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The method of covariant symbols of Pletnev and Banin is extended to space-times with topology

Rn � S1 � � � � � S1. By means of this tool, we obtain explicit formulas for the diagonal matrix elements

and the trace of the heat kernel at finite temperature to fourth order in a strict covariant derivative

expansion. The role of the Polyakov loop is emphasized. Chan’s formula for the effective action to one-

loop is similarly extended. The expressions obtained apply formally to a larger class of spaces, h-spaces,

with an arbitrary weight function hðpÞ in the integration over the momentum of the loop.
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I. INTRODUCTION

Among other uses, the heat kernel [1] is a tool to deal
with one-loop effective actions in quantum field theory.
The effective action, the trace of the logarithm of the
fluctuation operator [2], suffers from ultraviolet divergen-
ces, as well as many-valuation and anomalies. As noted in
[3], the heat kernel has the virtue of being one-valued, free
from ultraviolet divergences, and gauge invariant.

The heat kernel finds a number of applications: study of
spectral densities of Klein-Gordon operators, proof of in-
dex theorems [4,5], to compute the �-function [6] and the
anomalies of Dirac operators [7], to deal with chiral gauge
theories [8] and models of QCD [9], to the Casimir effect
[10], to compute black hole entropies [11] etc.

Except in very particular manifolds, the heat kernel is
expressed by means of asymptotic expansions. The Seeley-
DeWitt expansion [12,13] is in powers of the proper time
and is available to rather high orders in several setups,
including curved spaces with and without boundary, and in
presence of non-Abelian gauge fields and non-Abelian
scalar fields using different methods [1,8,14–20].

To study quantum field theory at finite temperature, one
can use the imaginary time formalism with compactified
Euclidean time [21,22]. This introduces a modification in
the heat kernel coefficients. Early attempts to compute
those coefficients were made in [23,24]. However, ad hoc
assumptions made in those calculations (essentially what
we call the quenched approximation below) lead to ex-
pressions in conflict with explicit results derived for par-
ticular settings [25,26]. The first systematic and fully
gauge covariant calculation of the heat kernel at finite
temperature was presented in [27,28]. There it was found
that besides the usual covariant derivatives, the Polyakov
loop, �ðxÞ was also present in the expressions (consis-
tently with [25,26]). This is to be expected since the
Polyakov loop is the other natural gauge covariant con-
struction allowed at finite temperature. This is not just a

technical nicety, in fact, nowadays the gluonic Polyakov
loop in QCD at finite temperature plays a prominent role
as a relevant order parameter of confinement in the
very successful Polyakov–Nambu–Jona-Lasinio models
[29–31]. The Polyakov loop appears automatically in any
gauge covariant computation at finite temperature and
solves long standing paradoxes related to gauge invariance
due to naive perturbative expansions [32–34]. Moreover, it
is the only way a chemical potential could appear in the
effective action. Indeed, the chemical potential is obtained
by the shift A0ðxÞ ! A0ðxÞ ��, where� is a constant real
c-number. This has no effect in ½D0; �, but it shows through
the Polyakov loop dependence due to �ðxÞ ! e���ðxÞ
[26,33].
The results of [27,28] refer to the usual heat kernel

expansion. That is, the coefficients are classified according
to the dimension of the operators they carry (this classifi-
cation holds at zero or finite temperature, and at zero
temperature is equivalent to an expansion in powers of
the proper time). In [35], an expansion of the (zero tem-
perature) heat kernel based on the number of covariant
derivatives was carried out. This is a resummation of the
usual expansion in which each coefficient has a fixed
number of covariant derivatives but any number of scalar
fields. The extension to curved space-time was made in
[36]. In the present work we compute, for the first time, the
heat kernel at finite temperature within the covariant de-
rivative expansion.
The results for the heat kernel at finite temperature of

[27,28] were obtained using a rather cumbersome method.
Essentially it was a mixture of (already known) zero tem-
perature coefficients for the spatial covariant derivatives
plus the method of symbols [37,38] for the covariant time
derivative. In this approach some work is required to bring
the expression to a manifestly gauge covariant form, in-
volving the Polyakov loop. This is largely improved in the
present paper. The new idea presented here is based on
extending the method of covariant symbols, introduced by
Pletnev and Banin [39], to the finite temperature case. The
original method was devised for zero temperature, and so it*salcedo@ugr.es
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assumed a continuous frequency variable. Here, we
adapt the method so that it applies also for the discrete
Matsubara frequencies. The Polyakov loop is accommo-
dated in a natural way in the new approach. By means of
this new technique, the calculation of the heat kernel at
finite temperature or other quantities like the effective
action can be done with manifest gauge covariance at
each step. The method applies to general pseudodifferen-
tial operators.

In loop momentum integrals, the spatial components are
continuous, but the frequency becomes discrete as a
consequence of periodicity. This is equivalent to introduc-
ing a weight function in momentum space which consists
of a family of Dirac deltas with support at the Matsubara
frequencies. Here we find the remarkable result that much
of the formalism also goes through for completely general
weight functions, hðpÞ, in momentum space. This allows
us to obtain Lorentz covariant expressions (prior to mo-
mentum integration). The finite temperature case can be
obtained from the generic one by replacing hðpÞ by its
Matsubara version. As a third contribution of this work, we
adapt Chan’s formula for the effective action [40] to such
h-spaces, and so, in particular, to finite temperature. (This
automatically implies the corresponding result for the heat
kernel.) The existence of Chan’s form in such a general
setting is far from obvious a priori since the original
construction by Chan relied heavily on integration by parts
and averages in momentum space. These tools are not
available in the presence of a generic weight hðpÞ.

The paper is organized as follows. In Sec. II, we sum-
marize previous results and techniques and develop the
new method of covariant symbols valid at finite tempera-
ture, Eq. (2.40). In Sec. III, we present explicit results for
the strict covariant derivative expansion of the heat kernel
at finite temperature to third order for the diagonal matrix
elements, Eq. (3.26), and to fourth order for the trace,
Eqs. (3.31) and (3.32). Nonstationary and non-Abelian
configurations are assumed throughout. In Sec. IV, we
extend the gauge covariant technique to h-spaces and use
it to obtain the very compact Chan’s form of the effective
action, Eqs. (4.22) and (4.23). In Sec. V, we summarize our
conclusions. Some auxiliary material and results are given
in the Appendices.

II. METHOD OF SYMBOLS

A. General considerations

Let us consider a theory of scalar fields in d-dimensional
Euclidean flat space-time coupled to external fields, in-
cluding gauge fields. Typically,

LðxÞ ¼ ��ðxÞyK�ðxÞ;
K ¼ D2 þ XðxÞ;

D� ¼ @� þ A�ðxÞ:
(2.1)

The external fields XðxÞ and A�ðxÞ are matrices in internal

space in general. For concreteness we assume that �ðxÞ
transforms in the fundamental representation of the gauge
group �ðxÞ ! U�1ðxÞ�ðxÞ.
The corresponding partition function and effective

action are

Z¼
Z
D�yD�e�

R
ddxLðxÞ ¼e��; �¼TrlogK: (2.2)

The effective action � is a functional of the external fields,
and diagrammatically Tr log corresponds to adding one-
loop graphs with the field � running in the loop and any
number of external legs attached to it.
The operation Tr can be expressed as a trace on a single-

particle Hilbert space where K acts. This Hilbert space
includes space-time and also internal degrees of freedom,

� ¼
Z

ddx trhxj logKjxi; (2.3)

jxi is a basis of the space-time sector,

hxjx0i ¼ �ðx� x0Þ; x̂�jxi ¼ x�jxi; (2.4)

and tr refers to the internal degrees of freedom. Likewise,
under a variation of the gauge fields and the scalar field,
one obtains the current and density,

��¼
Z
ddxtrðJ �ðxÞ�A�ðxÞþDðxÞ�XðxÞÞ;

J �ðxÞ¼ hxjfK�1;D�gjxi; DðxÞ¼ hxjK�1jxi:
(2.5)

These examples, as well as the heat kernel, expð�KÞ, to
be considered later, illustrate the need for computing di-
agonal matrix elements of pseudodifferential operators.
Taking coincident points amount to integrate over the
momentum of the loop.
In view of the above, we consider a generic pseudodif-

ferential operator

f̂ ¼ fðD;XÞ (2.6)

constructed with the covariant derivative D� and other

fields, XðxÞ. These external fields are bosonic. The quan-
tum field running in the loop may be bosonic or fermionic.
Under a gauge transformation, D� ! U�1D�U, X !
U�1XU, the diagonal matrix elements transform cova-
riantly, hxjfðD;XÞjxi ! U�1ðxÞhxjfðD;XÞjxiUðxÞ.
Our goal is to address the computation of the diagonal

matrix elements of the pseudodifferential operator
hxjfðD;XÞjxi and its trace in a gauge covariant setting
valid at zero or finite temperature.

1. Covariant expansions at zero temperature

In general, the diagonal matrix element cannot be ex-
pressed in closed form. At zero temperature, a typical
expansion to be applied is one based in powers of D�

and of XðxÞ. This produces an expansion in terms of local
gauge covariant operators,

F. J. MORAL-GÁMEZ AND L. L. SALCEDO PHYSICAL REVIEW D 85, 045019 (2012)

045019-2



hxjfðD;XÞjxi ¼ X
�

g�O�ðxÞ: (2.7)

Here, O�ðxÞ includes all possible local gauge covariant
operators constructed with D� and X, that is, with X,

with the field strength tensor

F�� ¼ ½D�;D��; (2.8)

and with their covariant derivatives. The coupling con-

stants g� depend on the concrete operator f̂. Often the
terms are organized by dimensional counting in subsets of
operators with a common dimension. An example is the
standard heat kernel expansion

hxje�Kjxi¼ 1

ð4	�Þd=2

�
�
1þ�Xþ�2

�
1

2
X2þ1

6
X��þ 1

12
F2
��

�
þ���

�
:

(2.9)

We indicate covariant derivatives using the convention1

Y�1�2...�n
¼ ½D�1

; Y�2...�n
� (2.10)

for any operator YI with a (possibly empty) ordered set of
Lorentz indices I. For instance, F
�� ¼ ½D
;F��� and

X
� ¼ ½D
; ½D�; X��.
Another expansion, which is the subject of this work, is

the covariant derivative expansion, which is a resumma-
tion of the previous one: at a given order the number ofD�

is fixed while there can be any number of X. For Abelian X
this is just of the form

hxjfðD;XÞjxi ¼ X
�

f�ðXðxÞÞO�ðxÞ; (2.11)

where now O�ðxÞ contains only X with derivatives and
f�ðXðxÞÞ is a generic function of X. In the more general
case of non-Abelian fields, one can still express the expan-
sion by means of labeled operators [35,41]:

hxjfðD;XÞjxi ¼ X
�

f�ðX1ðxÞ; . . . ; XnðxÞÞO�ðxÞ: (2.12)

The idea is that O�ðxÞ is the product of n� 1 local cova-
riant blocks and the i-th copy of X, denoted Xi, is meant to
act between the i� 1-th and the i-th block. For instance,

Z s

0
etXF2

��e
ðs�tÞXdt¼

Z s

0
etX1eðs�tÞX2dtF2

��

¼esX1�esX2

X1�X2

F2
��: (2.13)

Here, X1 is X acting at the left of F2
�� and X2 is X acting at

the right. Note that the labeled operators Xi can be treated
as c-numbers since X1X2 ¼ X2X1.

