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A nonperturbative field theoretical approach to flavor physics (Blasone-Vitiello formalism) has been

shown to imply a highly nontrivial vacuum state. Although still far from representing a satisfactory

framework for a coherent and complete characterization of flavor states, in recent years the formalism

has received attention for its possible implications at cosmological scales. In a previous work, we

implemented the approach on a simple supersymmetric model (free Wess-Zumino), with flavor mixing,

which was regarded as a model for free neutrinos and sneutrinos. The resulting effective vacuum (called

flavor vacuum) was found to be characterized by a strong supersymmetry breaking. In this paper we

explore the phenomenology of the model and we argue that the flavor vacuum is a consistent source for

both dark energy (thanks to the bosonic sector of the model) and dark matter (via the fermionic one).

Quite remarkably, besides the parameters connected with neutrino physics, in this model no other

parameters have been introduced, possibly leading to a predictive theory of dark energy/matter. Despite

its oversimplification, such a toy model already seems capable to shed some light on the observed energy

hierarchy between neutrino physics, dark energy and dark matter. Furthermore, we move a step forth in

the construction of a more realistic theory, by presenting a novel approach for calculating relevant

quantities and hence extending some results to interactive theories, in a completely nonperturbative

way.

DOI: 10.1103/PhysRevD.85.045020 PACS numbers: 14.60.Pq, 95.35.+d

I. INTRODUCTION

Neutrino flavor oscillation is nowadays a fairly well-
established fact, thanks to a wide range of experimental
evidences [1]. A simple quantum mechanical model (based
on the work of Pontecorvo, Maki, Nagawa, and Sakata
[2–5]) is commonly considered as sufficient for accounting
for experimental data. However, this hides nontrivial diffi-
culties in the formulation of flavor oscillations in a quan-
tum field-theoretical (QFT) framework [6]. flavor states
indeed do not represent correct asymptotic states (by defi-
nition, since their oscillating behavior), which are required
in the usual perturbative approach to QFT (in the Lehmann,
Symanzik and Zimmermann scheme).

More than a decade ago, a nonperturbative approach
for building flavor states was suggested by Blasone,
Vitiello and coworkers (BV formalism for flavor physics)
[7]. A first version was proposed in 1995 [7], but some
inconsistencies in the derivation of oscillation formulae
were noticed [8–11] shortly after; a revisited version, in
which these discrepancies were clarified and removed,
was suggested and developed [12–16] later on [6].
However, for some aspects, the formalism remains con-
troversial and its physical relevance is still matter of
debate [17–19].

The approach correctly reduces to the common quantum
mechanical approach in the small (neutrinos) mass limit,
but leads to corrections to those formulas that are currently
beyond experimental sensitivity [6,20]. However, perhaps

the most interesting feature of BV formalism is the
nontrivial vacuum (called flavor vacuum) implied by the
theory. Such a flavor vacuum (which can be regarded as a
vacuum condensate) represents the physical state with no
(flavor) particles in it. Despite being merely an ‘‘empty’’
state, the flavor vacuum is characterized by a rich structure
revealed by the nonvanishing expectation value of the
stress-energy tensor and the related equation of state.
Within BV formalism one is able to fully describe it at a
nonperturbative level, and its features depend on the
specific model considered (spin, interactions, number of
particles characterized by flavor mixing, etc.).
In a series of papers it was suggested that the flavor

vacuum might behave as a source of dark energy [21–30].
Recently, it has been shown that in a simple supersymmet-
ric (Wess-Zumino) model with flavor mixing, in which two
Majorana fields, two scalars and two pseudoscalars were
present (a simple model for neutrinos and sneutrinos), the
flavor vacuum was actually characterized by a strong su-
persymmetry breaking [31,32]. In the present work we
argue that this breaking is the origin of an interesting
phenomenology, that might shed some lights both on the
dark energy and the dark matter problem. More precisely,
in the supersymmetric context of [31,32], the flavor vac-
uum can be thought as made of two different fluids that fill
in all universe: a first one related to the bosonic sector of
the model, and a second induced by the fermionic one. The
former is characterized by negative pressure, equal in
modulus to its energy density (acting as a source of dark
energy). The latter is characterized by zero pressure, giving
rise to a source of cold dark matter.*walter.tarantino@kcl.ac.uk
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The first part of the paper (Sec. I) will be dedicated to
review BV formalism, complementing the original litera-
ture with a discussion on nonperturbative theories and Fock
spaces.

In the second part of the paper (Sec. II) we shall explore
in details the phenomenology of the model studied in
[31,32]. We shall clarify why the flavor vacuum is a good
dark energy and dark matter candidate, with emphasis on
this latter. More importantly, we will explain how to relate
all parameters of the model to observational data. This is a
quite important aspect of the approach: the model intro-
duces very few parameters which are all related to neutrino
physics. Hopefully, more realistic models will not rely on
uncontrolled free parameters, leading to a truly falsifiable
theory for both dark energy and dark matter. A first en-
couraging result in this direction comes already from the
simple model here studied: this is indeed fairly consistent
with a choice of the parameters modeled on real world
data, as we shall see in the relevant section.

A first step towards more realistic models will be moved
in the last part of this work (Sec. III). We will present a
novel method for calculating relevant quantities, specifi-
cally thought for analyzing the features of the flavor vac-
uum, which might enable us to study interactive theories
completely at a nonperturbative level. In particular, we
shall show how, under reasonable assumptions, the method
can discriminate which interactions preserve the behavior
of the condensate as dark energy/matter source.

II. BV FORMALISM

Neutrino oscillations can be described in a nonrelativ-
istic quantum mechanical framework by constructing
particle states, labeled by a flavor number, that are not
eigenstates of the Hamiltonian. In its simplest formulation
for two distinct flavors, the Pontecorvo model, flavor states
are constructed as follows [33]:

j�Ai ¼ cos�j�1i þ sin�j�2i
j�Bi ¼ � sin�j�1i þ cos�j�2i; (1)

where j�1i and j�2i are massive eigenstate of the free
Hamiltonian (particles with well-defined mass mi, with
i ¼ 1; 2), and from which

}A!B ¼ jh�Bj�AðtÞij2 ¼ jh�Bje�iHtj�Aij2

¼ sin22�sin2
�
!1ðkÞt�!2ðkÞt

2

�
(2)

with !iðkÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þm2

i

q
, describing the nonvanishing

probability of a flavored particle with momentum ~k to be
created with a certain flavor (A) and be detected later on
with a different flavor (B).

