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In the chiral magnetic effect, there is a competition between a strong magnetic field, which tends to

project positively charged particles to have spin aligned along the magnetic field, and a chirality

imbalance which may be produced locally by a topologically nontrivial gauge field such as an instanton.

We study the properties of the Euclidean Dirac equation for a light fermion in the presence of both a

constant Abelian magnetic field and an SU(2) instanton. In particular, we analyze the zero modes

analytically in various limits, both on R4 and on the four-torus, in order to compare with recent lattice

QCD results, and study the implications for the electric dipole moment.
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I. INTRODUCTION

Since quarks carry both electric and color charge they
couple to both electromagnetic and gluonic gauge fields.
A magnetic field introduces a Landau level structure to
the fermion spectrum, in which the zero modes of the
associated two-dimensional Euclidean Dirac operator
have definite spin, aligned along the magnetic field
[1–5]. In a gluonic field with nontrivial topological charge
the fermion spectrum of the four-dimensional Euclidean
Dirac operator also has zero modes, with chiralities de-
termined locally by the local topological charge of the
gauge field [6–13]. The associated instanton transitions in
the �-vacuum can lead to a fluctuating electric dipole
moment of the neutron [14]. In this paper we investigate
what happens when a quark experiences both a strong
magnetic field and a topologically nontrivial gluonic field,
such as an instanton. For a single instanton the fermion
spectral problem has a conformal symmetry [15,16], and
the zero modes are localized on the instanton, falling off
as a power law with Euclidean distance. The conformal
symmetry is broken by the introduction of a magnetic
field, and now the zero modes develop an asymmetry,
falling off in Gaussian form in the plane transverse to
the B field, but as a power law in the other two directions.
This basic asymmetry is the key to the phenomenon of
magnetic catalysis [17] and the chiral magnetic effect
[18–22], as sketched in Fig. 1.

In this paper we discuss some features of the spectral
problem for fermions in the combined background field of
a magnetic field and an instanton. We are motivated by
situations in which quarks experience both types of fields,
such as in dense astrophysical objects such as neutron stars
and magnetars, and in heavy ion collisions such as those at
RHIC and at CERN [20,23,24]. We are also motivated by
recent lattice QCD analyses [25–29], which provide im-
portant numerical information about the Dirac spectrum in
both QCD and magnetic field backgrounds. Analytically,

while the effect of each individual background is very well
known, their combined effect turns out to be quite intricate.
In lattice studies [25–29], certain matrix elements associ-
ated with chiral effects receive dominant contributions
from zero modes and near-zero modes, so we pay particu-
lar attention to the low end of the spectrum. In future work
it should be possible, via a systematic study of appropriate
current correlators, to extract nondissipative transport co-
efficients (e.g. chiral magnetic conductivity [30]) as in
lattice QCD [31].

FIG. 1 (color online). A sketch of the topological charge
density, q / trF ��

~F ��, for a single instanton (dark shading,

red), and the density of the quark zero mode (light shading,
gray). On the left, there is a single instanton, and both densities
fall off as power laws, with q falling off faster. On the right, with
the introduction of a magnetic field, the topological charge
density is unchanged but the zero mode density is distorted
into an asymmetric shape, localized along the direction of the
strong magnetic field.
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II. GENERAL FORMALISM: DIRAC SPECTRUM

We briefly review the well-known properties [13] of the
Dirac equation for an instanton background or a constant
magnetic field, since our goal is to discuss what happens
when we combine the two background fields. We work in
Euclidean four-dimensional spacetime, with the following
conventions. We follow the notation of [10], and express
the 4� 4Dirac matrices, ��, for� ¼ 1; 2; 3; 4, in terms of

the 2� 2matrices �� ¼ ð1;�i ~�Þ and ��� ¼ ð1; i ~�Þ ¼ �y
�

(here ~� are the usual 2� 2 Pauli matrices),

�� ¼ 0 ��

��� 0

 !
; �5 ¼

1 0

0 �1

 !
: (1)

Thus, the Euclidean Dirac operator can be expressed as

D ¼ 0 ��D�

���D� 0

 !
� 0 D

�Dy 0

 !
; (2)

where the covariant derivative, D� ¼ @� � iA�, is writ-

ten with a Hermitian gauge field, A�, and x4 is the

Euclidean time coordinate. We write the gauge field A�

as a sum of a non-Abelian part, A�, and an Abelian

part, a�,

A� ¼ A� þ a�; (3)

with the respective coupling constants absorbed into the
gauge fields. The Dirac operator is anti-Hermitian, so we
write (with � real)

iDc � ¼ �c �: (4)

Since f�5;Dg ¼ 0, we can take � in (4) to be non-negative,
with the negative eigenvalue solutions simply given by
c�� ¼ �5c �. This means that we can effectively discuss
the zero modes (� ¼ 0) separately, and for the nonzero
modes (� � 0) we consider the squared operator,

ðiDÞ2c � ¼ DDy 0

0 DyD

 !
c � ¼ �2c �: (5)

The positive chirality sector, � ¼ þ1, is described by the
operatorDDy, while the negative chirality sector, � ¼ �1,
is described by the operator DyD. We can write these
operators as

� ¼ þ1: DDy ¼ �D2
� �F �� ����; (6)

� ¼ �1: DyD ¼ �D2
� �F �����: (7)

We have used ½D�;D�� ¼ �iF ��, whereF �� is the field

strength associated with the gauge field A�, and the spin

matrices ���� and ��� are defined as

���� ¼ 1

4i
ð�� ��� � �� ���Þ; (8)

��� ¼ 1

4i
ð ����� � �����Þ: (9)

In (6) and (7) we have used the properties [10]: ����� ¼
	�� þ 2i���, and �� ��� ¼ 	�� þ 2i ����.

For nonzero modes [i.e., solutions to (5) with � � 0], the
operators DDy and DyD have identical spectra, for any
background field. This is simply because we have an
invertible map: suppose the 2-component spinor v satisfies
DyDv ¼ �2v. Then u ¼ Dv is clearly an eigenfunction of
the other operator, DDy, with precisely the same eigen-
value: DDyu ¼ DDyDv ¼ �2u. Similarly, if u satisfies
DDyu ¼ �2u, then v ¼ Dyu is an eigenstate ofDyD with
the same eigenvalue. Thus, when � � 0, we can write the
4-component spinor solution in the form

c � ¼ u�

� i
� D

yu�

 !
; where DDyu� ¼ �2u�; (10)

or in the form

c � ¼
i
�Dv�

v�

 !
; where DyDv� ¼ �2v�: (11)

This is true for any background field: non-Abelian,
Abelian, or both.