As an example, all the terms of the heat kernel with
precisely one X�� can be collected in the form [35]

hxje�Kjxi¼ 1

ð4	�Þd=2
�
���þ

�
e�X1 þe�X2

ðX1�X2Þ2
�2

�

e�X1 �e�X2

ðX1�X2Þ3
�

�X��þ���
�
: (2.14)

Expanding in powers of Xi gives back the standard heat
kernel expansion

�
e�X1 þ e�X2

ðX1 � X2Þ2
� 2

�

e�X1 � e�X2

ðX1 � X2Þ3
�
X��

¼
�
�2

6
þ �3

12
ðX1 þ X2Þ þ � � �

�
X��

¼ �2

6
X�� þ �3

12
fX; X��g þ � � � : (2.15)

2. Covariant expansions at finite temperature

At finite temperature the space-time isRd�1 � S1 within
the imaginary time formalism, [21,22]. The quantum field
may be bosonic or fermionic, being, respectively, periodic
or antiperiodic in timewith period� ¼ 1=T, where T is the
temperature. The external fields A�ðxÞ and XðxÞ are bo-

sonic and hence periodic. The gauge transformations,
UðxÞ, are also periodic.
The expansions in Eqs. (2.7) and (2.12) refer to zero

temperature and they have to be modified at finite tem-
perature. In fact, at finite temperature there are two gauge
covariant constructions with the operator D0, namely, the
covariant derivative ½D0; � and the Polyakov loop

�ðxÞ ¼ Pe
�
R

x0þ�

x0
A0ðx;tÞdt: (2.16)

The Polyakov loop here is not traced; it is a matrix in
internal space and P refers to path ordered product. Also,
the integral starts at x0 rather than zero. The Polyakov loop
so defined is gauge covariant at x,

�ðxÞ ! U�1ðxÞ�ðxÞUðxÞ: (2.17)

�ðxÞ is also periodic in x0. In practical terms, �ðxÞ
behaves as a local field. This operator appears through
D0 due to the relation [27]

e��D0 ¼ �ðxÞ: (2.18)

The easiest way to show this is by going to a gauge where

A0ðxÞ is time independent. In such a gauge �ðxÞ ¼
e��A0ðxÞ while e��D0 ¼ e��@0e��A0 . But e��@0 ¼ 1 due
to periodicity. The equality holds in any gauge since the
two operators e��D0 and �ðxÞ transform in the same
way under gauge transformations. Hence, although for-
mally expð��D0Þ would be a pseudodifferential operator1Here and elsewhere Y denotes a generic operator.
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(D0 being a differential operator), it is actually just a
multiplicative operator.2

The two gauge covariant constructions ½D�; � and �ðxÞ
appear at finite temperature. The heat kernel-like expan-
sion (expansion in powers of D� and X) in Eq. (2.7) is

modified at finite temperature to

hxjfðD;XÞjxi ¼ X
�

g�ð��ðxÞ;TÞO�ðxÞ: (2.19)

Here, O�ðxÞ are still arbitrary local gauge covariant
operators constructed with X and ½D�; �. On the other

hand, g�ð��ðxÞ;TÞ are functions of the Polyakov loop
and the temperature determined by the pseudodifferential

operator f̂. The � refers to the two cases of bosonic or
fermionic quantum field, respectively.

Note that, in general, �ðxÞ does not commute with the
local operators. We have chosen to put all the dependence
on the Polyakov loop at the left. This can be done due to the
identity [28]

½O; gð�Þ� ¼ X1
n¼1

in

n!
gnð�ÞD̂n

0O; (2.20)

where gnð�Þ is just the n-th derivative of gð�Þ as a

function of the variable iT logð�Þ and D̂0 ¼ ½D0; �.
For instance, the expansion in Eq. (2.19) has been com-

puted for the heat kernel through operators of dimension
six in [27,28]

hxje�Kjxi ¼ 1

ð4	�Þd=2 ð�0 þ ��0Xþ � � �Þ;

�0 ¼
X
k2Z

ð��Þke�k2�2=4�:
(2.21)

At zero temperature, �0 ¼ 1 and this expression reduces to
that in Eq. (2.9).

For the derivative expansion at finite temperature, one
can write

hxjfðD;XÞjxi ¼ X
�

f�ð��; X1; . . . ; Xn;TÞO�; (2.22)

with the�’s at the left of all X’s andO�, and Xi is inserted
between the i� 1-th and the i-th blocks of O� as before.
(Recall thatO� contains only operators X with derivatives.
X without derivatives go into f�.)

The functions f� in Eq. (2.22) are well defined but have
not been computed yet even for the heat kernel. This is a
goal of this work.

3. Countings at zero and finite temperature

Before closing this section, it is important to note that
the counting of a term either by its dimension or by its
number of derivatives is not as clean at finite temperature
as it is at zero temperature. Indeed, to unambiguously
classify a term by its (scale) dimension at zero temperature
one can introduce a bookkeeping parameter � in the ex-
ternal fields as �A�ð�xÞ and �
Xð�xÞ; 
 is the dimension

of X and
 ¼ 2 in Eq. (2.1). In this way, an operator On of
dimension � will be tagged by a factor ��. At finite
temperature the number of X’s and ½D; � can still be
counted by a bookkeeping parameter, but the method fails
for D0 because a dilation in the time direction is not
consistent with periodicity of the external fields. Of course,
this is related to the presence of discrete values for p0 and
the presence of �ðxÞ in addition to ½D0; �.
At finite temperature there is no bookkeeping parameter

to fix the order of a term in the dimensional expansion, and
so the order is undefined or looks different depending on
how the term is written. To sort out this problem, we take the
prescription of defining the counting after the term has been
written with all �ðxÞ at the left. With this prescription, the
order can be defined without ambiguity (see Appendix A).
We take �ðxÞ to be of dimension zero. As before, XðxÞ has
dimension 
, ½D�; � has dimension one, and F�� has di-

mension two. For instance, the operator �ðxÞXðxÞ carries
dimension 
, whereas when using Eq. (2.20)

½XðxÞ;�ðxÞ� ¼ ��ðxÞ½D0; XðxÞ� þ � � � (2.23)

carries leading dimension 
þ 1 but is not homogeneous in
this counting. As usual, wewill consider the leading order as
the order of a nonhomogeneous term.
Everything is similar for the derivative expansion. In this

case, the zero temperature counting comes from �A�ð�xÞ
and Xð�xÞ. At finite temperature, the term is written
with �ðxÞ at the left and then � and X count as order
zero, ½D�; � as order one, and F��ðxÞ as order two. For

instance, the operator �ðxÞXðxÞ is of order zero, whereas
½XðxÞ;�ðxÞ� is of order one.
The situation for traced terms at finite temperature is

more involved due to the trace cyclic property. To define
the order of an expression in this case, the natural pre-
scription is to consider all possible ways to write it and
select the one with highest leading order as the true
order of the expression. For instance, using the property
½D0;�� ¼ 0 from Eq. (2.20),

Trð�X0XÞ ¼ Trðð�XÞ0XÞ ¼ �Trð�XX0Þ
¼ �TrðX0�XÞ ¼ Trð��X0X � ½X0;��XÞ
¼ � 1

2
�Trð�X00XÞ þOðD3Þ

¼ 1

2
�Trð�X2

0Þ þOðD3Þ: (2.24)

So this term is of second order in the derivative expansion.

2Multiplicative operators will be important in what follows.
By multiplicative operators we mean zeroth-order differential
operators with respect to x. That is, operators which may contain
x̂� but not @�. They can be matrices in internal space. Thus, they
are in one-to-one correspondence with ordinary matrix-valued
functions of x.
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B. Symbols at zero temperature

A convenient technique to compute the diagonal matrix
elements of a pseudodifferential operator, hxjfðD;XÞjxi, is
the method of symbols [37,38].

Let us discuss the zero temperature case first. The
Euclidean space-time is Rd�1�R. We introduce momen-
tum basis jpÞ,
hxjpÞ¼eipx; ðpjp0Þ¼ ð2	Þd�ðp�p0Þ; jpÞ¼eipx̂j0Þ;

(2.25)

and the method of symbols goes as follows:

hxjfðD;XÞjxi ¼
Z ddp

ð2	Þd e
�ipxhxjfðD;XÞjpÞ

¼
Z ddp

ð2	Þd hxje
�ipx̂fðD;XÞeipx̂j0Þ

¼
Z ddp

ð2	Þd hxjfðDþ ip; XÞj0Þ: (2.26)

We have used the relations e�ipx̂D�e
ipx̂ ¼ D� þ ip� and

e�ipx̂Xeipx̂ ¼ X becauseX is multiplicative (i.e., it contains
no derivatives) and the fact that the map Y!e�ipx̂Yeipx̂ is a
similarity transformation. In Eq. (2.26), j0Þ is the state with
wave function equal to unity, hxj0Þ ¼ 1.

Because of the property @�j0Þ ¼ 0, the quantity

hxjfðDþ ip; XÞj0Þ is just the symbol of the pseudodifferen-
tial operator fðD;XÞ [38]. Avery important point is that the

operator
R ddp

ð2	Þd fðDþ ip; XÞ contains D� only in the form

½D�; �. As a consequence, this operator is automatically

gauge covariant and also multiplicative with respect to x.
As said, a multiplicative operator is equivalent to a function
of x. Specifically, hxjfðx̂Þj0Þ ¼ fðxÞhxj0Þ ¼ fðxÞ. So hxjj0Þ
can be left implicit in Eq. (2.26), and one can just write

hxjfðD;XÞjxi ¼
Z ddp

ð2	Þd fðDþ ip; XÞ: (2.27)

The variable p� represents the momentum carried by the

quantum field � running in the loop.
To obtain a covariant derivative expansion, one simply

expands the right-hand side of Eq. (2.27) in powers of D�.

Because of gauge invariance, it is guaranteed that if all D�

are brought to the right, for example, using D�Y ¼
½D�; Y� þ YD� at the end, all terms with D� not in the

form ½D�; � must vanish after momentum integration. So

gauge invariance of the final result will hold, but it is not
manifest without momentum integration.

C. Covariant symbols at zero temperature

The matrix element hxjfðD;XÞjxi is a gauge covariant
quantity, and its covariant derivative expansion can be
obtained by expansion in powers of D� in Eq. (2.27).

However, gauge covariance of the right-hand side holds
only after momentum integration: the symbol itself is not

covariant. Pletnev and Banin devised a method to trans-
form the symbol into a covariant one [39,42], as follows:

hxjfðD;XÞjxi ¼
Z ddp

ð2	Þd fð
�D; �XÞ (2.28)

with the covariant symbol

fð �D; �XÞ ¼ ei@
pDe�ipxfðD;XÞeipxe�i@pD; @p� ¼ @

@p�

;

@pD ¼ D@p ¼ D�@
p
�: (2.29)

That is, a further similarity transformation is applied which
changes nothing; the new factor e�i@pD is equivalent to 1
since no p� lies at its right. On the other hand, the new

factor ei@
pD is also equivalent to 1 by integration by parts.

Being a similarity transformation, it can be applied to each
block in f, i.e., D� ! �D� and X ! �X with

�D� ¼ ei@
pDe�ipxD�e

ipxe�i@pD

¼ ei@
pDðD� þ ip�Þe�i@pD;

�X ¼ ei@
pDe�ipxXeipxe�i@pD ¼ ei@

pDXe�i@pD: (2.30)

These new operators are directly gauge covariant and
multiplicative (with respect to x) without momentum in-
tegration. Using a derivative expansion, they read

�D� ¼ ip� þ X1
n¼1

n

ðnþ 1Þ! i
nF
1...
n�@

p

1
� � � @p
n

;

�X ¼ X1
n¼0

1

n!
inX
1...
n

@p
1
� � � @p
n

:
(2.31)

As can be seen, the covariant symbol is closely related to the
Fock-Schwinger gauge approach. The map Y ! �Y is an
algebra homomorphism that applies pseudodifferential op-
erators into operators, which are covariant and multiplica-
tive (with respect to x). They are derivative operators with
respect top�. Let us stress that in applications of Eq. (2.28),

a constant function equal to 1 is understood at the right so
that @p�1 ¼ 0.3

D. Symbols at finite temperature

Let us now turn to the finite temperature case. For
ordinary symbols one can proceed as before by introducing
a momentum space basis jpÞ ¼ jp0;pÞ, where the zeroth
component takes values on the Matsubara frequencies:
p0 ¼ 2	nT in the bosonic case, p0 ¼ ð2nþ 1Þ	T in the
fermionic case with n 2 Z. Thus,

3Actually, the quantity f0ðx; pÞ ¼ fð �D; �XÞ1 is what enters in
the computation of hxjfðD;XÞjxi. This is an ordinary function of
x and p and so closer to the ordinary symbols except that it is
covariant.
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hxjpÞ¼eipx;

ðpjp0Þ¼��p0;p
0
0
ð2	Þd�1�ðp�p0Þ;

jpÞ¼eipx̂j0Þ:
(2.32)

The method of symbols works as before with the following
result:

hxjfðD;XÞjxi¼T
X
p0

Z dd�1p

ð2	Þd�1
hxjfðDþ ip;XÞj0Þ: (2.33)

Let us remark that j0Þ is the state hxj0Þ ¼ 1, regardless of
whether the quantum field in the loop is bosonic or fermi-
onic. The statistics of the quantum field is contained in the
Matsubara frequencies p0. Once again the operator

T
P

p0

R dd�1p
ð2	Þd�1 fðDþ ip; XÞ is actually multiplicative and

hxjj0Þ can be omitted

hxjfðD;XÞjxi ¼ T
X
p0

Z dd�1p

ð2	Þd�1
fðDþ ip; XÞ: (2.34)

Also, hxjfðD;XÞjxi is still gauge covariant.
In previous works we have discussed the effect of the

finite temperature, i.e., the replacement of an integral over
p0 on R to a sum of p0 over Matsubara frequencies. As in
the zero temperature case, after integration over p, the
operator D appears only in the form ½D; �. The reason is
obvious; if one replaces D by Dþ ia, a being a constant
c-number, the replacement has no effect owing to the
integration over p on Rd�1. However, the same argument
fails for D0 (the zeroth component of the gauge covariant
derivative) since p0 is a discrete variable at finite tempera-
ture. Still, due to the sum over the Matsubara frequencies,
the expression must be periodic in the variable D0 with
period 2	iT. This not only permits a dependence on ½D0; �
but also on e��D0 ¼ �, i.e., on the Polyakov loop.

