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I. INTRODUCTION

The computation of higher-order corrections to ampli-
tudes in gauge theories is important to searches for new
physics at modern particle colliders. Next-to-leading order
(NLO) corrections in quantum chromodynamics (QCD), in
particular, play an important role in providing a reliable
quantitative estimate of backgrounds to possible signals of
new physics [1]. NLO corrections to differential cross
sections require several ingredients beyond the tree-level
amplitudes for the basic process under study: real-emission
corrections, with an additional emitted gluon, or a gluon
splitting into a quark-antiquark pair; and virtual one-loop
corrections, with a virtual gluon or virtual quark in a closed
loop. The required one-loop corrections are challenging
with traditional Feynman-diagram methods, and become
considerably more difficult as the number of final-state
partons (gluons or quarks) grows.

The unitarity method [2–18], a new method which has
emerged over the last decade and a half, has rendered such
computations tractable. It has made possible a variety of
computations of one-loop amplitudes, in particular of pro-
cesses with many partons in the final state. In its most
recent form, the method can be applied either analytically
or purely numerically [19–29]. The numerical formalisms
underlie recent software libraries and programs that are
being applied to LHC phenomenology. In the current for-
malism, the one-loop amplitude in QCD is written as a sum
over a set of basis integrals, with coefficients that are
rational in external spinors,

amplitude ¼ X
j2basis

coefficientjintegraljþ rational: (1.1)

The integral basis for amplitudes with massless internal
lines contains box, triangle, and bubble integrals in addi-
tion to purely rational terms (dropping all terms ofOð�Þ in

the dimensional regulator). The coefficients are calculated
from products of tree amplitudes, typically by performing
contour integrals.
For NLO corrections to some processes, one-loop am-

plitudes do not suffice. This is the case for subprocesses
whose leading-order amplitude begins at one loop. An
example is the gluon fusion to diphoton subprocess, gg !
��, which is an important background to searches for the
Higgs boson at the LHC. Although this subprocess is
nominally suppressed by a power of the strong coupling
�s, the large gluon parton density at smaller x can com-
pensate for this additional power, giving rise to contribu-
tions to cross sections which are comparable to those from
tree-level quark-initiated subprocesses [30–32]. Other ex-
amples include production of electroweak boson pairs,
gg ! Z�, ZZ,WþW�. NLO corrections to such processes
at the LHC require the computation of two-loop ampli-
tudes [33].
Two-loop amplitudes are also required for any studies

beyond NLO. Next-to-next-to-leading order (NNLO)
fixed-order calculations form the next frontier. The only
existing fully exclusive NNLO jet calculations to date are
for three-jet production in electron-positron annihilation
[34]. These are necessary to determine �s to 1% accuracy
from jet data at LEP [35], competitively with other deter-
minations. At the LHC, NNLO calculations will be useful
for determining an honest theoretical uncertainty estimate
on NLO calculations, for assessing scale stability in multi-
scale processes such as W þmultijet production, and will
also be required for precision measurements of new phys-
ics once it is discovered.
The unitarity method has already been applied to higher-

loop amplitudes. At one loop, there are different variants of
the method. The basic unitarity approach forms a disconti-
nuity out of the product of two tree amplitudes. Isolating the
coefficients of specific basis integrals usually still requires
performing symbolic algebra on the product of trees; this
is not well-suited to a numerical approach, and also
reduces efficiency of an analytic calculation. Basic unitarity
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corresponds to cutting two propagators in a one-loop
amplitude. Generalized unitarity cuts more than two propa-
gators at once, isolating fewer integrals. ‘‘Maximal’’ gen-
eralized unitarity cuts as many propagators as possible; in
combination with contour integrals over remaining degrees
of freedom, this isolates individual integrals. At higher
loops, ‘‘minimal’’ generalized unitarity cuts the minimum
number of propagators needed to break all loops into a
product of trees. Each cut is again a product of tree ampli-
tudes, but because not all possible propagators are cut, each
generalized cut will correspond to several integrals and
their coefficients, and algebra will again be required to
isolate specific integrals and their coefficients. This ap-
proach does have the advantage of not requiring a basis
of integrals. A number of calculations have been done this
way, primarily in theN ¼ 4 supersymmetric gauge theory
and N ¼ 8 supergravity [36–52], but including several
four-point calculations in QCD and supersymmetric theo-
ries with less-than-maximal supersymmetry [53–59].

In this paper, we take the first steps in developing the
maximal generalized unitarity approach at two loops in a
form suitable for both analytic and numerical calculation.
We show how to extract the coefficient of the planar double
box to leading order in the dimensional regulator �.
Higher-loop amplitudes can be written in a similar form
to those at one loop (1.1), as a sum over an integral basis
[60], along with possible rational terms. At higher loops,
however, the coefficients of the basis integrals are no
longer functions of the external spinors alone, but will
depend explicitly on �. Just as at one loop, computing
coefficients requires choosing contours for the unfrozen
degrees of freedom. We use the equations relating generic
tensor integrals to basis or master integrals in order to
ensure the consistency and completeness of the choice of
contours. The extraction of the double-box coefficient
bears a superficial similarity to the procedure that would
be followed in the leading-singularity approach [44,61],
but unlike the latter, manifestly ensures the consistency of
the extraction with respect to terms that vanish after inte-
gration. Such terms inevitably arise when using the
integration-by-parts (IBP) approach [62–69] in relating
formally irreducible tensor integrals to basis integrals.
The extraction of higher-order terms in � or the coefficients
of integrals with fewer propagators, both of which we leave
to future work, would also be different.

During the preparation of this manuscript, a preprint by
Mastrolia and Ossola appeared [70], analyzing the two-
loop integrand in a generalization of the formalism of
Ossola, Papadopoulos, and Pittau (OPP) [11], following a
complementary approach to unitarity at two loops.

This paper is organized as follows. In Sec. II, we review
maximal generalized unitarity at one loop, focusing on the
computation of the coefficients of the box integral. In
Sec. III, we give an outline of the two-loop formalism,
and detail the solutions to the cut equations. In Sec. IV, we

present the set of constraint equations, and their solutions.
In Sec. V, we give the master formulas for the double-box
coefficients, and give some examples of their use in
Sec. VI. We summarize in Sec. VII.

II. MAXIMAL UNITARITYAT ONE LOOP

We begin by reviewing the derivation of the formula for
coefficients of one-loop boxes using quadruple cuts, origi-
nally written down by Britto, Cachazo, and Feng [6]. We
adopt an approach and notation that generalize to our
derivation for two-loop coefficients in following sections.
Our starting point is the formal diagrammatic expression
for the amplitude,

amplitude ¼ X
Feynman
diagramsF

Z dD‘

ð2�ÞD numeratorFð‘; � � �Þ

� propagatorsFð‘; � � �Þ; (2.1)

where the ellipses represent dependence on external mo-
menta, polarization vectors, and spinor strings. Although
the whole point of the method is to avoid computing any
Feynman diagrams explicitly, it is still convenient to refer
to them in the abstract, as a means of providing the
connection to field theory and to Feynman integrals.
Applying tensor and integral reductions [71], along with

a Gram-determinant identity holding through Oð�0Þ, we
obtain the basic equation (1.1) without any reference to
unitarity or on-shell conditions. (In a slight abuse of lan-
guage, we will refer to integrals with no free indices, but
numerator powers of the loop momentum contracted into
external vectors, as ‘‘tensor integrals.’’)
At one loop, it is sufficient for our purposes to concen-

trate on the four-dimensional components of the loop
momentum. (The accompanying integrals must of course
be evaluated keeping the full (D ¼ 4� 2�)-dimensional
dependence.) In order to derive formulas for the coeffi-
cients of basis integrals, we apply cuts to both sides of
Eq. (2.1). In the basic unitarity method, we would replace
two propagators, separated by a non-null sum of external
momenta, by delta functions which freeze the loop mo-
menta they carry to their on-shell values. In generalized
unitarity [4,6], we would like to apply additional delta
functions to put additional momenta to on-shell values.
However, once we put the momenta carried by more than
two massless propagators to their on-shell values, the
solutions to the on-shell equations are complex, and taken
at face value, the delta functions would actually yield zero.
The same issue arose in the evaluation of the connected

prescription [72] for amplitudes in Witten’s twistor string
theory [73]; the solution is to use contour integrals instead
of delta functions [45,74,75]. To do so, we think of com-
plexifying the space in which the four-dimensional loop
momenta live, from R1;3 to C4, and taking the integrals on
both sides of Eq. (1.1) to be over a product of contours
running along the real axis. We can imagine evaluating the
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loop integrals along other contours as well. New contours
that will be useful for our purposes are those whose product
encircles simultaneous poles in all four-dimensional
components of the loop momentum. Performing the four-
dimensional loop-momentum integral over each such
contour will yield the residue at the corresponding en-
circled joint or global pole. The residue extracts the terms
in the integrand which contain each of the corresponding
propagators, removes the denominators, divides by the
appropriate Jacobian, and sets the components of the
loop momentum to their values at the joint pole.

The Jacobian is a determinant which arises from the
transformation to variables which express each denomina-
tor factor linearly in a different variable. Unlike a product
of delta functions, which would produce a factor of the
inverse of the absolute value of the Jacobian, the trans-
formation here will produce a factor of the inverse of the
Jacobian. This ensures that the factor is analytic in any
variables on which it depends, so that further contour
integrations can be carried out.

