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We study supersymmetric structure of the self-isospectral crystalline chains formed by N copies of the

mutually displaced one-gap Lamé systems. It is generated by the NðN � 1Þ integrals of motion which are

the first order matrix differential operators, by the same number of the nontrivial second order integrals,

and by the N third order Lax integrals. We show that the structure admits distinct alternatives for a grading

operator, and in dependence on its choice one of the third order matrix integrals plays either the role of the

bosonic central charge or the role of the fermionic supercharge to be a square root of the spectral

polynomial. Yet another peculiarity is that the set of all the second order integrals of motion generates a

nonlinear sub-superalgebra. We also investigate the associated self-isospectral soliton chains, and discuss

possible physical applications of the unusual extended supersymmetry.
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I. INTRODUCTION

Quantum periodic finite-gap systems are associated with
completely integrable models. Any such system is charac-
terized by a proper nontrivial integral of motion that is a
higher order Lax operator P [1]. In the infinite period limit
they transform into reflectionless (soliton) systems. Their
band structure is effectively encrypted in a Burchnall-
Chaundy operator identity [2,3] that can be presented in
a form of a supersymmetriclike relation [4]:

fP ;P g ¼ 2PðHÞ; (1.1)

where PðHÞ is a spectral polynomial and H is a
Hamiltonian.1

Because of the presence of the nontrivial integral P , a
supersymmetric extension of finite-gap systems has a more
rich structure in comparison with that of a usual N ¼ 2
supersymmetric quantum mechanics. An example of a
physical system with such an unusual supersymmetry is
provided by a model of a nonrelativistic electron in
periodic magnetic and electric fields [21]. In a generic
case of the N ¼ 2 superextension of an n-gap system by
means of a Crum-Darboux transformation of the order m,

1 � m< 2nþ 1, where 2nþ 1 is a number of band-edge
states, a supersymmetric finite-gap system is characterized
by two further supercharges of the order (2nþ 1�m)
[21]. The anticommutator of supercharges of the orders
m and (2nþ 1�m) generates the Lax integral of the order
2nþ 1. Another important peculiarity is that such super-
extended systems admit various choices for the grading
operator. For some of them, a matrix diagonal Lax integral
takes a role of one of the supercharges that annihilates all
the 2ð2nþ 1Þ band-edge states of the extended system.
Unlike the antidiagonal supercharges of the orders m and
(2nþ 1�m), it also distinguishes the left- and right-
moving Bloch modes inside the allowed bands [22]. This
is similar to a role played by a momentum operator for a
free particle that can be treated as a zero-gap system.
Sometimes, a supersymmetric partner happens to be just

a spatially displaced initial finite-gap periodic or nonperi-
odic system. The Witten index takes then a zero value for
such a self-isospectral system [17] even in the case of
unbroken supersymmetry [14,15,23].
Recently, it was observed [22] that a phase transition

between the kink-antikink and kink crystalline phases in
the Gross-Neveu model [24–28] is accompanied by the
structural changes in the associated supersymmetric self-
isospectral one-gap periodic Lamé system. Any of the two
first order supercharges of the latter can be taken as the
Bogoliubov-de Gennes Hamiltonian in the Andreev ap-
proximation, in which superpotential is identified with a
gap function (a condensate field). The first order super-
charges are constructed from the Darboux displacement
generators of the associated second order Schrödinger
system. Yet another peculiarity of such a system is that
the first order Bogoliubov-de Gennes Hamiltonian pos-
sesses its own, exotic hidden nonlinear supersymmetry
[22]. A certain infinite period limit applied to the one-
gap self-isospectral system reproduces either the super-
symmetric structure of the Dashen, Hasslacher, and
Neveu kink-antikink baryons [29] as a Darboux dressed

1Because of a higher order nature of the Lax integral, the
indicated relation formally corresponds to a higher-derivative
generalization of the supersymmetric quantum mechanics [5],
whose construction naturally arises after truncation of the para-
supersymmetric quantum mechanics [6]. Nonlinear supersym-
metry of an extended system with higher order supercharges can
be related to the Crum-Darboux transformations [7–10] in the
way like the usual supersymmetric quantum mechanics is related
to the first order Darboux transformations [11]. In the unex-
tended case, however, relation (1.1) has a nature of a hidden
nonlinear supersymmetry [12], in which the Z2 grading is
provided by a reflection operator [13] that identifies the parity-
odd Lax integral as a fermionic supercharge [4]. In the extended
case of the chains of finite-gap systems we study here, the Crum-
Darboux and hidden supersymmetric structures naturally meet.
For the earlier treatment of finite-gap systems in supersymmetric
and related contexts, see also [14–20].
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form of a free massive Dirac particle [30], or superex-
tended version of the Callan-Coleman-Gross-Zee kink
solution [29,31] of the Gross-Neveu model [22].

A pair of the second order supercharges of the N ¼ 2
superextended one-gap Lamé system is generated by a
sequence of the two first order Darboux displacements,
while the Lax operators of the mutually shifted Lamé
subsystems are produced by closed third order Crum-
Darboux loops. The second order supercharges and the
third order Lax integrals include a dependence on an aux-
iliary, virtual displacement parameter. It is natural to try to
extend the model by taking N > 2 mutually displaced
copies of Lamé systems. This produces then the question:

� What supersymmetric structure will be generated in
such an extended Lamé system by considering the
higher order unclosed (m> 2) and closed (m> 3)
sequences of Darboux displacements?

In the present paper we study the supersymmetric structure
of the self-isospectral crystalline chain of mutually
displaced one-gap Lamé systems, and investigate in the
same context the associated self-isospectral nonperiodic
(soliton) chains of reflectionless Pöschl-Teller systems.

The paper is organized as follows. In the next section we
construct the first order Darboux displacement generators
for the one-gap Lamé system. In Sec. III we apply them to
construct self-isospectral chains of Lamé systems, and
investigate the higher order generalizations of the
Darboux displacement generators. In Sec. IV we study a
general structure of the exotic nonlinear supersymmetry of
the self-isospectral crystalline N-term chain. Section V is
devoted to the discussion of alternative choices for the
Z2-grading operator admitted by such an extended super-
symmetric structure. In Sec. VI general theory is illustrated
by an example of the N ¼ 3 crystalline chain. In Sec. VII
we consider the infinite period limit that produces a self-
isospectral nonperiodic chain and its supersymmetric
structure. In the last section we conclude with a discussion
of possible physical applications of the revealed unusual
nonlinear supersymmetry.