Let us discuss how to use the ordinary symbols to obtain
the diagonal matrix elements at finite temperature [33]. The
main issue is the gauge invariance. In themethod of symbols,
Eq. (2.34), gauge invariance of hxjfðD;XÞjxi ismanifest only
after the integral on p and the sum on p0 are carried out. In
fðDþ ip; XÞ,D can be dealt with as in the zero temperature
case to yield ½D; � after integration on p. This produces an
expression of the type f1ðD0 þ ip0; ½D; �; XÞ. As described
in [28,33], a method suitable to deal with D0 to obtain a
derivative expansion is to move D0 to the left (using the
identity YD0 ¼ D0Y � ½D0; Y�). In this way, one ends up
with expressions of the type f2ðD0 þ ip0; ½D0; �; ½D; �; XÞ,
where D0 þ ip0 is only at the left rather than all over the
expression. Summing now over the Matsubara frequencies
produces a dependence on e��D0 ¼ � and finally a cova-
riant expression of the type f3ð�; ½D�; �; XÞwith all�ðxÞ at
the left. This is the form in Eq. (2.19) and in Eq. (2.22).

E. Covariant symbols at finite temperature

The method described at the end of the previous section
is rather cumbersome. So, a method of covariant symbols

at finite temperature would be advisable, namely, a method
providing manifestly multiplicative and gauge invariant
terms. The problem is that the method of Pletnev and
Banin does not directly apply at finite temperature since
p0 is a discrete variable and @

p
0 is not defined. Presently, we

show how to extend the method to the finite temperature
case.
One idea is to change the sum over Matsubara frequen-

cies by appropriate integrals on the complex plane [22]. In
this way, the derivative with respect to p0 is defined. The
method works, but we can obtain the final result in a
simpler manner.
Let !n be the Matsubara frequencies, bosonic

(!n ¼ 2n	T) or fermionic (!n ¼ ð2nþ 1Þ	T). Then let

hMðp0Þ ¼
X
n

2	T�ðp0 �!nÞ: (2.35)

(There is a bosonic version and a fermionic version of this
function.)
Using the function hM, we can write Eq. (2.33) as

hxjfðD;XÞjxi¼
Z ddp

ð2	ÞdhMðp0ÞhxjfðDþ ip;XÞj0Þ: (2.36)

Now, we can proceed to make a further similarity trans-
formation as at zero temperature (and valid by the same
reasons) that reads

hxjfðD;XÞjxi

¼
Z ddp

ð2	Þd hxje
i@pDhMðp0ÞfðDþ ip; XÞe�i@pDj0Þ

¼
Z ddp

ð2	Þd hxje
i@pDhMðp0Þe�i@pDfð �D; �XÞj0Þ: (2.37)

This can be simplified by working out the hMðp0Þ term

ei@
pDp0e

�i@pD¼p0þ iD0�1

2
iF0i@

p
i þ

1

6
F�0i@

p
�@

p
i þ��� ;
(2.38)

hence

ei@
pDhMðp0Þe�i@pD ¼ hMðp0 þ iD0Þ þOð@pi Þ: (2.39)

The point is that due to the integration on p, all @pi at the
left (no p lies at the left of the @pi ) can be set to zero, and so

hxjfðD;XÞjxi¼
Z ddp

ð2	Þd hxjhMðp0þiD0Þfð �D; �XÞj0Þ: (2.40)

The expression Eq. (2.40) is of great interest. �D and �X
are the same covariant symbols as at zero temperature and
so they are Lorentz covariant (if the original pseudodiffer-

ential operator is f̂). They are also multiplicative with
respect to x-space and manifestly gauge covariant. On
the other hand, the D0 dependence at the left is also multi-
plicative: under the shift D0 ! D0 þ 2	inT the expres-
sion is unchanged due to periodicity of hM (even without
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integral over p0). Therefore, the dependence is really on
the periodic variable e��D0 ¼ �. That is, one can also
write4

hxjfðD;XÞjxi¼
Z ddp

ð2	ÞdhMðp0�iT log�Þfð �D; �XÞ: (2.41)

This expression is already of the form required: gauge
covariant and with � at the left and suitable to take the
expansions in Eq. (2.19) or Eq. (2.22).

For convenience, let us introduce the auxiliary multi-
plicative operator (a matrix in internal space)

QðxÞ ¼ iT log�ðxÞ: (2.42)

This is many-valued but, in practice, it appears in periodic
functions so that the result is always a one-valued function
of �. Q is Hermitian up to many-valuation � being
unitary. Equation (2.41) takes the form

hxjfðD;XÞjxi ¼
Z ddp

ð2	Þd hMðp0 �QÞfð �D; �XÞ: (2.43)

It is possible to define the quantity Q0 as the operator Q
placed at the left of all other operators, that is, labeled to
indicate ‘‘at position zero.’’ There can be no confusion with
our previous convention of a label indicating a temporal
covariant derivative since ½D0; Q� ¼ 0 due to ½D0;�� ¼ 0.
The point is that Q0 is a c-number: it can be put in any
order in an expression with the same result. Hence, we can
shift the variable p0 by an amount Q0. This allows us to
write

hxjfðD;XÞjxi¼T
X
p0

Z dd�1p

ð2	Þd�1
fð �D; �XÞjp0!p0þQ0

¼T
X
p0

Z dd�1p

ð2	Þd�1
fð �D0þiQ0; �Di; �XÞ: (2.44)

(The last equality holds because p0 does not appear in
�D0 � ip0, �Di, or �X.)
In Eq. (2.43), one can carry out the momentum deriva-

tives @p� implied by �D� and �X. The derivatives @pi can be

taken to the right or to the left by parts. The temporal
derivative @p0 can only be taken to the right if the form of

hMðp0 �D0Þ is to be preserved. Taking all of the @p� to the
right has the virtue of leaving an ordinary function f0ðx; pÞ,
which is temperature independent, and manifestly Lorentz
and gauge covariant,

hxjfðD;XÞjxi ¼
Z ddp

ð2	Þd hMðp0 �QÞf0ðx; pÞ: (2.45)

Equations (2.43) or (2.45) solve the problem of using
gauge covariant symbols at finite temperature. In addition,
the breaking of Lorentz covariance is minimal. The zero
temperature limit is recovered by setting hM to unity.

F. Polyakov loop and real-time thermal field theory

Mathematically, the imaginary time formalism is the
simplest approach to quantum field theory at finite tem-
perature. The real time approach (in its various versions) is
more involved but better suited for time-dependent observ-
ables [22].
In that approach, the frequency is a continuous variable

rather than discrete. In the expressions derived for the
covariant symbols at finite temperature, the sum over
Matsubara frequencies can be traded by integrals by means
of well-known relations Eqs. (2.3.22–24) of [22]). Starting
from Eq. (2.44), we find

hxjfðD;XÞjxi¼
Z dd�1p

ð2	Þd�1

�Z dp0

2	
þ
Z
Cþ

dp0

2	
nð�p0Þ

�
Z
C�

dp0

2	
nðp0Þ

�
fð �D0þiQ0; �Di; �XÞ: (2.46)

Here,

nðp0Þ ¼ 1

�ei�p0 � 1
(2.47)

(� for bosons or fermions, respectively). The first fre-
quency integral is along the p0 real axis, whereas the
contours C� enclose only the singularities of f as a func-
tion of p0, in the half planes Imp0 > 0 and Imp0 < 0,
respectively. Undoing the shift p0 ! p0 þQ0 gives
hxjfðD;XÞjxi

¼
Z dd�1p

ð2	Þd�1

�Z dp0

2	
þ

Z
Cþ

dp0

2	

1

���1e�i�p0 � 1

�
Z
C�

dp0

2	

1

��ei�p0 � 1

�
fð �D; �XÞ: (2.48)

(C� are as before for the new f since Q0 is real.)
This expression is not yet in the form of the real-time

formalism, but it is closer to it. UponWick rotation, factors
of the type nðp0Þ should appear in the propagators through
the thermal occupation numbers, while the integral over
the real axis should come from the zero temperature part
of the thermal propagators [22].
The connectionwith the real time formalism is, of course,

of great interest and worth studying. We do not pursue this
subject any further in the present work, but in view of
Eq. (2.48) one can conjecture that the fields in the form
fð �D; �XÞ, including time covariant derivatives, will follow
the pattern of ordinary local external fields as treated in the
real-time formalism. On the other hand, the occupation
number will pick up a Polyakov loop following the pre-
scription e�p0 ! �e�p0 . This automatically produces the
correct coupling of the chemical potential, e�� by means of
the prescriptionA0ðxÞ ! A0ðxÞ �� (since�A0 essentially
represents a local and possibly non-Abelian chemical
potential).
The meaning of�ðxÞ in the real-time context needs to be

elucidated. If the configuration of the external fields is
stationary, essentially the imaginary time formula already

gives the result. In this case, �ðxÞ ¼ e��A0ðxÞ with A0ðxÞ
4Once again, in Eq. (2.41), a constant function equal to 1 is

implicit at the right so that @p�1 ¼ 0.
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Hermitian. A0 is the same variable in the Euclidean and
Minkowski versions; however, in the Minkowski case this
variable is taken along the real axis of its complex plane,
while in the Euclidean version it is preferable to work with
the variable extended to the imaginary axis. The imaginary
time integration in the definition of � is not rotated to real-
time because it comes from the factor e��H in the partition
function and so from an evolution in imaginary time
from t0 to t0�i� (Kubo-Martin-Schwinger condition
[43]). Therefore, it takes the same form in any finite tem-
perature formulation.

Let us consider now themore general case of nonstationary
configurations. In the closed-path approach [44,45], one starts
with a thermalmixed state at time t ¼ t0. This implies that the
system is stationary for t < t0. Measurements are taken at
later times, where time-dependent sources also may act. By
assumption of thermal equilibrium, either the Hamiltonian is
stationary for t < t0 or it is so after application of a suitable
gauge transformation. Then, for t < t0, A0ðxÞ is well-defined
modulo stationary gauge transformations and this defines

�ðxÞ ¼ e��A0ðxÞ, which also transforms covariantly.
Further gauge transformations, for instance, carrying A0 to
zero, exist but they are not stationary and so they would
introduce a time dependence in the other components of the
gauge connection (and possibly on other gauge covariant
fields). Therefore, such transformations are not allowed for
t < t0 and � is well-defined. Because the external fields
configuration is not required to be stationary for t > t0, one
can choose a continuous gauge inwhichA0ðxÞ takes the same
value at all times. (Because anyA0ðx; tÞ canbebrought to zero
by means of a suitable gauge transformation, any configura-
tion A0ðx; tÞ can be transformed into any other.) This shows
that�ðxÞ is also present in the real-time approach and this is
the quantity that will appear with e�p0 in the propagators.

III. HEAT KERNEL AT FINITE TEMPERATURE

A. Diagonal coefficients

1. Expansions of the heat kernel

Let K ¼ D2 þ X be the Klein-Gordon operator as in
Eq. (2.1). The heat kernel is the solution of the associated
heat equations @�Gð�Þ ¼ KGð�Þ, Gð0Þ ¼ 1, � � 0 with
solution Gð�Þ ¼ expð�KÞ.5 From the heat kernel one can
recover the propagatorK�1 and the effective actionTr logK.