A. Magnetic field background

For a constant (Abelian) magnetic field, of strength B,
pointing in the x3 direction, we have an Abelian field
strength f12 ¼ B, and so we find

� ¼ þ1: DDy ¼ �D2
� � B�3; (12)

� ¼ �1: DyD ¼ �D2
� � B�3; (13)

where we have used the fact that ��12 ¼ �12 ¼ 1
2�3. Note

that in this case the 2� 2 operators DDy and DyD, of the
two chiral sectors, are the same, and therefore they have
identical spectra. Because of the subtraction term, �B�3,
it is possible to have zero modes, and since DDy ¼ DyD
these zero modes occur in each chiral sector. More explic-
itly, we can make a Bogomol’nyi-style factorization and
write

�D2
� � B�3 ¼ �@23 � @24 � ðD1 � iD2ÞðD1 � iD2Þ

� B� B�3; (14)

� �@23 � @24 �D�D� � B� B�3: (15)

For zero modes, we take @3 ¼ @4 ¼ 0, and with B> 0
we choose the upper signs to ensure normalizable modes.
For example, in the symmetric gauge, where the Abelian
gauge field

a� ¼ B

2
ð�x2; x1; 0; 0Þ; (16)
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the zero modes can be expressed in terms of the normal-
izable solutions to ðD1 þ iD2Þu ¼ 0,

c 0 ¼ gðz1Þe�Bjz1j2=2

1

0

0

0

0
BBBBB@

1
CCCCCA or

c 0 ¼ gðz1Þe�Bjz1j2=2

0

0

1

0

0
BBBBB@

1
CCCCCA: (17)

Here gðz1Þ is a holomorphic function of the complex

variable z1 ¼ ðx1 þ ix2Þ=
ffiffiffi
2

p
. Both sets of zero modes

have spin-up, aligned along the B field; this is just the
familiar lowest Landau level projection onto spin-up states.
Note also that the zero modes have the characteristic
Gaussian factor in the ðx1; x2Þ plane, transverse to the
direction of the magnetic field. This factor is the origin
of the distortion sketched in the right panel of Fig. 1.

The number of zero modes per unit two-dimensional
area [in the ðx1; x2Þ plane] is given by the Landau degen-
eracy factor, the magnetic flux per unit area, B=ð2
Þ. In
fact, even for an inhomogeneous magnetic field Bðx1; x2Þ,
pointing in the x3 direction, the number of zero modes (of
each chirality) is determined by the integer part of the
magnetic flux (this is the essence of the Aharonov-
Casher theorem [1]). For example, on a torus [2],

Nþ ¼ N� ¼ 1

2


Z
d2xB: (18)

The higher Landau level states are the same for both spins,
as ð�D�Dþ þ BÞ and ð�DþD� � BÞ have identical
spectra, apart from the lowest level, which only has spin
aligned along the magnetic field. The resulting spectrum is
sketched in Fig. 2.

B. Instanton background

For an instanton field, A�, the (non-Abelian) field

strength F�� is self-dual (that is: F�� ¼ ~F��, where the

dual tensor is defined ~F�� � 1
2 �����F��). Then the anti-

self-duality property of ���� (that is, ~���� ¼ � ����) implies

� ¼ þ1: DDy ¼ �D2
�; (19)

� ¼ �1: DyD ¼ �D2
� � F�����: (20)

Because�D2
� is a positive operator, this means that for an

instanton background there can be no zero mode in the
positive chirality sector. On the other hand, due to the
subtraction term, �F�����, in DyD, it is possible to

have a zero eigenvalue solution in the negative chirality
sector, and it has the form

c 0 ¼ 0
v

� �
; where Dv ¼ 0: (21)

(For an anti-instanton, an anti-self-dual field with F�� ¼
� ~F��, the zero mode lies in the positive chirality sector,

because ��� is self-dual, ~��� ¼ ���.) For a general non-

Abelian gauge field A�, which is neither self-dual nor anti-

self-dual, the Atiyah-Singer index theorem [13,32] states
that the difference between the number of positive and
negative chirality zero modes is given by the topological
charge of the gauge field,

Nþ � N� ¼ � 1

32
2

Z
d4xFa

��
~Fa
��: (22)

Here we have written F�� ¼ Fa
��T

a, with generators nor-

malized as trðTaTbÞ ¼ 1
2	

ab. For gauge group SUð2Þ, with
fermions in the defining representation, we take generators
Ta ¼ 1

2 

a in terms of the Pauli matrices ~
, and we can

write the single instanton gauge field [33], centered at the
origin, in the regular gauge as

Aa
� ¼ 2

�a
��x�

x2 þ �2
; (23)

where � is the instanton scale parameter, and �a
�� is the

self-dual ’t Hooft tensor [6,10]. The topological charge
density is

qðxÞ ¼ 1

32
2
Fa
��

~Fa
�� ¼ 192�4

ðx2 þ �2Þ4 : (24)

There is a single zero mode [6–9,13], also localized at the
origin, with density

FIG. 2 (color online). A sketch of the form of the Landau level
spectrum �2 of the squared Dirac operator ðiDÞ2, for a constant
Abelian magnetic field. The plot is the same for both positive and
negative chirality; that is, for the operators DDy and DyD. Note
that for each chirality the zero mode has spin-up (along the
magnetic field), and furthermore note that the two-dimensional
operators DþD� and D�Dþ are isospectral apart from the
zero mode.
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jc 0j2 ¼ 64�2

ðx2 þ �2Þ3 : (25)

These densities both fall off as power laws, with scale set
by �, but the topological charge density is more localized,
as indicated in the left-hand panel of Fig. 1. The nonzero
modes are given by (10) or (11), and we note that the
spectra are identical in each chiral sector, apart from the
zero modes, as is indicated in the sketch in Fig. 3.