II. DARBOUX DISPLACEMENT GENERATORS:
PERIODIC CASE

Consider a one-dimensional self-adjoint Schrödinger

Hamiltonian HðxÞ ¼ � d2

dx2
þ VðxÞ with a periodic poten-

tial VðxÞ. Require that the system admits a family of the
first order Darboux displacement generators Dðx;�Þ ¼
d
dx þ ’ðx;�Þ,

D ðx;�ÞHðxÞ ¼ Hðxþ �ÞDðx;�Þ; (2.1)

which depends on a continuous parameter �. Then
it can be shown that VðxÞ has to be a one-gap Lamé
potential [15,19]. The Jacobi form of the one-gap Lamé
system is [32]

HðxÞ ¼ � d2

dx2
þ 2k2sn2x� k2: (2.2)

A modular parameter k; 0< k < 1, fixes a real, 2K, and
imaginary, 2iK0, periods of the potential. Here and in what
follows we do not indicate explicitly the dependence of
elliptic and related functions on k, and use a notation

i ¼ ffiffiffiffiffiffiffi�1
p

for imaginary unit. The chosen value of the
additive constant fixes the level of the lower edge of the
valence band to be zero, and the one-gap spectrum of (2.2)
is �ðHÞ ¼ ½0; k02� [ ½1;1Þ, where 0< k0 < 1 is a comple-
mentary modular parameter, k02 ¼ 1� k2. The infinite pe-
riod limit (k ! 1 ) 2K ! 1, 2iK0 ! i�, snx ! tanhx)
of (2.2) corresponds to a reflectionless Pöschl-Teller system
with one bound state in the spectrum, while in another limit
k ! 0, (2.2) reduces to a free particle system.
To construct a one-parametric Darboux displacement

generator, we discuss shortly some properties of Lamé
system (2.2). Solutions of the stationary equationH�ðxÞ ¼
E�ðxÞ are given by the Bloch functions of the form

���ðxÞ ¼
Hðx� �Þ
�ðxÞ exp½�xZð�Þ�; E ¼ dn2�; (2.3)

where H, �, and Z are the Eta, Theta, and Zeta Jacobi
functions [32,33]. Under translation for the period, they
transform as

���ðxþ 2KÞ ¼ exp½�i2K�ð�Þ����ðxÞ;
�ð�Þ ¼ �

2K
� iZð�Þ; (2.4)

where �ð�Þ is a quasimomentum. Energy E is given here as
a function Eð�Þ ¼ dn2� of a complex parameter �. This is
an elliptic function with the same modular parameter k,
and its period parallelogram in complex plane � 2 C is a
rectangle with vertices in 0, 2K, 2Kþ 2iK0, and 2iK0. On
the border of the indicated period parallelogram, function
dn� takes real or pure imaginary values, and so, E is real.
The vertical sides� ¼ i�þK, 0 � � � K0, and� ¼ i�,
0 � �<K0, correspond, respectively, to the valence, 0 �
E � k02, and the conduction, 1 � E<1, bands, where
the quasimomentum �ð�Þ is real. The horizontal sides
� ¼ iK0 þ � and � ¼ � with 0<�<K correspond to
the prohibited bands�1<E< 0 and k02 <E< 1, where
�ð�Þ takes complex values. Inside the allowed bands, (2.3)
are the two Bloch modes propagating to the left (the upper
index) and to the right (the lower index). On the edges of
the bands, they reduce to the standing waves described by
the periodic, dnx ¼ dnðxþ 2KÞ (E ¼ 0), and antiperiodic,
cnx ¼ �cnðxþ 2KÞ (E ¼ k02) and snx ¼ �snðxþ 2KÞ
(E ¼ 1), functions.
Like the ground state dnx (� ¼ Kþ iK0, E ¼ 0), non-

physical Hamiltonian eigenstates in the lower prohibited
band �1<E< 0 are nodeless functions, which can be
used to construct a one-parametric family of the first
order Darboux generators. As dnð�uÞ ¼ dnðuþ 2KÞ ¼
�dnðuþ 2iK0Þ ¼ dnu, it is convenient to introduce a
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notation � ¼ �2�þ iK0, and assume that � 2 R while
keeping in mind that E ! �1 for � ! nK, n 2 Z. By
shifting the argument, x ! xþ �, for the wave function

(2.3) with the upper index we get ��2�þiK0
þ ðxþ �Þ ¼

cð�ÞFðx; �Þ, where cð�Þ is a nonzero x-independent multi-
plier, and

�ðx� �Þ
�ðxþ �Þ exp½xzð�Þ� � Fðx; �Þ: (2.5)

Here

z ð�Þ ¼ Zð2�þ iK0Þ þ i
�

2K
¼ Zð2�Þ þ cn2�dn2�

sn2�
(2.6)

is, up to a factor �i, a quasimomentum of the Bloch
state (2.5), zð�Þ ¼ �i�ð�2�þ iK0Þ, that is an odd func-
tion of �. A nodeless function Fðx; �Þ is quasiperiodic
in x, Fðxþ 2K; �Þ ¼ exp½2Kzð�Þ�Fðx; �Þ, periodic in �,
Fðx; �þ 2KÞ ¼ Fðx; �Þ, and for x � 0 it undergoes infi-
nite jumps from 0 to þ1 at � ¼ nK, n 2 Z. It also
satisfies the relations Fðx;��Þ ¼ Fð�x; �Þ ¼ 1=Fðx; �Þ.
In the case of the ground state zð�K=2Þ ¼ 0, and function

(2.5) reduces to a periodic function ðk0Þ�1=2dnðx� K
2 Þ.

Let us consider now a first order differential operator,

Dðx; �Þ ¼ Fðx; �Þ d
dx

1

Fðx; �Þ ¼
d

dx
� �ðx; �Þ;

Dyðx; �Þ ¼ �Dðx;��Þ;
(2.7)

whose zero mode is Fðx; �Þ, Dðx; �ÞFðx; �Þ ¼ 0. Function
�ðx; �Þ ¼ F0ðx; �Þ=Fðx; �Þ, F0ðx; �Þ ¼ @

@x Fðx; �Þ, reads
�ðx; �Þ ¼ zð�Þ þ Zðx� �Þ � Zðxþ �Þ

¼ cn2�dn2�

sn2�
þ k2sn2�snðx� �Þsnðxþ �Þ: (2.8)

It obeys the Riccati equations

�2ðx; �Þ � �0ðx; �Þ ¼ 2k2sn2ðx� �Þ � k2 þ "ð�Þ; (2.9)

where

"ð�Þ ¼ �Eð�2�þ iK0Þ ¼ cn22�=sn22�: (2.10)

Another important property is that the following three-term
linear combination,

�ðx; �Þ þ �ðxþ �þ �;�Þ þ �ðxþ �;��� �Þ
¼ zð�Þ þ zð�Þ þ zð��� �Þ � gð�; �Þ; (2.11)

is x independent. The function gð�; �Þ possesses the sym-
metry properties gð�; �Þ ¼ gð�; �Þ ¼ gð�;��� �Þ ¼
�gð��;��Þ and can be presented in a form

gð�; �Þ ¼ 1� cn2�cn2�cn2ð�þ �Þ
sn2�sn2�sn2ð�þ �Þ : (2.12)

From Eqs. (2.6) and (2.7) we find a relation �ð�; �Þ ¼
gð12 ð�� �� iK0Þ; �Þ, i.e. by (2.11) �ð�; �Þ can be pre-

sented by a three-term sum of quasimomenta taken at three

values of arguments which sum up to the zero. We also will
need the identity

�0ðxþ �þ �;�Þ � �ðxþ �; �þ �Þ�ðxþ �þ �;�Þ
þ gð�; �Þ�ðx; �Þ ¼ �1

2ð�2ðx; �Þ þ�0ðx; �Þ þ 	ð�ÞÞ;
where 	ð�Þ ¼ 1þ k2 � 3sn�22�; (2.13)

which follows from (2.9) and (2.11).
By the Riccati equations (2.9), the operators (2.7) fac-

torize the Lamé Hamiltonian (2.2),

Dyðx; �ÞDðx; �Þ ¼ Hðxþ �Þ þ "ð�Þ;
Dðx; �ÞDyðx; �Þ ¼ Hðx� �Þ þ "ð�Þ; (2.14)

with (2.10) playing a role of a factorization constant.