The diagonal matrix elements of the heat kernel (at zero
or at finite temperature) can be expanded, classifying the
terms by their mass dimension

hxje�Kjxi ¼ 1

ð4	�Þd=2
X
n

�nanðx; �Þ: (3.1)

Each an has dimension 2n and depends on the temperature.
The expansion is asymptotic. At zero temperature this is
equivalent to an expansion in powers of � and is just the
standard heat kernel expansion. In general, the an depend
also on � and T. The order of the term is defined by the mass
dimension carried by the external fields. Hence, by dimen-
sional counting, the coefficient can only depend on the
combination �T2. A remarkable property of the heat kernel
coefficients is that they do not depend explicitly on the
space-time dimension. This property is preserved at finite
temperature.
At zero temperature the index n takes nonnegative inte-

ger values.6 However, at finite temperature n can also take
(positive) half-integer values. This follows from breaking of
Lorentz invariance down to rotational invariance; at finite
temperature an odd number of time derivatives is not for-
bidden. The expansion at finite temperature has been com-
puted in [27,28] through dimension six. So for instance,7

a0 ¼�0; a1=2 ¼ 0; a1 ¼�0X; a3=2 ¼ 1

2
�1ðX0þEiiÞ:

(3.2)

The electric field EiðxÞ is defined as F0iðxÞ, hence
Eii ¼ �Fii0. On the other hand, the �n are dimensionless
functions of the Polyakov loop defined as sums over the
(bosonic or fermionic) Matsubara frequencies,

�n¼ð4	�Þ1=2ð�iÞn2�n=2T
X
p0

Hnð
ffiffiffiffiffiffi
2�

p ðp0þQÞÞe��ðp0þQÞ2

¼2�n=2
X
k2Z

Hnðk=
ffiffiffiffiffiffiffiffiffiffiffi
2�T2

p
Þe�k2=ð4�T2Þð��Þk;

n¼0;1;2; . . . : (3.3)

Q was introduced in Eq. (2.42). Hn refers to the n-th
Hermite polynomial (with normalization H1ðxÞ ¼ 2x).
The � refers to bosonic or fermionic case, respectively.
The two forms of �n in Eq. (3.3) are related by Poisson
summation formula. The �n are one-valued functions of�
and of �T2. They are real (Hermitian) for even n and
imaginary (antiHermitian) for odd n. In addition, they are
even or odd under � ! ��1 for even or odd n, respec-
tively. In the zero temperature limit

�T¼0
n ¼ 2�n=2Hnð0Þ; (3.4)

so odd orders vanish in this limit.
It will be also convenient to define the following auxil-

iary combinations:

��1¼�1; ��2¼�2þ�0;

��3¼�3þ3�1; ��4¼�4þ6�2þ3�0:
(3.5)

5For the Klein-Gordon operator, the parameter � has dimen-
sions of inverse mass squared, nevertheless, it is called the Fock-
Schwinger proper time [46] since in the heat kernel equation it
plays the role of time with corresponding Hamiltonian iK acting
in the Hilbert space spanned by jxi.

6There are half-integer orders in the presence of boundaries.
We only consider boundaryless manifolds throughout.

7Regarding conventions, let us note that what is called here K
and X corresponds to �K and �M in [27,28]. The functions �n

are similar to the ’n in [27,28] except that they involve the
Hermite polynomials.
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They vanish at zero temperature. (However, the ��n do not
vanish at finite temperature for � ¼ 1 for even orders.)

The derivative expansion of the heat kernel (at zero or
finite temperature) takes the form

hxje�Kjxi ¼ 1

ð4	�Þd=2
X
n

�nAnðx; �Þ; (3.6)

where the coefficient An contains 2n derivatives, as well as
the Polyakov loop (placed at the left) and any number of X.
By dimensional counting, besides the derivatives, Anðx; �Þ
depends on �X and �T2 and �. This is an asymptotic
expansion. Once again, at zero temperature the index n
takes only nonnegative integer values, whereas at finite
temperature half-integer values are allowed. The derivative
expansion coefficients An are also independent of the
space-time dimension at zero or finite temperature.

The expansion at zero temperature has been considered
in [35] to four derivatives (and six derivatives for the traced
coefficients). For instance,

A0 ¼ I1; A1 ¼ �I2;2X�� þ 2�2I2;1;2X
2
�: (3.7)

The coefficients I1, I2;2, and I2;1;2 are functions of the

labeled operators X1 in the first case, X1, X2 in the second,
and X1, X2, and X3 in third case. In general, these coef-
ficients are defined as follows [35]:

Ir1;r2;...;rn ¼
Z
�

dz

2	i
ezNr1

1 N
r2
2 ���Nrn

n ; ri¼0;1;2; . . . ; (3.8)

where

Ni ¼ ðz� �XiÞ�1 (3.9)

and � is a positively oriented simple closed path enclosing
all the Xi.

8 Explicitly

Ir1;r2;...;rn ¼ �1�
P

n
i¼1

ri
Xn
i¼1

1

ðri � 1Þ!
dri�1

dXri�1
i

e�XiQ
j�i

ðXi � XjÞrj :

(3.10)

The functions Ir1;r2;...;rn are analytical on the Xi even at

coincident points (as follows from Eq. (3.8); the singular-
ities at Xi ¼ Xj are removable) and satisfy recurrence

relations. Instances at lower orders are

Ir ¼ e�X1

ðr� 1Þ! ; r ¼ 0; 1; 2; . . .

I2;2 ¼ 1

�2
e�X1 þ e�X2

ðX1 � X2Þ2
� 2

�3
e�X1 � e�X2

ðX1 � X2Þ3
:

(3.11)

2. Derivative expansion at finite temperature

The coefficients An at finite temperature are not yet
known. They can be computed from scratch by using the
tools previously described. To this end we use an integral
representation of the heat kernel

e�K ¼
Z
�

dz

2	i

e�z

z�D2 � X
; (3.12)

where the path � is positively oriented and encloses the
eigenvalues of K (the concrete realization of this require-
ment will be clear below).
Applying the method developed in Sec. II E for

covariant symbols at finite temperature and, in particular,
Eq. (2.43), we can write

hxje�Kjxi¼
Z
�

dz

2	i

Z ddp

ð2	ÞdhMðp0�QÞ e�z

z� �D2� �X
: (3.13)

Using the explicit expressions of the covariant symbols
of D� and X in Eq. (2.31), it is simple to carry out an

expansion with terms classified by the number of covariant
derivatives they have (regardless of the number of X orQ).
Specifically,9 removing the zeroth-order contributions in
�D� and �X,

�D 0
�¼ �D�� ip�¼OðD2Þ; �X0 ¼ �X�X¼OðDÞ; (3.14)

we can write

ðz� �D2� �XÞ�1¼ðN�1� ifp�; �D
0
�g� �D02� �X0Þ�1

¼X1
n¼0

Nððifp�; �D
0
�gþ �D02þ �X0ÞNÞn; (3.15)

where we have introduced the quantity

N ¼ ðzþ p2 � XÞ�1: (3.16)

Let us spell out the details for A1=2 (i.e., one derivative).

Picking up the terms with precisely one derivative in
Eq. (3.13) gives (using Eq. (3.15) and Eq. (2.31))

hxje�Kjxi1=2 ¼
Z
�

dz

2	i

Z ddp

ð2	Þd hMðp0 �QÞe�zNiX�@
p
�N:

(3.17)

Further, applying the identity

ð@p�NÞ ¼ �2p�N
2 (3.18)

yields

hxje�Kjxi1=2¼
Z
�

dz

2	i

Z ddp

ð2	ÞdhMðp0�QÞ
�e�zð�2iÞp�NX�N

2: (3.19)

Next, let us apply the shift z ! z� p2 so that

hxje�Kjxi1=2 ¼
Z ddp

ð2	Þd hMðp0 �QÞe��p2ð�2iÞp�

�
Z
�

dz

2	i
e�zNX�N

2; (3.20)

8This � is not to be confused with the effective action func-
tional introduced in Eq. (2.2).

9Alternatively one can use the formulas of Appendix C for the
covariant symbols of K and ðz� KÞ�1.
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where

N ¼ ðz� XÞ�1: (3.21)

Now the z and p integrals are independent. For the z integral, the definition of Ir1;...;rn in Eq. (3.8) applies as

Z
�

dz

2	i
e�zNX�N

2 ¼ �2I1;2X�: (3.22)

For the p integral, the definition of �n in Eq. (3.3) applies asZ ddp

ð2	ÞdhMðp0�QÞe��p2ð�2iÞp�¼ð�2iÞ��0

1

ð4	�Þðd�1Þ=2
Z dp0

2	
hMðp0�QÞe��p2

0p0¼��0

1

ð4	�Þd=2�
�1=2�1: (3.23)

Therefore,

hxje�Kjxi1=2 ¼ 1

ð4	�Þd=2 �
3=2�1I1;2X0 (3.24)

or, according to Eq. (3.6),
A1=2 ¼ ��1I1;2X0: (3.25)

In what follows, we use units � ¼ 1. � can be easily restored by dimensional considerations.
Using the method just described and the formulas in Appendix B for the momentum integrals, we find to three derivatives

A0 ¼ I1�0; A1=2 ¼ I1;2 ��1X0; A1 ¼ I2;2�0X�� þ 2I2;1;2�0X�X� þ I1;3 ��2X00 þ ð2I1;1;3 þ I1;2;2Þ ��2X0X0;

A3=2 ¼ I1;1;2 ��1F0�X� þ 1

3
I1;2 ��1F�0� þ 2

3
I2;3 ��1ðX0�� þ X�0� þ X��0Þ þ ð2I1;1;3 � 6I1;1;4 þ I1;2;2 � 2I1;2;3Þ ��1X0X��

þ 2I2;1;3 ��1ðX�X0� þ X�X�0Þ þ ð2I2;1;3 þ I2;2;2Þ ��1ðX0�X� þ X�0X� þ X��X0Þ þ ð4I1;2;1;3 þ 2I1;2;2;2 þ 4I1;3;1;2

þ 4I2;1;1;3 þ 2I2;1;2;2 þ 2I2;2;1;2Þ ��1X0X�X� þ ð4I2;1;1;3 þ 2I2;1;2;2Þ ��1ðX�X0X� þ X�X�X0Þ þ I1;4 ��3X000

þ ð3I1;1;4 þ I1;2;3Þ ��3X0X00 þ ð3I1;1;4 þ 2I1;2;3 þ I1;3;2Þ ��3X00X0 þ ð6I1;1;1;4 þ 4I1;1;2;3 þ 2I1;1;3;2

þ 2I1;2;1;3 þ I1;2;2;2Þ ��3X0X0X0: (3.26)

Important remark: For notational convenience we have
written �0 or ��n at the right of the Ir1;r2;..., but actually
these operators are at the left of the expression. So A0 ¼
�0I1, A1=2 ¼ ��1I1;2X0, A1 ¼ �0I2;2X�� þ � � � , etc.

We have also computed the term with four derivatives
A2, but this term is too long to be quoted here (about 90
terms). The four derivative term is given below for the
traced heat kernel coefficients.

The heat kernel (and in fact hxjfðKÞjxi for any fðzÞ)
is symmetric under left-right transposition of operators (or
Hermitian if K is Hermitian and fðzÞ is real). At
zero temperature (putting ��n ! 0 and �0 ! 1) the sym-
metry is manifest. For instance, the term I2;2X�� þ
2I2;1;2X�X� is symmetric. The symmetry is not manifest

at finite temperature because it is hidden after having
chosen to put the Polyakov loop to the left. In addition,
transposition and subsequent move of the Polyakov loop to
the left in a term An produces new terms of higher order.
For instance, to first order in the derivative expansion,

ð�0I1 þ ��1I1;2X0ÞT � ð�0I1 þ ��1I1;2X0Þ
¼ ½I1; �0� � ��1ðI1;2 þ I2;1ÞX0 þOðD2Þ: (3.27)

From Eq. (2.20), ½I1; �0� ¼ i d�0

dQ ½D0; I1�. Use of d�0

dQ ¼
�i ��1, ½D0; I1� ¼ I1;1X0, and I1;2 þ I2;1 ¼ I1;1 shows that

the symmetry holds to the order considered.

