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We analyze the motion of an electric charge in the field of a magnetically charged event in three-

dimensional spacetime. We start by exhibiting a first integral of the equations of motion in terms of the

three conserved components of the spacetime angular momentum, and then proceed numerically. After

crossing the light cone of the event, an electric charge initially at rest starts rotating and slowing down.

There are two lengths appearing in the problem: (i) the characteristic length qg
2�m , where q and m are the

electric charge and mass of the particle, and g is the magnetic charge of the event; and (ii) the spacetime

impact parameter r0. For r0 � qg
2�m , after a time of order r0, the particle makes sharply a quarter of a turn

and comes to rest at the same spatial position at which the event happened in the past. This jump is the

main signature of the presence of the magnetic event as felt by an electric charge. A derivation of the

expression for the angular momentum that uses Noether’s theorem in the magnetic representation is given

in the Appendix.
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I. INTRODUCTION

The present article deals with the motion of an ordi-
nary electrically charged particle in the background of a
magnetic point source in three-dimensional Minkowski
spacetime. Such a source is the simplest case of what
has been called recently a ‘‘magnetic event,’’ a novel
notion that emerges from the principle of electric-
magnetic duality, and has been developed in [1,2]. As
it was discussed in [1], this case is of interest, not only
because of its simplicity, but also because it is realized
in the laboratory when an electric charge crosses a
Josephson junction separating two superconducting bulk
pieces.

To our knowledge this problem has not been discussed
before, perhaps because a cogent physical motivation did
not yet exist.

On the other hand, the corresponding problem of de-
termining the spatial trajectories of an electrically
charged particle in the field of a magnetic monopole in
three-dimensional Euclidean space (i.e., in four-dimen-
sional Minkowski spacetime) was first considered by
Poincaré over 100 years ago [3], and there are many
more recent treatments (see, for example [4]). In the
Euclidean case the spatial trajectories are spirals on a
cone whose aperture is determined by the angular mo-
mentum. The cone becomes a plane when the magnetic
pole is absent.

At the beginning of the present study, the authors felt
that, perhaps, there would be a way of directly translating
in a simple manner, by some sort of ‘‘Wick rotation,’’ the
well-analyzed Euclidean results to the case of Lorentzian
signature. However efforts in this direction proved un-
successful. Therefore it was decided to attack the problem
directly, ab initio in Minkowski space, and, as it will be

seen below, the results that emerged appear to bear
no evident relationship with those of the Euclidean
case.
With hindsight, from a physical point of view the lack of

such a relationship should not be that surprising but rather
is to be expected. Indeed, as emphasized in [1,2] the
magnetic pole in three-dimensional Euclidean space cor-
responds to an ‘‘instanton’’ [5], or ‘‘pseudo particle’’ [6]
and describes quantum mechanical tunneling within the
three-dimensional spacetime, while, in contradistinction,
magnetic events occur classically and correspond to the
imprint of a flux-carrying particle impinging from extra
dimension.
The plan of the paper is as follows. Section II recalls the

field of a magnetic event. Next, Sec. III discusses a first
integral of the equation of motion, in which the integration
constants are the three conserved components of the an-
gular momentum. Then Sec. IV is devoted to further
complete integration of the equations of motion, for which
we resort to numerical methods. It is observed that one
must regularize the otherwise divergent field of the event
on the light cone. The main conclusions obtained are
independent of regularization and they are stated in
Sec. V: As the electric charge crosses the light cone of
the event it starts rotating and slowing down. In the frame
in which the particle is initially at rest, after a time of the
order of the spacetime impact parameter, the particle
makes sharply a quarter of a turn and comes to rest at
the same spatial position at which the event happened in
the past. This jump is the main signature of the presence of
the magnetic event as felt by an electric charge. A deriva-
tion of the expression for the angular momentum that uses
Noether’s theorem in the magnetic representation is given
in the Appendix.
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II. FIELD OFA MAGNETIC EVENT

The electromagnetic field strength F�� is given by

F�� ¼ ����
�F�; (1)

where the dual �F� is related to the magnetic potential’ by

�F� ¼ @�’: (2)

If the event is at the origin x ¼ 0, the equation of motion
for ’ reads

h’ ¼ g�ð3ÞðxÞ: (3)

The general solution of (3) is the sum ’ ¼ ’0 þ gG,
where ’0 is the general solution of the homogeneous
equation (g ¼ 0) and G is a Green function of the wave
operator. At the classical level a natural choice is to take for
G the retarded Green function which vanishes outside the
future light cone of the event,