Notationally, it will still be convenient to use delta
functions; to do so, define the product of delta functions
to yield exactly this contour integral,

Z d4‘

ð2�Þ4 numeratorFð‘; � � �Þ�ð‘2Þ�ðð‘� k1Þ2Þ
� �ðð‘� k1 � k2Þ2Þ�ðð‘þ k4Þ2Þ

�
I
TQ

d4‘

ð2�Þ4
numeratorFð‘; � � �Þ

‘2ð‘� k1Þ2ð‘� k1 � k2Þ2ð‘þ k4Þ2
;

(2.2)

where we have divided out overall factors of 2�i
associated with each delta function, and where TQ is a

four-torus encircling the solutions to the simultaneous
equations,

‘2¼0; ð‘�k1Þ2¼0; ð‘�k1�k2Þ2¼0; ð‘þk4Þ2¼0;

(2.3)

and where—in a nonstandard bit of notation—we absorb
a factor of 1=ð2�iÞ into the definition of each contour
integral, so that evaluating the four-fold contour integral
yields a sum over residues with no additional factors
of 2�i.

In four-point amplitudes, the external momenta do not
suffice to provide a basis for arbitrary external vectors; to
three of them (say k1, k2, and k4), we need to add another
external vector, for example v� ¼ "ð�; k1; k2; k4Þ. Then
we can express all dot products of the loop momentumwith
external vectors in terms of four dot products: ‘ � k1, ‘ � k2,
‘ � k4, and ‘ � v. In reducing integrals, odd powers of v � ‘
will give rise to vanishing integrals because of parity; even
powers can be reexpressed in terms of Gram determinants
and then in terms of the other dot products (up to terms
involving the (�2�)-dimensional components of the loop

momentum). The remaining three dot products can be
reexpressed as linear combinations of propagator denom-
inators and external invariants, allowing integrals with
insertions of them in the numerator to be simplified.
One would be tempted to believe that replacing the

original contours running along the real axis with
some other contour, such as TQ, would leave the equality

(1.1) undisturbed, but this is not quite right, because
there are implicitly terms in the integrand of the left-
hand side that are ‘‘total derivatives,’’ that is terms which
integrate to zero. These terms arise during the integral
reductions described above. They were made explicit
in the decomposition of the integrand used by OPP [11].
For general contours, the reduction equation will then take
the form

amplitude ¼ X
j2basis

cjIjþ rationalþ X
j2basis

X
t2 total

derivatives

c0j;tUj;t;

(2.4)

where each Uj;t is the integral of an expression Wj;t which

would vanish if taken over the real slice, for example
W1;1 ¼ "ð‘; k1; k2; k4Þ,

U1 ¼
Z dD‘

ð2�ÞD
"ð‘;k1; k2; k4Þ

‘2ð‘� k1Þ2ð‘� k1� k2Þ2ð‘þ k4Þ2
: (2.5)

This integral will no longer necessarily vanish if we inte-
grate over general contours in C4. In this equation,

"ðq1; q2; q3; q4Þ � "���	q
�
1 q

�
2q

�
3q

	
4 ; (2.6)

where "���	 is the standard antisymmetric Levi-Civita

tensor. Another example is the cube of the Levi-Civita
symbol, W1;2 ¼ W3

1;1, though as it turns out, this latter

integrand does not contribute any additional equations
below.
When we perform a quadruple cut, that is the integral

over TQ, we will restrict the set of Feynman diagrams in the

expression for the amplitude to those containing all four
propagators; cut the propagators; and impose the on-shell
conditions corresponding to the vanishing of the propaga-
tor denominators. If we imagine working in a physical
gauge (such as light-cone gauge), this also restricts the
cut lines to have physical polarizations. Each diagram
then falls apart into a product of four diagrams, one corre-
sponding to each corner of the box. The sum over diagrams
factorizes into a four-fold sum over the tree diagrams at
each corner, as shown in Fig. 1. Each such sum will give an
on-shell tree amplitude, with two cut loop momenta and
the external legs attached to that corner as arguments,
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A1-loop ¼ X
Feynman
diagramsF

Z dD‘

ð2�ÞD
NF

DF

! X
helicities
species

X
Feynman
diagramsA

NA

DA

X
Feynman
diagramsB

NB

DB

X
Feynman
diagramsC

NC

DC

X
Feynman
diagramsD

ND

DD

¼ X
helicities
species

Atree
A Atree

B Atree
C Atree

D : (2.7)

(If we had not initially used a physical gauge, it is at this
stage, summing over all diagrams, that we would recover
the restriction to physical polarizations.) Integrating over
TQ in Eq. (2.4) will give us the following equation:X

helicities
species

Atree
A Atree

B Atree
C Atree

D ¼ cbox þ
X
t

c0box;tUbox;t; (2.8)

where the Jacobian has canceled out of the equality, and the
sum on the right-hand side runs over possible total deriva-
tives with a box integrand. In order to solve for the desired

coefficient cbox, or equivalently to ensure that the equality
in Eq. (1.1) is maintained, we must evaluate the integral
over a linear combination of new contours such that all
possible integrals of ‘‘total derivatives’’ Ut are projected
out. As we will show later, this requirement gives us
constraints that determine the allowed combinations of
contours, and in turn the equations for the coefficients
of the box integrals.
In the case of the one-loop box integral, the joint-pole

equations are given by Eq. (2.3) or equivalently by

‘2 ¼ 0; ‘ � k1 ¼ 0; ‘ � k2 ¼ s

2
; ‘ � k4 ¼ 0; (2.9)

which form makes it clear that there are two distinct
solutions, and hence two distinct contours. The one ‘‘total
derivative’’ we must consider is the " expression U1 given
above in Eq. (2.5). It turns out that it evaluates to compen-
sating values on the two solutions, so that summing over
them projects it out, and hence gives an equation for the
coefficient of the box in terms of the product of tree
amplitudes at each corner,

cbox ¼ 1

2

X
helicities
species

Atree
A Atree

B Atree
C Atree

D : (2.10)

As an example, study the coefficient of the one-mass box
with m2

3 � 0. Parametrize the four-dimensional part of the

loop momentum as follows:

‘� ¼ �1k
�
1 þ �2k

�
2 þ �3s

2h14i½42� h1
�j��j2�i

þ �4s

2h24i½41� h2
�j��j1�i: (2.11)

A general contour integral for the four-dimensional part of
the box integral then takes the form

1

s4

Z
C
d4�iJ�

1

ð�1�2 �!�3�4Þð�1�2 �!�3�4 � �2Þð�1�2 �!�3�4 � �2 � �1 þ 1Þ
� 1

ð�1�2 �!�3�4 þ �1t=sþ �2u=sþ �3 þ �4Þ ; (2.12)

where ! ¼ s2=ðtuÞ. In this expression, J� is the Jacobian
that arises from changing variables from the ‘� to the �i.
(We do not need its explicit form, only the knowledge that
it is independent of the�i, a consequence of the linearity of
the ‘� in the �i.)

The cut equations (2.9) then take the form

�
�1�2 � s2

tu
�3�4

�
s ¼ 0; �2s ¼ 0; �1s ¼ s;

�1tþ �2uþ �3sþ �4s ¼ 0;
(2.13)

which have two solutions,

S1: �1 ¼ 1; �2 ¼ 0; �3 ¼� t

s
; �4 ¼ 0;

S2: �1 ¼ 1; �2 ¼ 0; �3 ¼ 0; �4 ¼� t

s
:

(2.14)

If we define CjðvÞ to be a small circle in the complex

�j-plane that encloses the point v, then the two contours

we must consider are

T1 ¼ C1ð1Þ � C2ð0Þ � C3ð�t=sÞ � C4ð0Þ; and

T2 ¼ C1ð1Þ � C2ð0Þ � C3ð0Þ � C4ð�t=sÞ: (2.15)

We can evaluate the four-fold integral (2.12) by ‘‘global
residues’’ [45,76]. The sign of the result will depend on the

FIG. 1. The general quadruple cut in a one-loop box.
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orientation chosen for the contour; but this sign will drop
out of final formulas for integral coefficients so long as this
orientation is chosen consistently throughout the calcula-
tion. To do so, we should first change to variables where
each pole is in a different variable, and where the denom-
inators are linear in that variable with unit coefficient. The
Jacobian from this change of variables will take the form

J1 ¼ det
i;j

�
@fj
@�i

�
; (2.16)

where

f1 ¼ �1�2 �!�3�4;

f2 ¼ �1�2 �!�3�4 � �2;

f3 ¼ �1�2 �!�3�4 � �2 � �1 þ 1;

(2.17)

f4¼�1�2�!�3�4þ�1t=sþ�2u=sþ�3þ�4: (2.18)

We find

J1 ¼ !ð�4 � �3Þ: (2.19)

Evaluating the box integral with a numerator numð‘; � � �Þ
along a contour given by a linear combination of the two Ti

with weights ai, we obtain

s�4J�ða1J�1
1 numð‘;���ÞjS1

þa2J
�1
1 numð‘;���ÞjS2

Þ: (2.20)

Using the parametrization (2.11), we find the following
expression for the Levi-Civita symbol we need:

"ð‘; k1; k2; k4Þ ¼ �3s"

�h1�j��j2�i
2h14i½42� ; k1; k2; k4

�

þ �4s"

�h2�j��j1�i
2h24i½41� ; k1; k2; k4

�

¼ sð�3 � �4Þ"
�h1�j��j2�i
2h14i½42� ; k1; k2; k4

�
:

(2.21)

The constraint that U1 ¼ 0 on the quadruple cut then
implies that

� s�4J�!
�1ða1 þ a2Þ ¼ 0; (2.22)

so that a2 ¼ �a1. Higher odd powers of the Levi-Civita
tensor lead to the same constraint.

If we evaluate both sides of Eq. (1.1) on the linear
combination of contours, we find

s�4J�
X2
i¼1

aiJ
�1
1

Y4
j¼1

Atree
j

��������Si

¼ s�4J�cða1J�1
1 jS1

þa2J
�1
1 jS2

Þ;

(2.23)

where the product is over the tree amplitudes associated
with each of the four vertices of the quadruple-cut box
integral in Fig. 1. Substituting in the solution to Eq. (2.22),
we find for the coefficient of the one-loop box

cbox ¼ 1

2

X2
i¼1

Y4
j¼1

Atree
j

��������Si

; (2.24)

which is just Eq. (2.10) when summed over possible he-
licity assignments and particle species circulating in the
loop.
In the following sections, we show how to generalize

these considerations to two loops.