The Ir1;...;rn are not linearly independent, so although the

coefficients in An are well-defined functions of the labeled
operators, Xi, their expression in terms of the Ir1;...;rn is not

unique.
The heat kernel does not depend on the prescription

adopted regarding the position of the Polyakov loop (our
choice throughout has been to put it at the left), but the
value of each An will be different for different prescriptions.
The Polyakov loop comes out automatically in the

expressions and, as noted in the Introduction, its presence
is required to accommodate the chemical potential.
Nevertheless, it is also a nuisance and so the possibility
suggests itself to dispose of the Polyakov loop dependence
just by setting� ¼ 1 in the formulas by hand. We call this
the quenched approximation. If this is done, the �n become
ordinary functions of the temperature (rather than opera-
tors) for even n and zero for odd n. Unfortunately, the
result of quenching will depend on the prescription
adopted (regarding the position of the Polyakov loop)
and, in particular, the left-right symmetry can be lost. In
fact, the expressions are fully consistent only when the full
Polyakov loop dependence is retained. For the traced heat
kernel, and so for the effective action, setting� to unity by
hand is also dangerous. Because of the cyclic property, the
same expression can be written in several equivalent but
different ways. Consequently, the result obtained by setting
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� ¼ 1 by hand will yield different results in each case.
This point is further discussed in Sec. IVC 4.

B. Traced heat kernel coefficients

It is also of interest to compute the trace of the heat
kernel, which also produces shorter expressions.
Specifically, (remember that we have set � ¼ 1)

TrðeKÞ¼
Z
ddxtrhxjeKjxi¼ 1

ð4	Þd=2
X
n

Z
ddxtrBnðxÞ: (3.28)

The choice Bn ¼ An is of course correct, but some sim-
plification in the form of the coefficientsBn can be achieved
by using integration by parts and the cyclic property of the
trace. When using this freedom, the functions �n should be
moved to the left by using the identity in Eq. (2.20).

Note that the An can be recovered from the Bn using the
identity

hxjeKjxi ¼ �TrðeKÞ
�XðxÞ : (3.29)

This equality holds separately at each order in the deriva-
tive expansion.
For convenience, we separate in Bn-terms with a con-

tribution at zero temperature from those which vanish in
that limit

Bn ¼ Bð0Þ
n þ BðTÞ

n : (3.30)

The Bð0Þ
n vanish for half-integer n and are of the form

�0ðBnjT¼0Þ, while BðTÞ
n jT¼0 ¼ 0.10

The results are as follows:

Bð0Þ
0 ¼ I1�0; Bð0Þ

1 ¼ � 1

2
I1;2;1�0X�X�;

Bð0Þ
2 ¼ 2I2;2;2;0�0X�X�F�� þ 1

2
I2;2;0�0F��F�� þ I3;3;0�0X��X�� þ 4I3;1;3;0�0X�X�X�� þ 1

2
I2;2;2;2;0�0X�X�X�X�

þ ð4I3;1;3;1;0 � I2;2;2;2;0Þ�0X�X�X�X�: (3.31)

BðTÞ
0 ¼0; BðTÞ

1=2¼0; BðTÞ
1 ¼1

4
I1;2;1 ��2X0X0;

BðTÞ
3=2¼

�
�1

6
I1;2;0�1

6
I2;1;0

�
��1X�F0�þ

�
1

6
I1;2;2�1

6
I1;3;1

��
��1X0�X�þ ��1X�0X�þ ��1X��X0�1

2
��3X00X0

�

þ
�
1

3
I1;1;2;2�1

3
I1;1;3;1

��
��1X0X�X�þ ��1X�X0X�þ ��1X�X�X0�1

2
��3X0X0X0

�
;

BðTÞ
2 ¼�1

6
I3;0;0 ��2F0�F0�þ

�
1

36
I3;2;0�1

2
I3;3;0�1

2
I4;2;0

�
��2X00X��þ

�
11

36
I1;3;0�1

3
I2;2;0�17

36
I3;1;0

�
��2X0�F0�

þ
�
7

9
I3;2;0�1

2
I3;3;0�1

2
I4;2;0

�
��2X0�X0�þ

�
7

36
I3;2;0�1

2
I3;3;0�1

2
I4;2;0

�
��2X��X00þ

�
�1

2
I3;3;0�1

2
I4;2;0

�

�
�
��2X0�X�0þ ��2X�0X0�þ ��2X�0X�;0�1

2
��4X00X00

�
þ
�
7

18
I2;1;3;0�I2;1;4;0þ1

3
I2;3;2;0þ 1

18
I3;1;2;0�2I3;1;3;0�I4;1;2;0

�

� ��2X0X0X��þ
�
11

36
I1;1;3;0� 1

18
I1;2;2;0�13

36
I1;3;1;0�1

3
I2;1;2;0�11

36
I2;2;1;0�17

36
I3;1;1;0

�
��2X0X�F0�

þ
�
11

36
I1;1;3;0þ 5

36
I1;2;2;0�11

36
I1;3;1;0�1

3
I2;1;2;0�1

9
I2;2;1;0�17

36
I3;1;1;0

�
��2X�X0F0�þ

�
7

9
I2;1;3;0�I2;1;4;0þ1

3
I2;3;2;0

þ7

9
I3;1;2;0�2I3;1;3;0�I4;1;2;0

�
ð ��2X0X�X0�þ ��2X�X0X0�Þþ

�
1

18
I2;1;3;0�I2;1;4;0þ1

3
I2;3;2;0þ 7

18
I3;1;2;0�2I3;1;3;0

�I4;1;2;0

�
��2X�X�X00þ

�
�I2;1;4;0þ1

3
I2;3;2;0�2I3;1;3;0�I4;1;2;0

��
��2X0X�X�0þ ��2X�X0X�0�1

2
��4X0X0X00

�

þ
�
5

12
I2;2;2;2;0þ1

9
I3;1;2;1;0�2I3;1;3;1;0þ2

3
I3;2;1;2;0�2I4;1;2;1;0

�
��2X0X0X�X�

þ
�
5

12
I2;2;2;2;0þ7

9
I3;1;2;1;0�2I3;1;3;1;0þ2

3
I3;2;1;2;0�2I4;1;2;1;0

�
ð ��2X0X�X0X�þ ��2X0X�X�X0þ ��2X�X0X0X�

þ ��2X�X0X�X0þ ��2X�X�X0X0Þþ
�
� 5

24
I2;2;2;2;0þI3;1;3;1;0�1

3
I3;2;1;2;0þI4;1;2;1;0

�
��4X0X0X0X0: (3.32)

10Note that the definition Bð0Þ
n ¼ �0ðBnjT¼0Þ would be ambiguous since BnjT¼0 can be written in different ways, which are equivalent

inside the trace but not in �0ðBnjT¼0Þ.
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Once again we note that the �0 and ��n are actually at the
left of the Ir1;...;rn .

Further rearrangement of the expressions is possible to
bring them to a more systematic form. For instance, re-
ordering of covariant derivatives is possible using the
Bianchi identity Y�� ¼ Y�� þ ½F��; Y�, as well as cyclic
permutations or integration by parts. However, such extra
work does not seem to yield a simpler expression. These
expressions for Bn have not been obtained directly from An

but from Tr logðz� KÞ in Chan’s form, which are intro-
duced below.

IV. CHAN’S FORM OF THE
EFFECTIVE ACTION

Up to now we have considered Euclidean space-times
with the topologies Rd or Rd�1 � S1 appropriate to study
field theories at zero or finite temperature. The latter case
leads to the Matsubara frequencies and to the weight
function hMðp0Þ introduced in Eq. (2.35). At zero tempera-
ture the weight function is just equal to unity.

As it turns out, the formalism can be carried out
equally well without assuming any particular properties
of the weight function hðpÞ in the momentum integra-
tion; hðpÞ can even depend on all components p�. For

the purpose of deriving general expressions no simplifi-
cation is obtained by imposing constraints on hðpÞ,
therefore, from now on we will assume a completely
general weight function hðpÞ. We call h-space the setting
leading to such a weight hðpÞ in the momentum inte-
grals. In the next subsection we show that this approach
does not lead to inconsistencies.

A. h-spaces

We devote this subsection to studing the consistency of
the approach with generic hðpÞ, specifically regarding
gauge invariance and cyclic property.

Generalizing the method of symbols, we define

hxjfðD;XÞjxih ¼
Z ddp

ð2	Þd hðpÞfðDþ ip; XÞ; (4.1)

Tr hfðD;XÞ ¼
Z

ddx trhxjfðD;XÞjxih

¼
Z ddxddp

ð2	Þd hðpÞ trfðDþ ip; XÞ: (4.2)

hðpÞ is a c-number function, therefore the cyclic property

works as usual, that is, Trhðf̂1f̂2Þ ¼ Trhðf̂2f̂1Þ.11 As a
consequence, the following property holds

�TrhðeKÞ
�XðxÞ ¼ hxjeKjxih: (4.3)

To extend the method of covariant symbols for generic
hðpÞ we define

hðpþ iDÞ¼X1
n¼0

in

n!
ð@p�1@

p
�2 ���@p�nhðpÞÞD�1

D�2
���D�n

:

(4.4)

Then,

hxjfðD;XÞjxih¼
Z ddp

ð2	ÞdhðpÞe
�iD@peiD@pfðDþip;XÞe�iD@p

¼
Z ddp

ð2	ÞdhðpþiDÞfð �D; �XÞ: (4.5)

Let us consider now the issue of gauge invariance of
hxjfðD;XÞjxih. To study this, it is convenient to write the
right-hand side of Eq. (4.1) more explicitly as

hxjfðD;XÞjxih ¼
Z ddp

ð2	Þd hðpÞhxjfðDþ ip; XÞj0Þ: (4.6)

Now, any operator O constructed with D� and XðxÞ
necessarily transforms gauge covariantly, i.e., as
U�1OU. Gauge covariance can be lost by taking matrix
elements with the state j0Þ, which is not covariant: In
general, hxjOj0Þ does not transform into U�1ðxÞ�
hxjOj0ÞUðxÞ. However, the correct transformation is guar-
anteed provided O is a multiplicative operator because, in
this case, hxjOj0Þ¼OðxÞhxj0Þ¼OðxÞ!U�1ðxÞOðxÞUðxÞ.
Therefore, gauge covariance of hxjfðD;XÞjxih is ensured
provided the operator

f̂ 0 ¼
Z ddp

ð2	Þd hðpÞfðDþ ip; XÞ (4.7)

is multiplicative (matrix elements hxjj0Þ have not be
taken here). The same requirement holds for the operator
hðpþ iDÞ in Eq. (4.5), namely, it must be multiplicative.
(The covariant symbol fð �D; �XÞ is already gauge covariant
and multiplicative.)
An operator O to multiplicative provided it

commutes with c-number functions of x. This
requirement can be recast in the form (the k� are constant

c-numbers)

e�ikxOeikx ¼ O: (4.8)

Because of the property e�ikxD�e
ikx ¼ D� þ ik�, we can

see that f̂0 or hðpþ iDÞ will commute with eikx if

11When hðpÞ ¼ 1, a good convergence of f1;2ðDþ ip; XÞ for
large p� is assumed. Here, we assume that this convergence is
not spoiled by hðpÞ.
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hðp� kÞ ¼ hðpÞ: (4.9)

If this condition is imposed for all k, the function hðpÞ
must be a constant. This corresponds to the zero tem-
perature case. In this case, the quantum fields belong to
the vector space Vd of arbitrary functions of x in Rd (we
disregard internal degrees of freedom here). At finite
temperature, the quantum fields are required to be peri-
odic or antiperiodic and the external fields periodic. This
implies that one is working now in a subspace V of Vd

(namely, that of periodic or antiperiodic functions). The
operators (external fields) acting on that space can carry
only momenta of the type k ¼ ðk; !nÞ in order to leave
V invariant. Therefore, one needs to consider only this
set of momenta when checking the relation hðp� kÞ ¼
hðpÞ for hðpÞ ¼ hMðp0Þ (and the relation is of course
fulfilled by hMðp0Þ.) At the same time, the restriction
in k is directly related with the compactification
Rd ! Rd�1 � S1.