GRðxÞ ¼ 1

2�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�x�x
�p �ð�x�x

�Þ�ðx0Þ: (4)

If one takes ’0 ¼ 0 the situation as seen from within the
D ¼ 3 spacetime is the following: For x0 < 0 there is no
field. At x0 ¼ 0, suddenly a flash of light emerges and
propagates to the future. As argued in [1] this situation will
be the most probable classically, because it corresponds to
a flux-carrying particle impinging from the extra dimen-
sion without any precise control (‘‘fine-tuning’’) of its
initial conditions. The time-reversed process, where one
would replace the retarded Green function GR by the
advanced one GA, corresponds to a precisely prepared
(‘‘fine-tuned’’) pulse of radiation converging on the space-
time point x ¼ 0, and disappearing as a flux-carrying
particle into the extra dimension. This situation would be
classically improbable.

We will therefore set in (2)

’ ¼ gGR: (5)

III. FIRST INTEGRAL OF THE
EQUATIONS OF MOTION

The equations of motion for the electric charge in the
background field of the magnetic event are given by the
standard Lorentz force,

m
d2x�

ds2
¼ qF�� dx�

ds
; (6)

where F�� is the field given in the previous section.
Because the field of the event is invariant under Lorentz

transformations the three components of the spacetime
angular momentum,

J� ¼ 1
2�

���J��; (7)

are conserved. Just as it happens for an ordinary magnetic
pole in three space dimensions (see for example [7], and
Appendix D of [8]), the angular momentum Eq. (7) has a
‘‘spin’’ piece additional to the orbital part. As discussed in
the Appendix, when the electric charge is within the future
light cone of the magnetic event, we have

J� ¼ L� þ S�; (8)

with

L� ¼ ����x
�m

dx�

ds
(9)

and

S� ¼ ��
x�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�x	x	

p : (10)

Here

� ¼ qg

2�
(11)

and s is the proper time. On the other hand, when the
electric charge is not under the influence of the magnetic
event one has just J� ¼ L�.

We can always choose a Lorentz frame in which, before
reaching the future light cone of the event, the electric
charge is at rest, at x1 ¼ r0, x

2 ¼ 0. Then we have

J0 ¼ 0; (12)

J1 ¼ 0; (13)

J2 ¼ �mr0; (14)

where we have set �012 ¼ 1.
The value of J� given by Eqs. (12)–(14), which was

arrived at by calculating it before the interaction begins,
must also be valid afterward since the total angular mo-
mentum is conserved. As we shall see in Sec. V, during the
scattering process there will be an exchange of spacetime
orbital angular momentum and spin so that the sum J�
remains constant.
It follows from Eqs. (12)–(14) that the conserved total

angular momentum J� is a spacelike vector. This is a

consequence of the fact that the worldline of the electri-
cally charged particle is timelike. One could only arrange
for a null, or timelike, J� by having a spacelike worldline

for an electric charge, but this would not correspond to a
physical particle.
Now, after the particle has entered the future light cone

of the event, one has

J�x
� ¼ ��x	x	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�x	x	

p ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�x	x	

p ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � x2 � y2

q
; (15)

where we have denoted ðx0; x1; x2Þ ¼ ðt; x; yÞ.
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Since J� is conserved and only J2 � 0, we have

J2y ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � x2 � y2

q
; (16)

or

y ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � x2 � y2

q
(17)

with

a ¼ � �

mr0
: (18)

Equation (17) may be written in parametric form as

x ¼ t cos’; (19)

y ¼ atffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p sin’; (20)

where ’ is the polar angle in the x-y plane.
Geometrically these equations describe half of the ellip-

soid

y2ð1þ a2Þ þ a2x2 ¼ a2t2; (21)

which is inscribed in the light cone of the event, as illus-
trated in Fig. 1. The half y � 0 corresponds to a > 0, and
the half y � 0 to a < 0.