The form of the transformation between flavored and
massive particles (1) is reflected in the relativistic field
formalism by the relation

�AðxÞ ¼ �1ðxÞ cos�þ �2ðxÞ sin�
�BðxÞ ¼ ��1ðxÞ sin�þ �2ðxÞ cos�

(3)

that connects flavor fields �A, �B with massive ones �1, �2.
Such a relation is connected with the linearization of the
following Lagrangian for free spin- 12 fields

L ¼ i ��AðxÞ@�AðxÞ þ i ��BðxÞ@�BðxÞ �mA ��AðxÞ�AðxÞ
�mB ��BðxÞ�BðxÞ �mABð ��AðxÞ�BðxÞ þ ��BðxÞ�AðxÞÞ;

(4)

which becomes

L ¼ i ��1ðxÞ@�1ðxÞ þ i ��2ðxÞ@�2ðxÞ
�m1 ��1ðxÞ�1ðxÞ �m2 ��2ðxÞ�2ðxÞ; (5)

when

mA ¼ m1cos
2�þm2sin

2� mB ¼ m1sin
2�þm2cos

2�

mAB ¼ ðm2 �m1Þ sin� cos�: (6)

However, in the field-theoretical framework the decom-
position of the fields (3) into ladder operators associated
with flavor particle states is highly nontrivial [6]. It has
been shown, indeed, that states defined as the relativistic
equivalent of (1), for which j�1;2i belongs to the mass-m1;2

irreducible representation of the Poincaré group, are not
eigenstates of the flavor charge operators [34,35], which
for the theory (4) read [34]

QAðtÞ¼
Z
d~x�y

AðxÞ�AðxÞ; QBðtÞ¼
Z
d~x�y

BðxÞ�BðxÞ: (7)

BV formalism compensate for this [7,16,36], by defining
appropriate flavor eigenstates via the action of a certain
operator G� on massive states:

j ~k1;f1; ~k2;f2; ~k3;f3;. . .i�Gy
� j ~k1;mð1Þ; ~k2;mð2Þ; ~k3;mð3Þ; . . .i;

(8)

where j ~k1; f1; ~k2; f2; ~k3; f3; . . .i denotes a state with differ-

ent flavor particles described by their momenta ~ki and their

flavors fi ¼ A;B, whereas j ~k1; mð1Þ; ~k2; mð2Þ; ~k3; mð3Þ; . . .i
denotes a state with different massive particles described

by their momenta ~ki and their masses mðiÞ ¼ m1; m2, de-

fined from the linearized theory (5). The operator G� is
defined by the equations:

�AðxÞ ¼ G�1
� �1ðxÞG� �BðxÞ ¼ G�1

� �2ðxÞG� (9)

and its explicit form depends on the specific theory con-
sidered. For the theory (4), G� is written as [7]

G�ðtÞ ¼ eð�=2Þ
R

d~xð�y
1
ðxÞ�1ðxÞ��y

1
ðxÞ�2ðxÞÞ: (10)

Among all flavor states defined in the BVapproach, the one
called flavor vacuum and defined by
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j0if � Gy
� j0i (11)

plays a special role, since it represents the physical vac-
uum. In this context, by physical vacuumwe mean the state
that represents the physical empty state, i.e. with no parti-
cle in it. Since only particles with well-defined flavor,
rather than mass (i.e. Hamiltonian eigenstates), can be
created/detected, one expects the physical vacuum to be
represented by the state that counts no flavor particles in it.
It can be shown that this is state is j0if, rather than j0i [7].1

Furthermore, it has been proven that all flavor states

j ~k1; f1; ~k2; f2; ~k3; f3; . . .i are orthogonal to each massive

state j ~k1; mð1Þ; ~k2; mð2Þ; ~k3; mð3Þ; . . .i, and therefore h0j0if ¼
0 follows as a particular case. This result enables us
to talk of a Fock space for flavor states, in opposition
of the usual Fock space, whose basis is given by

fj ~k1; mð1Þ; ~k2; mð2Þ; ~k3; mð3Þ; . . . ~kn; mðnÞi j 8n 2 Ng.
The orthogonality of the two spaces is not very surpris-

ing if one regards BV formalism as a nonperturbative
approach to the interactive theory defined by (4).

In the second-quantization framework, the Hilbert space
representing physical states is defined by vectors in the
number occupation representation: assuming that a single-
particle state can be classified by a discrete set of states
labeled by the index i ¼ 1; 2; 3; . . . , a vector representing a
many-particle state can be identified by the number ni of
particles occupying the i-th state and it is denoted with
jn1; n2; n3; . . .i; the Hilbert space of physical states H is
therefore defined as the vector space generated by the basis
fjn1; n2; n3; . . .ig. For bosons ni 2 N0, whereas for fermi-
ons ni ¼ 0; 1. It can be shown that in both cases the set
fjn1; n2; n3; . . .ig is uncountable and therefore H is non-
separable [37]. In particle physics a separable subset of H,
a Fock space that we will denote with F0, is usually
considered [38]. F0 carries an irreducible representation
of the Poincaré group and particle states belonging to it
have well-defined mass and spin. Such a subset is spanned
by the countable basis of all states with an arbitrary, yet
finite in total, number of free particles. Although this basis
does not fully describe H (for instance the vector
j1; 1; 1; . . .i which counts an infinite number of particles
is not included), it is sufficient for accounting for scattering
processes at a perturbative level. In the usual perturbation
theory all interactive processes are indeed approximated
by means of a superposition of a finite number of free
particle states. This is quite clear in the functional
formalism, when Feynman diagrams are considered. In a
simplified picture of this framework, a scattering process is
represented by a graph with a certain number of external
legs (incoming and outgoing particles). The total number

of internal lines is connected to the precision of the ap-
proximation used in the perturbative expansion: the higher
the order of the perturbation, the higher the number of
vertices, and therefore the higher the number of internal
lines involved. Each line can be naı̈vely interpreted as a
single free particle state, which is emitted in the starting
vertex and then absorbed in the ending one. At each order
in perturbation theory, a finite number of free particle states
enters in the description of the scattering process.
However, under the assumption that the perturbative series
converges, its limit would be described by an infinite
number of lines/one-free-particle-states. In bra-ket formal-
ism such a limit state would therefore be represented by a
vector of H, the space of all physical states, but not of F0,
the space of states with finite number of free particles. With
this example we want to remark the nontrivial difference
existing from a free theory and an interactive one: we can
express interactive processes in terms of free states (which
have no direct physical meaning or interpretation, being
just a basis in which we choose to express our process) but
only in a weakly-interactive/perturbed framework. A full
nonperturbative treatment for interactive particle states
requires subspaces of H, that are orthogonal to the Fock
space of free states F0 [39].
Coming back to our case, a Lagrangian with flavor

mixing, such as (4), can be regarded as an interactive
theory, thanks to its nondiagonal terms. Flavor particle
states defined à la BV form a Fock space Ff that is there-

fore orthogonal to F0. In other words, we could express
flavor states in a perturbative way by means of F0; how-
ever, BV formalism enables us to construct flavor states in
a completely nonperturbative manner, and therefore it
requires states that are part of H but not of F0.
Different Fock spaces are ordinarily used in QFT on

curved backgrounds and other contexts [40,41]. In the
former, for instance, one identifies Fock spaces for physi-
cal states in flat regions. However, these Fock spaces do not
coincide (they are different/orthogonal subset of H) if the
regions are not connected and curved regions exist in
between. As a consequence, the vacuum defined by an
observer in a certain region is not necessarily described
by the state with no particles by an observer in another
region. The particle creation phenomenon may occur: a
state that is empty for an observer can actually contain
particles according with a different observer. This mecha-
nism characterizes both of the two main results of QFT in
curved spacetime: the Unruh effect [42] and the Hawking
radiation [43].
In a formal analogy, BV formalism introduces a ground

state, called flavor vacuum, which is not as trivial as the
ground state for the free theory. As already said, since it is
the state in which no flavor particles are present, it cor-
rectly represents the physical vacuum. Even though it is
empty, it is characterized by a nonzero expectation value of
the stress-energy tensor fh0jT��j0if, whose effects must