C. Combined instanton and magnetic field background

Physically, an instanton field projects the zero modes
onto a definite chirality, while a constant magnetic field
projects the zero modes onto definite spin, aligned along
the direction of the magnetic field. When we combine the
two background fields, both a non-Abelian instanton field
F�� and an Abelian magnetic field f12 ¼ B, there is a

competition between the two projection mechanisms, and
the outcome depends on their relative magnitude, as we
show below. Technically speaking, the instanton zero mode
has a specific ansatz form that unifies spacetime and color
indices, while the magnetic zero modes have a natural
holomorphic structure, and these two different ansatz
forms do not match one another. The competition between
these two ansatz forms makes the combined problem non-
trivial. For an instanton field, since the field falls off as a
power law, all eigenmodes also fall off with power-law
behavior. On the other hand, once a constant magnetic field
is introduced, for example, in the gauge (16), all the
eigenstates (even those in the higher Landau levels) have
a Gaussian factor expð�Bjz1j2=2Þ that localizes the modes
near the axis of the magnetic field. This is the reason for the
distorted density in the right-hand panel of Fig. 1. In the
extreme strong magnetic field limit this leads to a dimen-
sional reduction to motion along the magnetic field, with

interesting physical consequences such as magnetic cataly-
sis [17] and the chiral magnetic effect [18,21,22].
Concerning zero modes, we begin with a simple but

important comment: in the index theorem (22), the mag-
netic field makes no contribution, since with the field
strength decomposed into its non-Abelian and Abelian
parts, F �� ¼ F�� þ f��, we have

tr ðF ��
~F ��Þ ¼ trðF��

~F��Þ þ ðdimÞf��
~f��; (26)

¼ trðF��
~F��Þ; (27)

where dim is the dimension of the Lie algebra representa-
tion of the non-Abelian gauge fields. The cross terms
vanish since the Lie algebra generators Ta are traceless,

and the f��
~f�� term vanishes since there is no Abelian

electric field. For example, if there is no non-Abelian field,
just an Abelian magnetic field, then the topological charge
clearly vanishes, and the index theorem (22) is consistent
with the fact that DDy ¼ DyD for an Abelian magnetic
background [recall (12) and (13)], so that there is the same
number of zero modes in each chiral sector. Now, with both
background fields present, we find

DDy ¼ �D2
� � B�3; (28)

DyD ¼ �D2
� � F����� � B�3: (29)

Notice that the eigenvalues of DDy are simply those of the
scalar operator�D2

�, with a spin term�B, as can be seen

clearly in Fig. 5. The fact that there is a subtraction term
from the positive operator �D2

� in both chirality sectors

tells us that it is possible to have zero modes for each
chirality, but their number will depend on the relative
magnitude of F and B. In the next section we study a
specific model where we can quantify this precisely.
Another important implication is that we may also have
some near-zero modes, where the F and B subtractions do
not exactly cancel the lowest eigenvalue of �D2

�, but

lower the eigenvalue of DDy or DyD to near zero.

III. LARGE INSTANTON LIMIT

In the very strong magnetic field limit, where the mag-

netic length, 1=
ffiffiffiffi
B

p
, is small compared to the instanton size

�, we expect a significant distortion of instanton modes and
currents. In this limit we can make a simple approximation
that reduces the problem to a completely soluble system.

A. Covariantly constant SUð2Þ instanton
and constant Abelian magnetic field

In the large instanton limit, we expand the instanton
gauge field as

Aa
� � 2

�2
�a
��x� þ � � � : (30)

FIG. 3 (color online). A sketch of the form of the spectrum �2

of the squared Dirac operator ðiDÞ2, for an instanton field. Note
that the operators DDy and DyD are isospectral (also with
�D2

�) except for a zero mode in the negative chirality sector.
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To leading order in such a derivative expansion, the non-
Abelian gauge configuration Aa

�ðxÞ is self-dual and has

covariantly constant field strength, Fa
�� ¼ � 4

�2 �
a
��. In

this limit we can make an SUð2Þ ‘‘color’’ rotation, along
with a choice of Lorentz frame, to make the instanton field
diagonal in the color space (we choose the 
3 direction), so
that the field is self-dual, covariantly constant, and
quasi-Abelian. Defining the instanton scale F ¼ 2

�2 , the

combined gauge field, including also the Abelian magnetic
field as in (3), can be written as

A� ¼ �F

2
ð�x2; x1;�x4; x3Þ
3 þ B

2
ð�x2; x1; 0; 0Þ12�2;

(31)

This gauge field is fully diagonal and moreover is linear in
x�, so the problem is analytically soluble (this is the basic

premise of the derivative expansion). The only nonzero
entries of the field-strength tensor are

F 12 ¼ �F
3 þ B1 ¼ B� F 0

0 Bþ F

 !

F 34 ¼ �F
3 ¼ �F 0

0 þF

 !
:

(32)

In the absence of the magnetic field the field strength is
self-dual, F 12 ¼ F 34, but a nonzero magnetic field breaks
this symmetry. The topological charge density is (recall the
normalization of the generators)

1

32
2
F a

��
~F a

�� ¼ 4ð2FÞ2
32
2

¼ F2

2
2
: (33)

To study the Dirac spectrum we consider the 2� 2 opera-
tors DDy and DyD in (6) and (7). Notice first that

F �� ���� ¼ ðF 12 �F 34Þ�3; (34)

F ����� ¼ ðF 12 þF 34Þ�3: (35)

It is convenient to factor the four-dimensional Euclidean
space and consider separately the ðx1; x2Þ plane and the
ðx3; x4Þ plane, as sketched in Fig. 4. Then in the ðx1; x2Þ
plane we have a (relativistic) Landau level problem with
effective field strength (B� F) in the 
3 ¼ þ1 sector, and
with effective field strength (Bþ F) in the 
3 ¼ �1 sector.
In the ðx3; x4Þ plane we also have a (relativistic) Landau
level problem, now with effective field strength �F in the

3 ¼ þ1 sector, and with effective field strength F in the

3 ¼ �1 sector. In the ðx1; x2Þ plane the sign of the effec-
tive field strength depends on which of B or F is larger, so
we consider separately the cases B> F or B< F.

