
Fermionic Casimir densities in a conical space with a circular boundary and magnetic flux

E. R. Bezerra de Mello,1,* F. Moraes,1,† and A.A. Saharian1,2,‡

1Departamento de Fı́sica, Universidade Federal da Paraı́ba 58.059-970, Caixa Postal 5.008, João Pessoa PB, Brazil
2Department of Physics, Yerevan State University, 1 Alex Manoogian Street 0025 Yerevan, Armenia

(Received 4 November 2011; published 10 February 2012)

The vacuum expectation value (VEV) of the energy-momentum tensor for a massive fermionic field is

investigated in a (2þ 1)-dimensional conical spacetime in the presence of a circular boundary and an

infinitely thin magnetic flux located at the cone apex. The MIT bag boundary condition is assumed on the

circle. At the cone apex we consider a special case of boundary conditions for irregular modes, when

the MIT bag boundary condition is imposed at a finite radius, which is then taken to zero. The presence of

the magnetic flux leads to the Aharonov-Bohm-like effect on the VEV of the energy-momentum tensor.

For both exterior and interior regions, the VEV is decomposed into boundary-free and boundary-induced

parts. Both these parts are even periodic functions of the magnetic flux with the period equal to the flux

quantum. The boundary-free part in the radial stress is equal to the energy density. Near the circle, the

boundary-induced part in the VEV dominates and for a massless field the vacuum energy density is

negative inside the circle and positive in the exterior region. Various special cases are considered.
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I. INTRODUCTION

Topological defects created after symmetry-breaking
phase transitions play an important role in many fields of
physics (for a review see [1]). They appear in different
condensed matter systems including superfluids, supercon-
ductors, and liquid crystals. Moreover, the topological
defects provide an important link between particle physics
and cosmology. In particular, the cosmic strings are candi-
dates to produce a number of interesting physical effects,
such as the generation of gravitational waves, gamma ray
bursts, and high-energy cosmic rays. In the simplest theo-
retical model, the geometry of a cosmic string outside its
core is described by the planar angle deficit. Though this
geometry is flat, the corresponding nontrivial topology
leads to a number of interesting physical effects. In par-
ticular, the properties of the quantum vacuum are changed
due to the modification of the zero-point fluctuations
spectrum of quantum fields. Explicit calculations for
the vacuum polarization by the cosmic string have been
developed for different fields and in various spatial dimen-
sions (see, for instance, [2–16]). The combined effects of
the cosmic string topology and a coaxial cylindrical bound-
ary on the polarization of the vacuum were studied in
Refs. [17–20] for scalar, electromagnetic, and fermionic
fields.

In Refs. [21,22] we have investigated the vacuum ex-
pectation value (VEV) of the fermionic current and the
fermionic condensate induced by the vortex configuration
of a gauge field in a (2þ 1)-dimensional conical space
with a circular boundary. Continuing in this line of

investigation, in the present paper we study the VEV of
the energy-momentum tensor for a massive fermionic field
with the MIT bag boundary condition. The imposition of
the boundary condition induces shifts in the expectation
values of physical characteristics of the vacuum state. This
is the well-known Casimir effect [23]. The expectation
value of the energy-momentum tensor is among the most
important characteristics of the vacuum. In addition to
describing the physical structure of a quantum field at a
given point, it acts as the source of gravity in the quasi-
classical Einstein equations and plays an important role in
modelling self-consistent dynamics involving the gravita-
tional field. In considering the expectation value of the
energy-momentum tensor we shall assume the presence
of a magnetic flux. The interaction of a magnetic flux tube
with a fermionic field gives rise to a number of interesting
phenomena, such as the Aharonov-Bohm effect, parity
anomalies, formation of a condensate, and generation of
exotic quantum numbers. For background Minkowski
spacetime, the combined effects of the magnetic flux and
boundaries on the vacuum energy have been studied in
Refs. [24,25].
Field theories in 2þ 1 dimensions provide simple

models in particle physics. Related theories also arise
in the long-wavelength description of certain planar
condensed matter systems, including models of high-
temperature superconductivity. They exhibit a number of
interesting effects, such as parity violation, flavor symme-
try breaking, and fractionalization of quantum numbers
(see Refs. [26–33]). An important aspect is the possibility
of giving a topological mass to the gauge bosons without
breaking gauge invariance. An interesting application of
Dirac theory in 2þ 1 dimensions recently appeared in
nanophysics. The long-wavelength description of the elec-
tronic states in a graphene sheet can be formulated in terms

*emello@fisica.ufpb.br
†moraes@fisica.ufpb.br
‡saharian@ysu.am

PHYSICAL REVIEW D 85, 045016 (2012)

1550-7998=2012=85(4)=045016(18) 045016-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.85.045016


of the Dirac-like theory of massless spinors in (2þ 1)-
dimensional spacetime with the Fermi velocity playing
the role of the speed of light (for a review see Ref. [34]).
One-loop quantum effects induced by the nontrivial topol-
ogy of graphene-made cylindrical and toroidal nanotubes
have been recently considered in Ref. [35]. The vacuum
polarization in graphene with a topological defect is
investigated in Ref. [36] within the framework of a long-
wavelength continuum model.

The outline of the paper is as follows. In the next sec-
tion we consider the geometry of a boundary-free conical
space with an infinitesimally thin magnetic flux placed
at the apex of the cone. At the cone apex, a special case
of boundary conditions is considered, when the MIT bag
boundary condition is imposed at a finite radius, which is
then taken to zero. The renormalized VEV of the energy-
momentum tensor is evaluated. Integral representations are
provided for the energy density and vacuum stresses. In
Sec. III, we consider the VEV of the energy-momentum
tensor in the region inside a circular boundary with the
MIT bag boundary condition. The VEV is decomposed
into boundary-free and boundary-induced parts. A rapidly
convergent integral representation for the latter is obtained.
A similar investigation for the region outside a circular
boundary is presented in Sec. IV. The case with half-integer
values of the ratio of the magnetic flux to the flux quantum
requires a special consideration. The corresponding analy-
sis is presented in Sec. V. Finally, Sec. VI contains a
summary of the work.