Next we proceed to evaluate L� and S� after the electric

charge starts feeling the field of the event. First we observe
from (17) and (20) that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x�x�

q
¼ y

a
¼ t sin’ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
p : (22)

Then

S� ¼ ��x�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p

t sin’
: (23)

On the other hand, Eqs. (19) and (20) yield for the orbital
angular momentum

L0 ¼ maffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p t2
d’

ds
; (24)

L1 ¼ � maffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p t2 cos’
d’

ds
; (25)

L2 ¼ �mt2 sin’
d’

ds
: (26)

Now we demand that the total angular momentum be
conserved. Recalling Eqs. (12)–(14), the conservation
equations read

J0 ¼ ��

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p

sin’
þ 1

r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p t2
d’

ds

�
¼ 0; (27)

J1 ¼ ��

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p

sin’
� 1

r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p t2
d’

ds

�
cos’ ¼ 0; (28)

J2 ¼ ��

�
a� t2 sin’

ar0

d’

ds

�
¼ �mr0 ¼ �

a
: (29)

Equation (29) may be rewritten as

t2 sin’
d’

ds
¼ r0ð1þ a2Þ: (30)

If (30) is inserted in (27) and (28), the latter two equations
are also satisfied. Therefore relation (30) captures the full
content of the angular momentum conservation.
Now

ds2 ¼ dt2 � dx2 � dy2

¼ dt2 � ðdt cos’� t sin’d’Þ2

� a2

1þ a2
ðdt sin’þ t cos’d’Þ2; (31)

which, combined with (30), yields��
t2

r20

1

1þ a2
þ 1

�
sin2’þ a2

��
t
d’

dt

�
2

¼ sin2’þ 2t
d’

dt
cos’ sin’: (32)

Introducing the dimensionless parameter 
 through

t ¼ r0e

; (33)

FIG. 1 (color online). Worldline of the charged particle in the
field of a magnetic event. The particle comes freely from the past
and experiences a jolt when it crosses the future light cone of the
magnetic event. After this crossing, the particle spirals up in
time, lying on the surface of a conical ellipsoid inscribed in the
light cone of the event. Finally, the particle approaches an
asymptotically straight worldline defined by ’ ¼ ’1. In this
graph a ¼ 0:1.
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which implies t d’dt ¼ d’
d
 , we can rewrite Eq. (32) as

d’

d

¼ sin’

A2
ðcos’þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2’þ A2

q
Þ; (34)

with

A2ð’; 
;aÞ ¼
�

e2


1þ a2
þ 1

�
sin2’þ a2: (35)

The choice of a plus sign in (34) comes from (30) which
show us that d’ and sin’ have the same sign.

Equations (19), (20), and (34) constitute a first integral
of the equations of motion.

IV. COMPLETE INTEGRATION OF THE
EQUATIONS OF MOTION

We will exhibit in this section numerical results for the
solution of the first-order differential equation (34). The
physical situation is that the particle is free up to the time
t ¼ r0, when it is first hit by the field of the event, and
afterward it continues to move under its influence. Now, if
one were to assume—as one normally does—that the
position of the particle is continuous, one would have
that the solution of Eq. (34) would be ’ ¼ 0 for all times.
However, if one introduces that result in Eqs. (19) and (20),
it follows that x ¼ t, y ¼ 0, i.e., the particle suddenly starts
moving with the speed of light. This unphysical result
stems from the fact that the Green function (4), and the
field strength derived from it, diverge as one approaches
the light cone from inside. To extract physically sensible
results one must smear the source so that the field is
regularized on the light cone, as illustrated in Fig. 2, and
then extract conclusions which are insensitive to the details
of the regularization.

The need for the regularization stems from the step
functions in the Green function (4). It is distinctly brought
into evidence if one attempts to apply the Gauss law for a
spacetime region which contains the magnetic event, and
whose boundary is formed by two spacelike disks and a
timelike cylinder that joins them. The first spacelike disk is
taken to be on the future of the event and it extends slightly
outside of its light cone, similarly for the second disk, but
to the past of the event. If one takes for �F� in (2) the one

derived from the Green function (4), one finds that its flux
across the upper disk diverges whereas the contribution of
the lower disk and of the cylinder vanish. Thus, the total
flux over the closed surface enclosing the event diverges.
However, on account of Eq. (3) the Gauss formula yields
that the flux should be equal to the magnetic charge g. The
regularization resolves the problem by smoothing out the
Green function, so that the Gauss formula can be properly
applied. In the limit " ! 0þ for the regulator, the flux
across the upper disk becomes g, rather than infinity, while
the contribution of the cylinder vanishes (the contribution
of the lower disk vanishes already before the limit).