1. Strong magnetic field limit: B> F

When B> F, both (B� F) and (Bþ F) are positive.
Thus, each color component of F 12 is associated with a
positive ‘‘magnetic’’ field. On the other hand, for F 34, the


3 ¼ þ1 sector has a negative field strength, while the

3 ¼ �1 sector has a positive field strength.
We first consider the 
3 ¼ þ1 case. Then F 12 ¼

ðB� FÞ, F 34 ¼ �F, F �� ���� ¼ B�3, and F ����� ¼
ðB� 2FÞ�3. With a positive field strength the normal-
izable zero state is given by ðD1 þ iD2Þu ¼ 0. But since
F 34 is negative, we factorize the corresponding covariant
derivatives in the opposite order, in order to obtain a
normalizable state annihilated by (D3 � iD4). Thus,
we have

� ¼ þ1: DDy

¼ �ðD1 � iD2ÞðD1 þ iD2Þ þF 12

� ðD3 þ iD4ÞðD3 � iD4Þ �F 34 � B�3

¼ �ðD1 � iD2ÞðD1 þ iD2Þ
� ðD3 þ iD4ÞðD3 � iD4Þ þ B� B�3; (36)

�¼�1:DyD

¼�ðD1� iD2ÞðD1þ iD2Þ
þF 12�ðD3þ iD4ÞðD3� iD4Þ�F 34�ðB�2FÞ�3

¼�ðD1� iD2ÞðD1þ iD2Þ
�ðD3þ iD4ÞðD3� iD4ÞþB�ðB�2FÞ�3: (37)

This shows that there is a zero mode, when the spin term
B�3 cancels theB term from the Bogomol’nyi factorization

FIG. 4 (color online). Sketch of the effective magnetic field
strengths perpendicular to the ðx1; x2Þ and ðx3; x4Þ planes and the
associated zero mode densities which are represented by the
colored disks. The colors denote the isospin dependence: blue
(upper) stands for 
3 ¼ �1, and red (lower) stands for 
3 ¼ 1.
All the zero modes are spin-up (�3 ¼ 1) for B> F. See Eq. (61)
for the case of a four-torus where the magnetic fluxes are
quantized and coincide with the number zero modes.
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of the covariant derivative term. This occurs in the positive
chirality sector, � ¼ þ1, and with spin-up, �3 ¼ þ1.

Now consider the 
3 ¼ �1 case. Then F 12 ¼ ðBþ FÞ,
F 34 ¼ F, F �� ���� ¼ B�3, and F ����� ¼ ðBþ 2FÞ�3.

All field strengths are positive, so we write

�¼þ1:DDy

¼�ðD1� iD2ÞðD1þ iD2Þ
þF 12�ðD3� iD4ÞðD3þ iD4ÞþF 34�B�3

¼�ðD1� iD2ÞðD1þ iD2Þ
�ðD3� iD4ÞðD3þ iD4ÞþðBþ2FÞ�B�3; (38)

�¼�1:DyD

¼�ðD1� iD2ÞðD1þ iD2ÞþF 12

�ðD3� iD4ÞðD3þ iD4ÞþF 34�ðBþ2FÞ�3

¼�ðD1� iD2ÞðD1þ iD2Þ�ðD3� iD4ÞðD3þ iD4Þ
þðBþ2FÞ�ðBþ2FÞ�3: (39)

This shows that there is a zero mode, but now in the
opposite chirality sector, � ¼ �1, and also with spin-up,
�3 ¼ þ1.

To summarize, when B> F, the 
3 ¼ þ1 color sector
has spin-up zero modes with positive chirality, while
the 
3 ¼ �1 color sector has spin-up zero modes with

negative chirality. We can count the number of zero modes
in each chirality sector by simply taking the product of the
Landau degeneracy factors for the ðx1; x2Þ and ðx3; x4Þ
planes, with the corresponding effective magnetic field
strengths. Therefore, the corresponding Landau degener-
acy factors give the zero-mode number densities (i.e., the
number per unit volume),

�¼þ1: nþ¼ðB�FÞ
2


F

2

ð
3¼þ1;�3¼þ1Þ; (40)

�¼�1: n�¼ðBþFÞ
2


F

2

ð
3¼�1;�3¼þ1Þ: (41)

The index (density) is the difference,

nþ � n� ¼ � F2

2
2
; (42)

in agreement with the general index theorem (22), in view
of (33). We also note that the total number density of zero
modes

nþ þ n� ¼ BF

2
2
(43)

is linearly proportional to the magnetic field strength B.
This is in agreement with numerical lattice gauge theory
results [28].

FIG. 5 (color online). Spectrum of the squared Dirac operator ðiDÞ2, for both a strong magnetic field and instanton background, with
B 	 F, as derived from Eqs. (36)–(39). Note that for each color, 
3 ¼ �1, the operators DDy and DyD are isospectral except for a
zero mode. For 
3 ¼ þ1, this zero mode is in the positive chirality sector, while for 
3 ¼ �1, this zero mode is in the negative
chirality sector. The spin-projection steps relating the spectra of DDy, DyD, and D2

�, steps of �B, �ðB� 2FÞ, and �ðBþ 2FÞ, are
indicated in the figure.
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2. Weak magnetic field limit: B< F

Even though this limit is outside the derivative expan-
sion regime that originally motivated the quasi-Abelian
covariantly constant gauge field ansatz (30), it is still
instructive to see how the Dirac spectrum changes for
such a field when B< F. The difference is that now the

3 ¼ þ1 effective magnetic field (B� F) is negative, so
the factorization should be done in the opposite order also
for the ðx1; x2Þ plane.

Consider the 
3 ¼ þ1 case first. Then F 12 ¼ ðB� FÞ,
F 34 ¼ �F, F �� ���� ¼ B�3, and F ����� ¼
ðB� 2FÞ�3. Since F 12 has the opposite sign from before,
we factorize the corresponding covariant derivatives in the
opposite order, in order to obtain a normalizable state
annihilated by (D1 � iD2). Thus, we have

�¼þ1:DDy

¼�ðD1þ iD2ÞðD1� iD2Þ�F 12

�ðD3þ iD4ÞðD3� iD4Þ�F 34�B�3

¼�ðD1þ iD2ÞðD1� iD2Þ�ðD3þ iD4ÞðD3� iD4Þ
�ðB�2FÞ�B�3; (44)

�¼�1:DyD

¼�ðD1þ iD2ÞðD1� iD2Þ�F 12

�ðD3þ iD4ÞðD3� iD4Þ�F 34�ðB�2FÞ�3

¼�ðD1þ iD2ÞðD1� iD2Þ�ðD3þ iD4ÞðD3� iD4Þ
�ðB�2FÞ�ðB�2FÞ�3: (45)

This shows that there is a zero mode, in the negative
chirality sector, � ¼ �1, and with spin-down, �3 ¼ �1.