III. MAXIMAL CUTS AT TWO LOOPS

Our basic approach to the planar double box at two loops
will be similar to that reviewed above at one loop. We use a
convenient parametrization of the loop momenta and
choose new contours of integration to freeze the momenta
flowing through all propagators. We choose those contours
so that constraint equations arising from consistency con-
ditions are satisfied. Unlike the procedure at one loop,
cutting all seven propagators does not freeze all compo-
nents of both loop momenta, so we must choose new
contours for the remaining unfrozen degrees of freedom
as well. In addition, we have a much larger and richer set of
consistency conditions arising from IBP identities. Once
we have solved the constraint equations, we will solve for
the coefficients of specific basis integrals.
In this section, we give a convenient parametrization of

the loop momenta, and use it to solve on-shell equations.
We list these solutions below, along with the poles and
possible contours for the remaining unfrozen degrees of
freedom.
The two-loop double-box integral, shown in Fig. 2, is

P��
2;2 ¼

Z dD‘1
ð2�ÞD

dD‘2
ð2�ÞD

1

‘21ð‘1 � k1Þ2ð‘1 � K12Þ2ð‘1 þ ‘2Þ2‘22ð‘2 � k4Þ2ð‘2 � K34Þ2
; (3.1)

where Ki���j � ki þ � � � þ kj, and the notation follows Ref. [60].

FIG. 2. The double-box integral P��
2;2.
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We will focus in this paper on extracting coefficients of
basis integrals only to leading order in the dimensional
regulator �, for which it suffices to consider the four-
dimensional components of the loop momentum as far as
cuts are concerned. The double box has seven propagators;
if we cut all of them, that is put all of the momenta they are
carrying to on-shell values, we will be left with one addi-
tional degree of freedom. To cut the momenta in this way,
we must shift the contours of integration for the compo-
nents of the two loop momenta ‘1 and ‘2 to encircle the
joint solutions to the on-shell equations,

‘21¼0; ð‘1�k1Þ2¼0; ð‘1�K12Þ2¼0; ‘22¼0;

ð‘2�k4Þ2¼0; ð‘2�K34Þ2¼0; ð‘1þ‘2Þ2¼0:

(3.2)

As explained in Sec. II, we can write the four-
dimensional heptacut integral symbolically as

Z d4‘1
ð2�Þ4

d4‘2
ð2�Þ4�ð‘

2
1Þ�ðð‘1�k1Þ2Þ�ðð‘1�K12Þ2Þ

��ðð‘1þ‘2Þ2Þ�ð‘22Þ�ðð‘2�k4Þ2Þ�ðð‘2�K34Þ2Þ; (3.3)

again dropping overall factors of 2�i associated with the
delta functions. This heptacut is depicted in Fig. 3.

To solve the on-shell equations, we use the following
parametrization of the loop momenta:

‘
�
1 ¼ �1k

�
1 þ �2k

�
2 þ s12�3

2h14i½42� h1
�j��j2�i

þ s12�4

2h24i½41� h2
�j��j1�i;

‘
�
2 ¼ 
1k

�
3 þ 
2k

�
4 þ s12
3

2h31i½14� h3
�j��j4�i

þ s12
4

2h41i½13� h4
�j��j3�i: (3.4)

Using this parametrization, the six corresponding hepta-
cut equations involving only one loop momentum are

‘21 ¼ s12

�
�1�2 þ �3�4

�ð�þ 1Þ
�
¼ 0;

ð‘1 � k1Þ2 ¼ s12

�
ð�1 � 1Þ�2 þ �3�4

�ð�þ 1Þ
�
¼ 0;

ð‘1 � K12Þ2 ¼ s12

�
ð�1 � 1Þð�2 � 1Þ þ �3�4

�ð�þ 1Þ
�
¼ 0;

‘22 ¼ s12

�

1
2 þ 
3
4

�ð�þ 1Þ
�
¼ 0;

ð‘2 � k4Þ2 ¼ s12

�

1ð
2 � 1Þ þ 
3
4

�ð�þ 1Þ
�
¼ 0;

ð‘2 � K34Þ2 ¼ s12

�
ð
1 � 1Þð
2 � 1Þ þ 
3
4

�ð�þ 1Þ
�
¼ 0;

(3.5)

where

� � s14
s12

: (3.6)

We can simplify these equations, obtaining

�1 ¼ 1; �2 ¼ 0; �3�4 ¼ 0;


1 ¼ 0; 
2 ¼ 1; 
3
4 ¼ 0:
(3.7)

These equations have four distinct solutions. If we sub-
stitute these values into Eq. (3.2), we find for the last
equation

0¼ð‘1þ‘2Þ2¼2‘1 �‘2
¼2

�
k�1 þ

s12�3

2h14i½42�h1
�j��j2�iþ s12�4

2h24i½41�h2
�j��j1�i

�

�
�
k4�þ s12
3

2h31i½14�h3
�j��j4�iþ s12
4

2h41i½13�h4
�j��j3�i

�
:

(3.8)

For two of the four solutions to Eqs. (3.7), this equation has
two solutions, so that overall we find six solutions to the
heptacut equations (3.5) and (3.8). To each of the six
solutions Sj, we can associate a seven-torus in the parame-

ters �i and 
i that encircles the solution.
For the solution �4 ¼ 0 ¼ 
4, the last equation (3.8)

simplifies to

0 ¼
�
½41� þ s12�3

h14i
��
h14i � s12
3

½14�
�
; (3.9)

which has two distinct solutions,

S1:�3¼��; 
3 arbitrary; S2:
3¼��; �3 arbitrary:

(3.10)

In all solutions, we will change variables so that the re-
maining degree of freedom is called z.
Likewise, the solution �3 ¼ 0 ¼ 
3 also yields two

solutions to Eq. (3.8),

FIG. 3. The heptacut double box.
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S3:�4¼��; 
4¼ z; S4:
4¼��; �4¼ z: (3.11)

For the remaining two solutions to Eq. (3.7), the last
equation (3.8) does not factorize, and we obtain only one
solution; for �3 ¼ 0 ¼ 
4,

S 5: �4 ¼ z; 
3 ¼ �ð�þ 1Þ zþ �

zþ �þ 1
; (3.12)

and for �4 ¼ 0 ¼ 
3,

S 6: �3 ¼ z; 
4 ¼ �ð�þ 1Þ zþ �

zþ �þ 1
: (3.13)

In the last two solutions, we could equally well have
chosen a different parametrization, where 
3 or 
4, re-
spectively, is set to z. This just amounts to a change of
variables, of course, but does break the manifest symmetry
between the two loops.

The existence of six kinematic solutions can also be
understood from holomorphicity considerations of the
cuts. When we cut all propagators, each of the six vertices
in the double box has three massless momenta attached.

We can write these momenta in terms of spinors, k� ¼
��	

�
� _�

~� _�. Momentum conservation at each vertex [73]
then implies that either

(1) the holomorphic spinors � of the momenta are col-
linear (proportional), �a / �b / �c. We will depict
such a vertex using a circled plus (�). Such a vertex
would allow only an MHV tree amplitude to be
attached (of course the holomorphicity properties
of the cut are independent of any tree amplitude).

(2) the antiholomorphic spinors ~� of the momenta are

collinear, ~�a / ~�b / ~�c. We will depict such a ver-
tex using a circled minus (�). Such a vertex would
allow only an MHV tree amplitude to be attached.

For general kinematics, neither the external holomorphic

spinors �j nor the external antiholomorphic spinors ~�j are

collinear. A configuration with an uninterrupted chain of
either � or � vertices connecting any two external legs is
thus disallowed. There are exactly six ways of assigning
these two labelings to vertices avoiding such chains, hence
six solutions. The six solutions are shown diagrammati-
cally in Fig. 4. (The labeling of holomorphically collinear
vertices as �, and of antiholomorphically collinear ones as
� is not uniform in the literature.)

In evaluating the contour integrals represented by the
delta functions in Eq. (3.3), we encounter two Jacobians:
one from changing variables from the components of ‘j to

the �i and 
i; and one from actually performing the
contour integrals in the latter variables. It is the latter
Jacobian that is important for our purposes. The former
Jacobian is equal to J�J
, where

J�¼det
�;i

@‘
�
1

@�i

¼� is212
4�ð�þ1Þ; J
¼det

�;i

@‘
�
2

@
i

¼� is212
4�ð�þ1Þ:

(3.14)

To evaluate the latter Jacobian, we may note that three of
the delta functions (or equivalently three of the contour
integrals) involve only � variables, and three involve only

 variables. We can thus split up the problem into three
steps: computing the Jacobian associated with ‘1, that is
with the � variables alone; computing the Jacobian asso-
ciated with ‘2, that is with the 
 variables alone; and
finally, computing the Jacobian associated with the middle
propagator, involving both ‘1 and ‘2.
For each of the six solutions, we must compute the

Jacobian independently. As an example, consider the sec-
ond solution S2. The first Jacobian arises from considering
the integral,

Z
d�1d�2d�4�

�
s12

�
�1�2 þ �3�4

�ð�þ 1Þ
��

� �

�
s12

�
ð�1 � 1Þ�2 þ �3�4

�ð�þ 1Þ
��

� �

�
s12

�
ð�1 � 1Þð�2 � 1Þ þ �3�4

�ð�þ 1Þ
��

; (3.15)

associated with the ‘1 loop. Define

g1ð�1Þ
g2ð�2Þ
g3ð�4Þ

0
BB@

1
CCA¼

s12

�
�1�2þ �3�4

�ð�þ1Þ

�

s12

�
ð�1�1Þ�2þ �3�4

�ð�þ1Þ

�

s12

�
ð�1�1Þð�2�1Þþ �3�4

�ð�þ1Þ

�

0
BBBBBBBBB@

1
CCCCCCCCCA
: (3.16)

The first Jacobian is then

J1¼det
i;j

@gi
@�j

¼ s312 det

�2 �1
�3

�ð�þ1Þ
�2 �1�1 �3

�ð�þ1Þ
�2�1 �1�1 �3

�ð�þ1Þ

0
BBB@

1
CCCA

¼� s312
�ð�þ1Þ�3: (3.17)