II. ENERGY-MOMENTUM TENSOR IN A
BOUNDARY-FREE CONICAL SPACE

In the presence of the external electromagnetic field
with the vector potential A�, the dynamics of a massive

spinor field c is governed by the Dirac equation

i��ðr� þ ieA�Þc �mc ¼ 0; (2.1)

with �� ¼ e�ðaÞ�
ðaÞ being the Dirac matrices. Here �ðaÞ are

the flat spacetime gamma matrices and e
�
ðaÞ is the basis

tetrad. The covariant derivative operator is given by the
relation

r� ¼ @� þ 1

4
�ðaÞ�ðbÞe�ðaÞeðbÞ�;�; (2.2)

where ‘‘;’’ means the standard covariant derivative for
vector fields. As a background geometry, we consider a
(2þ 1)-dimensional conical spacetime with the line
element

ds2 ¼ g��dx
�dx� ¼ dt2 � dr2 � r2d�2; (2.3)

with r � 0 and 0 � � � �0. In (2þ 1)-dimensional
spacetime there are two inequivalent irreducible represen-
tations of the Clifford algebra. In what follows we choose

the flat space Dirac matrices in the form �ð0Þ ¼ �3, �
ð1Þ ¼

i�1, �
ð2Þ ¼ i�2, where �l are Pauli matrices. In the second

representation the gamma matrices can be taken as �ð0Þ ¼
��3, �ð1Þ ¼ �i�1, �ð2Þ ¼ �i�2. The corresponding
results for the second representation are obtained by
changing the sign of the mass, m! �m.
We assume the presence of a circular boundary with

radius a on which the field obeys the MIT bag boundary
condition

ð1þ in��
�Þc jr¼a ¼ 0; (2.4)

where n� is the outward-directed normal (with respect

to the region under consideration) to the boundary. We
have n� ¼ �1

� and n� ¼ ��1
� for the interior and exterior

regions, respectively. As it will be shown below, the VEV
is decomposed into the boundary-free and boundary-
induced parts. In this section, we shall be concerned with
the VEV of the energy-momentum tensor operator for a
spinor field in the boundary-free conical space. We assume
the magnetic field configuration corresponding to an
infinitely thin magnetic flux located at the apex of the
cone. In the cylindrical coordinates of Eq. (2.3), the corre-
sponding vector potential has the components A� ¼
ð0; 0; AÞ for r > 0. The z-component is related to the
magnetic flux � by the formula A ¼ ��=�0.
For the evaluation of the VEVof the energy-momentum

tensor we use the mode-sum formula

h0jT��j0i ¼ i

2

X
�

½ �c ð�Þ� ðxÞ�ð�r�Þc
ð�Þ
� ðxÞ

� ðrð� �c ð�Þ� ðxÞÞ��Þc
ð�Þ
� ðxÞ�; (2.5)

where fc ðþÞ� ; c ð�Þ� g is a complete set of positive- and
negative-energy solutions to the Dirac equation, �c ¼
c y�0 is the Dirac adjoint and the dagger denotes
Hermitian conjugation. Here � stands for a set of quantum
numbers specifying the solutions (see below). The theory
of von Neumann deficiency indices leads to a one-
parameter family of allowed boundary conditions in the
background of an Aharonov-Bohm gauge field [37]. Here
we consider a special case of boundary conditions at
the cone apex, when the MIT bag boundary condition is
imposed at a finite radius, which is then taken to zero. The
VEVs for other boundary conditions are evaluated in a
similar way. The contribution of the regular modes is the
same for all boundary conditions and the results differ
by the parts related to the irregular modes.
The mode functions in the boundary-free conical space

are specified by the set � ¼ ð�; jÞ with 0 � � <1 and
j ¼ �1=2;�3=2; . . . . The corresponding normalized
negative-energy eigenspinors are given by the expres-
sion [21]
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c ð�Þð0Þ�j ¼
�
�
Eþm

2�0E

�
1=2

e�iqj�þiEt
��je

�iq�=2

Eþm J�jþ�jð�rÞ
J�j
ð�rÞeiq�=2

0
@

1
A;

(2.6)

where E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

p
and J�ðxÞ is the Bessel function.

In Eq. (2.6) we have defined

�j ¼ qjjþ 	j � �j=2; q ¼ 2
=�0; (2.7)

with

	 ¼ eA=q ¼ �e�=2
; (2.8)

and

�j ¼
�
1; j >�	
�1; j <�	 : (2.9)

The expression for the positive-energy eigenspinor is

found from Eq. (2.6) by using the relation c ðþÞ�j ¼
�1c

ð�Þ�
�j , where the asterisk means complex conjugate.

Here we assume that the parameter 	 is not a half-
integer. The special case of half-integer 	 will be
considered separately in Sec. V.

Substituting the eigenspinors (2.6) into the mode-
sum (2.5), for the VEV of the energy-momentum tensor
in the boundary-free geometry, h0jT�

�j0i ¼ hT�
�i0, one

finds

hT0
0i0 ¼ �

q

4


X
j

Z 1
0

d��½ðE�mÞJ2�jþ�jð�rÞ

þ ðEþmÞJ2�j
ð�rÞ�;

hT1
1i0 ¼

q

4


X
j

�j
Z 1
0

d�
�3

E
½J�j
ð�rÞJ0�jþ�jð�rÞ

� J0�j
ð�rÞJ�jþ�jð�rÞ�;

hT2
2i0 ¼

q

4
r

X
j

�j
Z 1
0

d�
�2

E
ð2�j�j þ 1Þ

� J�j
ð�rÞJ�jþ�jð�rÞ;

(2.10)

where
P

j means the summation over j ¼ �1=2;�3=2; . . .
and the prime means the derivative with respect to the
argument of the function. By using the relation

J0�j
ðzÞ ¼ ��jJ�jþ�jðzÞ þ �j

�j

z
J�j
ðzÞ; (2.11)

the VEVs of the energy density and radial stress may be
written in the form

hT0
0i0 ¼ �A0ðrÞ þmh �c c i0; hT1

1i0 ¼ A0ðrÞ � hT2
2i0;

(2.12)

with h �c c i0 being the fermionic condensate (see Ref. [22])
and

A0ðrÞ ¼ q

4


X
j

Z 1
0

d�
�3

E
½J2�j
ð�rÞ þ J2�jþ�jð�rÞ�: (2.13)

From these expressions the trace relation hTk
ki0 ¼ mh �c c i0

is explicitly seen. Another relation between the separate
components is a consequence of the covariant conservation
equation for the energy-momentum tensor. For the geome-
try at hand the latter is reduced to a single equation:
@rðrhT1

1i0Þ ¼ hT2
2i0.

If we present the parameter 	 related to the magnetic
flux as

	 ¼ 	0 þ n0; j	0j< 1=2; (2.14)

with n0 being an integer number, it can be seen that the
VEVs do not depend on n0. Hence, we conclude that the
VEVof the energy-momentum tensor depends on	0 alone.
The VEV is an even function of this parameter (note that
the same is the case for the fermionic condensate, whereas
the VEVof the fermionic current is an odd function of 	0).
The expressions (2.10) are divergent and need to be

regularized. We introduce a cutoff function e�s�2
with

the cutoff parameter s > 0. At the end of calculations the
limit s! 0 is taken. First we consider the azimuthal stress.
From Eq. (2.10), the corresponding regularized VEV can
be written in the form

hT2
2i0;reg ¼

q

8
r2
X
j

ð2�j þ �jÞð2�j � �jr@rÞ

�
Z 1
0

d�
�e�s�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

p J2�j
ð�rÞ: (2.15)