Now consider the 
3 ¼ �1 case. This is exactly as
before, with F 12 ¼ ðBþ FÞ, F 34 ¼ F, F�� ���� ¼ B�3,

andF ����� ¼ ðBþ 2FÞ�3. Thus, we can writeDDy and
DyD exactly as in (38) and (39), and we see that, as before,
the zero modes are in the negative chirality sector, with
spin-up.

To summarize, when B< F, the 
3 ¼ þ1 color sector
has spin-up zero modes with negative chirality, while the

3 ¼ �1 color sector has spin-down zero modes also with
negative chirality. Counting the corresponding Landau
degeneracy factors we obtain

� ¼ þ1: nþ ¼ 0; (46)

�¼�1: n�¼
8<
:

ðBþFÞ
2


F
2
; ð
3¼�1;�3¼þ1Þ

ð�BþFÞ
2


F
2
; ð
3¼þ1;�3¼�1Þ

: (47)

The total number density of negative chirality zero modes
is (note that the B dependence cancels)

n� ¼ F2

2
2
: (48)

As before, the index (density) is given by the difference

nþ � n� ¼ � F2

2
2
: (49)

in agreement with the general index theorem (22). In this
case the total number density of zero modes

nþ þ n� ¼ F2

2
2
; (50)

which is independent of the magnetic field strength B, and
equal to (minus) the index.

B. Physical picture

These results lead to the following simple physical
picture. The instanton tries to generate a chirality imbal-
ance but is neutral to the spin, whereas the magnetic field
tries to generate a spin imbalance but does not affect the
chirality. Depending on which is stronger, the zero modes
have either a definite spin with a chirality imbalance
(B> F), or a definite chirality with a spin imbalance
(F > B). Also we see that in the former case, the total
number of zero modes scales with B and is not equal to the
index, while in the latter case it is independent of the B
field, and is equal to the magnitude of the index (even
though the field is not self-dual).
More explicitly, for the B> F case, consider starting

with just a strong magnetic field B, later turning on a weak
instanton field. Without the instanton field, the zero modes
and their degeneracy are given by the Aharonov-Casher
theorem (18), so that the zero mode density is the Landau
degeneracy factor B=ð2
Þ for each chirality sector. All the
zero modes are spin-up, as is familiar for the lowest
Landau level (see Fig. 2). There is an equal number of
positive and negative chirality zero modes, which is con-
sistent with the index theorem, since the topological charge
vanishes for a constant B field. Now consider turning on an
instanton field F, with B> F > 0. We see from Eqs. (40)
and (41) that the effect of the instanton is to flip some of the
chiralities: ð F

2
Þ2 positive chirality modes become negative

chirality modes, leading to a chirality imbalance of F2

2
2 , in

agreement with the index theorem (22). On the other hand,
the total number of zero modes, BF

2
2 , grows linearly with

the magnetic field when F is nonzero.
On the other hand, when F > B we have the following

physical picture. With just the instanton, there are F2

2
2 zero

modes, all with negative chirality. Of these, ð F2
Þ2 have

spin-up, and ð F2
Þ2 have spin-down. Now turn on a magnetic

field B, with 0< B< F. The effect of the magnetic field is
to flip some of the down spins to up spins, without affecting
the chirality. From (46) and (47) we see that BF

ð2
Þ2 zero

modes have their spin flipped, leading to a spin imbalance,
without creating a chirality imbalance. Thus, the index is
still equal (in magnitude) to the total number of zero
modes.
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C. Creation and annihilation operator
formalism on the four-torus

To count degeneracies it is convenient to introduce torus
boundary conditions, x� 
 x� þ L�, and so to study this

configuration on a four-torus. The nontrivial homotopy
group of the torus leads to a well-defined topological
structure for a constant instanton field [34–37].
Furthermore, it allows a direct comparison with some
recent lattice results [25,27,28], in particular, the counting
of zero modes. We use torus boundary conditions, namely,
that the gauge field (31) is periodic up to a gauge trans-
formation,

A�ðx� þ L�Þ ¼ ��1
� ðxÞðA�ðx�Þ � i@�Þ��ðxÞ; (51)

where � denotes the shifted coordinate and �� is the
associated cocyle. A general treatment of non-Abelian
gauge fields on the torus can be found in [34–37].

As in the standard analysis of the constant magnetic field
problem, it is useful to work with complex coordinates.
The four-torus can be imagined as two orthogonal two-
dimensional planes, with appropriate periodicity condi-
tions, parametrized by two complex coordinates,

z1 � x1 þ ix2ffiffiffi
2

p ; z2 � x3 þ ix4ffiffiffi
2

p : (52)

In these coordinates, the 2� 2 Dirac operator D �
��D�, defined in (2), is

D ¼ �i
ffiffiffi
2

p �@2 � F
2 z2 @1 � B�F

2 �z1

�@1 þ B�F
2 z1 �@2 � F

2 �z2

 !
� Iþ

� i
ffiffiffi
2

p �@2 þ F
2 z2 @1 � BþF

2 �z1

�@1 þ BþF
2 z1 �@2 þ F

2 �z2

 !
� I�: (53)

Here I� denote the color projection matrices. Following
the standard treatment for a constant magnetic field, we
define the ladder operators,

a1 ¼ �i
ffiffiffi
2

p �
�@1 þ B� F

2
z1

�
; for Iþ

~a1 ¼ �i
ffiffiffi
2

p �
�@1 þ Bþ F

2
z1

�
; for I�

a2 ¼ �i
ffiffiffi
2

p �
@2 þ F

2
�z2

�
; for Iþ

~a2 ¼ �i
ffiffiffi
2

p �
�@2 þ F

2
z2

�
; for I�:

(54)

These satisfy the commutation relations

½a1; ay1 � ¼ 2ðB� FÞ ½~a1; ~ay1 � ¼ 2ðBþ FÞ
½a2; ay2 � ¼ 2F ½~a2; ~ay2 � ¼ 2F:

(55)