(As explained in Sec. II, the Jacobians will appear in the
denominator as determinants rather than as absolute values
of determinants.) Similarly, the second Jacobian arises
from considering the integral,

Z
d
1d
2d
4�

�
s12

�

1
2 þ 
3
4

�ð�þ 1Þ
��

� �

�
s12

�

1ð
2 � 1Þ þ 
3
4

�ð�þ 1Þ
��

� �

�
s12

�
ð
1 � 1Þð
2 � 1Þ þ 
3
4

�ð�þ 1Þ
��

; (3.18)

associated with the ‘2 loop. Define
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h1ð
1Þ
h2ð
2Þ
h3ð
4Þ

0
BB@

1
CCA¼

s12

�

1
2þ 
3
4

�ð�þ1Þ

�

s12

�

1ð
2�1Þþ 
3
4

�ð�þ1Þ

�

s12

�
ð
1�1Þð
2�1Þþ 
3
4

�ð�þ1Þ

�

0
BBBBBBBBB@

1
CCCCCCCCCA
: (3.19)

The second Jacobian is then

J2 ¼ det
i;j

@hi
@
j

¼ s312 det


2 
1

3

�ð�þ1Þ

2 � 1 
1


3

�ð�þ1Þ

2 � 1 
1 � 1 
3

�ð�þ1Þ

0
BBBB@

1
CCCCA

¼ s312
�ð�þ 1Þ
3: (3.20)

FIG. 4. The six solutions to the heptacut equations for the two-loop planar double box.
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The remaining integration we must consider is over �3

and 
3,

1

2

Z
d�3d
3

J�J

J1J2

�

�
s12
2�

ð�3 þ �Þð
3 þ �Þ
�

¼ 1

32s212

Z d�3d
3

�3
3

�

�
s12
2�

ð�3 þ �Þð
3 þ �Þ
�
; (3.21)

which leaves a remaining contour integration over z
(i.e. �3), along with the overall inverse Jacobian,

J�1ðzÞ ¼ � 1

16s312zðzþ �Þ : (3.22)

The computation for the other five solutions is similar; it
turns out that we obtain the same overall Jacobian for all
solutions. The contour for the z integration remains to be

chosen; for this solution, there are two possible nontrivial
contours, one encircling z ¼ 0, and the other encircling z ¼
��. (We set aside a possible nontrivial contour encircling
z ¼ 1, as its contribution when integrating an arbitrary
multiplying function fðzÞ sums to zero when combined
with the contributions of these two contours.) The pole at
z ¼ �� is the eighth pole in the octacut of Ref. [61]. In
addition, for solutions S5;6, the denominator of 
3;4

[Eqs. (3.12) and (3.13)] can give rise to additional poles at
z ¼ ��� 1 in tensor integrals. (As noted in Sec. II, in a
slight abuse of language, we refer to integrals with no
free indices, but numerator powers of the loop momenta
contracted into external vectors, as ‘‘tensor integrals.’’)
Collecting the information above, we have the following

contours we can utilize in seeking equations for integral
coefficients:

T1;1 ¼ T0 � C�3
ð��Þ � C�4

ð0Þ � C
3¼zð0Þ � C
4
ð0Þ;

T1;2 ¼ T0 � C�3
ð��Þ � C�4

ð0Þ � C
3¼zð��Þ � C
4
ð0Þ;

T2;1 ¼ T0 � C�3¼zð0Þ � C�4
ð0Þ � C
3

ð��Þ � C
4
ð0Þ;

T2;2 ¼ T0 � C�3¼zð��Þ � C�4
ð0Þ � C
3

ð��Þ � C
4
ð0Þ;

T3;1 ¼ T0 � C�3
ð0Þ � C�4

ð0Þ � C
3
ð0Þ � C
4¼zð0Þ;

T3;2 ¼ T0 � C�3
ð0Þ � C�4

ð0Þ � C
3
ð0Þ � C
4¼zð��Þ;

T4;1 ¼ T0 � C�3
ð0Þ � C�4¼zð0Þ � C
3

ð0Þ � C
4
ð��Þ;

T4;2 ¼ T0 � C�3
ð0Þ � C�4¼zð��Þ � C
3

ð0Þ � C
4
ð��Þ;

T5;1 ¼ T0 � C�3
ð0Þ � C�4¼zð0Þ � C
3

�
�ð1þ �Þðzþ �Þ

zþ �þ 1

�
� C
4

ð0Þ;

T5;2 ¼ T0 � C�3
ð0Þ � C�4¼zð��Þ � C
3

�
�ð1þ �Þðzþ �Þ

zþ �þ 1

�
� C
4

ð0Þ;

T5;3 ¼ T0 � C�3
ð0Þ � C�4¼zð��� 1Þ � C
3

�
�ð1þ �Þðzþ �Þ

zþ �þ 1

�
� C
4

ð0Þ;

T6;1 ¼ T0 � C�3¼zð0Þ � C�4
ð0Þ � C
3

ð0Þ � C
4

�
�ð1þ �Þðzþ �Þ

zþ �þ 1

�
;

T6;2 ¼ T0 � C�3¼zð��Þ � C�4
ð0Þ � C
3

ð0Þ � C
4

�
�ð1þ �Þðzþ �Þ

zþ �þ 1

�
;

T6;3 ¼ T0 � C�3¼zð��� 1Þ � C�4
ð0Þ � C
3

ð0Þ � C
4

�
�ð1þ �Þðzþ �Þ

zþ �þ 1

�
;

(3.23)

where each subscript denotes the variable in whose plane
the circle lies, and where

T0 ¼ C�1
ð1Þ � C�2

ð0Þ � C
1
ð0Þ � C
2

ð1Þ; (3.24)

corresponding to the on-shell values in Eq. (3.7). We will
call the complete contours, including a choice of contour
for z, the ‘‘augmented heptacut.’’

Naively, we could deform the original contour of inte-
gration for the double box (3.1), along the product of
real axes for all components of ‘1 and ‘2, to any linear

combination of contours in Eq. (3.23) that we wish.
However, an arbitrary deformation will not preserve the
vanishing of total derivatives, analogs to U1 given in
Eq. (2.5). In order to ensure that such objects vanish as
they must, we impose constraints on the contours. We
derive these in the next section.

IV. CONSTRAINT EQUATIONS FOR CONTOURS

Integral reductions are implicitly part of the simplifica-
tions applied to a sum over Feynman diagrams in order to
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obtain the basic equation at either one loop (1.1) or at two
loops,

amplitude ¼ X
j2two-loop basis

coefficientj integralj þ rational:

(4.1)

The basis at two loops will contain integrals with up to
eight propagators in the planar case [60], though a specific
complete and independent choice of integrals for a general
amplitude has not yet been written down. (The same
restriction to eight propagators or fewer presumably ap-
plies in the nonplanar case as well, using arguments along
the same lines as given in Ref. [60].)

As we saw in Sec. II, integral reductions at one loop
involve only rewriting dot products of the loop momentum
in terms of linear combinations of inverse propagators and
external invariants, along with the use of Lorentz invari-
ance and parity to eliminate some integrals. For the box

integral, in particular, the only nontrivial constraint arises
from the use of parity, which requires that

Z dD‘

ð2�ÞD
"ð‘; k1; k2; k4Þ

‘2ð‘� k1Þ2ð‘� k1 � k2Þ2ð‘þ k4Þ2
¼ 0: (4.2)

This constraint must be respected by the unitarity proce-
dure; otherwise, applying a cut to the original integral and
to the integral after reduction would yield different, and
hence inconsistent, answers. At one loop, it gives rise to
one constraint equation, which fixes the relative normal-
ization of the contours encircling the two solutions to the
on-shell equations.
Similar constraints arise at two loops, though we have a

greater variety of Levi-Civita symbols to consider.
Denoting the insertion of the function fð‘1; ‘2Þ in the
numerator of the double box by

P��
2;2½fð‘1; ‘2Þ� ¼

Z dD‘1
ð2�ÞD

dD‘2
ð2�ÞD

fð‘1; ‘2Þ
‘21ð‘1 � k1Þ2ð‘1 � K12Þ2ð‘1 þ ‘2Þ2‘22ð‘2 � k4Þ2ð‘2 � K34Þ2

; (4.3)

we must require that the vanishing of the following integrals,

P��
2;2½"ð‘1;k2;k3;k4Þ�; P��

2;2½"ð‘2;k2;k3;k4Þ�; P��
2;2½"ð‘1;‘2;k1;k2Þ�; P��

2;2½"ð‘1;‘2;k1;k3Þ�; and P��
2;2½"ð‘1;‘2;k2;k3Þ�; (4.4)

continues to hold for integration over our chosen linear
combination of the contours in Eq. (3.23). This is the
complete set of Levi-Civita symbols that arises during
integral reduction, after using momentum conservation.

At two loops, additional reductions are required in order
to arrive at a linearly independent set of basis integrals.
These are usually obtained through IBP relations
[62,63,66–68]; that is, they correspond to adding a total
derivative to the original integrand. Each such total deriva-
tive, or equivalently each nontrivial reduction identity, gives
rise to a constraint requiring that the unitarity procedure
give vanishing coefficients for the additional terms; or
equivalently that the unitarity procedure respect the reduc-
tion equations. This is not automatically true contour-by-
contour, and hence gives rise to nontrivial constraints on the
choice of contours, and the weighting of different solutions.

