� 2 identity matrix, respectively.
The Eq. (49) is not linear any more. It is nonlinear and
its coordinate space counterpart is nonlocal and thus hard
to analyze. The nonlocal operator can however be ex-
panded in terms of deformation parameter a0 and corre-
spondingly obtained equation can be analyzed within the
same order. This analysis is out of scope of the current
paper and is planned for future publication. Nevertheless,
we see that dynamics of particles in the background of the
noncommutative BTZ black hole is described in terms of
equations that are nonlocal. This happened to be the case
for deformed bosons (see Eq. (41)) as well as for deformed
fermions (see Eq. (49)). The extraction of any further
information concerning the particle dynamics will thus
inevitably require perturbation calculus.
The situation described also means that other objects in

our approach, such as the twist, the R-matrix and the
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statistics flip operator will eventually have to be deduced
through the perturbation procedure as well. To illustrate
how this can be done, we investigate a quasi-triangular
structure of the symmetry algebra in the particular non-
commutative background described by

x̂ i ¼ xið1þ i	ða@ÞÞ þ i�ðaxÞ@i; (50)

x̂ 0 ¼ x0ð1þ i�ða@ÞÞ þ ia0
ðx@Þ: (51)

The above realizations are written perturbatively up to first
order in deformation a and already include the previously
analyzed realizations (13) and (14) up to the same order.
Indeed, the later is obtained from the former for � ¼

þ � ¼ 0. The quasi-triangular structure is of importance
since it gives rise to statistical properties of particles in this
noncommutative background. To obtain it, we have to find
the twist operator, which can be constructed once the
coproducts for derivatives are known. The Eqs. (50) and
(51) lead to coproducts

�ð@iÞ¼@i�1þ1�@i�i
a0@0�@i�i	a0@i�@0þOða2Þ:
(52)

�ð@0Þ ¼ @0 � 1þ 1 � @0 � ið
þ �Þa0@0 � @0

þ i�a0@i � @i þOða2Þ: (53)

The twist element can be now deduced from the exponen-
tial factor in (26). However, since there is an ambiguity as
where to place the coordinate variable x	 (whether to
attach it to the first or to the second factor in the tensor
product expansion of the exponential), we write the twist
element in a sufficiently general form to accommodate for
this indeterminacy,

F ¼1�1��1i�a0x0@i�@i�ð1��1Þi�a0@i�x0@i

þ�2ið
þ�Þa0x0@0�@0þð1��2Þið
þ�Þa0@0�x0@0

��3i
a0xi@0�@i�ð1��3Þi
a0@0�xi@i

��4i	a0xi@i�@0�ð1��4Þi	a0@i�xi@0þOða2Þ;
(54)

where �1, �2, �3, �4, are free parameters, whose presence
reflects the above described indeterminacy. They indicate
the weight with which coordinate x	 is attached to the
first, i.e. to the second part of the tensor product in (54). It
is now straightforward to show that coproducts (52) and
(53) can be reproduced from primitive coproducts (27)
via twist (54),

�ð@�Þ ¼ F�1�0ð@�ÞF ; (55)

for any choice of free parameters �1, �2, �3, �4.
The statistics flip operator in this setting can be calcu-

lated from (35) by using twist element (54), leading finally
to the R-matrix in the first order in a0, given by

R¼1�1þð2�1�1Þi�a0ðM0i�@i�@i�M0iÞ
þðð2�1�1Þ�þ�3
þ�4	�	Þ
� ia0ðxi@0�@i�@i�xi@0Þ
þð�4	þ�3
�
Þia0ðxi@i�@0�@0�xi@iÞ
þð1�2�2Þið
þ�Þa0ðx0@0�@0�@0�x0@0ÞþOða2Þ;

(56)

where M0i ¼ x0@i � xi@0 in the lowest order in a0. It
satisfies quantum Yang-Baxter equation in first order of
deformation a0, for every choice of free parameters �1, �2,
�3, �4. Here we can use the known result (38) to fix, at least
partially, the values of the free parameters. Thus, by noting
that the realization (13) and (14), expanded to the first
order in a0, emerges from the realization (50) and (51)
under the condition � ¼ 
þ � ¼ 0, it is clear that the
quasi-triangular structure (56) reduces to classical r-matrix
(38) under the same condition, � ¼ 
þ � ¼ 0. From this,
we can fix the parameters �3 and �4, �3 ¼ 0, �4 ¼ 1 while
�1 and �2 still remain undetermined. The analysis thus
shows that for a given realization we get the whole family
of R-matrices. Are these R-matrices mutually equivalent or
at least, is there any relation between them is still an open
question that is the subject of our current investigation. We
hope to address these issues in a near future.
Applying the above results to the �-cylinder case, in the