1In short: flavor states can be built by means of specific
creation/annihilation operators for flavor particles; it can be
shown that the only state that is annihilated by all annihilation
operators is the flavor vacuum defined via (11).
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be gravitationally testable. This is true as long as we fix as
zero-point of our theory the usual vacuum j0i for the free
theory and belonging to F0, or, in other words, we consider
the usual normal ordering fh0j:T��:j0if �f h0jT��j0if �
h0jT��j0i, which is valid in perturbation theory as well as

in this nonperturbative approach. One commonly refers to
the flavor vacuum as a condensate for the following reason:
once expressed in terms of particles with well-defined mass
(eigenstates of the Hamiltonian), the flavor vacuum con-
tains an nonvanishing number of those particles, per unit of
volume. In our example, they are characterized by the
following distribution over the momentum space [20]

fh0jnð ~kÞj0if ¼
sin2�

4�3

!1ðkÞ!2ðkÞ �m1m2 � k2

!1ðkÞ!2ðkÞ (12)

with nð ~kÞ � P
rðary1 ð ~kÞar1ð ~kÞ þ ary2 ð ~kÞar2ð ~kÞÞ, k � j ~kj, and

arðyÞi representing ladder operators for particles with well-
defined mass. However, since the physical degrees of free-
dom of the theory are flavor particles (the only kind of
particle that can be produced and detected), the interpre-
tation as a gas or collection of particles remains at a mere
mathematical level, the flavor vacuum being absolutely
empty from a physical point of view (in the sense that no
flavored particles are present in it), and only characterized
by a nonvanishing stress-energy tensor expectation value
which is detectable via gravitational effects.

The features of the flavor vacuum depend on the model
considered and a preliminary investigation on a simple
supersymmetric model [32] showed that it might behave
very differently, according with the spin of the particles
involved.

III. PHENOMENOLOGY OF
A SUSY FLAVOR VACUUM

A. Free WZ à la BV

Our interest in BV formalism was firstly motivated by
physics beyond the standard model (SM). The Wess-
Zumino model here discussed has been considered in
[32] after two works in which the flavor vacuum has
been regarded as an effective vacuum arising in a string-
theoretical framework [44,45]. Indeed, a specific model
from the braneworld scenario, called D-particle foam
model [46–50], seems to explain neutrino flavor oscilla-
tions in terms of flavor oscillation of fundamental strings,
in presence of a ‘‘cloud’’ (or foam) of pointlike topological
defects in the bulk space. In the spirit of weak coupling
string theory, the interaction between the foam and strings/
branes in the theory can be regarded as ‘‘vacuum defects’’
from the point of view of a macroscopical observer.
Therefore it has been suggested that BV formalism, to-
gether with its ‘‘flavor vacuum’’ condensate, might provide
a suitable description of the low energy limit of the model.

In [32] we presented the behavior of the flavor vacuum,
in a simple supersymmetric theory. The model that was

considered involves two free real scalars SAðxÞ, SBðxÞ with
mixing, two free real pseudoscalars PAðxÞ, PBðxÞ
with mixing and two free Majorana spinors c AðxÞ, c BðxÞ
with mixing:

L ¼ X
�¼A;B

½@�S�ðxÞ@�S�ðxÞ þ @�P�ðxÞ@�P�ðxÞ

þ i �c �ðxÞ@c �ðxÞ� �
X

�;�¼A;B

½m2
��S

2
� ðxÞ þm2

��S
2
� ðxÞ

þm��
�c �ðxÞc �ðxÞ� (13)

with mAB ¼ mBA. Terms involving products of fields of
different flavors disappear when one expresses the model
in terms of new fields, obtained by appropriate rotations of
the previous ones:

�AðxÞ ¼ cos��1ðxÞ þ sin��2ðxÞ
�BðxÞ ¼ � sin��1ðxÞ þ cos��2ðxÞ

(14)

with � ¼ S; P; c , leading to

L ¼ X
i¼1;2

½@�SiðxÞ@�SiðxÞ �m2
i S

2
i ðxÞ þ @�PiðxÞ@�PiðxÞ

�m2
i P

2
i ðxÞ þ �c iðxÞði@�miÞc iðxÞ�: (15)

From this latter it is possible to build the usual Fock space
for massive particles, previously denoted as F0, which has
as ground state the ‘‘massive’’ vacuum j0i. The flavor
vacuum is hence defined as

j0if � e�
R

d~xðX12ðxÞ�X21ðxÞÞj0i (16)

with

X12ðxÞ�1

2
c y

1 ðxÞc 2ðxÞþ i _S2ðxÞS1ðxÞþ i _P2ðxÞP1ðxÞ: (17)

Its features have been explored via its stress-energy tensor
expectation value, being

T��ðxÞ ¼
X
i¼1;2

½2@ð�SiðxÞ@�ÞSiðxÞ þ 2@ð�PiðxÞ@�ÞPiðxÞ

þ i �c iðxÞ�ð�@�Þc iðxÞ� � 	��L: (18)

It has been shown that the flavor vacuum behaves as a
perfect relativistic fluid, i.e.

fh0jT��j0if ¼ diagf
;P;P;Pg (19)

with


 �f h0jT00ðxÞj0if
¼ sin2�

ðm1 �m2Þ2
2�2

Z K

0
dkk2

�
1

!1ðkÞ þ
1

!2ðkÞ
�

(20)
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P �f h0jTjjðxÞj0if
¼ �sin2�

ðm2
1 �m2

2Þ
2�2

Z K

0
dkk2

�
1

!2ðkÞ þ
1

!1ðkÞ
�

(21)


 representing its energy density, P its pressure and K a
momentum cutoff (cf. [31,32]).2

In particular, disentangling the contribution of the
bosonic sector from the fermionic one, one finds


b ¼ sin2�
Z K

0
dk

k2

�2
ð!1ðkÞ þ!2ðkÞÞ ð!1ðkÞ �!2ðkÞÞ2

2!1ðkÞ!2ðkÞ
(22)


f ¼ sin2�
Z K

0
dk

k2

�2
ð!1ðkÞ þ!2ðkÞÞ

�
�
!1ðkÞ!2ðkÞ �m1m2 � k2

!1ðkÞ!2ðkÞ
�

(23)

Pb ¼ �
b; Pf ¼ 0 (24)

in which the standard normal order has being adopted.

B. Flavor vacuum as a source of dark matter

An important result emerges from the above outlined
analysis: the equation of states w � P=
 for the bosonic
and the fermionic sectors are different, wb ¼ �1 and
wf ¼ 0 holding. The emphasis on the novelty of this

supersymmetry (SUSY) breaking mechanism has already
being remarked [32]. We are now aimed to explore the
interesting phenomenology connected with such a result.
Our simple model implies a physical vacuum that is a
combination of two fluids which behave quite differently:
both permeate the empty space uniformly and statically,
but one has a cosmological-constant-like behavior (w ¼
�1), while the other behaves as dust (w ¼ 0). The role of
the flavor vacuum as source of dark energy (which now is
played only by the bosonic sector of the theory) has been
extensively discussed in literature [21–30]. Here we
present a new feature of the flavor vacuum: its contribution
to dark matter.