In two-loop four-point amplitudes, we can express all
dot products of loop momenta with external vectors in
terms of eight dot products: ‘j � k1, ‘j � k2, ‘j � k4, and
‘j � v, where v� ¼ "ð�; k1; k2; k4Þ. Just as at one loop,

odd powers of v will give rise to vanishing integrals,
as expressed in the Levi-Civita constraints discussed
above. Even powers can again be reexpressed in terms
of the other dot products (up to terms involving the
(�2�)-dimensional components of the loop momentum).
All integrals can then be rewritten in terms of the
six dot products of the loop momenta with the external
momenta.
Of these six dot products, three of them—‘1 � k1, ‘1 � k2,

‘2 � k4—can be rewritten as linear combinations of the
propagator denominators and external invariants. One ad-
ditional dot product of ‘2—say ‘2 � k2—can be rewritten in
terms of the remaining two (‘1 � k4 and ‘2 � k1), propagator
denominators, and external invariants. The remaining two
dot products are called irreducible. At a first stage, then,
before using IBP identities, we can reduce an arbitrary
double-box integral appearing in a gauge-theory amplitude
to a linear combination of the 22 different integrals that can
arise with powers of the two irreducible numerators.
We have the following naively irreducible integrals:

P��
2;2½1�; P��

2;2½‘2 � k1�; P��
2;2½ð‘2 � k1Þ2�; P��

2;2½ð‘2 � k1Þ3�; P��
2;2½‘1 � k4�; P��

2;2½ð‘2 � k1Þð‘1 � k4Þ�;
P��
2;2½ð‘2 � k1Þ2ð‘1 � k4Þ�; P��

2;2½ð‘2 � k1Þ3ð‘1 � k4Þ�; P��
2;2½ð‘1 � k4Þ2�; P��

2;2½ð‘2 � k1Þð‘1 � k4Þ2�;
P��
2;2½ð‘2 � k1Þ2ð‘1 � k4Þ2�; P��

2;2½ð‘2 � k1Þ3ð‘1 � k4Þ2�; P��
2;2½ð‘1 � k4Þ3�; P��

2;2½ð‘2 � k1Þð‘1 � k4Þ3�;
P��
2;2½ð‘2 � k1Þ2ð‘1 � k4Þ3�; P��

2;2½ð‘2 � k1Þ3ð‘1 � k4Þ3�; P��
2;2½ð‘1 � k4Þ4�; P��

2;2½ð‘2 � k1Þð‘1 � k4Þ4�;
P��
2;2½ð‘2 � k1Þ2ð‘1 � k4Þ4�; P��

2;2½ð‘2 � k1Þ4�; P��
2;2½ð‘2 � k1Þ4ð‘1 � k4Þ�; P��

2;2½ð‘2 � k1Þ4ð‘1 � k4Þ2�:

(4.5)
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In the massless case, it turns out that there are 20 IBP
relations between these integrals, which allow further re-
ductions. These reductions allow us to pick certain pairs,
for example,

P��
2;2½1� and P��

2;2½‘1 � k4�; (4.6)

as master integrals for the set in Eq. (4.5), and thus also as
basis integrals for an amplitude.
The remaining integrals are given in terms of these two

by linear equations, for example,

P��
2;2½‘2 �k1�¼P��

2;2½‘1 �k4�; P��
2;2½ð‘1 �k4Þð‘2 �k1Þ�¼

1

8
�s212P

��
2;2½1��

3

4
s12P

��
2;2½‘1 �k4�þ��� ;

P��
2;2½ð‘2 �k1Þ2�¼� ��s212

4ð1�2�ÞP
��
2;2½1�þ

ð�þ3�Þs12
2ð1�2�Þ P��

2;2½‘1 �k4�þ��� ;

P��
2;2½ð‘1 �k4Þ2�¼� ��s212

4ð1�2�ÞP
��
2;2½1�þ

ð�þ3�Þs12
2ð1�2�Þ P��

2;2½‘1 �k4�þ��� ;

P��
2;2½ð‘1 �k4Þð‘2 �k1Þ2�¼�ð1�3�Þ�s312

16ð1�2�Þ P��
2;2½1�þ

ð3�9��2��Þs212
8ð1�2�Þ P��

2;2½‘1 �k4�þ��� ;

P��
2;2½ð‘1 �k4Þ2ð‘2 �k1Þ�¼�ð1�3�Þ�s312

16ð1�2�Þ P��
2;2½1�þ

ð3�9��2��Þs212
8ð1�2�Þ P��

2;2½‘1 �k4�þ��� ;

P��
2;2½ð‘2 �k1Þ3�¼

��ð1�2��3�Þs312
16ð1��Þð1�2�Þ P��

2;2½1�þ
ð2�2�3�ð1�2�Þþ�2ð9þ2�ÞÞs212

8ð1��Þð1�2�Þ P��
2;2½‘1 �k4�þ��� ;

P��
2;2½ð‘1 �k4Þ3�¼

��ð1�2��3�Þs312
16ð1��Þð1�2�Þ P��

2;2½1�þ
ð2�2�3�ð1�2�Þþ�2ð9þ2�ÞÞs212

8ð1��Þð1�2�Þ P��
2;2½‘1 �k4�þ��� ;

(4.7)

where the ellipses denote additional integrals with fewer
propagators. We must require that these equations (and the
other 12 we do not display explicitly) are preserved by the
choice of contours. The contour integrals which implement
the augmented heptacut will yield vanishing results for the
integrals with fewer propagators, so they do not enter the
constraint equations. As we are considering only four-
dimensional cuts, the augmented heptacuts are effectively
four-dimensional.

In order to find the explicit form of the constraint
equations, denote the weight of contour Tj;r by ar;j,

a1;j ! encircling z ¼ 0 for solutionSj;

a2;j ! encircling z ¼ �� for solutionSj;

a3;j ! encircling z ¼ ��� 1 for solutionSj:

(4.8)

For a numerator insertion of fð‘1; ‘2Þ in the numerator of
the double box, the augmented heptacut is then

X4
j¼1

X2
r¼1

ar;j
I
Tj;r

d4�id
4
ifð‘1;‘2Þ�propagatorsð‘1;‘2Þ

��������param

þX6
j¼5

X3
r¼1

ar;j
I
Tj;r

d4�id
4
ifð‘1;‘2Þ

�propagatorsð‘1;‘2Þ
��������param

; (4.9)

where the notation jparam indicates that we use the parame-

trization of ‘1 and ‘2 given in Eq. (3.4). The signs in front
of each coefficient ar;j in the result will depend on the

orientation chosen for the corresponding contour; but this
sign will drop out of final formulas for integral coefficients
so long as this orientation is chosen consistently through-
out the calculation.
We can write down a compact expression for the aug-

mented heptacut of the general tensor integral,

P��
2;2½ð‘1 � k4Þmð‘2 � k1Þn� ¼ � 1

128

�
�m;0

�
s12
2

�
n�3 I

�1

dz

z
ðzþ �Þn�1 þ �n;0

�
s12
2

�
m�3 I

�2

dz

z
ðzþ �Þm�1

þ �m;0

�
s12
2

�
n�3 I

�3

dz

z
ðzþ �Þn�1 þ �n;0

�
s12
2

�
m�3 I

�4

dz

z
ðzþ �Þm�1

þ
�
s12
2

�
mþn�3 I

�5

dz

z
ðzþ �Þm�1

�
� z

zþ �þ 1

�
n

þ
�
s12
2

�
mþn�3 I

�6

dz

z
ðzþ �Þm�1

�
� z

zþ �þ 1

�
n
�
; (4.10)
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where �j denotes the z component of
P

rar;jTj;r, and where, in our notation, the contour integral implicitly includes a factor
of 1=ð2�iÞ, as noted in Sec. II.

We can evaluate this expression using the contours as weighted in Eq. (4.9); we find

P��
2;2½1� ¼ � 1

16�s312

X6
j¼1

ða1;j � a2;jÞ; (4.11)

P��
2;2½ð‘1 � k4Þm� ¼ � 1

32s212

�
�s12
2

�
m�1 X

j�1;3

a1;j; (4.12)

P��
2;2½ð‘2 � k1Þn� ¼ � 1

32s212

�
�s12
2

�
n�1ð�a2;6 þ a3;6 � a2;5 þ a3;5 þ a1;1 þ a1;3Þ; (4.13)

P��
2;2½ð‘1 � k4Þmð‘2 � k1Þn� ¼

1

64s12

�
� s12

2

�
mþn�2

�
�

�
minðm; nÞ � 5

2

�
ð�þ 1Þð�þ 2Þ

þ�

�
minðm; nÞ � 3

2

�
ðmþ n� 3Þð�þ 1Þ þ�

�
minðm; nÞ � 1

2

��
ða3;6 þ a3;5Þ; (4.14)

where m, n 	 1 and the last result is valid only for 0 
 mþ n 
 6 and 0 
 m, n 
 4 (corresponding to the numerator
insertions allowed in gauge theory in D ¼ 4� 2� dimensions).