first order of deformation parameter a0 we have the follow-
ing realizations

ẑ ¼ zð1� 	a0@tÞ � �ða0tÞ@z; (57)

t̂ � x̂0 ¼ tð1� ð
þ �Þa0@tÞ � ia0
@�; (58)

leading to coproducts

�ð@tÞ ¼�0ð@tÞ� ð
þ�Þa0@t�@tþ�a0@z�@zþOða2Þ;
�ð@zÞ ¼�0ð@zÞ�
a0@t�@z�	a0@z�@tþOða2Þ:

The variable � is a polar angle used to parametrize the
cylindrical coordinate z. The relevant R-matrix now ap-
pears to be

R ¼ 1 � 1þ ð2�1 � 1Þ�a0ðMtz � @z � @z �MtzÞ
þ ð2�1 � 1Þ�a0ðz@t � @z � @z � z@tÞ
� ið	� 
Þa0ð@� � @t � @t � @�Þ
þ ð1� 2�2Þð
þ �Þa0ðt@t � @t � @t � t@tÞ þOða2Þ;

where in the lowest order the generators Mzt are given as
Mzt ¼ z@t � t@z. It satisfies Yang-Baxter equation and
gives rise to deformed statistics via

�ðxÞ ��ðyÞ � R�ðyÞ ��ðxÞ ¼ 0: (59)
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VI. CONCLUSIONS

In this paper we have addressed certain important phys-
ics questions that are relevant at the Planck scale. The main
physics points discussed here include the nature of particle
statistics and the spin-statistics relation at the Planck scale
and the deformation of the creation-annihilation operator
algebra that lies at the core of any quantum field theory at
that scale.

The issue of particle statistics and the associated spin-
statistics connection is an interesting and open problem in
quantum gravity. The arguments presented here indicate
that around a noncommutative black hole, the particle
statistics is twisted and the oscillators describing a free
scalar field satisfy a twisted algebra. The twisted oscillator
algebra has a very different structure from its commutative
counterpart, although it smoothly reduces to the latter
when the deformation parameter is taken to zero.

The deformed oscillator algebra around a noncommuta-
tive black hole immediately suggests that there could be a
breakdown of the spin-statistics relation in this scenario.
Such a violation of the spin-statistics relation in quantum
gravity has been previously discussed in the context of
quantum geons [31–33]. The violation of the spin-statistics
relation observed here is compatible with the fact that the
scalar field theory in the background of the �-cylinder
algebra is nonlocal. In addition, the �-Minkowski algebra
violates CP T symmetry [48,49]. It is thus not totally
surprising that the usual spin-statistics relation fails to
hold in the description of the Planck scale physics pre-
sented here. We thus came to the conclusion that the
particles in the vicinity of the noncommutative BTZ black
hole obey neither Bose, nor Fermi statistics. However, for
these particles we managed to write down the dynamical
equations which govern their motion in the corresponding
background. These equations turn out to be the deformed
Klein-Gordon Eq. (41) describing deformed bosons and the
deformed Dirac Eq. (49) describing deformed fermions.

In this paper we have worked with a specific realization
of the �-Minkowski cylinder algebra, which has a smooth
limit as the deformation parameter goes to zero. This is an
important difference compared to the previous treatment of
scalar fields around a noncommutative cylinder in [6,7].
The twisted flip operator as well as the twisted oscillator
algebra.
Even though we are dealing with black holes at the

Planck scale, the Klein-Gordon Eq. (41) appears to be
relevant for flat space, which may look like a contradiction.
However, let us recall that following the work Doplicher
et al. [2,3], the NC setup results from a combined effect of
general relativity and quantum uncertainty principle. It is
therefore plausible that certain effects of the gravity are
already contained in the NC algebras given by Eqs. (3), (7),
and (8) of this paper. The Klein-Gordon Eq. (41) is a
natural consequence of these algebras which is what we
have analyzed here. It would however be interesting to
consider the NC metric where the ordinary pointwise
products are replaced with the star product that has been
obtained here, and to consider the scalar field equation in
that background. That requires much further analysis of the
underlying noncommutative differential geometry includ-
ing the behavior of differential forms under the star prod-
ucts obtained in this paper, which is currently under
investigation.
It would also be interesting to study physical pro-

cesses such as the Hawking radiation around a non-
commutative black hole, using the oscillator algebra for
the scalar fields presented here, which is a work for the
future.
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