Dark matter is the name given to unknown sources of
gravitational effects, whose presence, primarily within and
around galaxies, has been established by many astrophys-
ical data [51,52]. Numerical simulations of structure
formation have shown that ‘‘hot’’ (relativistic) particles
cannot explain the observed structures at galactic scales,
therefore dark matter is expected to be made out of fairly

massive and ‘‘cold’’ (nonrelativistic) particles. Big-bang
nucleosynthesis limits on the average baryonic content of
the Universe exclude that (the majority of) dark matter is
made out of ordinary baryonic matter (i.e. atoms).
Furthermore, although ‘‘dark’’, in the sense that does not
emit nor absorb light (i.e. electromagnetically neutral),
dark matter might couple to ordinary matter in other
ways (besides gravity); however, arguments on its density
and thermal production at early times imply that such a
coupling must be weak.
Both astrophysics and particle physics have been pro-

posing suitable candidates for dark matter through the last
three decades, giving rise to an enormous wealth of choice.
However, because of the absence of direct detections and
the lack of predictions by theoretical models, plagued by
an undesirable abundance of free parameters, the nature of
dark matter remains elusive.
The fermionic sector of the flavor vacuum in the model

here presented clearly fulfills basic requests for a dark
matter candidate: it contributes to the energy content of
the universe; it is dark (i.e. it is an electromagnetically
neutral object, since (s)neutrino fields do not couple with
the electromagnetic field); furthermore, it does not interact
with any other of the SM particles (excluding gravitational
effects), being the empty state for the (s)neutrino sector;
unlike its bosonic counterpart, it is purely pressureless.3

A possible concern about its uniform distribution in
space, in contrast with the observed distribution of dark
matter which is usually gathered in clusters around and
inside galaxies, can be easily dispelled by recalling that
we are actually modeling a simple empty universe. If a
nonuniform matter distribution is considered in our toy
universe in addition to the flavor vacuum, it would start to
interact gravitationally with our vacuum condensate.
Thanks to initial irregularities in the matter distribution,
we expect them to form clusters via gravitational insta-
bility (gravity tends to enhance irregularities, pulling
matter towards denser regions [53]), as the system evolves
with time. It is known that such an effect, on the other
hand, does not necessarily occurs for dark energy-like
fluids [54], as the bosonic component of the flavor vac-
uum, which can persist in their state of spatial uniformity
even in presence of clustered matter. The evolution of our
flavor vacuum, considering both its bosonic and fermionic
components, in presence of other matter and gravitational
interaction, represents necessarily an object of future
studies.

C. Testability

An interesting aspect of the model concerns the inter-
play between the two fluids. Supersymmetry imposes that

2From the perspective of considering BV formalism as an
effective formalism for physics beyond the standard model
[32,44], such a cutoff must be interpreted as the energy scale
up to which the formalism provides the framework for a good
effective theory.

3This is certainly true for the free above mentioned model; the
possibility of extending this result to interactive models will be
discussed later on.
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the energy density of the bosonic component is tied up to
the energy density of the fermionic component; in a more
realistic theory, therefore, one should be able to reproduce
the current experimental value of the ratio between the
dark energy density and the dark matter energy density
(� 2:8), in the optimist belief that the flavor vacuum is the
only responsible for both of them. The role of a curved
background in the formulation of the theory might be
crucial, since the energy density of a dustlike fluid gets
diluted by the expansion of the universe, whereas such an
effect does not occur for a cosmological-constant type, and
therefore the ratio between those two quantities changes
dramatically with time.

Within a momentum cutoff-regularization framework,
as the one here presented, the two energy densities depend
on such a cutoff, which is the same for both quantities. The
ratio between them can in general be cutoff dependent, as it
actually is in the case here presented. On one side, one
might hope that in a more realistic theory (on a curved
background, for instance) the ratio might be cutoff inde-
pendent. On the other hand, one could consider the oppo-
site situation, in which the ratio varies with the cutoff, as
highly desirable: if the ratio is fixed from the cutoff, the
same value for the cutoff would also fix the value of
the energy. This implies that once the cutoff is decided
on the basis of experimental data on the ratio, the model
gives a precise prediction for the absolute values of the
energy densities, which can be compared with their obser-
vational estimates.

In order to illustrate these ideas we will present a con-
crete example. Let us assume that our supersymmetric
model is effective up to the energy scale K (which comes
from deeper theories, as, for instance, in [32]). In the
standard big-bang picture, this means that when the uni-
verse cools down to that energy, the flavor vacuum starts to
be the effective description of the vacuum state of the
(unknown) underlying theory. We call t0 the time corre-
sponding with this transition and a0 the corresponding
scale factor.

In our toy universe, we assume that at t0, in absence of
any other sources of energy or matter, the energy/matter
content of our toy universe is only due to the flavor
vacuum. Moreover, we assume that it can be describe, at
a classic level (i.e. on sufficiently large scales), in terms of
two fluids: a first one, due to the bosonic component of the
flavor vacuum and described by 
b and w ¼ �1, and a
second one, due to its fermionic component and described
by 
f andw ¼ 0. Wewill regard the bosonic component as

the only source of dark energy and the fermionic as the
only source of dark matter. Both 
b and 
f are function of

the following parameters: (s)neutrino masses, mixing an-
gles, and the cutoff K. If we know (from observations) the
neutrino masses and mixing angles, and we can constrain
parameters induced by SUSY breaking, the cutoff is the
only parameter left to determine.

As our toy universe expands, we assume that the
two fluids obey Einstein equations and therefore they
scale as


fðtÞ aðtÞ3 ¼ 
fa
3
0 
bðtÞ ¼ 
b: (25)

This means that today their value is


fðtnowÞ ¼ 
fa
3
0 
bðtnowÞ ¼ 
b; (26)

respectively, being aðtnowÞ ¼ 1 by convention. Those two
quantities depends on the following parameters: (s)neu-
trino masses, mixing angles, cutoff energy, scale factor at
t0. Provided with these expressions, we can then test our
model in two ways.
(1) If observational data enable us to constrain (s)neu-

trino masses, mixing angles, dark matter and dark
energy densities, from (26) we can derive the other
parameters left: the cutoff energy and the scale
factor a0. Well equipped with all the parameters of
the theory, we will then be able to check if the model
is in reasonable agreement with other standard mod-
els. For example, if the scale factor a0 fitting all data
corresponds to a time in the future (for a0 > 1), the
model has to be rejected, or corrected at least.

(2) On the other hand, theoretical reasons might suggest
specific values for the cutoff (if for instance the
flavor vacuum rises in the low energy limit of an
underlying theory, and/or the scale factor a0, being
the temperature of the universe inversely propor-
tional to its scale factor. In this case, we might be
able to make a prediction on the value of the dark
matter and dark energy density, via formulae (26),
that might be compared with observational esti-
mates. On this basis our model is therefore accepted
or refused.

D. A preliminary test

The simple toy model discussed in Sec. III A is not
realistic enough to hold the comparison with data al-
ready available: only two generations of neutrinos have
been considered, neither matter or interactions are
present, SUSY is unbroken, there is no prescription for
the cutoff K.4 However, some preliminary tests can be
performed.
As just explained, in a realistic theory with three gen-

erations instead of two, it is possible to constrain the
parameter space of mixing angles and masses thanks to
observational data. In absence of such a theory, we will
limit our selves to check if our simpler model admits a
choice of parameters that gives rise to physically
‘‘plausible’’ estimations for dark energy and dark matter
densities. More precisely, we shall check the compatibility
of our model with the relation

4The assumption of treating neutrinos as Majorana particles
might also be questioned.
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� � 
DM � ð�m2
ijÞ2; (27)

with 
�=DM the dark energy/matter density today and �mij

the difference of the squared masses of neutrinos,5 which
for our model becomes


b � 
fðtnowÞ � ð�m2Þ2; (28)

in the assumption that all dark energy and dark matter of
our toy universe is due to the flavor vacuum. In other
words, is there a sensible region of the parameter space
that gives rise to (28)?