With these expressions, we now turn to the constraint equations. Let us begin with the equations arising from the
insertion of Levi-Civita tensors (4.4). Start with "ð‘1; k2; k3; k4Þ,

0¼P��
2;2½"ð‘1;k2;k3;k4Þ�)0¼� 1

16s312

�I
�1

dz

z

"ðk�1 � s12
2

h1�j��j2�i
h1�j4j2�i �;k2;k3;k4Þ
zþ�

þ
I
�2

dz

z

"ðk�1 þ s12
2

h1�j��j2�i
h1�j4j2�i z;k2;k3;k4Þ
zþ�

þ
I
�3

dz

z

"ðk�1 � s12
2

h2�j��j1�i
h2�j4j1�i �;k2;k3;k4Þ
zþ�

þ
I
�4

dz

z

"ðk�1 þ s12
2

h2�j��j1�i
h2�j4j1�i z;k2;k3;k4Þ
zþ�

þ
I
�5

dz

z

"ðk�1 þ s12
2

h2�j��j1�i
h2�j4j1�i z;k2;k3;k4Þ
zþ�

þ
I
�6

dz

z

"ðk�1 þ s12
2

h1�j��j2�i
h1�j4j2�i z;k2;k3;k4Þ
zþ�

�
: (4.15)

Evaluating this expression on the augmented heptacut (4.9), we obtain

1

32s212

�
ða2;2 þ a2;6 � a1;1 þ a2;1Þ"

�h1�j��j2�i
h1�j4j2�i ; k2; k3; k4

�
þ ða2;5 þ a2;4 � a1;3 þ a2;3Þ"

�h2�j��j1�i
h2�j4j1�i ; k2; k3; k4

��

¼ 1

32s212
ða2;2 þ a2;6 � a2;5 � a2;4 � a1;1 þ a2;1 þ a1;3 � a2;3Þ"

�h1�j��j2�i
h1�j4j2�i ; k2; k3; k4

�
; (4.16)

where the last line follows from the fact that the two Levi-Civita symbols appearing on the first line are equal but opposite
in value.

Similarly, from the insertion of "ð‘2; k2; k3; k4Þ one finds

0 ¼ P��
2;2½"ð‘2; k2; k3; k4Þ� ) 0 ¼ � 1

32s212
ð�a1;2 þ a2;2 þ a1;6 � a3;6 � a1;5 þ a3;5 þ a1;4 � a2;4 þ a2;1 � a2;3Þ

� "

�h3�j��j4�i
h3�j1j4�i ; k2; k3; k4

�
; (4.17)

and from the insertion of "ð‘1; ‘2; ki; kjÞ with ði; jÞ 2 fð1; 2Þ; ð1; 3Þ; ð2; 3Þg one finds

DAVID A. KOSOWER AND KASPER J. LARSEN PHYSICAL REVIEW D 85, 045017 (2012)

045017-12



0 ¼ P��
2;2½"ð‘1; ‘2; k1; k2Þ� ) 0 ¼ � 1

32s212
ða2;6 � a3;6 � a2;5 þ a3;5 � a1;1 þ a1;3Þ"

�h1�j��j2�i
h1�j4j2�i ; k2; k3; k4

�
;

0 ¼ P��
2;2½"ð‘1; ‘2; k1; k3Þ� ) 0 ¼ 1

32s212
ða2;6 � a2;5 � a1;1 þ a1;3Þ"

�h1�j��j2�i
h1�j4j2�i ; k2; k3; k4

�
;

0 ¼ P��
2;2½"ð‘1; ‘2; k2; k3Þ� ) 0

¼ � 1

32s212
ða1;2 � a1;6 þ a2;6 þ a1;5 � a2;5 � a1;4 � a1;1 þ a1;3Þ � "

�h1�j��j2�i
h1�j4j2�i ; k2; k3; k4

�
:

(4.18)

These results combine to give the constraints

a2;2þa2;6�a2;5�a2;4�a1;1þa2;1þa1;3�a2;3¼0;

a1;2�a2;2�a1;6þa3;6þa1;5�a3;5�a1;4þa2;4�a2;1

þa2;3¼0;

a2;6�a3;6�a2;5þa3;5�a1;1þa1;3¼0;

a2;6�a2;5�a1;1þa1;3¼0;

a1;2�a1;6þa2;6þa1;5�a2;5�a1;4�a1;1þa1;3¼0;

(4.19)

or equivalently

a1;2 � a1;6 þ a1;5 � a1;4 ¼ 0;

a2;2 � a2;4 þ a2;1 � a2;3 ¼ 0;

a2;6 � a2;5 � a1;1 þ a1;3 ¼ 0;

a3;6 � a3;5 ¼ 0:

(4.20)

This set has one equation less: not all the equations from the
Levi-Civita symbols are independent. We see that these
equations are solved by insisting that the contours for
complex-conjugate pairs of solutions (S1$S3, S2$S4,
and S5 $ S6) carry equal weights. This nicely generalizes
the one-loop constraint on contours. However, these are not
the only possible solutions; solutions which do not insist
complex-conjugate pairs carry equalweight are also possible.

We next impose the constraints following from the IBP
reductions. Evaluating the augmented heptacut of both sides
of Eqs. (4.7) along with the remaining 12 reduction equa-
tions not displayed above, and setting � ¼ 0, we find two
additional constraint equations,

a1;2þa1;6þa1;5þa1;4¼�a2;6þa3;6�a2;5þa3;5þa1;1þa1;3;

a3;6þa3;5¼�1

2

X6
j¼1

ða1;j�a2;jÞþ3

2

X
j�1;3

a1;j:

(4.21)

In principle, one might expect 18 additional equations from
the remaining reduction identities; but these all turn out to be
automatically satisfied on the solutions of this pair of
equations.

Beyond ensuring that all the reduction identities are
valid, we ultimately want to determine the coefficients of
the two basis integrals (4.6). Because the system of equa-
tions leaves many undetermined weights ar;j, we have the

freedom to choose values which also kill one or the other of
the basis integrals. That is, we can choose contours for
which one or the other of the basis integrals has vanishing
augmented heptacut. To project out the second basis inte-
gral, P��

2;2½‘1 � k4�, we should also require that Eq. (4.12)

with m ¼ 1 vanish, X
j�1;3

a1;j ¼ 0: (4.22)

To project out the first basis integral, P��
2;2½1�, we should

require that Eq. (4.11) vanish,

X6
j¼1

ða1;j � a2;jÞ ¼ 0: (4.23)

The following values,

a1;1¼�2uþv; a2;1¼u;

a1;2¼�2uþv; a2;2¼u;

a1;3¼�2uþv; a2;3¼u;

a1;4¼�2uþv; a2;4¼u;

a1;5¼2u�v; a2;5¼v; a3;5¼2u;

a1;6¼2u�v; a2;6¼v; a3;6¼2u;

(4.24)

(where u, v are real parameters) solve all the constraint
equations (4.20) and (4.21), and also set the heptacut of the
basis integral P��

2;2½‘1 � k4� to zero, thereby allowing us to

extract the coefficient of the first basis integral, P��
2;2½1�. We

will call a specific choice of contours weighted by these
values P1, leaving the dependence on u and v implicit. A
particularly simple solution is given by u ¼ 1

2 and v ¼ 1.

This choice is illustrated schematically in Fig. 5(a).
Similarly, the following values,

a1;1¼�2uþv; a2;1¼u;

a1;2¼�2uþv; a2;2¼u;

a1;3¼�2uþv; a2;3¼u;

a1;4¼�2uþv; a2;4¼u;

a1;5¼6u�v; a2;5¼v; a3;5¼6u;

a1;6¼6u�v; a2;6¼v; a3;6¼6u;

(4.25)

(where again u, v are real parameters) solve all the con-
straint equations (4.20) and (4.21), set to zero the heptacut
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of the basis integral P��
2;2½1�, and thereby extract the

coefficient of P��
2;2½‘1 � k4�. We will call a specific choice

of contours weighted by these values P2, again leaving the
dependence on u and v implicit. The choice u ¼ 1

2 and

v ¼ 1 again gives a particularly simple solution. It is
illustrated schematically in Fig. 5(b).

Before turning to the extraction procedure, we may
observe that the four-dimensional heptacuts do not suffice
to extract information about the coefficients beyondOð�0Þ.
The problem is that we can find nonvanishing linear com-
binations of tensor integrals whose heptacut integrand
vanishes identically for all six solutions. As a result, not
only do integrals over all contours Tj;a vanish, but even

integrals constructed by multiplying the heptacut integrand
by an arbitrary function of the remaining degree of free-
dom z would vanish. We call such linear combinations
magic. Examples of magic combinations include

M1¼P��
2;2½2;2�þ

s12
2
P��
2;2½2;1�þ

s12
2
P��
2;2½1;2�

��

�
s12
2

�
2
P��
2;2½1;1�;

M2¼P��
2;2½3;2�þ

s12
2
P��
2;2½3;1�þ

s12
2
P��
2;2½2;2�

��

�
s12
2

�
2
P��
2;2½2;1�; (4.26)

where the abbreviated notation P��
2;2½m; n� is defined by

P��
2;2½m; n� � P��

2;2½ð‘1 � k4Þmð‘2 � k1Þn�: (4.27)

The magic combinations do not vanish, but both coeffi-
cients of master integrals are of Oð�Þ after use of IBP
reduction equations.