Note here that the second eigenstate ��2�þiK0
� ðxþ �Þ of

the shifted Lamé Hamiltonian operator (2.2) reduces, up to
an inessential �-dependent multiplier, to Fðxþ 2�;��Þ,
that is coherent with a relation Eð�2�þiK0Þ¼
Eð2�þiK0Þ. In correspondence with this observation, a
change � ! �� in the first relation from (2.14) and a sub-
sequent shift x ! xþ 2� transform this first factorization
into an equivalent form Dðxþ 2�; �ÞDyðxþ 2�; �Þ ¼
Hðxþ �Þ þ "ð�Þ, that is just the second relation from
(2.14) with the argument x shifted for 2�.
From (2.14) it follows that (2.7) are the sought for

Darboux displacement generators,

Dðx; �ÞHðxþ �Þ ¼ Hðx� �ÞDðx; �Þ;
Dyðx; �ÞHðx� �Þ ¼ Hðxþ �ÞDyðx; �Þ: (2.15)

AsDyðx; �Þ ¼ �Dðx;��Þ, it is sufficient to consider only
the first intertwining relation from (2.15) while the second
follows from it via a simple change � ! ��.

III. CHAINS OF ONE-GAP LAMÉ SYSTEMS

In this section we construct higher order generalizations
of Darboux generators, that will lead us naturally to the
chains of Darboux-displaced one-gap Lamé systems.
A mutual spatial Darboux displacement between the two

systems in (2.15) is 2� while their ‘‘average coordinate’’ is
x. For generalization it is convenient to characterize each
of the two related systems by its own shift parameter by
introducing the notations

�ab ¼ 1
2ð�b � �aÞ ¼ ��ba;

xab ¼ xþ 1
2ð�a þ �bÞ ¼ xba:

(3.1)

Then xab þ �ab ¼ xþ �b, xab � �ab ¼ xþ �a, and rela-
tions (2.14) and (2.15) can be presented in the form

D abD
y
ab ¼ �DabDba ¼ Ha þ "ab; (3.2)

D abHb ¼ HaDab; (3.3)

where we have introduced further notations
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Dab ¼Dðxab;�abÞ¼�Dy
ba; Ha ¼Hðxþ�aÞ;

"ab ¼"ð�abÞ¼"ba;
(3.4)

see Fig. 1. Since the superpotential �, the Darboux
displacement generatorDab and the factorization constant
"ab blow up at �ab ¼ nK, n 2 Z, we suppose that
�ab � nK.

Making use of the relation (3.3), one can define the
second order operator

Bab=�¼Da�D
y
�b¼�Da�D�b; By

ab=�¼Bba=�; (3.5)

where as for �ab, we assume that �a�; ��b � nK. Like the
first order operator Dab, it intertwines the same two sys-
tems Ha and Hb,

B ab=�Hb ¼ HaBab=�; (3.6)

via a chain of the two Darboux displacements,Bab=�Hb ¼
�Da�D�bHb ¼ �Da�H�D�b ¼ �HaDa�D�b ¼
HaBab=�. In this chain, there appears an intermediate

system H�, which from the viewpoint of our pair of basic
systems Ha and Hb is of a virtual, auxiliary nature. To
stress a virtual nature of the displacement parameter �, we
indicate it in a special way (with slash) in notation for the
second order Crum-Darboux intertwining operator B.
From (3.5) we find a relation

B aa=� ¼ Da�D
y
a� ¼ Ha þ "a�: (3.7)

Hence, Bab=� is a kind of a non-Hermitian generalization

of the Lamé Hamiltonian operator. In correspondence with
(3.7), the second order intertwiner Bab=�, unlike Dab, is

well defined (for �a�, ��b � nK) also in the case when
�ab ¼ nK. The virtual parameter on the right-hand side
(rhs) in (3.7) appears only in the additive term. We also
have

Bab=�B
y
ab=�¼Bab=�Bba=�¼ðHaþ"a�ÞðHaþ"b�Þ: (3.8)

Making use of (2.13), we find that a specific linear
combination of the second, B, and the first order, D,
intertwining operators,

Y ab ¼ �Bab=� � gab�Dab; Yy
ab ¼ Yba; (3.9)

does not depend on the virtual parameter �, where we have
introduced a notation

gab� � gð�ab; ��aÞ ¼ zð�abÞ þ zð�b�Þ þ zð��aÞ (3.10)

for a function of displacement parameters, which is com-
pletely antisymmetric in the indices, gab�¼�gba�¼�ga�b.
Note the cyclic order of the indices on the rhs of (3.10).
The explicit form of the intertwining operator Yab ¼
Yðxab; �abÞ, YabHb ¼ HaYab, is given by

Yðx;�Þ¼ d2

dx2
��ðx;�Þ d

dx
�k2sn2ðxþ�Þþsn�22�: (3.11)

From (3.9) we get also

B ab=� ¼ Bab=
 þ ðgab
 � gab�ÞDab; (3.12)

that corresponds to a change of the virtual displacement
parameter, see Fig. 2. The coefficient in (3.12) before the
first order intertwining operator has a cyclic representation in
terms of the quasimomentum, gac
 � gac� ¼ zð�a�Þ þ
zð��cÞ þ zð�c
Þ þ zð�
aÞ, cf. (3.10).
Intertwining operators of the first and the second

order allow us to construct a nontrivial integral for Lamé
system Ha,

P a ¼ DabYba þ "abCab ¼ YabDba � "abCab; (3.13)

½P a; Ha� ¼ 0, where P a ¼ P ðxþ �aÞ, Cab ¼ Cð�abÞ ¼
�Cba, Cð�Þ � gð�; 12KÞ ¼ dn2�=ðsn2�cn2�Þ. Integral

(3.13) is nothing else as the Lax operator for one-gap
Lamé system (2.2), whose explicit form is

P ðxÞ ¼ d3

dx3
þ ð1þ k2 � 3k2sn2xÞ d

dx
� 3k2snxcnxdnx;

P y ¼ �P : (3.14)

Relation (3.13) can be presented in the equivalent form

D abDbcDca ¼ P a � gabcHa þ "ab � �abc; (3.15)

where

�abc � "abðgabc � CabÞ: (3.16)

Making use of the equivalent representation for the func-
tion (2.11) and (2.12),

gð�;
Þ ¼ Cð�Þ"ð�Þ � Cð
Þ"ð
Þ
"ð�Þ � "ð
Þ ;

one can check that the three-index object defined in (3.16)
possesses the same antisymmetry properties as gabc,
�abc ¼ ��bac ¼ ��acb. We can also write

FIG. 1 (color online). (a) The Darboux displacement generator
Dab transforms eigenstates of Hb into those of the translated
system Ha, see (3.3). (b) The Hamiltonian Ha as a sequence of
the two Darboux displacements (3.2).

FIG. 2 (color online). The second order intertwiner as a se-
quence of the two Darboux displacements; the second line
corresponds to a change � ! � of the virtual parameter (3.12).

ADRIÁN ARANCIBIA AND MIKHAIL S. PLYUSHCHAY PHYSICAL REVIEW D 85, 045018 (2012)

045018-4



P a ¼ �Bab=cDba þ gabcHa þ �abc

¼ �DabBba=c � gabcHa � �abc; (3.17)

see Fig. 3. With the help of (3.17) and relations

"ab"bc"ca��2
abc¼0;

"ab"acþ"ab"bcþ"ac"bc�2gabc�abc¼k02;

"abþ"acþ"bc�g2abc¼�ð1þk02Þ;
(3.18)

we find that the Lax integral and the Hamiltonian satisfy
the Burchnall-Chaundy operator identity

�P 2¼PðHÞ; PðHÞ¼HðH�k02ÞðH�1Þ; (3.19)

where PðHÞ is a spectral polynomial of the one-gap Lamé
system (2.2). One can show that, in correspondence with
(3.19), the physical states (2.3) are also the eigenstates of

the Lax operator, P���ðxÞ ¼ �i�ðEð�ÞÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðEð�ÞÞp

, where
�ðEÞ ¼ �1 for the valence and þ1 for the conduction
bands [22]. The Lax integral distinguishes the left-(��þ)
and the right-(���)moving Bloch modes inside these
bands, and annihilates the band-edge states.