By using the relation

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

p ¼ 2ffiffiffiffi


p

Z 1
0

dte�ð�2þm2Þt2 ; (2.16)

and changing the order of integrations, the �-integral is
performed explicitly (see Ref. [38]) with the result

hT2
2i0;reg ¼

q

8
r2
em

2sffiffiffiffiffiffiffi
2

p X

j

ð2�j þ �jÞð2�j � �jr@rÞ

�
Z 1=ð2sÞ

0
dy

y�1=2I�j
ðr2yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2ys
p e�m2=ð2yÞ�r2y;

(2.17)

where I�j
ðxÞ is the modified Bessel function. By using the

properties of the modified Bessel function, Eq. (2.17) can
also be written in the form

hT2
2i0;reg ¼

qem
2s

2ð2
Þ3=2 @rr
Z 1=ð2sÞ

0
dy

y1=2e�m2=ð2yÞ�r2yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ys
p

�X
j

½I�j
ðr2yÞ þ I�jþ�jðr2yÞ�: (2.18)

In order to find the representation for regularized VEVs
of the energy density and radial stress we need to consider
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the expression for A0ðrÞ in Eq. (2.13) regularized with the

cutoff function e�s�2
. The regularized expression can be

presented in the form

A0;regðrÞ ¼ � q

4


X
j

@s
Z 1
0

d�
�e�s�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

p
� ½J2�j

ð�rÞ þ J2�jþ�jð�rÞ�: (2.19)

The parts with separate terms in the square brackets are
evaluated in a way similar to that we used for Eq. (2.15). As
a result we find

A0;regðrÞ ¼ qem
2s

ð2
Þ3=2
X
j

@

@r2
r2

Z 1=ð2sÞ

0
dy

y1=2e�m2=ð2yÞ�r2yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ys
p

� ½I�j
ðr2yÞ þ I�jþ�jðr2yÞ�: (2.20)

From here, in the combination with Eq. (2.12), for the
regularized radial stress we obtain the expression

hT1
1i0;reg ¼

qem
2s

2ð2
Þ3=2
Z 1=ð2sÞ

0
dy

y1=2e�m2=ð2yÞ�r2yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ys
p

�X
j

½I�j
ðr2yÞ þ I�jþ�jðr2yÞ�: (2.21)

For the energy density and the azimuthal stress we have

hT0
0i0;reg ¼ �ð2þ r@rÞhT1

1i0;reg þmh �c c i0;reg;
hT2

2i0;reg ¼ ð1þ r@rÞhT1
1i0;reg:

(2.22)

Note that by the second relation we explicitly checked the
covariant continuity equation for the regularized VEVs.

As the fermionic condensate has been considered in
Ref. [22], in accordance with Eq. (2.22) we need to con-
sider the radial stress only. The corresponding regularized
VEV is expressed in terms of the series

I ðq;	; zÞ ¼X
j

I�j
ðzÞ: (2.23)

If we present the parameter 	 in the form (2.14), the
independence of the series on n0 is easily seen:
Iðq; 	; zÞ ¼ Iðq;	0; zÞ. For the second series appearing
in the expressions for the regularized VEVs we haveX

j

I�jþ�jðzÞ ¼ Iðq;�	0; zÞ: (2.24)

With the notation (2.23), the regularized VEV of the
radial stress is written in the form

hT1
1i0;reg ¼

qem
2s

2ð2
Þ3=2
Z 1=ð2sÞ

0
dy

y1=2e�m2=ð2yÞ�r2yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ys
p

� X
j¼�1

Iðq; j	0; r
2yÞ: (2.25)

For 2p < q< 2pþ 2, with p being an integer, we use the
representation [21]

I ðq; 	0; zÞ ¼ ez

q
þ J ðq;	0; zÞ; (2.26)

with the notation

J ðq;	0;zÞ¼� 1




Z 1
0
dy

e�zcoshyfðq;	0;yÞ
coshðqyÞ�cosðq
Þ

þ2

q

Xp
l¼1
ð�1Þlcos½2
lð	0�1=2qÞ�ezcosð2
l=qÞ:

(2.27)

The function in the integrand is defined by the expression

fðq;	0;yÞ¼ cos½q
ð1=2�	0Þ�cosh½ðq	0þq=2�1=2Þy�
�cos½q
ð1=2þ	0Þ�
�cosh½ðq	0�q=2�1=2Þy�: (2.28)

In the case q ¼ 2p, the term

� ð�1Þq=2 e
�z

q
sinðq
	0Þ; (2.29)

should be added to the right-hand side of Eq. (2.27).
For 1 � q < 2, the last term on the right-hand side of
Eq. (2.27) is absent.
Substituting Eq. (2.26) into the right-hand side of

Eq. (2.25), we can see that the only divergent contribution
comes from the term ez=q. This contribution does not
depend on the opening angle of the cone and on the
magnetic flux. It coincides with the corresponding quantity
in the Minkowski spacetime, in the absence of the mag-
netic flux. Subtracting the Minkowskian part and taking
the limit s! 0, after the explicit integration over y, we
get the expression for the renormalized radial stress,
hT1

1i0;ren. The corresponding expressions for the energy

density and the azimuthal stress are found from Eq. (2.22),
by using the expression for h �c c i0;ren from Ref. [22]. In this

way, one finds the following formula (no summation over i)

hTi
ii0;ren ¼

m3




2
64Xp

l¼1
ð�1Þl cosð
l=qÞ cosð2
l	0Þ

� FðsÞi ð2mrslÞ � q

2


�
Z 1
0

dy

P
�¼�1

fðq; �	0; 2yÞFðsÞi ð2mr coshðyÞÞ
coshð2qyÞ � cosðq
Þ

3
75;

(2.30)

where p is an integer defined by 2p � q < 2pþ 2, and

sl ¼ sinð
l=qÞ: (2.31)

In Eq. (2.30), we have defined the functions
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FðsÞ0 ðuÞ ¼ FðsÞ1 ðuÞ ¼
e�u

u3
ðuþ 1Þ;

FðsÞ2 ðuÞ ¼ �
e�u

u3
ðu2 þ 2uþ 2Þ:

(2.32)

Note that for the function in the integrand one hasX
�¼�1

fðq;�	0;2yÞ¼�2sinhðyÞ
X

�¼�1
cos½q
ð1=2þ�	0Þ�

�sinh½qð1�2�	0Þy�: (2.33)

As can be seen, the radial stress is equal to the energy density:
hT0

0i0;ren ¼ hT1
1i0;ren.

For a massless field the corresponding energy density
is directly obtained from Eq. (2.30)

hT0
0i0;ren ¼

1

8
r3

�Xp
l¼1

ð�1Þl
s3l

cosð
l=qÞ cosð2
l	0Þ

� q

2


Z 1
0

dy

P
j¼�1

fðq; j	0; 2yÞ
coshð2qyÞ � cosðq
Þ

1

cosh3y

�
:

(2.34)

For the radial and azimuthal stresses one has

hT1
1i0;ren ¼ �

1

2
hT2

2i0;ren ¼ hT0
0i0;ren: (2.35)

Of course, in the massless case the energy-momentum
tensor is traceless. In Fig. 1 we plot the renormalized
energy density for a massless field as a function of the
parameter 	0 for separate values of the parameter q
(numbers near the curves).