Thus we will assume that the regularization has been
implemented, that the particle has crossed the light cone,
and will start the integration assuming that ’ðt ¼ r0Þ ¼
’ð
 ¼ 0Þ ¼ ’ð0Þ is different from zero, but very small.
This is because, due to the regularization, the particle starts
experiencing a force a short time before hitting the light
cone, and therefore when t ¼ r0 it has already turned a
little bit.
Note that the regularization procedure changes the elec-

tromagnetic field appearing on the right-hand side of the
equation of motion (6) to

F�� ¼ ����@
�gGregularized

R : (36)

Therefore due to the antisymmetry of F��, one still has,

after regularization,

d

ds
ðv�v

�Þ ¼ 0: (37)

Hence, if the worldline of the particle was timelike before
reaching the (smoothed) future light cone of the event, it
continues being so while it crosses it and also afterward,
inside of it.

A. Limit � ! 1
There is one conclusion that one can obtain right away,

before a numerical analysis. It is the asymptotic behavior
for large times.
The asymptotic form of Eq. (34) is

d’

d

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
e�
 þOðe�2
Þ; (38)

FIG. 2. Regularization of the retarded field. A section of space-
time, the ðx0; x1Þ plane at x2 ¼ 0, is shown. The magnetic event
is at the origin. The original retarded Green function GR is
nonvanishing inside its future light cone only, but diverges on
it. After regularization, which may be thought of as the smearing
of the magnetic event, the field becomes finite on the light cone,
but has a rapidly decaying tail outside of it. One recovers the
original Green function when the cutoff width " approaches 0þ.
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yielding

’ð
Þ � ’1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
e�
; (39)

when 
 ! 1. Here ’1 is a constant. This implies that for
t ! 1, the trajectory of the particle is a straight line, with

y ¼ ax tan’1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p : (40)

Moreover, taking in account Eq. (39) it is possible to find
the velocity of the particle for large times. The asymptotic
expression for the velocity is given by

v1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2’1 þ a2

1þ a2

s
: (41)

B. Numerical integration

We now exhibit through a sequence of figures the de-
pendence of the solution of the equation of motion on the
spacetime impact parameter r0, or rather its dimensionless
inverse a ¼ �qg=ð2�mr0Þ ¼ ��=ðmr0Þ. Special atten-
tion is paid to the spacetime scattering angle ’1. The
qualitative behavior is independent of the regularization
length ". After crossing the light cone the particle starts
spiraling up in time and it settles for large times into
uniform motion according to the discussion of the previous

subsection. The angle ’1 is an increasing function of the
impact parameter. The precise form of the function is
cutoff dependent but its asymptotic value for r0 ! 1 is
cutoff independent and equal to �=2. Figures 3 and 4 are
drawn for a fixed value of the cutoff ’ð0Þ ¼ 10�9. Figure 3
exhibits the time dependence of the polar angle ’ for a
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FIG. 4 (color online). Particle velocity as a function of time.
The first panel shows the velocity v of the particle as a function
of t=r0 for the case a ¼ 0:01. The second panel shows the time
dependence of the components vx and vy and exhibits the

sudden turn and coming to rest of the particle. The cutoff was
implemented by taking ’ð0Þ ¼ 10�9.
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FIG. 3 (color online). Time dependence of the polar angle. The
graphs show ’ as a function of 
 ¼ lnðt=r0Þ for the cases
a ¼ 0:01 and a ¼ 1. In both cases ’ð
Þ approaches asymptoti-
cally a constant value ’1 <�=2. The cutoff was implemented
by taking ’ð0Þ ¼ 10�9.

ELECTRIC CHARGE IN THE FIELD OF A MAGNETIC . . . PHYSICAL REVIEW D 85, 045024 (2012)

045024-5



small value of a and for a large one. Figure 4 exhibits the
time dependence of the velocity and its components for
a ¼ 0:01. Figure 5 illustrates the dependence of the scat-
tering angle ’1 on the inverse impact parameter a, for
different values of the cutoff, and it shows that, for small a,
’1 ¼ �=2, independently of the cutoff.

V. CONCLUSION

The motion in the frame in which the electric charge is
initially at rest is as follows: As the particle crosses the
light cone it starts rotating and slowing down. The rotation
is counterclockwise for a > 0 and clockwise for a < 0
[recall Eq. (20)]. This is in agreement with the fact that
under space reflection a is a pseudoscalar because the
product qg of the electric and magnetic charges is a
pseudoscalar.