It is now explicit that, for each color, we have a set of two
independent Landau level problems and the Landau levels
are governed independently by the annihilation-creation

operators ðai; ayi Þ for 
3 ¼ þ1, and ð~ai; ~ayi Þ for 
3 ¼ �1.
We denote the associated number operators as

ay1a1 ¼ 2ðB� FÞN1; ay2a2 ¼ 2FN2

~ay1 ~a1 ¼ 2ðBþ FÞ ~N1; ~ay2 ~a2 ¼ 2F ~N2:
(56)

One should keep in mind that within our large instanton
approximation, in which B 	 F, the Landau levels for the
fields perpendicular to the ðx1; x2Þ plane have greater de-
generacy than the ones for the fields perpendicular to the
ðx3; x4Þ plane. Expressed in terms of these ladder operators,
the Dirac operator D � ��D�, defined in (2), is given by

D ¼ ay2 ay1
a1 �a2

 !
� Iþ þ ~a2 ~ay1

~a1 �~ay2

0
@

1
A � I�: (57)

To find the Dirac eigenvalues we consider ðiDÞ2, as in (5),
which means we require

DDy ¼
�
2ðB�FÞN1 þ 2FN2 þ

0 0

0 2B

 !�
� Iþ

þ
�
2ðBþFÞ ~N1 þ 2F ~N2 þ

2F 0

0 2ðBþFÞ

 !�
� I�

DyD¼
�
2ðB�FÞN1 þ 2FN2 þ

2F 0

0 2ðB�FÞ

 !�
� Iþ

þ
�
2ðBþFÞ ~N1 þ 2F ~N2 þ

0 0

0 2ðBþ 2FÞ

 !�
� I�:

(58)

Thus, ðiDÞ2 is fully diagonalized and we have a complete
description of the entire spectrum in terms of elementary
harmonic oscillator number operators. Notice that, in ad-
dition to the Landau level operators (54), we can define
another set of ladder operators which commute with all the
ai and ~ai, and therefore with the Dirac operator D,

b1 ¼ �i
ffiffiffi
2

p �
�@1 � B� F

2
z1

�
; for Iþ

~b1 ¼ �i
ffiffiffi
2

p �
�@1 � Bþ F

2
z1

�
; for I�

b2 ¼ �i
ffiffiffi
2

p �
@2 � F

2
�z2

�
; for Iþ

~b2 ¼ �i
ffiffiffi
2

p �
�@2 � F

2
z2

�
; for I�:

(59)

These operators satisfy the same commutation relation as
the Landau level ladder operators,

½b1; by1 � ¼ 2ðB� FÞ ½~b1; ~by1 � ¼ 2ðBþ FÞ
½b2; by2 � ¼ 2F ½~b2; ~by2 � ¼ 2F:

(60)
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These operators generate magnetic translations and so
characterize the degeneracies of the Landau levels. With
torus boundary conditions, the degeneracy is finite and
given by the net flux quanta through the period parallelo-
gram of the corresponding two-torus. In other words, each
Landau level is a finite dimensional representation of the
magnetic translation group [2,5,38] with the dimension
being equal to the flux. For simplicity of notation we
take all four periods to be equal, denoted by L. Then for
each of the two two-tori (and for each of the two colors) we
have the flux quantization conditions,

ðB� FÞL2 ¼ 2
ðN �MÞ; for Iþ
ðBþ FÞL2 ¼ 2
ðN þMÞ; for I�

FL2 ¼ 2
M; for Iþ
FL2 ¼ 2
M; for I�:

(61)

Here N and M are nonzero integers and each Landau level
has degeneracy factor

N� ¼ MjN �Mj; for 
3 ¼ �1; (62)

since we simply multiply the degeneracy factors for the
two independent two-tori for the ðx3; x4Þ and ðx1; x2Þ
planes. The explicit states can be generated by acting on
the ground state with the various creation operators, and the
associated wave functions can be written in terms of ellip-
tic functions, as is familiar [2,5]. We will concentrate
instead on the full eigenvalue spectrum of ðiDÞ2.

D. Zero modes

As described above, we treat separately the cases where
B> F and B< F. The torus boundary conditions allow us
to express the degeneracies exactly since the relevant
fluxes are integers.

1. B> F

As explained above, with just the magnetic field present,
there are only spin-up zero modes with both chiralities. Let
us denote the degeneracy as 2N, where BL2=2
 ¼ N. The
factor 2 is due to color. Now consider turning on an
instanton field F, so that B> F > 0, with F ¼ 2
M=L2

as in (61). The zero modes can be easily constructed by
looking at (58), with N1 ¼ N2 ¼ ~N1 ¼ ~N2 ¼ 0. It is clear
from (58) that there only two sectors where one can have
zero modes. Their spin and chirality can be read off
directly. Furthermore, their degeneracies are fixed by
(61). As a result, we see that there are ðN �MÞM spin-
up, positive chirality zero modes for the Iþ color sector,
and ðN þMÞM spin-up, negative chirality zero modes for
the I� color sector. Here M is the instanton flux and N is
the magnetic flux, from (61). The index of the Dirac
operator is given by the difference

indexðDÞ � Nþ � N� ¼ ðN �MÞM� ðN þMÞM

¼ �2M2 ¼ �F2L4

2
2
; (63)

in agreement with (22) and (33). The effect of the instanton
is to flip the chirality of M2 fermion zero-modes, resulting
in a chirality difference of 2M2. Also, the total number of
zero modes is

total number of zero modes

¼ ðN þMÞMþ ðN �MÞM ¼ 2NM ¼ BFL4

2
2
; (64)

in agreement with (40) and (41). We see that the total
number of zero modes is linearly proportional to the mag-
netic field strength. This agrees with the lattice results [28].
The functional forms of these zero modes can again be
constructed in the same manner as above.