For a massive field, the expression in the right-hand side
of Eq. (2.34) gives the leading term in the corresponding
asymptotic expansion for small distances from the string,
mr� 1. At distances larger than the Compton

wavelength of the spinor particle, mr	 1, the VEVs are
suppressed by the factor e�2mr for 1 � q � 2 and by the

factor e�2mr sinð
=qÞ for q > 2. In the latter case the domi-
nant contribution comes from the first term in the right-
hand side of Eq. (2.30):

hTi
ii0;ren
�

m2

2
r
cotð
=qÞcosð2
	0Þ

�e�2mrsinð
=qÞ

8><
>:
1=½2mrsinð
=qÞ�; i¼0;1

�1; i¼2
;

(2.36)

for mr	 1.
For integer q and for the parameter 	 given by the

special value

	 ¼ 1=2q� 1=2; (2.37)

the expression (2.30) for the VEVs take the form (no
summation)

hTi
ii0;ren ¼

m3

2


Xq�1
l¼1

cos2ð
l=qÞFðsÞi ð2mrslÞ: (2.38)

Note that, in this case, the renormalized VEV vanishes in
a conical space with q ¼ 2. For q � 3 the energy density
is positive.
The energy density diverges on the string as 1=r3 and, as

a result, the integrated energy diverges as well. We can
evaluate the total vacuum energy in the region r0 � r <1
by using the energy density given above: E0;r�r0 ¼
�0

R1
r0
drrhT0

0i0;ren. Performing the radial integration, we

find

E0;r�r0¼
1

4qr0

�Xp
l¼1

ð�1Þl
s3l

cosð
l=qÞcosð2
l	0Þe�2mr0sl

� q

2


Z 1
0
dy

P
j¼�1

fðq;j	0;2yÞ
coshð2qyÞ�cosðq
Þ

e�2mr0 coshy

cosh3y

�
:

(2.39)

For a massless field we have a simple relation E0;r�r0 ¼
�0r

2
0hT0

0i0;renjr¼r0 , which could also be directly obtained

from Eq. (2.34).
In the special case when the magnetic flux is absent

we have 	0 ¼ 0 and the general formula simplifies to
(no summation over i)

hTi
ii0;ren¼

m3




�Xp
l¼1
ð�1Þlcosð
l=qÞFðsÞi ð2mrslÞþ2q



cos

�
q


2

�

�
Z 1
0
dy

FðsÞi ð2mrcoshyÞsinhðqyÞsinhy
coshð2qyÞ�cosðq
Þ

�
: (2.40)

In this case, the VEV is only a consequence of the conical
structure of the space. For odd values of the parameter q

3

2

1

0.4 0.2 0.0 0.2 0.4

0.02

0.00

0.02

0.04

0

r3
T

00
0

,r
en

FIG. 1. Energy density for a massless fermionic field as a
function of the parameter 	0 for separate values of the parameter
q (numbers near the curves). The vacuum stresses are related to
the energy density by Eq. (2.35).
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the second term in the square brackets vanishes and for
the VEV we have the simple formula (no summation
over i)

hTi
ii0;ren ¼

m3




Xp
l¼1
ð�1Þl cosð
l=qÞFðsÞi ð2mrslÞ: (2.41)

Another special case corresponds to the magnetic flux in
background of Minkowski spacetime. In this case, taking
q ¼ 1, from the general formulas we find

hTi
ii0;ren ¼

m3


2
sinð
	0Þ

Z 1
0

dy tanhðyÞ

� sinhð2	0yÞFðsÞi ð2mr coshðyÞÞ; (2.42)

and the corresponding energy density is positive for
	0 � 0.

An alternative expression for the VEV of the energy-
momentum tensor is obtained by using the formula [21]

Iðq; 	0; xÞ ¼ 2

q

Z 1
0

dzIzðxÞ þ Aðq; 	0; xÞ

� 4


q

Z 1
0

dzRe

�
sinhðz
ÞKizðxÞ

e2
ðzþijq	0�1=2jÞ=q þ 1

�
;

(2.43)

with K�ðxÞ being the modified Bessel function. In
Eq. (2.43), Aðq;	0; xÞ ¼ 0 for j	0 � 1=2qj � 1=2, and

Aðq;	0;xÞ¼ 2



sin½
ðjq	0�1=2j�q=2Þ�Kjq	0�1=2j�q=2ðxÞ;

(2.44)

for 1=2< j	0 � 1=2qj< 1. Substituting the representa-
tion (2.43) into the expressions for the regularized VEVs,
we see that the part with the first term on the right-hand
side of Eq. (2.43) does not depend on the opening angle
of the cone and on the magnetic flux. This term coincides
with the corresponding result in Minkowski bulk when the
magnetic flux is absent. Hence, it should be subtracted in
the renormalization procedure. In the remaining part the
limit s! 0 can be taken directly.

In a same way, we can consider a more general problem
where the spinor field obeys quasiperiodic boundary
condition along the azimuthal direction

c ðt; r; �þ�0Þ ¼ e2
i�c ðt; r; �Þ; (2.45)

with a constant parameter �, j�j � 1=2. For this problem,
the exponential factor in the expression for the mode

functions (2.6) has the form e�iqðnþ�Þ�þiEt. The corre-
sponding expression for the mode functions is obtained
from that given above with the parameter 	 defined by

	 ¼ �� e�=2
: (2.46)

For the case of a field with periodicity condition (2.45), the
expressions of the renormalized VEVs for the energy

density and stresses are given by the previous formulas
where now the parameter 	 is defined as in Eq. (2.46).
In general, the fermionic modes in the background of

the magnetic vortex are divided into two classes, regular
and irregular (square integrable) ones. For given q and 	,
the irregular mode corresponds to the value of j for
which qjjþ 	j< 1=2. If we present the parameter 	 in
the form (2.14), then the irregular mode is present if
j	0j> ð1� 1=qÞ=2. This mode corresponds to j ¼ �n0 �
sgnð	0Þ=2. Note that, in a conical space, under the condi-
tion j	0j � ð1� 1=qÞ=2, there are no square integrable
irregular modes. As we have already mentioned, there is
a one-parameter family of allowed boundary conditions
for irregular modes. These modes are parameterized by
the angle �, 0 � � < 2
 (see Ref. [37]). For j	0j< 1=2,
the boundary condition, used in deriving mode functions
(2.6), corresponds to � ¼ 3
=2. If 	 is a half-integer, the
irregular mode corresponds to j ¼ �	 and for the corre-
sponding boundary condition one has � ¼ 0. Note that in
both cases there are no bound states.