Proceeding from the definition of the second order op-
erator Bab=� as a composition of the first order Darboux

displacement generators, one can generalize the picture by
treating the intermediate systemH� not just as a virtual one
but on equal grounds as the systems Ha and Hb.

The second order intertwining generator can be gener-
alized for the case of the third order. Making use of the
already known lower order relations and identity (3.12),
one finds

DabDbcDcd ¼ �Bac=bDcd ¼ �DabBbd=c

¼ �ðHa þ "dcÞDad þ ðgacd � gacbÞBad=c

¼ �ðHa þ "abÞDad þ ðgbda � gbdcÞBad=b:

(3.20)

The variation in the form of the two last expressions is in
the intermediate indices. Such an ambiguity (freedom)
related to the intermediate indices also appears in the
higher order generalizations of the intertwining relations
and integrals (Darboux loops). If we put d ¼ a in (3.20),
the triple product of the Ds reduces to a third order

Darboux loop (3.15), while in the two last expressions
the first order operator D and the coefficient before the
second order intertwining operator are singular. A careful
treatment of these expressions in the limit sense d ! a
reproduces correctly the rhs of the relation (3.15).
In the next, the fourth order case, we get in the same way

DabDbcDcdDdf¼Bac=bBcf=d

¼ðHaþ"dcþgadc�gadfÞBaf=d

þðgacd�gacbÞðHaþ"fdÞDaf: (3.21)

Taking in the last relation f ¼ a, we find that the fourth
order integral for Ha can be presented as follows:

DabDbcDcdDda ¼ ðHa þ "dcÞðHa þ "adÞ þ ðgacb � gacdÞ
� ðP a þ gacdHa þ �acdÞ; (3.22)

i.e. it reduces to a function of Ha and P a. Continuing, we
find that in the general case the closed (loop) sequence of
the n Darboux transformations Dab1Db1b2 . . .Dbn�1a is an

integral of motion for the system Ha of the form

D ab1Db1b2 . . .Dbn�1a ¼ h1ðHaÞ þ h2ðHaÞP a; (3.23)

where h1;2ðHaÞ are certain polynomials ofHa. An unclosed

sequence of n Darboux transformations reduces, analo-
gously, to a combination of the first and the second order
intertwining operators with coefficients to be some func-
tions of the intertwined Hamiltonians Ha and Hc,

D ab1Db1b2 . . .Dbn�1c ¼ f1ðHaÞDac þ f2ðHaÞBac=bn�1

¼ Dacf1ðHcÞ þBac=bn�1
f2ðHcÞ:

(3.24)

Index bn�1 in Bac=bn�1
can be changed for any other

intermediate index by employing identity (3.12).
We conclude therefore that the higher order open chains

of the Darboux displacement transformations reduce as
differential operators to linear combinations of the two
basic blocks: the first, D, and the second, B, order
Darboux displacement generators with coefficients to be
certain functions of the intertwined Hamiltonians. In the
case of the closed (loop) chains, they reduce, analogously,
to a linear function of the third order Lax integral P with
coefficients depending on the Hamiltonian. No new struc-
tures do appear in addition to these sets of the first and the
second order intertwining generators and the third order
Lax integrals, which will play a role of the basic blocks in
the associated supersymmetric construction, to the discus-
sion of which we pass over in the next section.

IV. SUPERSYMMETRY OF SELF-ISOSPECTRAL
PERIODIC CHAINS

In this section we introduce a kind of the N-extended
system to be a self-isospectral chain of one-gap Lamé

FIG. 3 (color online). Two representations for the third order
(Lax) integral: P a ¼ � 1

2Da�B�a=� � 1
2Ba�=�D�a ¼

� 1
2Da�D��D�a � 1

2Da�D��D�a.

EXTENDED SUPERSYMMETRY OF THE SELF- . . . PHYSICAL REVIEW D 85, 045018 (2012)

045018-5



systems, and study general characteristics of the super-
symmetric structure associated with it.

Consider a chain ofN 	 2 one-gap Lamé systems which
we describe by a matrix Hamiltonian:

H ¼ diagðH1; . . . ; HNÞ: (4.1)

Here we use the same notations as in (3.4),Ha¼Hðxþ�aÞ,
a ¼ 1; . . . ; N, and assume that the set of the shift parame-
ters �a is restricted by the condition �ab ¼ 1

2 ð�b � �aÞ �
nK for any pair of indices a � b, i.e. we suppose that the
arguments of Hamiltonians of any two subsystems are
shifted mutually for any distance to be different from the
real period n2K.

Introduce a symbol êab defined by êab ¼ þ1 for a < b,
êab ¼ �1 for a > b, and êab ¼ 0 if a ¼ b. We imply that
ðêabÞ2nþ1 ¼ êab, n 2 Z, while ðêabÞ2n ¼ þ1 for a � b
and ðêabÞ2n ¼ 0 for a ¼ b. We also introduce the N � N
matrices:

ð�ab
1 Þij ¼ ðêabÞ2ð	a

i 	
b
j þ 	b

i 	
a
j Þ;

ð�ab
2 Þij ¼ iêabð	a

i 	
b
j � 	b

i 	
a
j Þ;

(4.2)

ð�ab
3 Þij ¼ êabð	a

i 	
a
j � 	b

i 	
b
j Þ;

ðIabÞij ¼ ðêabÞ2ð	a
i 	

a
j þ 	b

i 	
b
j Þ:

(4.3)

In (4.2) and (4.3) we assume that a � b, and so, the first
factor in definition of �ab

1 and Iab can be omitted. By
definition, all the four matrices are symmetric in indices
a, b, �ab

k ¼ �ba
k , k ¼ 1; 2; 3, Iab ¼ Iba. For N ¼ 2 they

reduce to the three Pauli and the unit matrices, and
for N 	 2 satisfy the same algebra �ab

i �ab
j ¼ 	ijI

ab þ
i
ijk�

ab
k , i; j; k ¼ 1; 2; 3.

Making use of the intertwining relations from the
previous section, we find that the system (4.1) is charac-
terized by the NðN � 1Þ nontrivial integrals

ðSabl Þij ¼ ðiÞlþ1ð�ab
1 ÞijðêijÞlDij; l ¼ 1; 2; (4.4)

which are the matrix differential operators of the first order,
and by the same number of the integrals of the second order

ðQab
l=�Þij¼ð	a

i 	
b
j þ	b

i 	
a
j ÞðiêijÞl�1Bij=�; l¼1;2; (4.5)

½H ; Sabl � ¼ 0; ½H ; Qab
l=�� ¼ 0: (4.6)

In definition of the integrals (4.5) we suppose that the
virtual parameter �� can take independent values for
each pair of indices a � b, and for any of the two values
of the index l; the only restriction, as before, is �a�; ��b �
nK. On the other hand, relation (3.12) means that any
second order integral Q with the changed value of the
virtual parameter is a linear combination of the initial
operator Q and of the first order integral S.
In accordance with the introduced notations, the inte-

grals with the indices l ¼ 1 and l ¼ 2 are related by

Sab2 ¼ i�ab
3 Sab1 ; Qab

2=� ¼ i�ab
3 Qab

1=�: (4.7)

This is coherent with the fact that Iab and �ab
3 are also the

integrals of motion forH , ½H ; Iab� ¼ ½H ;�ab
3 � ¼ 0, and

they act, respectively, as the identity and �3 ¼ diagð1;�1Þ
matrices in the two-term subsystem specified by the in-
dices a � b. Also, the following relations are valid:

Mab¼Mba; MabWcd¼0 when all a;b;c;d are distinct;

(4.8)

where any of M and W is Sl or Ql=�.