2. F > B

It is a straightforward exercise to construct the analogue
of (58) for F > B, from which the zero modes can easily be
constructed. First, consider just the instanton field, so F is
nonzero, but B ¼ 0. In this case, there are 2M2 zero modes.
All of them are positive chirality, in agreement with the
vanishing theorem [9] that states that for a self-dual field
the index is equal to the total number of zero modes, since
all zero modes have the same chirality. Also, as expected,
there is no preference in spin and there are equal number of
spin-up and -down zero modes.
When we turn on a weak magnetic field, so that B ¼

2
N=L2 is nonzero, the effect of the magnetic field is to
flip some of the down spins to up spins. Now there are
ðN þMÞM spin-up zero modes, and ðM� NÞM spin-down
zero modes. The zero modes are still positive chirality,
since the magnetic field does not flip chirality. Therefore
the index is still equal to the total number of zero modes
even though the gauge field is not self-dual anymore with
the magnetic field,

index ðDÞ � Nþ � N� ¼ 0� 2M2 ¼ �2M2 ¼ �F2L4

2
2
:

(65)

In this case, the total number of zero modes is also equal to
the index,

total number of zero modes

¼ ðM� NÞMþ ðMþ NÞM ¼ 2M2: (66)

As a result we explicitly get the same simple physical
picture as described above. Depending on whether the
magnetic field or the instanton is stronger, the zero modes
have either a definite spin with a chirality imbalance
(B> F) or a definite chirality with a spin imbalance
(F > B). The advantage of the torus construction is
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two-fold: first, the fluxes are integers and the wave func-
tions have simple expressions in terms of elliptic functions;
and second, the counting of zero modes agrees with the
numerical lattice QCD results.

E. Landau levels

From the quantum mechanical supersymmetry relations
(10) and (11) we can construct the full spinor solution from
jc Ri, a two-component spinor satisfying

DDyjc Ri ¼ �2jc Ri: (67)

Since DDy commutes with �3, from (29), we can choose
jc Ri to be either spin-up or spin-down. In the 
3 ¼ þ1
sector, we find

jc R"i¼
jn1;n2i

0

 !
; �n1;n2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðB�FÞn1þ2Fn2

q

jc R#i¼
0

jn1�1;n2�1i

 !
; �n1;n2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðB�FÞn1þ2Fn2

q
:

(68)

For the spin-up states, n1; n2 2 f0; 1; 2; 3 . . .g, excluding
the case where both n1 ¼ n2 ¼ 0, while for the spin-
down case n1; n2 2 f1; 2; 3 . . .g label the Landau levels
corresponding to independent magnetic fields in the
ðx1; x2Þ and ðx3; x4Þ planes, and jn1; n2i are normalized
harmonic oscillator eigenstates. One should keep in mind
that (for B> F) each level has a degeneracy MðN �MÞ,
with M and (N �M) being the fluxes in the ðx1; x2Þ and
ðx3; x4Þ planes. The full spinors are

jc "i ¼ 1ffiffiffi
2

p

jn1; n2i
0

� i
�

ffiffiffiffiffiffiffiffiffiffiffi
2Fn2

p jn1; n2 � 1i
� i

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðB� FÞn1

p jn1 � 1; n2i

0
BBBBBB@

1
CCCCCCA

jc #i ¼ 1ffiffiffi
2

p

0

jn1 � 1; n2 � 1i
� i

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðB� FÞn1

p jn1 � 1; n2i
� i

�

ffiffiffiffiffiffiffiffiffiffiffi
2Fn2

p jn1 � 1; n2i

0
BBBBB@

1
CCCCCA:

(69)

The overall factor fixes the normalization of the spinor to 1.
In the 
3 ¼ �1 sector, there is a similar construction,
recalling that the field strength is (Bþ F) in the ðx1; x2Þ
plane.

IV. MATRIX ELEMENTS AND DIPOLE MOMENTS

In this section we consider certain matrix elements in-
volving quark bilinears, such as have been computed on the
lattice. For these purposes, it is convenient to introduce a
small quark mass m, so that the propagator of the Dirac
operator Dþm is given by

1

Dþm
¼

m
m2þDDy

�1
m2þDDy D

1
m2þDyDD

y m
m2þDyD

0
@

1
A: (70)

Note that DDy and DyD have identical spectra, except for
possible zero modes, so they can be viewed as square
operators (matrices) of different dimension, as is clear
when they are diagonalized in their respective eigenspaces.
The zero-mode contribution to the propagator can be sepa-
rated by writing it in one of two ways, depending on which
chirality supports zero modes

1

Dþm
¼

m
m2þDDy

�1
m2þDDy D

Dy 1
m2þDDy

�
1
m � 1

mD
y m
m2þDDy D

�
0
B@

1
CA

¼
�
1
m � 1

mD
m

m2þDyDD
y
�

�D 1
m2þDyD

1
m2þDyDD

y m
m2þDyD

0
B@

1
CA: (71)

An important set of quark bilinears involves the spin
tensor ���,

��� ¼ 1

2i
½��; ��� ¼ 2

���� 0

0 ���

 !
: (72)

This representation makes clear the natural decomposition
of ��� into its self-dual part (���) and its anti-self-dual

part ( ����). The bilinears are

h �c���c i ¼ tr

�
���

1

Dþm

�
: (73)

For applications to the chiral magnetic effect, we are
interested in the magnetic and electric dipole moments,

�M
i ¼ 1

2
�ijkh �c�jkc i; (74)

�E
i ¼ h �c�i4c i: (75)

With a strong magnetic field in the x3 direction, we con-
centrate on �M

3 and �E
3 , which require the spin tensors

�12 ¼ �3 0
0 �3

� �
�34 ¼ ��3 0

0 �3

� �
: (76)

Thus,

mh �c�12c i¼ tr2�2

�
�3

m2

m2þDDy

�
þ tr2�2

�
�3

m2

m2þDyD

�
;

(77)

mh �c�34c i ¼ �tr2�2

�
�3

m2

m2 þDDy

�

þ tr2�2

�
�3

m2

m2 þDyD

�
: (78)

The dominant contribution to the trace over the spectrum
comes from the modes with low eigenvalues of DDy and
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DyD. In the strong magnetic field limit, we see from Fig. 5
that the zero modes and the near-zero-modes all have spin-
up, �3 ¼ þ1, as expected. The dominant contribution to
the electric and magnetic moments are therefore

mh �c�12c i� tr2�2

�
m2

m2þDDy

�
þ tr2�2

�
m2

m2þDyD

�
; (79)

mh �c�34c i � �tr2�2

�
m2

m2 þDDy

�
þ tr2�2

�
m2

m2 þDyD

�
:

(80)

For the magnetic dipole moment, the main contribution
comes from the zero modes, so we simply count the
degeneracies in the various sectors,

mh �c�12c i �
�
B� F

2


��
F

2


�
þ
�
Bþ F

2


��
F

2


�
¼ BF

2
2
:

(81)

This result is linear in the magnetic field B. For the electric
dipole moment, the near-zero-modes cancel, leaving just
the zero mode contribution,

mh �c�34c i � �
�
B� F

2


��
F

2


�
þ
�
Bþ F

2


��
F

2


�
¼ F2

2
2
;

(82)

which is independent of B, and negligible compared to BF,
for B 	 F. [Note that (82) does not imply that there is a
residual electric dipole moment when B vanishes, because
(82) applies only in the B 	 F limit.] Thus, we see that the
zero modes and near-zero modes imply that

h �c�12c i / B; h �c�12c i 	 h �c�34c i: (83)

This is in agreement with the lattice results of [26]. We
note that in a full QCD calculation with dynamical quarks
there is an additional instanton measure factor that scales
as mNf , which should be taken into account for these
matrix elements.