III. ENERGY-MOMENTUM TENSOR
INSIDE A CIRCULAR BOUNDARY

We turn to the investigation of the effect of a circular
boundary on the VEVof the energy-momentum tensor for
a spinor field. We assume that on the circle the field obeys
the MIT bag boundary condition (2.4). First we consider
the region inside the boundary. In this region the negative-
energy eigenspinors are given by the expression [21]

c ð�Þ�j ¼ ’0e
�iqj�þiEt

�j�e
�iq�=2

Eþm J�jþ�jð�rÞ
eiq�=2J�j

ð�rÞ

0
@

1
A; (3.1)

with the same notations as in Eq. (2.6). From the boundary
condition at r ¼ a it follows that the allowed values of �
are solutions of the equation

J�j
ð�aÞ � ��jJ�jþ�jð�aÞ

mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

p ¼ 0: (3.2)

For a given�j, Eq. (3.2) has an infinite number of solutions

which we denote by �a ¼ ��j;l, l ¼ 1; 2; . . . . The normal-

ization coefficient in Eq. (3.1) is given by the expression

’2
0 ¼

�T�j
ð�aÞ

2�0a

mþ E

E
; (3.3)

with the notation

T�j
ðyÞ ¼ y

J2�j
ðyÞ

�
y2 þ ð�� �j�jÞð�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ�2

q
Þ

� y2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ�2

p
��1

; (3.4)

and � ¼ ma.
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Substituting the mode functions (3.1) into Eq. (2.5)
with

P
� ¼

P
j

P1
l¼1 , for the VEVs of the separate com-

ponents we find

hT0
0i ¼ �

q

4
a

X
j

X1
l¼1

�T�j
ð�aÞ½ðE�mÞJ2�jþ�jð�rÞ

þ ðEþmÞJ2�j
ð�rÞ�;

hT1
1i ¼ �

q

4
a

X
j

X1
l¼1

�j
�3

E
T�j
ð�aÞ½J0�j

ð�rÞJ�jþ�jð�rÞ

� J0�jþ�jð�rÞJ�j
ð�rÞ�;

hT2
2i ¼

q

4
a

X
j

X1
l¼1

�3

E
T�j
ð�aÞ

� 2�j þ �j
�r

J�j
ð�rÞJ�jþ�jð�rÞ; (3.5)

with � ¼ ��j;l=a. Here we assume that a cutoff function

is introduced without explicitly writing it. The specific
form of this function is not important for the discussion
below.

For the summation of the series over l in Eq. (3.5) we
use the summation formula (see Refs. [39,40])

X1
l¼1

fð��j;lÞT�ð��j;lÞ ¼
Z 1
0

dxfðxÞ � 1




Z 1
0

dx

� ½e��j
ifðxe
i=2ÞLðþÞ�j
ðxÞ þ e�j
ifðxe�
i=2ÞLðþÞ��j

ðxÞ�;
(3.6)

where

LðþÞ�j
ðxÞ ¼

KðþÞ�j
ðxÞ

IðþÞ�j
ðxÞ ; (3.7)

and the asterisk means complex conjugate. In Eq. (3.7),
for a given function FðxÞ, we use the notation

FðþÞðxÞ¼
�
xF0ðxÞþð�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2�x2
p ��j�jÞFðxÞ; x<�;

xF0ðxÞþð�þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2��2

p ��j�jÞFðxÞ; x��:

(3.8)

Note that for x < � one has FðþÞ�ðxÞ ¼ FðþÞðxÞ. By
using the properties of the modified Bessel functions, the

function LðþÞ�j
ðxÞ can be presented in the form

LðþÞ�j
ðxÞ ¼

WðþÞ�j;�jþ�jðxÞ þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2=x2

p
UðIÞ�j;�jþ�jðxÞ

; (3.9)

with the notations defined by

Wð�Þ�;�ðxÞ ¼ x½I�ðxÞK�ðxÞ � I�ðxÞK�ðxÞ�
��½I�ðxÞK�ðxÞ � I�ðxÞK�ðxÞ�;

UðIÞ�;�ðxÞ ¼ x½I2�ðxÞ þ I2�ðxÞ� þ 2�I�ðxÞI�ðxÞ: (3.10)

The function Wð�Þ�;�ðxÞ will appear in the expressions for
the VEV in the exterior region (see Sec. IV).
Applying to the series over l in Eq. (3.5) the summation

formula, it can be seen that the terms in the VEVs corre-
sponding to the first integral in the right-hand side of
Eq. (3.6) coincide with the corresponding VEVs in a
boundary-free conical space. As a result, after the applica-
tion of formula (3.6), the VEV of the energy-momentum
tensor is presented in the decomposed form

hTi
ki ¼ hTi

ki0;ren þ hTi
kib; (3.11)

with hTi
kib being the part induced by the circular boundary.

For the functions fðxÞ corresponding to Eq. (3.5), in the
second term on the right-hand side of Eq. (3.6), the part of
the integral over the region ð0; �Þ vanishes. As a result, the
boundary-induced contributions in the interior region are
given by the expressions

hT0
0ib ¼ �

q

2
2

X
j

Z 1
m

dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �m2
p

UðIÞ�j;�jþ�jðaxÞ
fm½I2�j

ðrxÞ þ I2�jþ�jðrxÞ� þ x½I2�j
ðrxÞ � I2�jþ�jðrxÞ�WðþÞ�j;�jþ�jðaxÞg;

hT1
1ib ¼ �

q

2
2

X
j

Z 1
m

dx
x3WðþÞ�j;�jþ�jðaxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 �m2
p I0�j

ðrxÞI�jþ�jðrxÞ � I�j
ðrxÞI0�jþ�jðrxÞ

UðIÞ�j;�jþ�jðaxÞ
;

hT2
2ib ¼

q

2
2r

X
j

ð2�j�j þ 1Þ
Z 1
m

dx
x2WðþÞ�j;�jþ�jðaxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 �m2
p I�j

ðrxÞI�jþ�jðrxÞ
UðIÞ�j;�jþ�jðaxÞ

: (3.12)

For points away from the circular boundary and the cone
apex, the boundary-induced contributions, given by
Eq. (3.12), are finite and the renormalization is reduced
to that for the boundary-free geometry. The latter we have
discussed in the previous section.