Matrix

�¼diagð1;�1; . . . ;ð�1ÞN�1;ð�1ÞNÞ; �2¼1; (4.9)

is an (zero order) integral of motion for the system (4.1),
½H ;�� ¼ 0, and can be taken as a grading operator. It
identifies the integrals Sabl and Qab

l=� with a� b ¼ 2nþ 1

as fermionic operators, f�;Mabg ¼ 0, and those with
a� b ¼ 2n as bosonic, ½�;Mab� ¼ 0. To identify the
superalgebraic structure generated by the integrals of mo-
tion, we compute anticommutators between fermionic in-
tegrals (supercharges), and we take commutators between
bosonic, and between bosonic and fermionic integrals. In
accordance with (4.8), corresponding commutators,
½Mab;Mcd�, and anticommutators, fMab;Mcdg, take zero
values when all the indices a, b, c, d are distinct. Nontrivial
anticommutators for fermionic supercharges are

fSabl ; Sabm g ¼ 2	lmI
abðH þ "abÞ; (4.10)

fSabl ; Sbcm g ¼ ðêabÞlðêbcÞmð	lmð�1ÞlQac
1=b þ ð1� 	lmÞêacQac

2=bÞ; (4.11)

fQab
l=�; Q

ab
m=�g ¼ 2	lmI

abðH þ "a�ÞðH þ "b�Þ; (4.12)

fQab
l=�; Q

bc
m=�g ¼ ðêabÞl�1ðêbcÞm�1ð	lmð�1Þl�1Qac

1=� þ ð1� 	lmÞêacQac
2=�ÞðH þ "b�Þ; (4.13)

fQab
l=�; S

ab
m g ¼ 2ðêabÞl�1ðêbaÞmIabð	lmð�1Þlðgab�H þ �ab�Þ � ð1� 	lmÞLÞ; (4.14)

fQab
l=�; S

bc
m g ¼ ðêabÞl�1ðêbcÞmð	lmð�1Þlþ1êacS

ac
1 þ ð1� 	lmÞSac2 ÞðH þ "bcÞ: (4.15)
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The nontrivial commutators are given by

½Sabl ; Sabm � ¼ �2iðêabÞlþ1ðêbaÞmð1� 	lmÞ�ab
3 ðH þ "abÞ; (4.16)

½Sabl ; Sbcm � ¼ iðêabÞlðêbcÞmð	lmð�1Þlþ1êacQ
ac
2=b � ð1� 	lmÞQac

1=bÞ; (4.17)

½Qab
l=�; Q

ab
m=�� ¼ �2iðêabÞlðêbaÞm�1ð1� 	lmÞ�ab

3 ðH þ "a�ÞðH þ "b�Þ; (4.18)

½Qab
l=�; Q

bc
m=�� ¼ iðêabÞl�1ðêbcÞm�1ð	lmð�1ÞlêacQac

2=� þ ð1� 	lmÞQac
1=�ÞðH þ "b�Þ; (4.19)

½Qab
l=�; S

ab
m � ¼ 2iðêabÞlð~
baÞm�ab

3 ðð�1Þlþ1	lmLþ ð1� 	lmÞðgab�H þ �ab�ÞÞ; (4.20)

½Qab
l=�; S

bc
m � ¼ iðêabÞl�1ðêbcÞmð	lmð�1ÞlSac2 þ ð1� 	lmÞêacSac1 ÞðH þ "bcÞ: (4.21)

In correspondence with the comment on the change of the
virtual index we made above, without loss of generality we
put the same value for it in both second order integrals in
each of the corresponding (anti)commutators in (4.12),
(4.13), (4.18), and (4.19).

In (4.14) and (4.20) there appears a nontrivial matrix
operator

L ¼ �idiagðP 1;P 2; . . . ;PNÞ; (4.22)

composed from the third order Lax operators P a¼
P ðxþ�aÞ¼�1

2ðDabBba=�þBab=�DbaÞ, see Eq. (3.13).

The bosonic integral L is a central element of the super-
algebra with the grading operator �,

½L;H �¼½�;L�¼0; ½L;Sabl �¼ ½L;Qab
l=��¼0: (4.23)

For the self-isospectral chain system (4.1), we have N
obvious [bosonic for (4.9)] third order integrals La ¼
�idiagð0; . . . ; 0;P a; 0; . . . ; 0Þ, the sum of which corre-
sponds to the central element L. To write the commutation
relations for them in the general case of the N-terms chain,
it is convenient to define the linear combinations of La,
Lab
1 ¼ IabL, and Lab

2 ¼ �ab
3 L, remembering that forN > 2

not all of them are linearly independent. All these third
order integrals commute between themselves, while their
nontrivial commutators with the first and the second order
integrals are

½Lab
l ; Sabm � ¼ 2imðêabÞmþ1	l2ð�ab

3 Þmþ1½LS�ab; (4.24)

½Lab
l ; Sbcm � ¼ imðêbaÞl�1êbcð�bc

3 Þmþ1½LS�bc; (4.25)

½Lab
l ; Qab

m=�� ¼ �2im	l2ð�ab
3 Þm½LQ�ab=�; (4.26)

½Lab
l ; Qbc

m=�� ¼ �imþ1ðêbaÞl�1êbcð�bc
3 Þm½LQ�bc=�; (4.27)

where l ¼ 1; 2, and we denote

½LS�ab � Qab
1=�ðH þ "abÞ � êabS

ab
1 ðgab�H þ �ab�Þ;

(4.28)

½LQ�ab=�� êabQ
ab
2=�ðgab�H þ�ab�Þ

þSab2 ðH ðH þ2k02"�1
ab �"a��"b�Þþ"a�"b�Þ:

(4.29)

Though on the right-hand side of (4.28), there appears ex-
plicitly a virtual parameter �, the complete combination of
the integrals there does not dependon�. This can be checked
by making use of definitions (4.4), (4.5), (3.9), and (3.16).
We see that the set of the first, the second, and the third

order integrals of motion, which are Hermitian matrix
operators, generate a kind of nonlinear superalgebra. A
nonlinearity is related to the fact that some of the (anti)
commutators of these integrals are quadratic in the
Hamiltonian H , or include H or H 2 as a multiplier at
other integrals. The results on the general form of inter-
twining relations from the previous section show that no
new independent integrals do appear in addition to those
we already found. The interesting property of this super-
symmetric structure is also that the set of the second order
integrals Qab

l=� taken with the same value for the virtual

parameter � (i.e. with the same shift parameter ��) to-
gether with the Hamiltonian H form a closed nonlinear
sub-superalgebra, see Eqs. (4.12), (4.13), (4.18), and (4.19).
The second order integrals can be reduced to a ‘‘standard’’
form with a prescribed, (any) fixed value of the virtual
parameter by means of relation (3.12).