Let us generalize these ideas for other hðpÞ. There should
be a vector space V of space-time functions for the quantum
fields, a set A of allowed operators leaving V invariant, and
a set K of allowed momenta. The operators in A are those
having only momenta k in K in their decomposition in
Fourier modes. Because combinations of operators in A
should also stay in A, we must demand that if k1, k2 2 K,
k1 � k2 2 K (i.e., the set K is closed under linear combi-
nation with integer coefficients, in particular 0 2 K). On
the other hand, V is composed of those functions with
Fourier modes of the type qþ k, for some fixed q and k 2
K. Ideally, such K would come from some suitable com-
pactification of Rd. Finally, there will be gauge invariance
provided hðp� kÞ ¼ hðpÞ for all p and all k in K.

In practice, the only obvious setting carrying out
the above program is for space-times of the type Rn �
S1 � � � � � S1, 0 � n � d. This corresponds to modes k,
which are an integer linear combination of d� n fixed
linearly independent vectors plus an arbitrary vector in the
n supplementary directions. In this case hðpþ iDÞ is a
function of the d� n ‘‘Polyakov loops’’ in the d� n
compactified directions.

At present, it is not clear whether there exist other useful
realizations of h-spaces. In any case, the formalism can be
developed without special assumptions on hðpÞ. In what
follows, we simply assume that the quantum fields lie in
the appropriate space V (the h-space) and the allowed
external fields as well as the allowed gauge transformations
leave V invariant.

B. X-form and N-form of the expressions

1. Diagonal matrix elements of the propagator

Let the propagator be

GðzÞ ¼ 1

z� K
: (4.10)

As is well known, one can obtain generic functions of K
from the propagator,

fðKÞ ¼
Z
�

dz

2	i
fðzÞGðzÞ; (4.11)

where � encloses counterclockwise the spectrum
of K. (fðzÞ is assumed to have the required good
properties.)
The diagonal matrix elements of the propagator

in the h-space can be computed using the method of
symbols or covariant symbols and the derivative expan-
sion, as already explained for the heat kernel. To second-
order one finds

hxjGðzÞjxih
¼
Z ddp

ð2	ÞdhðpþiDÞ
�
N�2ip�NX�N

2�4p�p�NX��N
3

þNX��N
2�8p�p�NX�NX�N

3

�4p�p�NX�N
2X�N

2þ2NX�NX�N
2þOðD3Þ

�
:

(4.12)

Here,

N ¼ ðzþ p2 � XÞ�1: (4.13)

The expression through third-order is given in
Appendix C, using labeled operators.
We refer to the form in Eq. (4.12) as the X-form of the

expression because the X appear with derivatives and the
N carry no derivative. By means of the relation X� ¼
N�1N�N

�1, and derivatives of it, one can eliminate

completely the X and write the same expression using
only N and covariant derivatives of it. For a generic
initial expression, negative powers of N will be present
after elimination of X. When this is not the case, we say
that the expression admits an N-form. As it turns out, the
covariant symbol of the propagator admits an N-form
(see Appendix C).12 As a consequence, the diagonal
matrix element of the propagator also admits an
N-form. One virtue of the N-form is that usually the
expressions are much more compact. A drawback is that
the functions Ir1;...;rn do not directly apply for expressions

written in N-form.
For the diagonal matrix elements of the propagator,

through third-order in the derivative expansion and in
N-form, one finds

12We do not have a proof of this to all orders (but have little
doubt that it is so). It has been verified through fourth- order in
the derivative expansion.
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hxjGðzÞjxih¼
Z ddp

ð2	ÞdhðpþiDÞðN�2ip�N�N�4p�p�N�N�N�4p�p�N��N
2þN��N�2ip�N��N�N

�2ip�N��N�N�2ip�N�N��N�2ip�N��N�N�4

3
ip�N���N

2�4

3
ip�N���N

2�4

3
ip�N���N

2

�2ip�NF��N�N�2

3
ip�NF���N

2þ8ip�p�p
N�N�
N
2þ8ip�p�p
N��NN
Nþ16ip�p�p
N��N
N

2

þ8ip�p�p
N��
N
3þ8ip�p�p
N�N�N
NþOðD4ÞÞ: (4.14)

The corresponding expression for the fourth-order terms is
given in Appendix C. In these expressions there are no
ambiguities related to integration by parts in p� or z and so
the formulas are essentially unique. The only remaining
freedom is to reorder the covariant derivatives.

2. Trace of the propagator

In order to obtain the trace of a generic function of K,
one can use

Tr hfðKÞ ¼
Z
�

dz

2	i
fðzÞTrhGðzÞ: (4.15)

The expression of TrhGðzÞ can be obtained by starting
from hxjGðzÞjxih [Eq. (4.14)] and using integration by parts
and the trace cyclic property to obtain a simpler form.
Because of the presence of the factor hðpþ iDÞ, the
integration by parts (with respect to the covariant deriva-
tive) and the cyclic property do not act in the usual way for
the expression in parenthesis. Instead one can use the
identity

Z ddp

ð2	Þd AðpÞhðpþ iDÞBðpÞ

¼
Z ddp

ð2	Þd hðpþ iDÞei@pD̂AAðpÞBðpÞ: (4.16)

Here, AðpÞ and BðpÞ are arbitrary operators which may

depend on p� (but not on @p�). D̂A;� is ½D�; � acting only on
AðpÞ. On the other hand, @p� acts on the p� dependence in

AðpÞ and BðpÞ. This identity is proven in Appendix D. Of
course, if one is working modulo OðDnþ1Þ and AB ¼
OðDnÞ, the operator ei@

pD̂A can be dropped and the cyclic
property works as usual.
However, the expression for TrhGðzÞ is more easily

obtained from the relation

Tr hGðzÞ ¼ d

dz
Trh logðz� KÞ; (4.17)

using the compact expression for Trh logðz� KÞ to be
given in Eq. (4.23). An explicit calculation to third order
gives

Tr hGðzÞ ¼
Z ddxddp

ð2	Þd tr

�
hðpþ iDÞðN � 4p�p�NN�N� � 6ip�N�N�N� þ ip�F��NNN� þ ip�F��NN�N

þ 2

3
ip�F��N�NN þ 8

3
ip�p�p
NNN�N�
 þ 10ip�p�p
NNN��N
 þ 26

3
ip�p�p
NN�NN�


� 2ip�NN��N� � 2ip�NN��N� þ 44ip�p�p
NN�N�N
 þOðD4ÞÞ
�
: (4.18)

Also the matrix elements of the propagator can be recov-
ered from the logarithm by using

hxjGðzÞjxih ¼ � �

�XðxÞ Trh logðz� KÞ; (4.19)

but in this case the relation Eq. (4.16) is needed to extract
the factor �XðxÞ in �Trh logðz� KÞ.

C. The effective action in Chan’s form

As follows from Eqs. (4.15) and (4.18), for a generic
function of K, TrhfðKÞ requires an integral over p� and

another over z. Nevertheless, the parametric integration
over z can be obviated in the special case of the logarithm.
Trh logK is just the effective action.

1. Trh logðz� KÞ
As it turns out (verified through four derivatives) the

diagonalmatrix elements of the propagator can bewritten as

hxjGðzÞjxih ¼
Z ddp

ð2	Þd
�
hðpþ iDÞdMðzÞ

dz
þ hðpÞCðzÞ

�
:

(4.20)

Here, MðzÞ is a multiplicative operator that admits an
N-form, and CðzÞ is traceless (a sum of commutators).
Therefore,

Trh logðz�KÞ¼
Z
�

d�

2	i
logðz��Þ

�
Z ddxddp

ð2	Þd tr

�
hðpþiDÞdMð�Þ

d�

�
: (4.21)
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The term with CðzÞ has dropped from the expression.
Next we integrate by parts in � , this transforms
logðz� �Þ into 1=ðz� �Þ. The integrand is assumed to
be well-behaved at infinity (in particular, the branch cut
of the logarithm is no longer present). Hence, we can
switch from the contour � that includes the spectrum of
K and excludes the pole at � ¼ z to a contour excluding
the spectrum of K and including the pole at � ¼ z. This
produces

Tr h logðz� KÞ ¼
Z ddxddp

ð2	Þd tr½hðpþ iDÞMðzÞ�:
(4.22)

Now Trh logðz� KÞ is written in Chan’s form, namely,
in N-form and without parametric integration on � . Note
that the dependence on z is inessential as z can be absorbed
in X.
Explicitly,

MðzÞ¼�logNþp�p�N�N��1

3
ip�NN�F���1

3
ip�N�NF���2

3
ip�p�p
N��NN
þ2

3
ip�p�p
N��N
N

�1

4
N��N��þ1

2
N�N�F��þ 1

12
N2F��F��þ1

9
p�p�N��N

Nþ7

9
p�p�N

N��Nþ28

9
p�p�N�
N�
N

�17

9
p�p�N

2N�
F�
�4

3
p�p�NN�
NF�
þ11

9
p�p�N�
N

2F�
�11

9
p�p�N
NN�F�
�11

9
p�p�NN�N
F�


�4

9
p�p�NN
N�F�
�13

9
p�p�N�NN
F�
�2

9
p�p�N�N
NF�
þ5

9
p�p�N
N�NF�
�2

3
p�p�N

3F�
F�


þ8

3
p�p�p
p�N�N�
N�N�4p�p�p
p�N��NN
�N�4p�p�p
p�N��N
�N

2

þ10

3
p�p�p
p�N�N�N
N�þOðD5Þ: (4.23)

(The isolated term � logN ¼ logðN�1Þ is still considered
to be in N-form.)

The form of MðzÞ is not unique, due to the cyclic
property and integration by parts with respect to the co-
variant derivative.

That Chan’s form exists is not trivial in the sense that it
holds for the logarithm but not for generic functions of K.
Chan’s form was introduced in [40]. Extended to six
derivatives in [47], to curved space-time in [36], and to
fermions in [48]. It is quite remarkable that it also exists in
h-spaces (in particular, at finite temperature). Even more
so, since we are not allowed to use two important tools of
the original derivation by Chan [40], namely, momentum

average and integration by parts with respect to p�. This is

forbidden due to the presence of the function hðpÞ, which is
arbitrary. It is noteworthy that, unlike the original Chan’s
formula, our expression does not depend on the space-time
dimension. This property is also shared by the heat kernel.
Another difference with Chan’s result is that the p� are

contracted only with covariant derivative indices and not
with other p�.

2. Traced heat kernel

To obtain the traced heat kernel, Eq. (3.28), from the
effective action, Eqs. (4.22) and (4.23), one can use

Tr he
K ¼

Z
�

dz

2	i
ez Trh

1

z� K
¼

Z
�

dz

2	i
ez

@

@z
Trh logðz� KÞ ¼ �

Z
�

dz

2	i
ez Trh logðz� KÞ

¼ �
Z
�

dz

2	i
ez

Z ddxddp

ð2	Þd tr½hðpþ iDÞMðzÞ�: (4.24)

Now the shift z ! z� p2 implies N ! ðz� XÞ�1 in MðzÞ and ez ! eze�p2
. Hence, MðzÞ becomes p-independent and

the integral over momenta reduces to obtaining the following h-dependent operators,

hp�1
� � �p�n

ih ¼ ð4	Þd=2
Z ddp

ð2	Þd hðpþ iDÞe�p2
p�1

� � �p�n
: (4.25)

The Bn in Sec. III B are obtained in this way.