Under the change 	! �	, j! �j, we have �j !
�j þ �j, �j þ �j ! �j. From here it follows that, under

this change, the functions WðþÞ�j;�jþ�jðaxÞ and UðIÞ�j;�jþ�jðaxÞ
are odd and even functions, respectively. Now, from
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Eq. (3.12) we see that the boundary-induced parts in the
components of the energy-momentum tensor are even
functions of 	. They are periodic functions of the parame-
ter 	 with the period equal to 1. Consequently, if we
present this parameter in the form (2.14) with n0 being
an integer, then the VEV of the energy-momentum tensor
depends on 	0 alone. Note that, by using the recurrence
relations for the modified Bessel function, the radial stress
can also be written in the form

hT1
1ib ¼ �

q

2
2

X
j

Z 1
m

dx
x3WðþÞ�j;�jþ�jðaxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 �m2
p

�
I2�jþ�jðrxÞ � I2�j

ðrxÞ
UðIÞ�j;�jþ�jðaxÞ

� hT2
2ib: (3.13)

Now, it is easy to explicitly check that the trace relation
hTi

iib ¼ mh �c c ib is satisfied.
In the case of a massless field the expressions for the

boundary-induced parts in the VEVs take the form

hT0
0ib ¼ �

q

2
2a3
X
j

Z 1
0

dxx2VðIÞ�j;�jþ�jðxÞ

� ½I2�j
ðxr=aÞ � I2�jþ�jðxr=aÞ�;

hT2
2ib ¼

q

2
2a2r

X
j

ð2�j�j þ 1Þ
Z 1
0

dxxVðIÞ�j;�jþ�jðxÞ

� I�j
ðxr=aÞI�jþ�jðxr=aÞ; (3.14)

where we have defined

VðIÞ�;�ðxÞ ¼ I�ðxÞK�ðxÞ � I�ðxÞK�ðxÞ
I2�ðxÞ þ I2�ðxÞ

; (3.15)

and for the radial stress we have hT1
1ib ¼ �hT0

0ib � hT2
2ib.

Let us consider asymptotic behavior of the VEV for
the energy-momentum tensor near the cone apex and
near the boundary. In the limit r! 0 we use the expansion
for the modified Bessel functions for small values of the
argument. Writing the parameter 	 in the form (2.14), it
is seen that the dominant contribution comes from the
term with j ¼ �n0 � 1=2 for 	0 > 0 and from the term
j ¼ �n0 þ 1=2 for 	0 < 0. The leading terms in the
expansions over r=a are given by the expressions

hT0
0ib 


qa�3

22q	
2

ðr=aÞ2q	�1
�2ðq	 þ 1=2Þ

Z 1
�

dx
x2q	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 ��2

p
UðIÞq	þ1=2;q	�1=2ðxÞ

� ½WðþÞq	þ1=2;q	�1=2ðxÞ ��=x�;

hT1
1ib 
 �

qa�3

22q	
2

ðr=aÞ2q	�1
ð2q	 þ 1Þ�2ðq	 þ 1=2Þ

�
Z 1
�

dx
x2q	þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 ��2

p WðþÞq	þ1=2;q	�1=2ðxÞ
UðIÞq	þ1=2;q	�1=2ðxÞ

; (3.16)

where

q	 ¼ qð1=2� j	0jÞ: (3.17)

For the azimuthal stress one has hT2
2ib ¼ 2q	hT1

1ib. For
	0 ¼ 0 the dominant contribution comes from the terms
j ¼ �n0 � 1=2 and the corresponding asymptotics are
obtained from Eq. (3.16) taking q	 ¼ q=2 with an
additional factor 2. As it is seen from Eq. (3.16), the
boundary-induced VEVs vanish on the cone apex for
j	0j< ð1�1=qÞ=2 and diverge when j	0j> ð1� 1=qÞ=2.
In particular, the VEVs diverge for a magnetic flux in
background of Minkowski spacetime.
For points near the boundary, the dominant contribution

to the VEVs come from large values of j. Introducing
in Eq. (3.12) a new integration variable x ¼ �jy, we

use the uniform asymptotic expansions for the modified
Bessel functions [41]. From these expansions it follows
that to the leading order one has

I2�j
ð�jzÞ � I2�jþ�jð�jzÞ � e2�j
ðzÞ


�jz
2
½�j � tðzÞ�;

I2�j
ð�jzÞ þ I2�jþ�jð�jzÞ � e2�j
ðzÞ


�jz
2
½1=tðzÞ � �j�;

(3.18)

and

K�j
ð�jzÞI�j

ð�jzÞ � K�jþ�jð�jzÞI�jþ�jð�jzÞ �
�jt

3ðzÞ
2�2

j

;

(3.19)

with the standard notations tðzÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
,


ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
þ ln

�
z

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
�
: (3.20)

With the help of these expressions, for the leading terms in
the asymptotic expansions over the distance from the
boundary one gets

hT0
0ib 
 �

1=8þ�

16
aða� rÞ2 ;

hT2
2ib 


a

a� r
hT1

1ib 

1=8��

16
aða� rÞ2 :
(3.21)

As it is seen, near the boundary the energy density is
negative, whereas the signs of the stresses depend on the
mass.
Now let us consider the limiting case when r is fixed

and the radius of the circle is large. For a massive field,
assuming ma	 1, we see that the dominant contribution
to the VEVs (3.12) comes from the region near the lower
limit of the integration. To the leading order we have
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hT0
0ib
�

qm3e�2ma

16
ffiffiffiffi


p ðmaÞ3=2

X
j

½I2�j
ðrmÞþI2�jþ�jðrmÞ�;

hT1
1ib


qm3e�2ma

16
ffiffiffiffi


p ðmaÞ3=2

X
j

ð2�j�jþ1Þ

�½I0�j
ðrmÞI�jþ�jðrmÞ�I�j

ðrmÞI0�jþ�jðrmÞ�;

hT2
2ib
�

qm3e�2ma

16
ffiffiffiffi


p ðmaÞ3=2

X
j

ð2�j�jþ1Þ2
rm

I�j
ðrmÞI�jþ�jðrmÞ:

(3.22)

In this case the boundary-induced VEVs are exponentially
suppressed. For a massless field and for large values of the
circle radius, the corresponding behavior is obtained from
Eq. (3.16) taking� ¼ 0. In this case the decay of the VEVs

is of power-law (no summation): hTi
iib � 1=a2ðq	þ1Þ.

In Fig. 2 we display the boundary-induced parts in the
VEV of the energy density (full curves) and azimuthal
stress (dashed curves) as functions of the radial coordinate
for separate values of the parameter q (numbers near the
curves). The left and right panels are plotted for 	0 ¼ 0
and 	0 ¼ 0:4, respectively. In the second case, for q ¼ 5,
10 there are no irregular modes and the VEVs are finite on
the apex.
The VEVs of the vacuum energy density and the azimu-

thal stress for a massless field are plotted in Fig. 3 as
functions of the parameter 	0 for a fixed value of the radial
coordinate corresponding to r=a ¼ 0:5. The numbers near
the curves are the values of the parameter q.
Various special cases of the general formula (3.12) can be

considered. In the absence of the magnetic flux one has
	 ¼ 0 and the contributions of the negative and positive
values of j to theVEVs coincide. The corresponding formulas
are obtained from Eq. (3.12) making the replacements
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FIG. 2. Boundary-induced parts in the VEVof the energy density (full curves) and azimuthal stress (dashed curves) as functions of
the radial coordinate for separate values of the parameter q (numbers near the curves). The left and right panels are plotted for 	0 ¼ 0
and 	0 ¼ 0:4, respectively.
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FIG. 3. Energy density (left panel) and the azimuthal stress (right panel) for a massless fermionic field as functions of the parameter
	0 for r=a ¼ 0:5. The numbers near the curves correspond to the values of the parameter q.
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X
j