V. ALTERNATIVE CHOICES FOR THE
Z2-GRADING OPERATOR

The choice (4.9) for the grading operator is not unique.
The permutation of diagonal elements in (4.9), or multi-
plication of some of them by�1, changes the identification
of integrals as fermionic and bosonic ones, and, as a
consequence, some commutation relations will be changed
for anticommutation relations and vice versa. This does not
change, however, the bosonic nature of the diagonal matrix
integrals Lab

l , and a global conclusion on a nonlinear nature

of superalgebra.
There are alternative choices for the grading operator

which involve reflections in the coordinate x and in the
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shift parameters. They provide some new features for the
superalgebraic structure. Let us discuss some of such alter-
natives. Consider the reflection in x (parity) operator R,
Rx ¼ �xR, R�i ¼ �iR, R2 ¼ 1, and the operator T
that reflects any of the shift parameters, including the
virtual ones, T �i ¼ ��iT , T x ¼ xT , T 2 ¼ 1, and
commutes with R. The product of these two operators is
a nontrivial, nonlocal integral of motion for our chain
system, ½RT ;H � ¼ 0, and its square equals 1. So, it
can be identified as another sort of the grading operator,

�̂ ¼ RT : (5.1)

The operator �̂ anticommutes with all the first, Sabl , and the

third, Lab
l , order integrals, and commutes with the second

order integrals Qab
l=�. In this case Sabl and Lab

l are the

fermionic operators, while Qab
l=� are the bosonic ones. To

compute the superalgebraic structure for such a choice of
the grading operator, we have to use coherently with the
described identification of bosonic and fermionic genera-
tors the corresponding (anti)commutators from the previous
section, which should be supplied with the nontrivial anti-
commutation relations that involve the third order integrals,

fLab
l ; Sabm g ¼ 2imðêabÞmþ1	l1ð�ab

3 Þm½LS�ab; (5.2)

fLab
l ; Sbcm g ¼ imðêbaÞl�1ð�bc

3 Þm½LS�bc; (5.3)

fLab
l ; Qab

m=�g ¼ �2im	l1ð�ab
3 Þmþ1½LQ�ab=�; (5.4)

fLab
l ; Qbc

m=�g ¼ �imþ1ðêbaÞl�1ð�bc
3 Þmþ1½LQ�bc=�; (5.5)

fLab
l ; Lab

m g ¼ 2ð�ab
3 ÞlþmPðH Þ; (5.6)

fLab
l ;Lbc

m g¼ ðIab� êab�
ab
3 ÞðêbaÞl�1ðêbcÞm�1PðH Þ: (5.7)

Under such a choice of the grading operator, the spectral
polynomial of the chain, PðH Þ ¼ H ðH � k02ÞðH � 1Þ,
appears explicitly in the superalgebraic structure. This
choice, therefore, is coherent with the structure of a hidden,
bosonized supersymmetry (1.1) [12] that is present in each
of the chain subsystems Ha [4]. The relation (5.6) particu-
larly reveals the property of the Lax operators that is essen-
tial for physical applications: each third order differential
operator Ll here is an annihilator of the three band-edge
states in the spectrum of the corresponding chain Lamé
subsystem Hl, see Refs. [21–23] for the further details. In
the case of the choice of the grading operator discussed in the
previous section, this peculiarity of the Lax operators does
not show up in the superalgebraic relations.

The product of the two operators, (4.9) and (5.1), can
also be chosen as a grading operator. Yet other possibilities
are associated with the introduction of the operators of the
permutations of the displacement parameters, Tab ¼ Tba,
defined by Tab�b ¼ �aT

ab, Tab�c ¼ �cT
ab, Tabx ¼ xTab.

Combining such operators with the matrix structures�ab
1;2;3,

and reflection operatorsR and T , one can construct more
integrals which can be taken as the grading operators. This
does not add something essentially new to the structures
we already observed, and we do not discuss these other
possibilities here.
In the last section we present some further arguments in

favor of necessity to consider alternative choices for the
grading operator (alongside with the choice discussed in
the previous section) in the context of possible physical
applications.

VI. SUPERSYMMETRIC STRUCTURE
OF THE N ¼ 3 CHAIN

In the case of the two-term chain (N ¼ 2), we have
a; b ¼ 1; 2. A complete set of independent integrals is
formed by the two integrals of the first order, S12l ; l ¼
1; 2, the two integrals of the second order, Q12

l=�, and by

the two integrals of the third order, L12
1 ¼ L and L12

2 . In the
list of the (anti)commutation relations of the integrals there
do not appear (anti)commutators which involve the gen-
erators with three different indices a, b, c. For the discus-
sion of the case N ¼ 2 we refer to [22]. Here we consider
in more detail the next case N ¼ 3 to illustrate explicit
matrix form of the involved structures.
The N ¼ 3 Hamiltonian is

H ¼
H1 0 0
0 H2 0
0 0 H3

0
@

1
A: (6.1)

The system has six trivial matrix integrals of motion,

I 12¼
1 0 0
0 1 0
0 0 0

0
@

1
A; I13¼

1 0 0
0 0 0
0 0 1

0
@

1
A; I23¼

0 0 0
0 1 0
0 0 1

0
@

1
A;

(6.2)

�12
3 ¼

1 0 0
0 �1 0
0 0 0

0
@

1
A; �13

3 ¼
1 0 0
0 0 0
0 0 �1

0
@

1
A; �23

3 ¼
0 0 0
0 1 0
0 0 �1

0
@

1
A;

(6.3)

which appear explicitly in the superalgebraic (anti)com-
mutation relations. This set contains only three linearly
independent matrices. Three nontrivial integrals to be the
first order differential operators are

S121 ¼
0 �D12 0

D21 0 0
0 0 0

0
@

1
A;

S131 ¼
0 0 �D13

0 0 0
D31 0 0

0
@

1
A;

S231 ¼
0 0 0
0 0 �D23

0 D32 0

0
@

1
A;

(6.4)
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and the other three are Sab2 ¼ i�ab
3 Sab1 . Six second order

integrals of motion are given by

Q12
1=� ¼

0 B12=� 0
B21=� 0 0
0 0 0

0
@

1
A;

Q13
1=� ¼

0 0 B13=�

0 0 0
B31=� 0 0

0
B@

1
CA;

Q23
1=� ¼

0 0 0
0 0 B23=�

0 B32=� 0

0
B@

1
CA;

(6.5)

and Qab
2=� ¼ i�ab

3 Qab
1=�. Finally, the set of the three linearly

independent third order integrals is

L12 ¼
�iP 1 0 0
0 �iP 2 0
0 0 0

0
@

1
A;

L13 ¼
�iP 1 0 0
0 0 0
0 0 �iP 3

0
@

1
A;

L23 ¼
0 0 0
0 �iP 2 0
0 0 �iP 3

0
@

1
A:

(6.6)

Their linear combination corresponds to the integral L,
L ¼ 1

2 ðL12 þ L13 þ L23Þ.
The grading operator can be chosen in one of the forms2

� ¼
1 0 0

0 �1 0

0 0 1

0
BB@

1
CCA; �̂ ¼

RT 0 0

0 RT 0

0 0 RT

0
BB@

1
CCA;

�̂1 ¼ ��̂ ¼
RT 0 0

0 �RT 0

0 0 RT

0
BB@

1
CCA: (6.7)

When � is chosen as the grading operator, we have eight
nontrivial fermionic integrals of motion S12l , S23l , Q12

l=�,

Q23
l=�, and seven linear independent bosonic integrals S13l ,

Q13
l=�, and L

12, L13, and L23. In the case of the choice of �̂ as

the grading operator, we have nine fermionic integrals Sabl
and Lab. The second order integrals Qab

l=� constitute the set

of six bosonic integrals of motion. Finally, for �̂1, we have
six bosonic integrals, S12l , S23l , andQ13

l=�, and nine fermionic

integrals, S13l , Q12
l=�, Q

23
l=�, and Lab. We see that the com-

plete set of local nontrivial integrals of motion separates
into bosonic and fermionic generators in dependence on
the choice of the grading operator.