V. INTEGRAL COEFFICIENTS

With solutions to the constraint equations that also
isolate specific basis integrals in hand, we can write

down a procedure for computing the coefficients of the
integrals in the master equation (4.1). To do so, we apply
the augmented heptacuts to the left-hand side of the master
equation. The basic heptacut will break apart the two-loop
amplitude into a product of six on-shell tree amplitudes,
one for each vertex in the double box. We will be left
with the integral over the z contour. On the right-hand
side, we have the two basis integrals (4.6) chosen earlier.
Here, apply the augmented heptacut, and perform all
integrations. This gives us the relation

1

128

�
2

s12

�
3 X6
i¼1

I
�i

dz

zðzþ �Þ ð�iÞY6
j¼1

Atree
j ðzÞ

¼ c1
16�s312

X6
j¼1

ða1;j � a2;jÞ þ c2
32s212

X
j�1;3

a1;j: (5.1)

In this equation, the product of amplitudes arises from a
factor of a tree-level amplitude at each vertex of the double
box with all seven propagators cut.
As explained in the previous section, through a

judicious choice of contours, we can make the coefficient
of c2 in this equation vanish, or alternatively the coefficient
of c1 vanish. This would then allow us to solve for
c1 and c2, respectively. We gave such choices in
Eqs. (4.24) and (4.25). Using them, we can write an
expression for c1,

c1 ¼ i�

8u

I
P1

dz

zðzþ �Þ
Y6
j¼1

Atree
j ðzÞ; (5.2)

and for c2,

c2 ¼ � i

4s12u

I
P2

dz

zðzþ �Þ
Y6
j¼1

Atree
j ðzÞ: (5.3)

The right-hand sides of these equations must be summed
over possible helicity and particle-species assignments.
The explicit integration is understood to be over the z

FIG. 5 (color online). Schematic representation of contours for the coefficients of the two basis double boxes: (a) the scalar double
box, P��

2;2½1�; and (b) the double box with an irreducible numerator insertion, P��
2;2½‘1 � k4�. The contours encircle the global poles

distributed across the six kinematical solutions; the integers next to the contours indicate the winding number. Both representations are
for the choice u ¼ 1

2 and v ¼ 1 in Eqs. (4.24) and (4.25).
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component of P1 and P2, respectively, with the integra-
tions over the other �i and 
i implicit in the solutions
Sj, and with the dependence of Pj on the parameters

u and v left implicit. The formulas (5.2) and (5.3) represent
the central result of this paper. They are valid for any
gauge theory, and indeed for any amplitude satisfying

the power-counting rules of gauge theory. With the
notation

VjS1þS2�S3
� VjS1

þ VjS2
� VjS3

; (5.4)

we can write out these formulas more explicitly,

c1¼ðv�2uÞi
8u

Resz¼0

1

z

Y6
j¼1

Atree
j ðzÞ

��������S1þS2þS3þS4�S5�S6

� iv

8u
Resz¼��

1

zþ�

Y6
j¼1

Atree
j ðzÞ

��������S5þS6

� i

8
Resz¼��

1

zþ�

Y6
j¼1

Atree
j ðzÞ

��������S1þS2þS3þS4

þ i�

4ð1þ�ÞResz¼���1

Y6
j¼1

Atree
j ðzÞ

��������S5þS6

;

c2¼�ðv�2uÞi
4s12u�

Resz¼0

1

z

Y6
j¼1

Atree
j ðzÞ

��������S1þS2þS3þS4

�ð6u�vÞi
4s12u�

Resz¼0

1

z

Y6
j¼1

Atree
j ðzÞ

��������S5þS6

þ i

4s12�
Resz¼��

1

zþ�

Y6
j¼1

Atree
j ðzÞ

��������S1þS2þS3þS4

þ iv

4s12u�
Resz¼��

1

zþ�

Y6
j¼1

Atree
j ðzÞ

��������S5þS6

� 3i

2s12ð1þ�ÞResz¼���1

Y6
j¼1

Atree
j ðzÞ

��������S5þS6

: (5.5)

These formulas are not manifestly independent of the
choice of contour, but the constraint equations ensure
that they are. We will see explicit examples in the next
section. Of course, the independence of the final result of
the choice of contour does not mean that the results at
intermediate steps are independent; certain choices of con-
tour may in fact simplify analytic or numerical calcula-
tions. We have already seen hints of this in the choices of
P1 and P2, where some values of u and v will require
evaluation of fewer contours, and hence possibly fewer
numerical evaluations if the formulas (5.2) and (5.3) are
used in a numerical setting.

At one loop, one can choose a basis so that integral
coefficients are independent of the dimensional regulator
�, and four-dimensional cuts suffice to compute all of
them. (Computing the rational terms requires use of
D-dimensional cuts.) At two loops, the coefficients

of integral reductions, and hence generally of integrals in
Eq. (4.1), will depend explicitly on �. In particular, c1 and c2
above will depend explicitly on �. In general, this depen-
dence cannot be extracted from four-dimensional heptacuts
alone, because of the vanishing of magic combinations
discussed in Sec. IV. We can also see the need for cuts
beyond four dimensions, or considerably relaxing some of
the heptacut conditions, by considering the two-loop all-plus

amplitude, A2-loop
4 ðþ þþþÞ, computed in Ref. [53]. In this

case, the product of tree amplitudes in Eqs. (5.2) and (5.3)
will necessarily vanish in four dimensions, because there is
no assignment of internal helicities in Fig. 6 that will leave
all three-point amplitudes nonvanishing. The same observa-
tion still holds if we relax some of the cut conditions,
examining hexacuts or pentacuts.

VI. EXAMPLES

In this section, we apply the formalism developed in
previous sections to several examples of two-loop four-
point amplitudes. We use the master formulas (5.2) and
(5.3) to compute the coefficients to Oð�0Þ of the two
double-box basis integrals, P��

2;2½1� and P��
2;2½‘1 � k4�. We

consider three different contributions to four-gluon ampli-
tudes in supersymmetric theories with N ¼ 4; 2; 1 super-
symmetries: the s- and t-channel contributions to

A2-loop
4 ð1�; 2�; 3þ; 4þÞ, and the s-channel contributions to

A
2-loop
4 ð1�; 2þ; 3�; 4þÞ. (The t-channel contributions to the

latter amplitudes can be obtained by relabeling the argu-
ments of the s-channel contribution.)
We will express the results as multiples of the tree-level

four-point amplitudes,
FIG. 6. Graphical representation of

Q6
j¼1 A

tree
j ðzÞjD¼4 for the

all-plus QCD amplitude.
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Atree��þþ ¼ ih12i3
h23ih34ih41i ; (6.1)

and

Atree�þ�þ ¼ ih13i4
h12ih23ih34ih41i : (6.2)

In this section, it will be convenient to have a label for
each cut propagator in the double box. Accordingly, we
adopt a different labeling from previous sections. It is
displayed in Fig. 7.

A. The s-channel contribution to A2-loop
4 ð1�; 2�; 3þ; 4þÞ

For this contribution, shown in Fig. 7, the helicities of
the external states allow only gluons to propagate in either
loop. For this reason, we will get the same result indepen-
dent of the number of supersymmetries. We find that, for
all six solutions to the on-shell equations,

Y6
j¼1

Atree
j ¼ �is212s23A

tree��þþ: (6.3)

We can then use Eq. (5.2) [or equivalently the first equation
in Eq. (5.5)] to obtain

c1 ¼ �is212s23A
tree��þþ

�ðv� 2uÞi
4u

� iv

4u
� i

2

�

¼ �s212s23A
tree��þþ (6.4)

and Eq. (5.3) [or equivalently the second equation in
Eq. (5.5)] to obtain

c2 ¼ �is212s23A
tree��þþ

�
�ðv� 2uÞi

s12u�
� ð6u� vÞi

2s12u�
þ i

s12�

þ iv

2s12u�

�
¼ 0: (6.5)

We see that the dependence on the parameters u and v has
disappeared, as expected. In the N ¼ 4 theory, these turn
out to be the exact coefficients; in theories with fewer
supersymmetries, there are additional terms of Oð�Þ in
these coefficients.

B. The t-channel contribution to A2-loop
4 ð1�; 2�; 3þ; 4þÞ

We turn next to the computation of the coefficients in the
t-channel contribution to the same amplitude considered in
the previous section. The heptacut for this contribution is
shown in Fig. 8. In applying the formulas for the coeffi-
cients, we have cyclicly permuted the external momentum
arguments, ð1; 2; 3; 4Þ ! ð4; 1; 2; 3Þ, so that we must re-
place � ! ��1. Otherwise, they are of course unchanged.
In this contribution, computing the required products of

tree amplitudes is more involved, and the computation also
requires sums over supermultiplets of states propagating in
the loops. As an example, we work through the computa-
tion of the product in solution S2. We have two possible
helicity assignments for the internal lines, shown in Fig. 9.
For gluon internal lines, we multiply the amplitudes at the
six vertices to obtain

Y6
j¼1

Atree;gluon
j ¼ � 1

�
�

�
A4 for configurationA;

B4 for configurationB;
(6.6)

where

A4 ¼ ð½p4�h1p2ihq2li½lq�hqq1i½q1q2�Þ4;
B4 ¼ ð½4p1�hp11ihp2q2i½qp�hqq1i½q1q2�Þ4;
� ¼ ½p4�½4p1�½p1p�hp11ih1p2ihp2p1ihp2q2ihq2lihlp2i

� ½lq�½qp�½pl�hqq1ihq13ih3qi½q1q2�½q22�½2q1�;
(6.7)

and the minus sign in Eq. (6.6) comes from the factor of i in

each A
tree;gluon
j .

The helicity assignments of the internal lines allow only
gluons to propagate in the right (q) loop, whereas the entire
supersymmetric multiplet of states can propagate in the left
(p) loop. For N ¼ 4 super Yang-Mills gauge theory, the
sum over states yields

X
N¼4
multiplet

Y6
j¼1

Atree
j

��������S2

¼ �ðAþ BÞ4
�

: (6.8)

FIG. 7. The labeling of internal momenta used in Sec. VI, here

shown for the s-channel contribution to A
2-loop
4 ð1�; 2�; 3þ; 4þÞ. FIG. 8. The heptacut for the t-channel contribution to

A
2-loop
4 ð1�; 2�; 3þ; 4þÞ.
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On the other hand, from Refs. [36,61] we know that, in the
N ¼ 4 theory,

X
N¼4
multiplet

Y6
j¼1

Atree
j

��������S2

¼ �is12s
2
23A

tree��þþ: (6.9)

As a calculational shortcut, we use the equality of the
expressions in Eqs. (6.8) and (6.9) to fix the relative sign
of A and B in Eq. (6.7). (Of course, the relative signs can
also be determined a priori, without reference to results in
the literature, by carefully tracking the direction—incom-
ing or outgoing—of the momenta at a given vertex and
using the analytic continuation rule that changing the sign
of a momentum, pi ! �pi, is effected by changing the
sign of the holomorphic spinor [77]: ��

i ! ���
i while

~� _�
i ! ~� _�

i .) One finds

A ¼ ½p4�h1p2ihq2li½lq�hqq1i½q1q2�;
B ¼ �½4p1�hp11ihp2q2i½qp�hqq1i½q1q2�:

(6.10)

Reference [78] teaches us that the sum over the N ¼
4; 2; 1; 0 multiplet of states is related to the N ¼ 4 state
sum via

X
SUSY

multiplet

Y6
j¼1

Atree
j ¼ðAþBÞN ðA4�N þB4�N Þ

ðAþBÞ4
�
1�1

2
�N ;4

�

� X
N¼4
multiplet

Y6
j¼1

Atree
j ; (6.11)

so that the sum over the supersymmetric multiplet of states
can be calculated from the gluonic contributions alone
[indeed, recall that A and B in Eq. (6.7) were obtained
from the product of purely gluonic amplitudes correspond-
ing to configurations A and B, respectively].