Once provided with a realistic theory, the reasoning goes
the other way around: given the space of parameters con-
strained by observational data, does (28) hold? However,
the analysis on which we are embarking is neither irrele-
vant nor negligible: previous analyses hardly conciliate the
very different scales of energies entering into the problem,
such as the momentum cutoff, which presumably is greater
then the TeV scale, and neutrino mass differences (cf.
[28]). The aim of this section is therefore to show that
even in our simple toy model, nonperturbative formulae
describing the features of the flavor vacuum can accom-
modate very different scales in a natural way, giving rise to
physically sensible values for dark energy and dark matter
densities.

Recapitulating, in the following we shall assume that the
physical vacuum is effectively described by the flavor
vacuum defined by (16) for energies lower than K; over
large distance scales, such a flavor vacuum behaves as a
classical fluids, obeying Einstein equations (i.e. (25) and
(26) hold). We will further assume that some radiation and
matter are present in our toy universe, whose density is at
least one order lower than the flavor vacuum density. Their
presence justifies the notion of ‘‘temperature’’ and defines
the profile of the time-evolution of our toy universe. Since
we assume the neutrino sector not being coupled with any

other fields, the flavor vacuum and the matter/radiation
content of the universe interact only gravitationally. As
mentioned, we expect this interaction to lead the fermionic
flavor vacuum to cluster together with ordinary matter,
leaving the bosonic flavor vacuum homogeneously distri-
buted. These effects are reasonably expected as long as
gravitational effects are relevant only on cosmological
scales, at which the flavor vacuum is well approximated
by a classical fluid. As a consequence of a possible nonuni-
form distribution in space of the fermionic fluid, we shall
consider the value of (23) not as a local attribute but
as a global, or ‘‘averaged’’ over sufficiently large scales,
property.
In order to check the compatibility of our model with

(28), we start by defining the quantity � � ð1�m2
2=m

2
1Þ2,

with m2 the smaller of the two masses (m2 <m1). Since
0< �< 1, we can expand (22) and (23) in series around
� ¼ 0 and get to


b¼ sin2�

�2
m4

1fðK=m1Þ�þOð�3=2Þ� sin2�

�2
ð�m2Þ2fðK=m1Þ


f¼ sin2�

�2
m4

1gðK=m1Þ�þOð�3=2Þ� sin2�

�2
ð�m2Þ2gðK=m1Þ

(29)

with

fðK=m1Þ ¼
Z K=m1

0
dx

x2

4ð1þ x2Þ3=2 (30)

gðK=m1Þ ¼
Z K=m1

0
dx

x4

4ð1þ x2Þ3=2 (31)

and m4
1� ¼ ð�m2Þ2 � ðm2

1 �m2
2Þ2. Relations (29) are

good approximations of the exact values, as long as the
two masses are very similar m1 �m2. All divergencies
connected with our problem are included in function
fðK=m1Þ and gðK=m1Þ, for their argument running to
infinity. In the following analysis a physical cutoff of
momenta (K, rescaled by the neutrino mass m1) will be
considered, in the belief that flavor physics à la BVmust be
regarded as an effective description at low energy scales of
a deeper theory [44]. Clearly other renormalization tools
might be required if this assumption is dropped, for in-
stance, in a pure self consistent quantum field-theoretical
approach. Despite this choice, it is remarkable, however,
that the relation 
b=f / ð�m2Þ2 has been derived entirely

analytically.
In the following, we would like to show that in a cutoff-

regularization scheme the two functions in (30) can give
rise to physically sensible values, i.e. the function fðK=m1Þ
remains relatively small even when the cutoff is very high
(giving rise to the hierarchy: high cutoff/low dark energy
density), whereas gðK=m1Þ can be considerably greater
then fðK=m1Þ for the same choice of cutoff, motivating
the observed discrepancy between the dark energy and

5The energy scale of dark energy is far away from all natural
scales provided by the SM via particle masses. Only one funda-
mental scale is known to be comparable with the dark energy
one: the scale of neutrino physics. Boundary on total masses of
neutrinos show that they are much lighter then all other particles:
astrophysical data indicate that �m� < 058 eV, with 95% of
confidence [55] (the sum runs over all possible species—
possibly more then three—that where present in the early
Universe). Moreover, direct observations on solar and atmos-
pheric neutrinos show that �m2

12 � 8 � 10�5 eV2 and �m2
23 �

2:5 � 10�3 eV2 (being m2
i �m2

j � �m2
ij, cf. [33] and references

therein). These mass scales 10�1 � 10�2 eV have to be com-
pared with the scale 10�3 eV, that one obtains from 
� ¼ 3�
10�11 eV4. This ‘‘coincidence’’ gave rise to many works, be-
sides the ones connected with BV formalism, aimed to provide a
theoretical explanation for it (see [56] and references therein).
The more famous coincidence problem regarding dark energy
concerns the similar density of dark energy and dark matter
(
� � 2:8
DM) as measured today, which requires a notable
fine-tuning of initial conditions considering their very different
evolution in time. These two ‘‘coincidences’’ are combined
together in formula (27).
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dark matter densities at early times. We should stress once
more that a strict comparison with available experimental
data would be possible once a more realistic model will be
given.

We will now focus on the former of (29). Being SUSY
unbroken in our toy model, neutrinos and sneutrinos have
the same masses. So the m1 and m2 appearing in (29) are
the masses of two neutrinos, even though 
b encodes the
contribution of the bosonic sector of the theory, which in a
realistic case would be affected by the breaking of SUSY
via effective masses greater than mi. Recalling the
observed relation (27), we wonder now if is there any
region of the parameter space (�, K) that might generate
a similar situation (i.e. 
b � ð�m2Þ2) in our model. Quite
interestingly, the condition

sin2�

�2
fðK=m1Þ � 1 (32)

is satisfied by a region of the plane (�, K), which is not that
far from the expected value for a realistic theory. As shown
in Fig. 1, if the cutoff of the theory lies somewhere between
the TeVð1012 eVÞ scale and the Plank scale (1028 eV), the
value of sin2� must be around the 0:5� 1 region.
Moreover, a complete overlap with one real mixing angle
is obtained in a region with a very high cutoff, close to the
Planck scale. It should be emphasized that the existence
itself of such a region is highly nontrivial, since it appears
from the combination of parameters spanning a wide range
of energies, being �m2 � 10�4 eV2 and K > 1012 eV.