If we start from the first order integrals S12l , S23l , and S13l ,

their corresponding (anti)commutation relations (4.11)
and/or (4.17) (that depends on the choice of the grading
operator) generate, unlike the N ¼ 2 case, all the six
second order integrals Qab

l=�. The virtual parameter ��
here as well as for N > 3 can be identified with the shift
parameter �b of one of the corresponding subsystems. Each
time, however, the intermediate index � in Qab

l=� can be

changed by employing relation (3.12). Anyway, for N 	 2
the second order integrals Qab

l=� are generated also via the

(anti)commutators of Sabl with the third order integrals, see

Eqs. (4.24), (4.25), (4.28), (5.2), and (5.3).

VII. SELF-ISOSPECTRAL SOLITON CHAINS

Consider now the infinite period limit which produces
self-isospectral nonperiodic chains. It is obtained by put-
ting k ! 1, when, as we noted, K ! 1, 2iK0 ! i�, and
one-gap Lamé Hamiltonian (2.2) transforms into that of
reflectionless Pöschl-Teller (PT) system

HPTðxÞ ¼ � d2

dx2
� 2

cosh2x
þ 1: (7.1)

In this limit the valence band 0 � E � k02 of the Lamé
system shrinks into the level E ¼ 0 of the unique bound
state of the system (7.1) described by the wave function
sechx. To get a self-isospectral supersymmetric chain of
reflectionless Pöschl-Teller systems, we have to introduce
also some restrictions on the displacement parameters.
Namely, it is necessary to require that all the �a which
appear in the arguments of the chain Hamiltonians, Ha ¼
Hðxþ �aÞ, should not go to infinity when k ! 1. By this
condition we prohibit that in the chain we get in the limit,
there could appear free particle systems.
In such a limit, for x-independent structures we get

zð�Þ ! coth2�; Cab ! coth2�ab;

gab� ! coth2�ab þ coth2�b� þ coth2��a;
(7.2)

"ab ! csch22�ab;

�ab� !�ðcoth2�a�þcoth2��bÞcsch22�ab: (7.3)

For the superpotential (2.8) we have �ðx; �Þ !
�PTðx; �Þ ¼ tanhðx� �Þ � tanhðxþ �Þ þ coth2�.
Denoting the limit of �ðxab; �abÞ by �PT

ab , we find

�PT
ab ¼ ��PT

ba

¼ tanhðxþ �aÞ � tanhðxþ �bÞ þ cothð�b � �aÞ
¼ tanh2�ab tanhðxþ �aÞ tanhðxþ �bÞ þ 2csch4�ab:

(7.4)

For the first order intertwining operator we get

D ab ! Xab ¼ d

dx
��PT

ab; Xy
ab ¼ �Xba; (7.5)

2There are other possibilities, not reducible to the change of
indices and multiplication of the matrix elements by �1 (see the
remark at the end of the previous section), which we do not
consider here.
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and (3.2) transforms then into

� XabXba ¼ HPT
a þ csch22�ab; (7.6)

where HPT
a ¼ HPTðxþ �aÞ. The limit of the second

order intertwining operator (3.11) can be written in the
form that includes in its structure the first order operator
A� ¼ d

dx � tanhðxþ �Þ,

Yab ! d2

dx2
� �PT

ab

d

dx
� tanh2ðxþ �aÞ þ coth22�ab

¼ �AaA
y
b � coth2�abXab; (7.7)

where Aa � A�a . The first term in the last expression in

(7.7), unlike the Xab and the x-independent multiplier
coth2�ab in the second term, is well defined when �b ¼
�a ) �ab ¼ 0. This is so because the operator A�, unlike
the limit of the operator Dðx; �Þ, is regular for � ¼ 0.

Making use of Eqs. (3.9) and (7.2), for the limit of the
second order intertwining operator B we get

B ab=� ! �Xa�X�b

¼ AaA
y
b þ ðcoth2�a� þ coth2��bÞXab � Bab=�;

(7.8)

and find that the limit of the third order integral can be
presented in terms of the introduced first order operator A�,

P a ! �Za; where Za ¼ Aa

d

dx
Ay
a : (7.9)

Since the first order operator Xab as well as the second
order operators (7.7) and (7.8) intertwine the Hamiltonians
HPT

b and HPT
a , the operator [30]

Yab ¼ AaA
y
b (7.10)

is also the intertwining operator, YabH
PT
b ¼ HPT

a Yab.

Operator (7.10) corresponds to the infinite limit of the
virtual displacement parameter, �� ! 1 (or, �� ! �1),
applied to Bab=�, see Fig. 4.

The intertwiner (7.10), unlike (7.7) and (7.8), is regular
for �ab ¼ 0 (�a ¼ �b), when it reduces just to HPT

a ,

Yaa ¼ AaA
y
a ¼ HPT

a : (7.11)

Another product of the same operators produces (for any
value of the parameter �a) the free particle Hamiltonian
shifted for an additive constant,

Ay
aAa ¼ � d2

dx2
þ 1 � H0: (7.12)

In accordance with (7.11) and (7.12), the first order opera-

tors Aa and Ay
a intertwine the Pöschl-Teller system with a

free particle, Ay
aHPT

a ¼ H0A
y
a , HPT

a Aa ¼ AaH0. From (7.4)
we find that if �b ! 1 while �a is kept to be finite, �PT

ab

reduces to tanhðxþ �aÞ. In such a limit,HPT
b reduces toH0,

HPT1 ¼ H0, Xab transforms into Aa, while the second order
operators (7.7), (7.8), and (7.10) transform into Aa

d
dx and

linear combinations of this operator and the first order

operator Aa. The second order operator we have gotten
intertwines HPT

a with H0, Aa
d
dxH0 ¼ HPT

a Aa
d
dx , but this

relation produces nothing new since it is a consequence
of the conservation of d

dx for a free particle system H0,
d
dxH0 ¼ H0

d
dx , and of the already known relationH

PT
a Aa ¼

AaH0. On the other hand, the product of this operator with

the intertwiner Ay
a , that acts in another direction between

H0 and HPT
a , shows that the Lax operator of the Pöschl-

Teller system, Za, is nothing else as the Darboux-dressed
free particle momentum [34]. From (7.8) one can get a
relation which involves the first order intertwiners Aa and
Xab, and the free particle momentum. Taking the limit
�b ! 1 in both representations for Bab=�, we get the

relation Aað ddx � coth2�a�Þ ¼ Xa�A�, and also its conju-

gate, Ay
�X�a ¼ ð ddx þ coth2�a�ÞAy

a .

The described limit applied to the chain (4.1) gives a
nonperiodic self-isospectral chain described by the
Hamiltonian

H PT ¼ diagðHPT
1 ; . . . ; HPT

N Þ: (7.13)

The nontrivial integrals of such a system are given by the
infinite period limit applied to the integrals Sabl , Qab

l=�, and

Lab
l by employing relations (7.5), (7.8), and (7.9). As in the

periodic case, the set of the corresponding third order
integrals LPTab

l contains only N independent integrals.