! 2
X

j¼1=2;3=2;...
; �j ! qj� 1=2; �j þ �j ! qjþ 1=2: (3.23)

In the case q ¼ 1, we obtain the VEVs induced by the magnetic flux and a circular boundary in the Minkowski spacetime.
And finally, in the simplest case 	 ¼ 0 and q ¼ 1 one has hTk

i i0;ren ¼ 0, and the expressions (3.12) give the VEVs induced
by a circular boundary in the Minkowski bulk

hT0
0ib ¼ �

a�3


2

X1
n¼0

Z 1
�

dx
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 ��2

p
UðIÞn;nþ1ðxÞ

� f½I2nðxr=aÞ � I2nþ1ðxr=aÞ�WðþÞn;nþ1ðxÞ þ ð�=xÞ½I2nðxr=aÞ þ I2nþ1ðxr=aÞ�g;

hT1
1ib ¼ �

a�3


2

X1
n¼0

Z 1
�

dx
x3WðþÞn;nþ1ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 ��2
p I0nðxr=aÞInþ1ðxr=aÞ � I0nþ1ðxr=aÞInðxr=aÞ

UðIÞn;nþ1ðxÞ
;

hT2
2ib ¼

a�2


2r

X1
n¼0
ð2nþ 1Þ

Z 1
�

dx
x2WðþÞn;nþ1ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 ��2
p Inðxr=aÞInþ1ðxr=aÞ

UðIÞn;nþ1ðxÞ
; (3.24)

where the functionsWðþÞn;nþ1ðxÞ andUðIÞn;nþ1ðxÞ are defined by
Eq. (3.9).

IV. VEV OUTSIDE A CIRCULAR BOUNDARY

In this section we consider the region outside a circular
boundary with radius a. The corresponding negative-
energy mode functions, obeying the boundary condition
(2.4), are given by the expression [21]

c ð�Þ�j ðxÞ¼c0e
�iqj�þiEt

��je
�iq�=2

Eþm g�j;�jþ�jð�a;�rÞ
g�j;�j

ð�a;�rÞeiq�=2

0
@

1
A; (4.1)

with the function

g�;�ðx; yÞ ¼ �Yð�Þ� ðxÞJ�ðyÞ � �Jð�Þ� ðxÞY�ðyÞ; (4.2)

and with Y�ðxÞ being the Neumann function. The barred
notation is defined by the relation

�Fð�Þ�j
ðzÞ ¼ ��jzF�jþ�jðzÞ �

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ�2

q
þ�

�
F�j
ðzÞ; (4.3)

with F ¼ J, Y and, as before, � ¼ ma. For the normal-
ization coefficient in Eq. (4.1) one has

c20 ¼
2E�

�0ðEþmÞ ½
�Jð�Þ2�j
ð�aÞ þ �Yð�Þ2�j

ð�aÞ��1: (4.4)

The positive-energy eigenspinors are obtained by making

use of the relation c ðþÞ�n ¼ �1c
ð�Þ�
�n . Note that in the ex-

terior region the conical singularity is excluded by the
boundary and all modes described by eigenspinors (4.1)
are regular.
Substituting the mode functions into the mode-sum

formula, the VEVs for separate components of the
energy-momentum tensor are written in the form

hT0
0i ¼ �

q

4


X
j

Z 1
0

d��
ðE�mÞg2�j;�jþ�jð�a; �rÞ þ ðEþmÞg2�j;�j

ð�a; �rÞ
�Jð�Þ2�j
ð�aÞ þ �Yð�Þ2�j

ð�aÞ ;

hT1
1i ¼

q

4


X
j

Z 1
0

d�
�3

E

g2�j;�jþ�jð�a; �rÞ þ g2�j;�j
ð�a; �rÞ

�Jð�Þ2�j
ð�aÞ þ �Yð�Þ2�j

ð�aÞ � hT2
2i;

hT2
2i ¼

q

4
r

X
j

Z 1
0

d�
ð2�j þ �jÞ�2=E

�Jð�Þ2�j
ð�aÞ þ �Yð�Þ2�j

ð�aÞg�j;�j
ð�a; �rÞg�j;�jþ�jð�a; �rÞ: (4.5)

As before, we assume the presence of a cutoff function which makes the expression on the right-hand sides of Eq. (4.5)
finite. Similar to the interior region, the VEVs outside a circular boundary may be written in the decomposed form (3.11).

In order to find an explicit expression for the boundary-induced part, we note that the boundary-free part is given by
Eq. (2.10). For the evaluation of the difference between the total VEV and the boundary-free part, we use the identities
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g2�j;�
ðx; yÞ

�Jð�Þ2�j
ðxÞ þ �Yð�Þ2�j

ðxÞ ¼ J2�ðyÞ �
1

2

X
l¼1;2

�Jð�Þ�j
ðxÞ

�Hð�;lÞ�j
ðxÞH

ðlÞ2
� ðyÞ;

g�j;�ðx; yÞg�j;�þ�jðx; yÞ
�Jð�Þ2�j
ðxÞ þ �Yð�Þ2�j

ðxÞ ¼ J�ðyÞJ�þ�jðyÞ �
1

2

X
l¼1;2

�Jð�Þ�j
ðxÞ

�Hð�;lÞ�j
ðxÞH

ðlÞ
� ðyÞHðlÞ�þ�jðyÞ; (4.6)

with � ¼ �j, �j þ �j, and with HðlÞ� ðxÞ being the Hankel function.
In this way, for the boundary-induced parts we find the expressions

hT0
0ib ¼

q

8


X
j

X
l¼1;2

Z 1
0

d��
�Jð�Þ�j
ð�aÞ

�Hð�;lÞ�j
ð�axÞ ½ðE�mÞHðlÞ2�jþ�jð�rÞ þ ðEþmÞHðlÞ2�j

ð�rÞ�;

hT1
1ib ¼ �

q

8


X
j

X
l¼1;2

Z 1
0

d�
�3

E

�Jð�Þ�j
ð�aÞ

�Hð�;lÞ�j
ð�aÞ ½H

ðlÞ2
�jþ�jð�rÞ þHðlÞ2�j

ð�rÞ� � hT2
2ib;

hT2
2ib ¼ �

q

8
r

X
j

ð2�j þ �jÞ
X
l¼1;2

Z 1
0

d�
�2

E

�Jð�Þ�j
ð�aÞ

�Hð�;lÞ�j
ð�aÞH

ðlÞ
�j
ð�rÞHðlÞ�jþ�jð�rÞ: (4.7)

In the complex plane �, the integrand of the term with l ¼ 1 (l ¼ 2) decays exponentially in the limit Imð�Þ ! 1
[Imð�Þ ! �1] for r > a. By using these properties, we rotate the integration contour in the complex plane � by the angle