3. Reduction to Chan’s form

In what follows, we explain how Eq. (4.23) is obtained. First, let us see how Chan’s derivation [40] can be adapted to the
present case. Using Eq. (4.1),
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hxj logðz� KÞjxih ¼
Z ddp

ð2	Þd hðpÞ logðz� ðD� þ ip�Þ2 � XÞ

¼
Z ddp

ð2	Þd hðpÞ½logðN
�1Þ þ logð1� ð2ip�D� þD2

�ÞNÞ þ C�

¼
Z ddp

ð2	Þd hðpÞ
�
logðN�1Þ � X1

n¼1

1

n
ðð2ip�D� þD2

�ÞNÞn þ C
�
; (4.26)

where C denotes commutator terms, which will vanish upon use of the cyclic property of the trace. To second-order in the
derivative expansion

Tr h logðz� KÞ ¼
Z ddxddp

ð2	Þd tr½hðpÞðlogðN�1Þ � 2ip�D�N �D2
�N þ 2p�p�D�ND�N þOðD3ÞÞ�: (4.27)

Using the relations

@p� logðN�1Þ ¼ 2p�N;
1

2
@p�@

p
� logðN�1Þ ¼ ���N � 2p�p�N

2; (4.28)

the trace can be written as

Trh logðz� KÞ ¼
Z ddxddp

ð2	Þd tr

�
hðpÞðlogðN�1Þ � iD�@

p
� logðN�1Þ � 1

2
D�D�@

p
�@

p
� logðN�1Þ

� 2p�p�D�D�N
2 þ 2p�p�D�ND�N þOðD3ÞÞ

�

¼
Z ddxddp

ð2	Þd tr½hðpÞe�iD@pðlogðN�1Þ þ p�p�N�N� þOðD3ÞÞ�

¼
Z ddxddp

ð2	Þd tr½hðpþ iDÞðlogðN�1Þ þ p�p�N�N� þOðD3ÞÞ�: (4.29)

This expression has the desired Chan’s form.
In order to obtain the expression ofMðzÞ to four deriva-

tives it is not practical to apply the previousmethod since it is
not sufficiently systematic. A possibility would be to simply
write down all possible terms that could appear inMðzÞ to
fourth-order with free coefficients and expand everything in
powers of D�, including hðpþ iDÞ ! hðpÞe�iD@p , using

the cyclic property to match the terms in Eq. (4.26).
Assuming that the p� can be only contracted with covariant

derivatives (but not with other p�) the number of terms is

finite (since N�1 is not allowed). However, the number of
possible terms is too large (and it is easy to miss some of
them when trying to write down all of terms).

The method that we have followed is partially construc-
tive and partially guessing. Let

AðzÞ¼ logðN�1Þ�X1
n¼1

1

n
ðð2ip�D�þD2

�ÞNÞnþC; (4.30)

where C are suitable commutator terms to be fixed. From
previous formulas,

Trh logðz�KÞ¼
Z ddxddp

ð2	Þd tr½hðpÞAðzÞ�

¼
Z ddxddp

ð2	Þd tr½hðpþ iDÞeiD@pAðzÞe�iD@p�:
(4.31)

Hence, we have to choose C, if possible, in such a way that
the operator

M ðzÞ ¼ eiD@pAðzÞe�iD@p (4.32)

is multiplicative and in N-form. To see how this condition
reflects on AðzÞ, let us define two first-order variations,
namely,

�D:D�!D�þ i�a�; �p:p�!p�þ�a�; (4.33)

where �a� is an arbitrary constant c-number (common to

both variations). Clearly, the condition thatMðzÞ is multi-
plicative (and so with the covariant derivative operators in
the form ½D�; �) is that

�DMðzÞ ¼ 0: (4.34)

Using Eq. (4.32), this requirement translates into the fol-
lowing condition on AðzÞ:

ð�D � �pÞAðzÞ ¼ 0: (4.35)

In turn, this is just the condition requiring that AðzÞ must
depend only on the combination D� þ ip�. This property

is manifest in the symbol logðz� ðD� þ ip�Þ2 � XÞ but is
not automatically preserved by the derivative expansion
with formal use of the cyclic property (which is needed to
have an N-form). So we have to choose the freedom
implied by the cyclic property (i.e., the commutator terms
CðzÞ) to fulfill Eq. (4.35).
What we have done is to expand AðzÞ in Eq. (4.30) but

allow all possible cyclic permutations for each term with
free coefficients (this is the guess). Such coefficients
are then partially fixed by the condition of reproducing
logðz� ðD� þ ip�Þ2 � XÞ, modulo the cyclic property,
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and by the condition in Eq. (4.35). This condition is easily
implemented by means of the rules

ð�D��pÞD�¼ i�a�; ð�D��pÞp�¼��a�;

ð�D��pÞN¼2�a�p�N
2:

(4.36)

The corresponding MðzÞ obtained from Eq. (4.32) is mul-
tiplicative. It can be written in a manifestly multiplicative
form by moving the D� to the right, forming covariant

derivatives. The remaining freedom in the coefficients is
used to obtain a simple form for MðzÞ. The guess chosen,
works at least to four derivatives and very likely also to all
orders. We conjecture that Chan’s form for general hðpÞ
can be extended to curved space-times as well.

4. Quenched approximation

The Polyakov loop in the formulas, or more generally
the explicit iD� in hðpþ iDÞ, is needed for consistency,

but it is also a nuisance. Here, we study the effect of setting
this explicit iD� to zero by hand in an expression. We call

this the quenched version of the expression. The quenched
results will be incorrect in general, but one can still con-
sider whether this approximation can be done consistently.

For any operator, the same derivation leading to Eq. (4.5)
can be repeated putting the explicit iD� to the right,

hxjfðD;XÞjxih ¼
Z ddp

ð2	Þd hðpþ iDÞfð �D; �XÞ

¼
Z ddp

ð2	Þd fð
�D; �XÞhðpþ iDÞ: (4.37)

After quenching, by setting iD� to zero, the two expres-

sions yield two different (incorrect) results. In fact, for a
Hermitian operator like eK, the unquenched matrix ele-
ment respects hermiticity, but the two quenched expres-
sions do not (rather they are hermitian conjugate of each
other). On the other hand, inside the trace the two
quenched expressions do coincide (with each other but
not with the exact one containing hðpþ iDÞ)13

Tr h;qðfðD;XÞÞ ¼
Z ddxddp

ð2	Þd tr½hðpÞfð �D; �XÞ�

¼
Z ddxddp

ð2	Þd tr½fð �D; �XÞhðpÞ�: (4.38)

This relation provides a concrete choice of quenched ver-
sion of the trace of an operator fðD;XÞ. In general, this will
not coincide with first computing TrhðfðD;XÞÞ and then
quenching since the latter does not commute with the
cyclic property or integration by parts.

Next, we study whether the quenched version of the
traced heat kernel (as defined from Eq. (4.38) using eK)

satisfies a consistency condition like that in Eqs. (3.28) and
(3.29), namely,

hxjeKjxih;q¼
�Trh;qðeKÞ
�XðxÞ ; Trh;qðeKÞ¼

Z
ddx trhxjeKjxih;q:

(4.39)

These kind of conditions, and similar ones for the effective
action, can be derived from the corresponding relation for
the propagator (which of course holds in the unquenched
case too),

Z
ddx tr

�Trh;qGðzÞ
�XðxÞ ¼ � d

dz
Trh;qGðzÞ: (4.40)

As a matter of fact, Eq. (4.40) is correct just because the
expressions admit an N-form and so depend on z and X in
the form z� X. (Note that z� X appears only inN and any
given block N�1...�n

can be transformed into N by integra-

tion by parts. So one needs to consider only the X and z
variations on each block N at a time. The two variations
give the same result thanks to the trace.)
The quenched version of the effective action as defined

in Eq. (4.38) using logK does not admit a Chan’s form.
This can be seen from Eq. (4.14). (Note that Eq. (4.18) has
already applied the cyclic property and the integrand
shown there is not unique.) After applying the quenching
prescription in Eq. (4.14), one finds that the term N��N

cannot be expressed as a derivative with respect to z
modulo commutator terms.
We stress once more that, in general, setting iD� ¼ 0 in

a traced quantity, written in different ways related by the
cyclic property, yields different results. This follows from
Eq. (4.16). At finite temperature this is also clear from
Eq. (2.20): when using the cyclic property, commutation
with� produces time derivatives which are missed if� is
set to unity by hand. Also, relevant contributions can be
missed by quenching. For instance, the first contribution to
the induced charge density, obtained by taking a variation
with respect to the potential A0ðxÞ in the effective action,
comes from the Polyakov loop. Other contributions com-
ing from F��ðxÞ contain more derivatives.

All this implies that the quenched approximation is
rather dangerous and may produce uncontrolled results.
Therefore, quenching should either be avoided altogether
or, at least, a careful evaluation of the contribution coming
from the terms neglected should be done.

V. SUMMARYAND CONCLUSIONS

We have developed a new technique to deal with diago-
nal matrix elements of generic pseudodifferential opera-
tors. The method applies at finite temperature or, more
generally, to h-spaces, i.e., spaces with weighted integrals
over the momentum of the loop. The approach is based on
extending the method of covariant symbols to such spaces.
This allows us to carry out a manifestly gauge covariant

13Inside the trace and the integral over p�, hðpÞfð �D; �XÞ¼
hðpÞei@pDfðDþip;XÞ¼hðp�iDÞfðDþip;XÞ¼fðDþip;XÞh�
ðp�iDÞ¼fð �D; �XÞhðpÞ:
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and Lorentz covariant calculation throughout. We conjec-
ture that the approach can be extended to curved space-
time as well. In this case, the Polyakov loop of the
Levi-Civita connection is expected to appear in parallel
with the gauge connection.

The new technique is appropriate to carry out covariant
derivative expansions, so we have applied it to the heat
kernel and to the effective action in Chan’s form. For the
heat kernel, we present results for the diagonal matrix
elements to three derivatives (the fourth-order terms have
also been obtained but are too bulky to be included). For
the trace of the heat kernel we present results to four
derivatives. We also present, to four derivatives, the ex-
pression of the effective action of a generic bosonic Klein-
Gordon operator in Chan’s form (i.e., prior to momentum
integration) valid in h-spaces.

We have briefly touched the connection with the real-
time formulation of field theory at finite temperature.
That formulation is appropriate to treat time dependent
aspects, or even problems related to nonequilibrium phys-
ics. Such connection, notmade in this work, is clearlyworth
pursuing.

In this regard, we emphasize that the use of generic
weights hðpÞ in this work is not intended as a device to
describe time-dependent situations or a connection to the
real-time formalism.14 We merely observed that although
hMðp0Þ is an even function of p0, all the Chan-like for-
mulas can be written equally well for any hðpÞ without
assuming any parity property or, more generally, any spe-
cial dependence on p�. We find this formal property

remarkable. However, as shown in Eq. (4.9), the condition
of gauge invariance does introduce a requirement of peri-
odicity, which in practice we only know how to fulfill for
Euclidean space-times with the topology of a (possibly
degenerated) torus. It could be that the formal property is
just a mathematical nicety or it could signal a deeper
property of the formalism. This is not known at present.

As emphasized in Sec. II, the derivative expansion im-
plies a resummation of the dimensional (or large mass)
expansion and, in this sense, we go considerably further
than the standard approach for the heat kernel. The deriva-
tive expansion has the virtue of being gauge covariant at
each order separately. In addition, higher order terms are
increasingly ultraviolet convergent. So, for instance, anom-
aly saturating effective actions can be computed in closed
form using this technique [34,38]. The derivative expan-
sion in field theory is one of the few systematic tools to go
beyond the perturbative regime [8,18,50] and provides
guidance in modeling of effective Lagrangians in exact

renormalization group approaches [52]. The applicability
of this technique extends to external field configurations,
which are slowly varying on space-time. In the case of
external gauge fields, these have to be weak since they
enter in the covariant derivative to preserve gauge invari-
ance. The range of validity of the derivative expansion as
compared to exact calculations in concrete profiles have
been tested, most recently, in [53]. As expected, the trun-
cated expansion works better for quantum fields with short
wavelengths, although even outside this regime it does a
good job in some of the cases studied [53]. In general, the
derivative expansion is expected to be asymptotic, like the
semiclassical expansion in quantum mechanics with which
it is closely related. Therefore, a naive summation of
higher orders would not provide a convergent result. To
carry out the expansion to fourth-order is rather standard as
the number of terms quickly increases beyond that order
[35,47]. In addition, in four space-time dimensions, the
calculation to four derivatives accounts for the ultraviolet
divergent contributions. These are the ones leading to
power counting renormalizable Lagrangian terms.
Matrix elements of operators acting in the one-particle

Hilbert space, hyjAjxi, correspond to propagation along
single lines from x to y in the Feynman graphs (in position
space). General Feynman diagrams can be constructed
joining these lines with the vertices of the theory under
consideration. In the present work, we have only studied
diagonal matrix elements hxjAjxi. This is appropriate to
produce local Lagrangians, under the derivative expansion.
However, such restriction is certainly a limitation. For
instance, as noted in Sec. II A, we can compute in this
way the expectation value of the induced current hJ�ðxÞi.
By the same token, sum rules of the type hTðDnJðxÞÞ�
ðDmJðxÞÞi can be also obtained from the local calculation.
On the other hand, the correlation between two currents in
two different points hTJ�ðxÞJ�ðyÞi is not directly acces-

sible. Therefore, an extension of the techniques discussed
here to nondiagonal matrix elements would be of interest.
Upon completion of this work, we have learned that an

equation equivalent to our Eq. (2.40) has been found
independently in [53], in their study of CP violation in
the standard model at finite temperature.
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14Nevertheless, the possibility of transforming Eq. (2.44) into
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can be seen, for instance, in the spectral quark model introduced
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APPENDIX A: COMMUTATOR EXPANSION

If an expansion can be defined by means of a book-
keeping parameter the corresponding coefficients are well
defined as fð�Þ ¼ P

ncn�
n and cn does not depend on how

the expression is manipulated. Unfortunately, this is not
the case for expansions based on counting the number of

commutators. For instance, consider operators f̂ ¼ fðA; BÞ
given by linear combinations of products of the basic
operators A and B. No particular algebraic property is
assumed for A and B (other than the associative property).