Instead of QPTab
l=� , one can work with the second order

matrix integrals QPTab
l ¼ lim��!1QPTab

l=� , which are ob-

tained by the change of Bab=� for Yab. The corresponding

superalgebra generated by these integrals, as in the peri-
odic case, depends on the choice of the grading operator,
and its concrete form can be computed by making use of
the relations presented above. Again, we get a closed non-
linear superalgebra, the nonlinearity of which originates
from the polynomial dependence of the superalgebraic
structure functions on the Hamiltonian H PT, which plays
a role of the multiplicative central charge. Since we have
defined QPTab

l as the QPTab
l=� taken with the same virtual

parameter �� ¼ 1, the set of the second order integrals

FIG. 4 (color online). The first order Darboux displacement
generator Xab translates the eigenfunctions of HPT

b into those of

HPT
a . The second order intertwiner Yab makes the same via the

virtual free particle system that is a Pöschl-Teller system trans-
lated to infinity. Lax integral Za is presented as a Darboux
dressed form (7.9) of the free particle integral d=dx.
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QPTab
l together with the HamiltonianH PT form the closed

nonlinear sub-superalgebra.
If some of the displacement parameters �a are taken to

be infinite, corresponding Hamiltonians HPT
a transform

into those of the free particle. In this case we lose the
property of the self-isospectrality of the chain, but the
supersymmetric structure is still present and can also be
computed by employing the relations discussed above.

VIII. DISCUSSION AND OUTLOOK

We investigated the unusual nonlinear supersymmetric
structure of the self-isospectral crystalline chains formed
by the arbitrary number N 	 2 of mutually displaced
periodic one-gap Lamé systems, and of the associated
nonperiodic self-isospectral soliton chains described by
reflectionless Pöschl-Teller Hamiltonians. It is generated
by the NðN � 1Þ integrals of motion which are the first
order differential matrix operators, by the same number of
the second order matrix integrals, and by the N third order
Lax integrals. The supersymmetry admits distinct choices
for the grading operator, that classifies these integrals as
bosonic and fermionic operators in different ways. For
instance, for the example of the N ¼ 3 chain from
Sec. VI, three choices of the grading operator indicated
in Eq. (6.7) classify the complete set of 15 nontrivial local
integrals of motion as, respectively, 7þ8¼ð2þ2þ3Þþ
ð4þ4þ0Þ, 6þ9¼ð0þ6þ0Þþð6þ0þ3Þ, and 6þ9¼
ð4þ2þ0Þþð2þ4þ3Þ bosonicþ fermionic generators,
where the first, second, and third numbers in each paren-
theses correspond to the numbers of the first, second, and
third order differential matrix operators. In dependence on
the chosen grading operator, one of the third order inte-
grals, L, is the bosonic central charge, or the fermionic
supercharge to be a square root of the matrix spectral
polynomial of the N chain.3 In the latter, unlike the former,
case the spectral polynomial appears explicitly just in the
superalgebraic relations. This reveals the identifying char-
acteristic of the Lax integrals: they recognize the band-
edge states in the spectrum of each Lamé subsystem by
annihilating them. Another peculiarity is that the set of all
the second order integrals of motion taken with the same
virtual parameter generates together with the Hamiltonian
a nonlinear sub-superalgebra.

The lowestN-fold degenerate energy level was chosen to
be zero, and the spectra of the self-isospectral chains de-
scribed by the second order matrix Hamiltonians do not
depend on the values of the displacement parameters. On
the other hand, according to Eqs. (4.10) and (2.10), the
spectra of the first order matrix integrals Sabl depend on

the mutual shifts �ab, and blow up when �ab tends to zero

(modulo the period in the case of the crystalline chain). This
indicates on another possibility to interpret the systems by
identifying a suitable combination of the first order inte-
grals as a Hamiltonian. For instance, for N ¼ 2, one can
treat S121 as the integralH ð1Þ, or, forN ¼ 2nwe can choose

H ð1Þ ¼ S121 þ S341 þ 
 
 
 S2n�12n
1 . The lower index indi-

cates that the Hamiltonian is of the first order (Dirac)
nature, which can be considered as a kind of Bogoliubov-
de Gennes Hamiltonian in the Andreev approximation.
SuchH ð1Þ in the N ¼ 2 case was considered, for instance,

in the physics of conducting polymers [15,35], or as a
Hamiltonian that describes the kink-antikink crystal
[25,26] (or, kink-antikink baryons in the nonperiodic limit
case [36]) in the Gross-Neveu model. Therefore, the N > 2
chains in such a reinterpretation with the first order
Hamiltonian would provide some generalization of the
known N ¼ 2 models, in which spectral gaps are governed
by the displacement parameters of the corresponding sec-
ond order chains. The interesting peculiarity of such first
order systems is that they possess the own nonlinear su-

persymmetry. Indeed, the operator �̂1 ¼ RT �, where � is
given by Eq. (4.9), commutes with H ð1Þ, and can be

identified as a grading operator for such a first order system.

The Lax operator L anticommutes with �̂1, and the latter
classifies H ð1Þ and L as, respectively, bosonic and fermi-

onic generators. Since L commutes with H ð1Þ, it can be

considered as a fermionic supercharge, whose square, in
accordance with Eqs. (4.10) and (5.6), gives some polyno-
mial of order six inH ð1Þ.

4 For n > 1, the systemH ð1Þ has
also other nontrivial integrals of motion, see Eq. (4.24) with
l ¼ 1. Such a nonlinear supersymmetry in the first order
system H ð1Þ could not be revealed, however, with the

choice of the grading operator in the reflection-independent
form (4.9) which identifies the Lax integral L as the bosonic
operator and H ð1Þ as the fermionic one.

Another interesting possibility for generalization of the
results is to identify some linear combination of the second
order matrix operators as a Hamiltonian, for instance, by
taking H ð2Þ ¼ Q12

1=� þQ34
1=� þ 
 
 
Q2n�12n

1=� in the case of

N ¼ 2n. The spectrum of H ð2Þ like that of H ð1Þ depends
on the shift parameters, see (4.12). For N ¼ 2 or N ¼ 4,
such a second order matrix Hamiltonian has a nature
to be similar to that of the Hamiltonian in the physics
of bilayer graphene [38]. With respect to the grading

operator �̂ ¼ RT , the Hamiltonian H ð2Þ and the third

order operator L are, respectively, the bosonic and
fermionic operators. The operator L as well as the opera-
tors L12

1 ; . . . ; L2n�12n
1 , see Eq. (4.26) with l ¼ 1, are the

supercharges of the nonlinear supersymmetry of the
system described by the unusual second order matrix

3As we noted at the very beginning, this happens even in the
case N ¼ 1 for the unextended Lamé system (2.2), which is
described by a hidden, bosonized supersymmetry with the re-
flection R identified as the grading operator [4,12].

4Such a nonlinear supersymmetry in the first order systems
H ð1Þ was discussed in [22,30] for the simplest case of N ¼ 2
chains; it appears particularly in the twisting of carbon nano-
tubes, see [37].
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Hamiltonian H ð2Þ. Notice a special role played by the

reflection-dependent grading operator �̂ ¼ RT for
revealing the supersymmetric structure in the indicated
unusual second order system H ð2Þ.

The peculiarity of the nonperiodic case in comparison
with the periodic one is that the chain subsystems can be
related there, particularly, by the second order intertwiners
(7.10).As the intermediate (virtual) system in this case, there
appears a free particle system.The latter can be treated as the
Pöschl-Teller system (7.1), HPT

� ¼ HPT
� ðxþ ��Þ, displaced

to infinity, �� ! 1. It is due to such a relation the Lax
operator (7.9) has a nature of a dressed free particle momen-
tum operator, and eigenstates ofHPT can be obtained by the
Darboux transformation of the corresponding free particle
eigenstates. We have, unfortunately, no such simple relation
with a free particle in the periodic case.

We considered the case of self-isospectral Hermitian
chains with real displacements. The construction can be
generalized for the case of complex shift parameters. The
corresponding supersymmetric structure can be interesting
then in the context of the physics of PT-symmetric systems
[39,40], where, again, the discrete transformation opera-
tors, particularly spatial reflection, prove to play a funda-
mental role [41].
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