Focusing now on the latter of (29), we shall proceed with
a similar analysis in order to test the hypothesis that the
fermionic sector of the model provides a sensible dark

matter candidate. As explained in the previous section,
under the assumption that the flavor vacuum behaves as a
perfect classical fluid on large scales, the fermionic
contribution would get diluted with time as the universe
expands. Its value today would then be


fðtnowÞ ¼ 
fa
3
0 (33)

with a0 the scale factor corresponding to the time at which
the model became effective. In order to reproduce the
relation ð�m2Þ � 
fðtnowÞ we expect

a30
sin2�

�2
gðK=m1Þ � 1 (34)

that can be obtained by combining (33), (28), and (29).
Because of the constrain on the dark energy density (32)
the above condition becomes

a30
gðK=m1Þ
fðK=m1Þ � 1: (35)

We already know that a0 must be extremely small, but what
is the ratio between gðK=m1Þ and fðK=m1Þ for large K=m1

(K=m1 > 1014)? As shown in Fig. 2, Eq. (35) is indeed
satisfied for large values of K and very small values of a0,
as one would expect from a realistic theory. If, for instance,
the cutoff is set equal to the Planck scale, relation (35) is
satisfied for a0 ¼ 10�20, which sets the transition phase
(when the flavor vacuum became effective) well far in the
past, when our toy universe was 1020 times smaller than

105 1010 1015 1020 1025 1030

K
m1

0.2

0.4

0.6

0.8

1.0

sin2

LHC Planck

FIG. 1 (color online). The parameter space ðK=m1; sin
2�Þ is

plotted. In blue, the acceptance region for the condition (32)
(boundaries of the region correspond to lhs ¼ 0:9 and lhs ¼
1:1). Physical mixing angles for three generation of neutrinos
are: sin2�13 ¼ 0:000þ0:028, sin2�12 ¼ 0:30þ0:04

�0:05, sin2�23 ¼
0:50þ1:4�1:2 (within 2�) [61]. These values are also plotted in the

graph (red regions). Dotted lines represents LHC energy scale
(� 1 TeV) and the Planck energy scale (� 1028 eV) fixing
m1 ¼ 10�2 eV.

105 1010 1015 1020 1025 1030

K
m1

10 20

10 10

1

1010

1020

a0

LHC

Planck

CONTRACTING UNIVERSE

EXPANDING UNIVERSE

FIG. 2 (color online). The parameter space ðK=m1; a0Þ is plot-
ted. In blue, the acceptance region for the condition (32)
(boundaries of the region correspond to lhs ¼ 10 and lhs ¼
0:1). The red line depicts the scale factor of the real universe as a
function of its average temperature, fixing m1 ¼ 10�2 eV. In a
more realistic theory, the acceptance region (which may differ
from the one here presented) is further reduced by comparison of
the first of (29) with dark energy data, which gives a constraint
on possible momentum cutoffs; the model is ruled out if the
resulting region lies below the red line, since it would predict an
amount of dark matter greater than what is observed; the model
is consistent with data on dark matter if the region overlaps or
lies above the red line; in this latter case the flavor vacuum
contributes only to a fraction of total dark matter density.
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‘‘now’’. Once more, parameters characterized by very
different values (a0 � 10�20, K=m1 � 1030) combine to-
gether to give rise to a third scale, which has a physical
significance (nowadays dark matter density).

Despite the unrealistic nature of our toy model, these
first quantitative tests go in the right direction and certainly
motivate the study of more realistic models, which hope-
fully will share with our toy model all the good features
here discussed.

IV. TOWARDS INTERACTIVE FLAVOR VACUA

A. A new method of calculation: Free WZ revised

Following the standard literature, the results in [32]
discussed so far have been derived by the following
approach:

(1) stress-energy tensor has been written in terms of
massive fields;

(2) massive fields have been decomposed in terms of
massive ladder operators;

(3) massive ladder operators have been written in terms
of flavor ladder operators;

(4) hence, the stress-energy tensor has been written in
terms of flavor ladder operators;

(5) flavor vacuum expectation value (vev) of the stress-
energy tensor has been reduced by acting with the
flavor ladder operators on the flavor vacuum.

However, such a long procedure can be avoided and the
same exact result may be obtained in a much shorter way,
following the steps:

(1) flavor vacuum is written as j0if ¼ Gy
� j0i, the flavor

vev of T�� becoming a vev of O � G�T��G
y
� ;

(2) the stress-energy operator is transformed under the

action of the G�jGy
� , using (13); the transformed

operator O will be expressed in terms of the flavor
fields, rather then the massive ones;

(3) (3) is used to write the flavor fields in terms of the
massive fields; O is again expressed in terms of the
massive fields, but this time the operator G�, and its
complicated exponential structure, is not present
any more;

(4) a vev of O, expressed as a simple combination of
massive fields, is left, which can be reduced by
decomposing the massive fields into massive ladder
operators.

As a neat example of the above procedure, we will
derive the results of Sec. III A via this new method.
Recalling the discussion in Sec. III A, in the study of the
free WZ model we can consider the bosonic and the
fermionic component separately, by evaluating relevant
quantities in two separated contexts (a bosonic theory
and a fermionic one) and eventually combining together
the results. Furthermore, the pseudoscalar and the scalar
field are indistinguishable for our purposes, therefore we

are allowed to consider just the scalar field, keeping in
mind to sum its contribution to the relevant quantities
twice.
In the real scalar case, we have

Tb
00ðxÞ ¼

X
i

ð�2
i ðxÞ þ ð ~r�iðxÞÞ2 þm2

i �
2
i ðxÞÞ (36)

with �i � _�i, the conjugate momentum of �i. Since

G�ðtÞ ¼ ei�
R

d~xð�2ðxÞ�1ðxÞ��1ðxÞ�2ðxÞÞ (37)

from which

G�ðtÞ�1ðxÞGy
� ðtÞ ¼ �1ðxÞ cos���2ðxÞ sin�

G�ðtÞ�2ðxÞGy
� ðtÞ ¼ �1ðxÞ sin�þ�2ðxÞ cos� (38)

and

G�ðtÞ�1ðxÞGy
� ðtÞ ¼ �1ðxÞ cos�� �2ðxÞ sin�

G�ðtÞ�2ðxÞGy
� ðtÞ ¼ �1ðxÞ sin�þ �2ðxÞ cos� (39)

via the Baker-Campbell-Hausdorff formula

eYXe�Y ¼ X þ ½Y; X� þ 1

2
½Y; ½Y; X��

þ 1

3!
½Y; ½Y; ½Y; X��� þ . . . (40)

we can write

G�ðtÞ
� X
i¼1;2

�2
i ðxÞ

�
Gy

� ðtÞ ¼
� X
i¼1;2

�2
i ðxÞ

�
; (41)

G�ðtÞ
� X
i¼1;2

ð ~r�iðxÞÞ2
�
Gy

� ðtÞ ¼
� X
i¼1;2

ð ~r�iðxÞÞ2
�

(42)

and

h0jG�ðtÞðm2
1�

2
1ðxÞ þm2

2�
2
2ðxÞÞGy

� ðtÞj0i
¼ h0jðm2

1�
2
1ðxÞ þm2

2�
2
2ðxÞÞj0i

þ sin2�ðm2
1 �m2

2Þh0jð�2
2ðxÞ ��2

1ðxÞÞj0i: (43)

It follows that

fh0jT00ðxÞj0if ¼ h0jT00ðxÞj0i þ sin2�ðm2
1 �m2

2Þ
� h0jð�2

2ðxÞ ��2
1ðxÞÞj0i (44)

and therefore


b ¼ fh0j:T00ðxÞ:j0if
¼ sin2�ðm2

1 �m2
2Þh0jð�2

2ðxÞ ��2
1ðxÞÞj0i: (45)

Equivalently for TjjðxÞ we have
Pb ¼ fh0j:TjjðxÞ:j0if ¼ �sin2�ðm2

1 �m2
2Þ

� h0jð�2
2ðxÞ ��2

1ðxÞÞj0i ¼ �
b: (46)
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Once the fields in (45) and (46) are decomposed in terms of
the ladder operators and the quantum algebra is simplified,
expressions (22) and (23) are correctly reproduced.