Let us grade the terms of the commutator expansion of f̂ by
the number of ½A; � they carry. This is ambiguous. For
instance

B2A ¼ AB2 � ½A;B�B� B½A; B�: (A1)

The expression as a whole is of zeroth-order (this is the
leading order). However, the concrete zeroth-, first- and
second-order components are different in the left- and the
right-hand sides of the equation.

To remedy this situation, the ambiguity can be removed
by choosing a canonical form. A concrete choice comes
from imposing the following prescriptions: (i) In the
canonical form the expression is written as a linear combi-
nation of products of blocks of the type, A or ½A; �nB with
n ¼ 0; 1; 2; . . . (that is, B; ½A; B�; ½A; ½A; B��; . . . ); (ii) The
blocks A are placed at the left. Further, the As at the left
count as order zero and each block ½A; �nB counts as order
n. The right-hand side of Eq. (A1) is written in canonical
form: the zeroth-order is AB2, the first-order is�½A; B�B�
B½A; B�, and higher orders vanish.

Let us now show that, by using labeled operators, the
canonical form just defined, as well as the corresponding
grading of terms, can be derived from a bookkeeping
parameter. This is achieved by counting powers of � in

f̂ ¼ fðA; BÞ ! f̂� ¼ fðA1 þ �ðA� A1Þ; BÞ: (A2)

Here, A1 represents A placed at the left (position 1 with
respect to the blocks ½A; �nB). For instance,

B2A ! B2ðA1 þ �ðA� A1ÞÞ
¼ AB2 þ �ðB2A� AB2Þ
¼ AB2 � �ð½A; B�Bþ B½A; B�Þ: (A3)

To proof Eq. (A2) in general, first note that Ai � Aiþ1 is
just ½A; � placed at position i. For example, ðA2 � A3ÞB2 ¼
A2B

2 � A3B
2 ¼ BAB� B2A ¼ B½A; B�. Then, if a blockA

is located at position n, one can write

A�A1¼An�A1

¼ðAn�An�1ÞþðAn�1�An�2Þþ���þðA2�A1Þ:
(A4)

Therefore,A� A1 is a sumof commutators and� inEq. (A2)
just counts the number of commutators ½A; �.

This counting is unambiguous and extends trivially to
the case of more operators, fðA; B; C; . . .Þ, if terms are still
graded by the number of ½A; �. It is worth noticing that
things are more complicated for traced expressions due to
the cyclic property of the trace. (For instance, position ‘‘1’’
becomes ambiguous.)
At the end of Sec. III A 2, it was noted that choosing to

put the Polyakov loop at the left or at the right and then
setting it to unity gives different results and breaks hermi-
ticity of the heat kernel at finite temperature. This can be
seen in the heat kernel coefficient A1 in Eq. (3.26) since ��2

is not zero for � ¼ 1. More generally, consider Eq. (2.43)
with Q ! 0. The covariant symbol �K does not break the
symmetry, but the momentum derivatives can only be
taken to the right due to the presence of hMðp0Þ and this
breaks the symmetry. Repeating the calculation with
hMðp0Þ placed at the right gives a different result, namely,
the transposed of the previous one. The same conclusion
can be obtained from ordinary symbols. This can be illus-
trated with a simple example. Consider the operator
ðD0 þ XÞ�1. We consider the two expansions with D0

moved to the left or to the right,

1

D0 þ X
¼ 1

D0;L þ X þD0 �D0;L

¼ NL � NLðD0 �D0;LÞNL þ � � � ; (A5)

here NL ¼ ðD0;L þ XÞ�1 and D0;L is D0 at the left. If we

set now D0;L ! 0 in NL the result is

N � NðD0 �D0;LÞN þOðN2Þ
¼ N þ ½D0; N�N þOðN2Þ;

N ¼ X�1:

(A6)

A similar calculation with D0;R ! 0 in NR gives

N � NðD0 �D0;RÞN þOðN2Þ
¼ N � N½D0; N� þOðN2Þ: (A7)

So the two prescriptions differ by ½D0; N
2� þOðN2Þ. On

the other hand, inside the trace, the two prescriptions do
yield the same result as stated in Eq. (4.38).

APPENDIX B: MOMENTUM INTEGRALS
AT FINITE TEMPERATURE

Let

hp�1
p�2

���p�n
i¼ ð4	�Þd=2

Z ddp

ð2	ÞdhMðp0�QÞ

�e��p2
p�1

p�2
���p�n

: (B1)

These integrals are needed to obtain the heat kernel expan-
sion coefficients at finite temperature. They are not nor-
malized to unity. In particular,

h1i ¼ �0: (B2)
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The basic result comes from distinguishing spatial from temporal degrees of freedom,

hpi1pi2 � � �pi2np
m
0 i ¼ ð4	�Þðd�1Þ=2 Z dd�1p

ð2	Þd�1
e��p2

pi1pi2 � � �pi2nð4	�Þ1=2
Z dp0

2	
hMðp0 �QÞe��p2

0pm
0

¼ 1

ð2�Þn �i1i2...i2n

1

ði ffiffiffi
�

p Þm ’m: (B3)

Here the symbol �i1i2...i2n represents the symmetric sum of the ð2n� 1Þ!! products of nKronecker deltas (each term with

weight one). For example,

�ijkl ¼ �ij�kl þ �ik�jl þ �il�jk: (B4)

Besides, we have introduced the auxiliary functions

’m ¼ ð4	�Þ1=2im�m=2
Z dp0

2	
hMðp0 �QÞe��p2

0pm
0 ; m ¼ 0; 1; 2; . . . : (B5)

These are related to the functions �n of Eq. (3.3) through the relations

’m ¼ Xm
n¼0

inþm2ðn�mÞ=2c0nm�n; �n ¼
Xn
m¼0

ð�iÞnþm2�ðn�mÞ=2cnm’m; (B6)

where

xm ¼ Xm
n¼0

c0nmHnðxÞ; HnðxÞ ¼
Xn
m¼0

cnmx
m: (B7)

As matrices c0 ¼ c�1T .
In order to compute the heat kernel to four covariant derivatives, we need hp�1

p�2
� � �p�n

i for 0 � n � 4. Using the

previous formulas one obtains

h1i ¼ �0; hp�i ¼ i

2�1=2
��0

��1; hp�p�i ¼ 1

2�
ð����0 � 1

2
��0��0

��2Þ;

hp�p�p
i ¼ i

4�3=2

�
ð����
0 þ ��
��0 þ ��
��0Þ ��1 � 1

2
��0��0�
0

��3

�
;

hp�p�p
p�i ¼ 1

4�2

�
���
��0 � 1

2
ð����
0��0 þ ��
��0��0 þ �����0�
0 þ ��
��0��0 þ �����0�
0

þ �
���0��0Þ ��2 þ 1

4
��0��0�
0��0

��4

�
;

(B8)

The formulas in this Appendix plus the first Eq. (3.3) written as

�n ¼ ð4	�Þ1=2ð�iÞn2�n=2
Z dp0

2	
hMðp0 �QÞe��p2

0Hnð
ffiffiffiffiffiffi
2�

p
p0Þ; (B9)

hold if the function hMðp0Þ is replaced everywhere by a more general weight function, hðp0Þ. No special property of
hMðp0Þ has been used.

APPENDIX C: FORMULAS

Covariant symbol of K through fourth-order in the derivative expansion,

�K ¼ X � p�p� þ iX�@
p
� þ p�F��@

p
� � 1

2
X��@

p
�@

p
� þ 2

3
ip�F��
@

p
�@

p

 þ 1

3
iF���@

p
� � 1

6
iX��
@

p
�@

p
�@

p



� 1

4
p�F�
��@

p
�@

p

@

p
� � 1

4
F���
@

p
�@

p

 þ 1

4
F��F�
@

p
�@

p

 þ 1

24
X��
�@

p
�@

p
�@

p

@

p
� þOðD5Þ: (C1)
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Diagonal matrix elements of the propagator through third-order in the derivative expansion, in X-form

hxjGðzÞjxih ¼
Z ddp

ð2	Þd hðpþ iDÞðI1 � 2iI1;2p�X� � 4I1;3p�p�X�� þ I1;2X��

� ð8I1;1;3 þ 4I1;2;2Þp�p�X�X� þ 2I1;1;2X�X� � 2iI1;1;2p�F��X� � 8

3
iI1;3p�p�p
F��


þ 8

3
iI1;3p�p�p
F��
 � 2

3
iI1;2p�F��� þ 8iI1;4p�p�p
X��
 � ið�24I1;1;4 � 8I1;2;3Þp�p�p
X�X�


� ið�24I1;1;4 � 16I1;2;3 � 8I1;3;2Þp�p�p
X��X
 � ið�48I1;1;1;4 � 32I1;1;2;3 � 16I1;1;3;2

� 16I1;2;1;3 � 8I1;2;2;2Þp�p�p
X�X�X
 � 4

3
iI1;3p�X��� � 4

3
iI1;3p�X��� � 4

3
iI1;3p�X���

þ ið�4I1;1;3 � 2I1;2;2Þp�X�X�� � 4iI1;1;3p�X�X�� � 4iI1;1;3p�X�X��

þ ið�4I1;1;3 � 2I1;2;2Þp�X��X� þ ið�4I1;1;3 � 2I1;2;2Þp�X��X� þ ið�4I1;1;3 � 2I1;2;2Þp�X��X�

þ ið�8I1;1;1;3 � 4I1;1;2;2 � 4I1;2;1;2Þp�X�X�X� þ ið�8I1;1;1;3 � 4I1;1;2;2Þp�X�X�X�

þ ið�8I1;1;1;3 � 4I1;1;2;2Þp�X�X�X� þOðD4ÞÞ: (C2)

Covariant symbol of GðzÞ in N-form, through third-order,

�GðzÞ ¼ N þ iN�@
p
� � 2ip�N�N þ N��N � 1

2
N��@

p
�@

p
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Fourth-order of the diagonal matrix element of GðzÞ in N-form,
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hxjGðzÞjxih;4¼
Z ddp

ð2	Þdhðpþ iDÞ
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: (C4)

APPENDIX D: THE CYCLIC PROPERTY IN h-SPACES

In order to prove Eq. (4.16), we can assume without loss of generality that AðpÞ ¼ ÂaðpÞ and BðpÞ ¼ B̂bðpÞ,
where the operators Â and B̂ do not depend on p�, and aðpÞ and bðpÞ are c-numbers (i.e., they commute with everything

except @p�),

Z ddp

ð2	Þd AðpÞhðpþ iDÞBðpÞ ¼
Z ddp

ð2	Þd Âhðpþ iDÞB̂aðpÞbðpÞ ¼
Z ddp

ð2	Þd ÂhðpÞe
�i@pDB̂aðpÞbðpÞ

¼
Z ddp

ð2	Þd hðpÞÂe
�i@pDB̂aðpÞbðpÞ ¼

Z ddp

ð2	Þd hðpþ iDÞei@pDÂe�i@pDB̂aðpÞbðpÞ

¼
Z ddp

ð2	Þd hðpþ iDÞei@pD̂A Â B̂ aðpÞbðpÞ ¼
Z ddp

ð2	Þd hðpþ iDÞei@pD̂AAðpÞBðpÞ: (D1)
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