We can simplify the expression for the ratio between the
supersymmetric state sums in Eq. (6.11) by factoring out as
many common factors of A and B as possible (exploiting
momentum conservation fully). Setting A ¼ �F and

B ¼ 
F, for N ¼ 4; 2; 1 the ratio appearing in
Eq. (6.11) simplifies to

R ¼ ð�þ 
ÞN ð�4�N þ 
4�N Þ
ð�þ 
Þ4

�
1� 1

2
�N ;4

�

¼ ð�4�N þ 
4�N Þð1� 1
2�N ;4Þ

ð�þ 
Þ4�N
(6.12)

¼ 1� ð4�N Þ
�

�

�þ 


�
þ ð4�N Þ

�
�

�þ 


�
2
; (6.13)

where the last equality holds only for N ¼ 4; 2; 1; it can

be obtained by expanding the numerator ð�4�N þ

4�N Þð1� 1

2�N ;4Þ in Eq. (6.12) in 
 around ��.

In the case at hand, we can use momentum conservation
(l ¼ p2 þ q2 and p1 ¼ p� k4) to rewrite A and B as
follows:

A ¼ ½p4�h1p2ihq2p2i½p2q�hqq1i½q1q2�;
B ¼ �½4p�hp1ihp2q2i½qp�hqq1i½q1q2�;

(6.14)

and identify

� ¼ h1p2i½p2q�; 
 ¼ �½qp�hp1i;
F ¼ ½p4�hq2p2ihqq1i½q1q2�: (6.15)

Momentum conservation implies that �þ
¼�h14i½4q�,
and thus,

�

�þ 

¼ �h1p1i½p1q�

h14i½4q� ¼ � h1p1i½p13�
h14i½43� ; (6.16)

where the second equality uses the proportionality of anti-

holomorphic spinors, ~�q / ~�3. (This proportionality holds

only for some of the other six solutions Si in addition
to S2.) The ratio thus simplifies to

R¼1þð4�N Þ
�h1p1i½p13�

h14i½43�
�
þð4�N Þ

�h1p1i½p13�
h14i½43�

�
2
:

(6.17)

FIG. 9. The two distinct assignments of internal helicities in solution S2 for the t-channel double-box contributions to

A2-loop
4 ð1�; 2�; 3þ; 4þÞ: (a) configuration A and (b) configuration B.
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We can solve for the explicit values of the cut momenta
using the parametrization (3.4) with the external momenta
cyclicly permuted (for the t-channel configuration), and
using the on-shell values defining S2 given in Eqs. (3.7)
and (3.10). We find

p�
1 � p� � k�4 ¼ s14z

2h43i½31� h4
�j��j1�i; (6.18)

so that

h1p1i½p13�¼ h1�j��j3�ip1�

¼ s14z

2h43i½31�h1
�j��j3�ih4�j��j1�i¼h41i

h43is14z;
(6.19)

and thus

h1p1i½p13�
h14i½43� ¼ �z: (6.20)

This gives us our final form for the ratio,

R ¼ 1þ ð4�N Þ�zþ ð4�N Þ�2z2; (6.21)

and for the product of tree amplitudes,

X
SUSY

multiplet

Y6
j¼1

Atree
j

��������S2

¼ �is12s
2
23A

tree��þþð1þ ð4�N Þ�z

þ ð4�N Þ�2z2Þ: (6.22)

In this solution to the heptacut equations, the supersym-
metric multiplet runs only in one of the loops. In other
solutions (in particular, S6), the multiplet can run in both
loops. The treatment of this case is similar but more
elaborate. It turns out [78] that the sum over the multiplet
can again be evaluated purely from the gluonic contribu-
tions. The main difference is that in this case there are three
gluonic contributions A4, B4, C4 [compared to the two in
Eq. (6.7)]. One can again fix the relative sign of B and C by

insisting that theN ¼ 4 supersymmetric result� ðAþBþCÞ4
�

be equal to Eq. (6.9), and from the obvious analog of
Eq. (6.11) one then finds the results for the supermultiplet

sums for N ¼ 4; 2; 1; 0. These expressions can again be
simplified as above.
Summing over all six solutions, and plugging the result

into our master formulas (5.2) and (5.3), taken with u ¼ 1
2

and v ¼ 1, we find

c1 ¼ �s12s
2
23A

tree��þþ

�
�
1þ 1

4ð1� �N ;4Þð4�N Þ!�ð�þ 1Þ�N ;1

�
;

c2 ¼ 3
2s

2
23A

tree��þþð1� �N ;4Þð4�N Þ!�ð�þ 1Þ�N ;1 ;

(6.23)

valid for N ¼ 4; 2; 1.

C. The s-channel contribution to A2-loop
4 ð1�; 2þ; 3�; 4þÞ

The heptacut for the s-channel contribution to

A2-loop
4 ð1�; 2þ; 3�; 4þÞ is shown in Fig. 10. We will evalu-

ate this contribution in two different ways, illustrating both
the result’s independence of the precise choice of contour,
and also illustrating the potential advantages of a judicious
choice of contour in a given calculation.
Rather than using our master formulas (5.2) and (5.3), let

us evaluate the augmented heptacut integral for a general
contour, before imposing the constraint equations. Adding
up the contributions from all six solutions, we find

X6
i¼1

I
�i

dz

zðzþ �Þ
Y6
j¼1

Atree
j ðzÞ ¼ �is212s23A

tree�þ�þ
�X6
j¼1

a1;j � a2;j
�

� ð4�N Þ a1;6 � a3;6 � a2;5
ð�þ 1Þ2

þ
��

1� 1

2
�N ;4

�
�4�N þ 1

ð�þ 1Þ4�N
� 1

��
a1;3 � a2;3

�
þ a1;4 � a2;4

�

��
: (6.24)

In this expression, we need to impose the constraint equa-
tions in order to restrict the evaluation to a valid contour;
and then we would seek to project onto each basis integral
in turn. Now, suppose we can find a pair of solutions
to the constraint equations which projects onto the first or
second basis integral, respectively, and in addition satisfies

a1;3 � a2;3 þ a1;4 � a2;4 ¼ 0. Using such a contour would
set the second line of Eq. (6.24) equal to zero and therefore
produce a particularly simple algebraic expression for c1
and c2 directly, without need for additional simplification.
Choosing u ¼ 1

3 and v ¼ 1 in P1 and P2 gives such a
contour.

FIG. 10. The heptacut for the s-channel contribution to

A
2-loop
4 ð1�; 2þ; 3�; 4þÞ.
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This gives us the results

c1 ¼ �s212s23A
tree�þ�þ

�
1� 3

4
ð4�N Þ �

ð�þ 1Þ2
�
;

c2 ¼ � 3

2
s12s23A

tree�þ�þ
4�N
ð�þ 1Þ2 ;

(6.25)

valid for N ¼ 4; 2; 1. The t-channel contribution can be
obtained by exchanging s12 $ s23 and � ! ��1.

If we compare the expressions obtained above for the
coefficients ci to those obtained using the choice suggested
in Sec. V, u ¼ 1

2 and v ¼ 1, we find that the expressions are

equal by virtue of the identity

1

�

��
1�1

2
�N ;4

�
�4�N þ1

ð�þ1Þ4�N
�1

�
¼� 4�N

ð�þ1Þ2 ; (6.26)

valid forN ¼ 4; 2; 1. This identity can of course easily be
proven without reference to the current discussion, but the
point we wish to emphasize is that the flexibility in choos-
ing contours suggests certain algebraic simplifications
which are not immediately obvious.

The double-box coefficients given in Eqs. (6.4), (6.5),
(6.23), and (6.25) agree with the Oð�0Þ terms of the corre-
sponding coefficients, supplied to us by Lance Dixon [79],
in the amplitudes computed by Bern, De Freitas, and Dixon
[54].

VII. CONCLUSIONS

In this paper, we have taken the first step to extending the
maximal generalized unitarity method to two loops.
Cutting propagators can be viewed as deforming the origi-
nal real loop-momentum contours of integration to con-
tours encircling the global poles of the integrand. At two
loops, there is a variety of such poles. We can evaluate the
integral along many different linear combinations of these
contours. However, our choices are restricted by the re-
quirement that the evaluation along any contour respect the

vanishing of certain insertions of Levi-Civita symbols, as
well as of total derivatives arising from integration-by-
parts identities. We derived the corresponding constraint
equations for the massless double box, and showed how to
use their solutions to obtain simple formulas, Eqs. (5.2) and
(5.3), for the coefficients of the two double-box basis
integrals to leading order in the dimensional regulator �.
To derive these equations, we adopted a parametrization of
the loop momenta and solved explicitly for the maximal
cuts, a heptacut in our case, and identified the additional
poles present in the remaining degree of freedom.
We expect that the approach given in this paper—

parametrize the basis integrals; solve the on-shell equa-
tions; identify the poles in the remaining degrees of
freedom; impose all constraint equations—will apply to
the full set of integrals required for two-loop amplitudes,
both to the four-dimensional cuts considered here, and
more generally to the D-dimensional cuts required for a
complete calculation of the amplitude.
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