In the fermionic case, a similar procedure leads to


f ¼ fh0j:Tf
00ðxÞ:j0if ¼ sin2�ðm1 �m2Þ

� h0jð �c 2ðxÞc 2ðxÞ � �c 1ðxÞc 1ðxÞÞj0i (47)

and

P f ¼ fh0j:Tf
jjðxÞ:j0if ¼ 0: (48)

By comparing (47) and (45), the analogy between the
fermionic and the bosonic condensate that earlier was
hidden in formulae (22) and (23) is now more evident.
Again, formula (23) is correctly reproduced, once the
operatorial structure of the fields is simplified with respect
to h0jjj0i. The expression (47) dispels any doubts con-
cerning formula (23) and its possible dependency on the
specific form of the gamma matrices and spinors used to
achieve the results of [32], being (47) independent of such
a choice [57].

Furthermore, supersymmetry enables us to rewrite this
result in terms of the bosonic fields only. For the massive
vacuum j0i we know that

h0jT��ðxÞj0i ¼ 0; (49)

which leads to

h0j �c iðxÞc iðxÞj0i ¼ �4mih0j�2
i ðxÞj0i (50)

and hence


WZ ¼ 2sin2�ðm1 �m2Þ2h0jð�2
1ðxÞ þ�2

2ðxÞÞj0i (51)

PWZ ¼ �2sin2�ðm2
1 �m2

2Þh0jð�2
2ðxÞ ��2

1ðxÞÞj0i (52)

in accordance with (20) and (21).
The procedure exemplified in the previous section can

be easily implemented for other fields: one might want to
consider Dirac or two component Weyl spinors as well as
complex scalar fields, getting to analogous results. For
mere speculative reasons, applications to vector fields or
even more complex objects might be thought: the method
involves a manipulation of the stress-energy tensor, with
the use of equation of motion of the field and its (anti-)
commutation rules, regardless of the tensorial or spinorial
structure of the field itself. Furthermore, extending these
results to more then two flavors is rather straightforward.

Finally, the method enables us to distinguish among all
the terms of the stress-energy tensors the ones that really
contribute to the final result. This might be helpful in
understanding the behavior of the flavor vacuum in more

realistic theories, as we shall see in the forthcoming
sections.6

B. Self-interactive bosons

An example of the applications just discussed is offered
by a 
�4 model. The theory

L ¼ X
i¼1;2

ð@��i@
��i �m2

i �
2
i � 
�4

i Þ (53)

can be regarded as derived from a model with flavor
mixing:

L ¼ @��A@
��A þ @��B@

��B �m2
A�

2
A �m2

B�
2
B

�m2
AB�A�B � X

�;�;
;
¼A;B

g��

�����
�
 (54)

with the usual rotation

�A¼ cos��1�sin��2 �B¼ sin��1þcos��2 (55)

and a specific choice of the coupling constantsgj. Since the
expression ofG� in terms of the fields can be deduced from

Gy
��1G� ¼ cos��1 � sin��2

Gy
��2G� ¼ sin��1 þ cos��2 (56)

just using commutation relations between fields and con-
jugate momenta, which are not modified by the form of the
Lagrangian [57], expression

G� ¼ ei�
R

d~xð _�2�1� _�1�2Þ (57)

that was found valid in the free case, holds also in the
interactive one.
If we assume that the flavor vacuum is defined as

j0if � Gy
� j0i (58)

naı̈vely generalizing the free case, with j0i the ground state
of the theory described by (53), we can easily see that

fh0jT��j0if ¼ h0jT��j0i þ 	��ðsin2�ðm2
1 �m2

2Þ
� h0j�2

2 ��2
1j0iÞ þ 	��
h0jðð�2 cosð�Þ

��1 sinð�ÞÞ4 þ ð�1 cosð�Þ
þ�2 sinð�ÞÞ4 ��4

1 ��4
2Þj0i: (59)

6In addition, we would like to stress that the method does not
require an explicit decomposition of the flavor fields in terms of
flavor ladder operators. Such a decomposition has been object of
a debate in literature, raised by the authors of [10]. Although the
problem was exhaustively discussed in [9,11], not all the com-
munity was convinced by the arguments presented [18]. Without
entering into the details of the dispute, here we would like to
suggest that a different point of view on the formalism, such as
the one offered by formulae (47) and (45), where an observable
quantity concerning a flavor state has been calculated without the
explicit use of the controversial decomposition, might help in a
deeper understanding of the problem and the formalism itself.
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We can therefore state that the equation of state is given by

w ¼ fh0j:Tjj:j0if
fh0j:T00:j0if ¼

�h0j∵ P
i¼1;2

ðm2
i �

2
i þ 
�4

i Þ∵j0i
h0j∵ P

i¼1;2

ðm2
i �

2
i þ 
�4

i Þ∵j0i
¼ �1

(60)

in which

∵fð’1; ’2Þ∵ � fðcos�’1 � sin�’2; sin�’1 þ cos�’2Þ
� fð’1; ’2Þ: (61)

Quite notably, this result generalizes the analogous re-
sult for the free theory, in a completely nonperturbative
way: Eq. (60) is independent of the explicit form of the
fields and the ground state j0i, which we might be able to
recover just in a perturbative treatment of the model.

In fact, it is possible the further generalize the above
result for any interactive theory for two scalar fields with
flavor mixing in the following form:

L ¼ @��A@
��A þ @��B@

��B �m2
A�

2
A

�m2
B�

2
B þ�m2

AB�A�B þLintð�A;�BÞ (62)

withLð�A;�BÞ any polynomial function of �A and �B. It
is easy to show that

fh0j:T��:j0if ¼ 	��h0j∵
X
i¼1;2

m2
i �

2
i �Lint∵j0i (63)

leading always to the equation of state w ¼ �1.

C. Self-interactive fermions

Analogously, we can generalize the result presented in
Sec. III A for fermionic fields (namely,w ¼ 0) for a certain
class of self-interactive theories. We start by considering a
theory written in terms of the massive fields c 1 and c 2:

L ¼ X
i

�c iði@�miÞc i þLint (64)

with Lint a suitable polynomial function of c i and �c i.
Again, we regard (64) as the diagonalized Lagrangian: in
case of flavor mixing, c 1 and c 2 come from a rotation of
the flavored fields c A and c B.