If we now consider the fluctuations in the electric dipole
moment, we find a dependence on B, because

h �c�34c �c�34c i

¼ tr

�
1

Dþm
�34

1

Dþm
�34

�
¼ tr2�2

�
m2

ðm2 þDDyÞ2

þ 1

ðm2 þDDyÞD�3D
y�3

1

ðm2 þDDyÞ
�

þ tr2�2

�
1

ðm2 þDyDÞ2 D
y�3D�3

þ m2

ðm2 þDyDÞ�3

1

ðm2 þDyDÞ�3

�

� tr2�2

�
1

ðm2 þDDyÞ þ
1

ðm2 þDyDÞ
�
; (84)

where in the last step we have used the fact that the
dominant contribution comes from zero modes and

near-zero modes, all of which have �3 ¼ þ1. Thus, com-
paring with (81) we see that the fluctuation is linear in B,

h �c�34c �c�34c i �
�

F

2
2m2L4

�
B; (85)

again in agreement with the lattice results of [26].

V. SMALL INSTANTON LIMIT

In the opposite limit of a weak magnetic field the radius
of the Landau orbit is much larger than the instanton size,

1=
ffiffiffiffi
B

p 	 �. It appears that a quantitative analysis is more
difficult in this case, because all Landau levels contribute.
However, we can still outline the qualitative picture. The
effects induced by the presence of a small instanton on
quark dynamics can be described in terms of the effective
Lagrangian introduced by ’t Hooft [6],

L ðxÞ ¼ �ei� det½� �c RðxÞc LðxÞ� þ H:c:; (86)

where � is a constant that contains expð�8
2=g2Þ, � is the
� angle of QCD (that we will assume be equal to zero), and
the subscripts L and R refer to the left- and right-handed
quark helicities. The flavor determinant breaks the
ULðNfÞ �URðNfÞ symmetry of QCD down to SULðNfÞ �
SURðNfÞ. The (anti)instanton vertex as described by (86)

absorbs Nf left-handed fermions and creates the same

number of right-handed ones, or vice versa.
Let us now turn on an external magnetic field directed

along x3, and consider the electric dipole moment given by
(75). The Wigner-Eckart theorem tells us that the only
possible orientation of the dipole moment is along the x3
axis. Using the chiral representation of the quark spinors as
in (86), and using the gamma matrices (76), we can write
down the electric dipole moment as

�E
3 ¼ � �c L�3c L þ �c R�3c R: (87)

This expression makes it clear that in the absence of an
asymmetry between the left- and right-handed fermions the
electric dipole moment should vanish identically, as re-
quired by P and CP invariances. However, the (anti)in-
stanton transition caused by the interaction (86) can create
a local asymmetry between the left- and right-handed
fermions, and thereby induce a nonzero local electric
dipole moment.
It is interesting to discuss further the physical origin of

this effect. In the absence of an instanton, in a magnetic
field and with a fixed spin projection�3 ¼ þ1, there exists
an equal number of left- and right-handed zero modes, as
we discussed above in Sec. II A. As a result, they cancel
each other in (87). However, the instanton induces cou-
plings between the fermion’s spin, isospin (that belongs to
the SUð2Þ subgroup of the color group SUðNcÞ), and the
(four-dimensional) orbital angular momentum, so that the

operator D2 contains the isospin-orbit term 
 ~T � ~L [6].
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Because of this, the angular momentum of the fermion
ceases to be a conserved quantum number—only a combi-

nation ~J ¼ ~Lþ ~Sþ ~T is conserved. The presence of the
isospin-orbit term leads to the mixing of the lowest Landau
level of left chirality with a radial excitation of right
chirality that has the opposite parity. The change of the
orbital angular momentum is compensated by a rotation in
the color SUð2Þ subspace. Because of this, the system
acquires an electric dipole moment �E

3 
 � signaling a

local violation of parity invariance. The emergence of a
local quark electric dipole moment in an external magnetic
field has been observed on the lattice in [26], where it was
also observed that the electric dipole moment is strongly
correlated with the local chiral density signaling the pres-
ence of the instanton, or some other topological object. Of
course, at � ¼ 0 the action (86) does not generate an
asymmetry between the instantons and anti-instantons, so
there is no global violation of parity.

VI. CONCLUSIONS

While the physics of fermions in magnetic fields and
instantons, separately, is well known and well understood,
we have shown here that the combination of both back-
ground fields leads to a surprisingly intricate and rich
structure in the Dirac spectrum. The inherent asymmetry
when both instanton and magnetic field are present can
lead to the development of an electric dipole moment.
Physically, it can be understood as the outcome of two
competing effects: the spin projection produced by a

magnetic field and the chirality projection produced by
an instanton field. We have illustrated this in detail both
in the strong magnetic field limit in which the instanton
scale is large compared to the magnetic length, and also in
the opposite limit of small instantons. We have used the
language of a four-dimensional torus in Euclidean space,
motivated in part by a desire to connect analytic results
with recent lattice studies, which have shown a wide
variety of interesting effects arising from the coupling of
QCD to electromagnetic fields [25–28,39]. Corrections to
the large instanton limit case could be constructed using
the derivative expansion, in the natural Fock-Schwinger
gauge [40], x�A� ¼ 0, which can be chosen for the

combined instanton-magnetic field background, and which
is an efficient means for computing induced currents,
expectation values, and correlators [41–43]. While in a
constant self-dual field there is no preferred position at
which the modes are localized, in the next order of the
Fock-Schwinger gauge expansion we expect that these
zero modes and near-zero modes will localize on the
instantons, as in the phenomenon of dynamical localization
in the quantum Hall effect [44].
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