The limit a ! 0 corresponds to a large impact parameter
and it is of particular interest because one would expect
that then the details of the magnetic source, idealized here
to be a point, should be irrelevant. As seen in Fig. 1, when
a ! 0, the inscribed ellipsoid becomes very narrow and
parallel to the x axis. Hence, after a time of the order of the
impact parameter, the particle makes sharply a quarter of a
turn and comes to rest at the same spatial position at which
the event happened in the past. Thus the net effect of the
scattering is to change the state of the particle from being at
rest x ¼ r0, y ¼ 0 at t ¼ r0, to being again at rest x ¼ 0,
y ¼ 0 for t � r0 � qg=ð2�mÞ.

This jump is the main signature of the presence of the
magnetic event as felt by an electric charge.

As was anticipated in Sec. III, we note that during the
scattering process there is an exchange of spacetime orbital
angular momentum and spin. Indeed in the final stage when
the particle is at rest above the event, after a very long time,
it has a nonvanishing S0 ¼ �, which is compensated

by L0 ¼ ��. On the other hand, initially one has L0 ¼
S0 ¼ 0.
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APPENDIX: ANGULAR MOMENTUM IN THE
FIELD OF A MAGNETIC EVENT

We work in the magnetic representation, in which a
Dirac string is attached to the electric charge. The world-
sheet � of the string will be denoted by x� ¼ y�ð�; �Þ,
with y�ð0; �Þ ¼ z�ð�Þ, the worldline of the electric charge.
The action for the electric charge in a background field

F�� is given by

I ¼ Ikinetic þ Iinteraction; (A1)

with

Ikinetic ¼ �m
Z þ1

�1
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi� _z	 _z	
p

; (A2)

and

Iinteraction ¼ q

2

Z
�
F��ðyÞdy� ^ dy�

¼ q
Z
�
F��ðyÞ@y

�

@�

@y�

@�
d�d�: (A3)

If one varies y� assuming that the string does not cross a
magnetic source (‘‘Dirac veto’’), so that dF ¼ 0, one finds
by using the Stokes theorem that

�Iinteraction ¼ �q
Z þ1

�1
F��ðzÞdz

�

d�
�z�ð�Þd�; (A4)

which yields the Lorentz force, as desired.
If one takes F��ðxÞ to be the field of an event at the

origin, one has, from Sec. II,

Iinteraction ¼ qg

4�

Z
���

y

ð�y2Þ3=2 dy
� ^ dy�; (A5)

where y2 ¼ y	y	. The integral is extended over the inter-
section of the worldsheet � with the interior of the future
light cone of the event, since the field vanishes outside that
cone.
Now, Iinteraction is manifestly Lorentz invariant and so is

Ikinetic. Therefore we may follow the standard Noether
procedure for the transformation,

0.0 0.2 0.4 0.6 0.8 1.0
a0.0

0.5

1.0

1.5

10 12

10 9

FIG. 5 (color online). Asymptotic value of the spacetime scat-
tering angle ’1 as a function of the inverse of the impact
parameter, a. In the case of a strong interaction (a large), the
graph shows that ’1 tends to zero. For small a, i.e., the case of a
weak interaction, ’1 approaches �=2.
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�y� ¼ ��	�y	
�; (A6)

which is an infinitesimal Lorentz rotation with parameter
��	�
�.

The conserved total charge is then

J� ¼ L� þ S�; (A7)

where L� is the standard orbital angular momentum com-

ing from Ikinetic and S� is given by


�S
� ¼

Z 1

0

�Linteraction

� _y�ð�Þ �y�ð�Þd�; (A8)

where the interaction Lagrangian L is given by

Linteraction ¼ qg

2�

Z 1

0
���

y

ð�y	y	Þ3=2
@y�

@�

@y�

@�
d�; (A9)

so that its integral over � gives the action (A5).

One obtains

S� ¼ qg

2�

Z 1

0
d�

�
1

2

@y2

@�
y� � @y�

@�
y2
�
ð�y2Þ�3=2: (A10)

But the integrand in (A10) is just dðy�ð�y2Þ�1=2Þ=d�.
Therefore (A10) yields

S� ¼ qg

2�

�
y�

ð�y2Þ1=2
���������¼1

� z�

ð�z2Þ1=2
�
: (A11)

The contribution at spatial infinity vanishes after one
regularizes the field as illustrated in Fig. 2. So one finds the
expression given for S� in the main text, Eq. (10).

One may view the spin S� as stemming from a ‘‘rota-
tional inertia’’ acquired by the self-field of the electric
charge moving through the background field of the event.
Direct calculation of the angular momentum stored in the
field [1] sustains this interpretation.
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