Combining our previous discussion on the bosonic case
and results of Sec. IVA, we can write

fh0j:T00:j0if ¼ h0j∵T00∵j0i
¼ h0j∵X

i

mi
�c ic i þLint∵j0i (65)

in which we used

∵ �c i ~� � ~@c i∵ ¼ 0: (66)

Analogously, the jj � 00 component of the stress-
energy tensor is given by

Tjj ¼
X
i

ð �c i�j@jc iÞ � 	jjL (67)

that on shell can be written as

Tjj ¼
X
i

ð �c i�j@jc i þ c y
i ½Lint; c i�Þ þLint (68)

with Lint ¼
R
d3xLint, leading to

fh0j:Tjj:j0if ¼ h0j∵Tjj∵j0i
¼ h0j∵X

i

�c i½Lintc i� þLint∵j0i (69)

We can now distinguish two cases:
(1) If the interactive term of the Lagrangian Lint

(and consequently Lint) is invariant under the
transformation

c 1 ! cos�c 1 � sin�c 2

c 2 ! sin�c 1 þ cos�c 2; (70)

we can then write

∵Lint∵ ¼ ∵Lint∵ ¼ ∵
X
i

�c i½Lint; c i�∵ ¼ 0 (71)

leading to w ¼ 0.
(2) If Lint is not invariant under (70), we cannot push

our analysis farther and we are unable to decide
whether the pressure is zero or not, provided just
with the tools here presented. It should be empha-
sized that other cancellation mechanisms might
occur, leading to a full generalization of w ¼ 0 for
all self-interactive cases, just like in the bosonic
case. However, these mechanisms are not repro-
duced within our method.

D. Remarks on interactive theories

To conclude the discussion of these examples, a few
remarks are in order. Throughout our analysis we assumed
that the flavor vacuum was defined by

j0if � Gy
� j0i (72)

with G� the operator mapping flavor fields into massive
fields, and vice versa, and j0i being the massive ground
state of the interactive theory. The derivation of our results
was purely formal and did not require any other knowledge
of the theory. Nonetheless, although it might look reason-
able, the assumption (72) remains a mere guess in absence
of a complete (either perturbative or nonperturbative)
interactive theory.
An interactive theory is a rather different object than a

free one, from a nonperturbative level. In Sec. II, we
already mentioned that the usual Fock space F0 is not
sufficient for fully describing the theory. More generally

DARK MATTER AND DARK ENERGY VIA . . . PHYSICAL REVIEW D 85, 045020 (2012)

045020-11



we can say that in the framework of second quantization
few progresses on a coherent definition of the theory have
been made so far, and the explicit construction of physical
states in interactive theories still represents an open issue
(cf. [58] and references therein).

Moreover, the familiar Perturbation Theory scheme, in
the formulation of Lehmann, Symanzik and Zimmermann
[59], is thought specifically for scattering processes and it
might be unfit for describing the flavor vacuum. Since it
relies on the assumption that particles are free at early and
late times, all relevant quantities (scattering probabilities)
are expressed in terms of time ordered products of field
acting on the vacuum of the free theory j0i, which is
suppose to coincide with the true vacuum of theory at early
and late times. However, the features of the flavor vacuum
are not expressed in these terms, i.e. as probabilities of
having certain states at late times, given some initial
conditions.

It follows that implementing BV formalism on interac-
tive theories is not a trivial task and requires very much
care. Such a generalization is not among the aims of the
present work. However, the purpose of this Sec. was to
indicate a possible path for further developments of the
formalism, taking advantage of the method of calculation
discussed so far. Although an interactive theory might
suffer from serious problems when it comes to construct
particle states, as above mentioned, we believe that certain
quantities, such as the equation of state of the flavor
vacuum, might not require an explicit expression of such
a state. Our analysis is valid under the assumption that (72)
holds, irrespective of a detailed knowledge of j0i or any
particle states in the interactive theory. Therefore, we
might expect to be able to get some features of the
phenomenology of the flavor vacuum, even though the
underlying theory is not understood in full detail.
However, a dedicated analysis is in order to fully justify
the use of (72).

V. CONCLUSIONS

Neutrino physics required in the last years a dedicated
theoretical effort, beyond the usual quantum field-
theoretical framework of scattering processes [6]. Among
other approaches, BV formalism is aimed to describe
flavor states in a completely nonperturbative way [7].
The approach fostered an intense discussion in last years
[9,17–19,60], and it has not being accepted by the com-
munity as a whole. However, we believe it represents a
valid starting point towards a complete and coherent treat-
ment of nonperturbative aspects of flavor physics.

Besides providing a consistent relativistic generalization
for well-established nonrelativistic neutrino oscillations
formulae, the formalism implies a nontrivial vacuum (the
so called flavor vacuum), which has been regarded as a
source of dark energy in various works [29]. Recently, the
formalism has been used to describe the low energy limit of

a quantum gravity model [44], leading to an implementa-
tion on a supersymmetric model [32]. Preliminary works
have shown that BV formalism gives rise to a novel
mechanism of SUSY breaking [31,32]. This work moves
a step forth in the analysis of the supersymmetric flavor
vacuum.
On one hand, we analyzed the phenomenology of the

model of [31,32] (a free Wess-Zumino with flavor mixing),
arguing that the supersymmetric flavor vacuum might con-
sistently provide a source for both dark energy (thanks to
the bosonic sector of the theory) and dark matter (via the
fermionic one). At the moment, a quantitative comparison
with available data is not yet possible, due to the over-
simplifications of the model (just free fields labeled by
only two flavors have been considered). However, encour-
aging results come from a preliminary analysis here
performed: despite the huge difference of magnitudes of
the involved parameters (ranging from the Plank energy
scale to neutrino masses, from the density of dark matter
today and its density at very early times), the model seems
to be capable of reproducing the hierarchy ð�m2Þ2 � 
�,
in the assumption that all dark energy density 
� is due to
the bosonic sector of the flavor vacuum, and compatible
with the hypothesis that the flavor vacuum contributes to
(at least a fraction of) dark matter.
On the other hand, we started developing new tools in

order to test the behavior of the flavor vacuum in inter-
active theories. We presented a novel method for evaluat-
ing relevant quantities connected with our problem,
which, not only facilitate the nontrivial calculations
involved in the free model, but also opens the way
towards nonperturbative analyses of interactive theories.
As a concrete example of the advantages of the method,
we first showed how to reproduce in a few lines results of
[31,32], getting a deeper insight of known formulae.
Furthermore, in order to test the potential of the method,
we used it to analyze the equation of state of the flavor
vacuum in self-interactive theories, generalizing results of
the free theory for a wide class of interactions, under
reasonable assumptions.
The possibility here discussed that a source for both dark

matter and dark energy might arise from neutrino physics,
whether it derives from new physics beyond the Standard
Model or from nonperturbative aspects of QFT, is quite
attractive. The model here presented needs to be under-
stood and developed much further. In particular, the
following developments are in order:
(i) more realistic theories need to be constructed and

compared with observational data: three flavors, SM/
minimal supersymmetric standard model interac-
tions, evolution in time (possibly on a curved back-
ground) are essential ingredients;

(ii) provided with a more realistic theory, the behavior
of the flavor vacuum on large distance scales must
be examined in presence of matter, in order to be
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compared with phenomenological models of dark
matter and dark energy;

(iii) if we regard BV formalism as an effective descrip-
tion at low energy scales of the stringy model of
[44], the gap between the macroscopic and micro-
scopic description needs be reduced7;

(iv) other ways to prove experimentally the existence of
the flavor vacuum must be found; besides its
gravitational effects, it might play an active role

in interactive theories and hence in scattering
processes, which require a dedicated analysis;

Despite these and many other questions that remain open,
the models presented in this work suggest an intriguing
possibility for a deeper understanding of fundamental
problems in cosmology. The promising results here dis-
cussed certainly motivate, we believe, further develop-
ments of the approach.
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