=2 for the term with l ¼ 1 and by the angle �
=2 for the term with l ¼ 2. The integrals over the segments ð0; imÞ and
ð0;�imÞ of the imaginary axis cancel each other. Introducing the modified Bessel functions, the boundary-induced parts
are presented in the form

hT0
0ib ¼ �

q

2
2

X
j

Z 1
m

dxx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �m2
p

UðKÞ�j;�jþ�jðaxÞ
fm½K2

�jþ�jðxrÞ þ K2
�j
ðxrÞ� þ x½K2

�j
ðxrÞ � K2

�jþ�jðxrÞ�Wð�Þ�j;�jþ�jðaxÞg;

hT1
1ib ¼ �

q

2
2

X
j

Z 1
m

dxx3
K2

�jþ�jðxrÞ � K2
�j
ðxrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 �m2
p Wð�Þ�j;�jþ�jðaxÞ

UðKÞ�j;�jþ�jðaxÞ
� hT2

2ib;

hT2
2ib ¼ �

q

2
2r

X
j

ð2�j�j þ 1Þ
Z 1
m

dxx2
K�j
ðxrÞK�jþ�jðxrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �m2
p Wð�Þ�j;�jþ�jðaxÞ

UðKÞ�j;�jþ�jðaxÞ
: (4.8)

Here we have introduced the notation

UðKÞ�;�ðxÞ ¼ x½K2
�ðxÞ þ K2

�ðxÞ� þ 2�K�ðxÞK�ðxÞ; (4.9)

and the notationWð�Þ�j;�jþ�jðxÞ is defined by Eq. (3.10). By taking into account that under the change 	! �	, j! �j, one
has �j ! �j þ �j, �j þ �j ! �j, we conclude that W

ð�Þ
�j;�jþ�jðxÞ and UðKÞ�j;�jþ�jðxÞ are odd and even functions under this

change. Now, from Eq. (4.8) it follows that the boundary-induced parts are even functions of 	. They are periodic with the
period equal to 1.

For a massless field the expressions for the boundary-induced parts in the VEVs simplify to

hT0
0ib ¼ �

q

2
2a3
X
j

Z 1
0

dxx2VðKÞ�j;�jþ�jðxÞ½K2
�j
ðxr=aÞ � K2

�jþ�jðxr=aÞ�;

hT2
2ib ¼ �

q

2
2a2r

X
j

ð2�j�j þ 1Þ
Z 1
0

dxxVðKÞ�j;�jþ�jðxÞK�j
ðxr=aÞK�jþ�jðxr=aÞ; (4.10)

with the notation

VðKÞ�;�ðxÞ ¼ I�ðxÞK�ðxÞ � I�ðxÞK�ðxÞ
K2

�ðxÞ þ K2
�ðxÞ

: (4.11)

For the radial stress one has hT1
1ib ¼ �hT0

0ib � hT2
2ib. In particular, for the circle in the Minkowski bulk the corresponding

formulas are obtained from Eq. (3.24) by the interchange I! K, replacing WðþÞn;nþ1ðxÞ ! Wð�Þn;nþ1ðxÞ.
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Now we turn to the investigation of the VEVs in the
asymptotic regions for the parameters. First we consider
the limit a! 0 for a fixed value of r. By using the
asymptotic formulas for the modified Bessel functions
for small arguments, we can see that the dominant contri-
bution comes from the term with j ¼ 1=2 for �1=2<
	0 < 0 and from the term j ¼ 1=2 for 0<	0 < 1=2. For
a massive field to the leading order we get (no summation
over i)

hTi
iib
�

qm


2r2
ða=2rÞ2q	

�2ðq	þ1=2Þ
Z 1
mr
dx

x2q	þ2ZiðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�m2r2
p ; (4.12)

with the notations

Z0ðxÞ ¼ ð1�m2r2=x2ÞK2
q	�1=2ðxÞ;

Z1ðxÞ ¼ K2
q	þ1=2ðxÞ � K2

q	�1=2ðxÞ � Z2ðxÞ;

Z2ðxÞ ¼ 2q	
x

Kq	�1=2ðxÞKq	þ1=2ðxÞ;
(4.13)

and q	 is defined by Eq. (3.17). We see that the boundary-
induced part vanishes in the limit a! 0 for j	0j< 1=2.
For a massless field the leading term in the corresponding
asymptotic expansion for the azimuthal stress is given by
the expression

hT2
2ib ¼ �

q

4
r3
ða=2rÞ2q	þ1
q2	 � 1=4

q	�ðq	 þ 1Þ�ð2q	 þ 3=2Þ
�ðq	 þ 3=2Þ�2ðq	 þ 1=2Þ :

(4.14)

For the energy density and the radial stress one has the
relations

hT0
0ib
�

q	þ1

q	þ3=2
hT2

2ib; hT1
1ib


�hT2
2ib

2ðq	þ3=2Þ : (4.15)

For a massless field the boundary-induced VEVs are sup-
pressed with an additional factor a=r with respect to the
case of a massive field.

Let us consider the limit of large distances from the
circle. For a massive field, assuming mr	 1, we see
that the dominant contribution to the integrals in
Eq. (4.8) comes from the lower limit of the integration.
In the leading order we obtain

hT0
0ib 
 �

qm3e�2mr

8
ffiffiffiffi


p ðmrÞ5=2

X
j

1

UðKÞ�j;�jþ�jðamÞ
;

hT2
2ib 
 �

qm3e�2mr

8
ffiffiffiffi


p ðmrÞ5=2

X
j

ð2�j�j þ 1ÞWð�Þ�j;�jþ�jðamÞ
UðKÞ�j;�jþ�jðamÞ

;

(4.16)

and for the radial stress one has hT1
1ib ¼ �hT2

2ib=ð2mrÞ. As
we could expect, in this limit the VEVs are exponentially
suppressed. The radial stress contains an additional sup-
pression factor ðmrÞ�1. For a massless field the the leading
terms for r	 a are given by Eqs. (4.14) and (4.15).
It remains to consider the behavior of the VEVs near the

boundary. In this region the dominant contribution comes
from large values of jjj and, in the way similar to that for
the interior region, we find

hT0
0ib


1=8��

16
aðr�aÞ2 ; hT
2
2ib


a

a�r
hT1

1ib
�
1=8þ�

16
aðr�aÞ2 :
(4.17)

Comparing with Eq. (3.21), we see that for a massless field
the energy density and the azimuthal stress have opposite
signs for the exterior and interior regions, whereas the
radial stress has the same sign.
The boundary-induced parts in the exterior region are

displayed in Fig. 4 as functions of the radial coordinate.
The full and dashed curves are for the energy density and
the azimuthal stress, respectively, and the numbers near the
curves correspond to the values of q. The left and right
panels are plotted for 	0 ¼ 0 and 	0 ¼ 0:4, respectively.
In Fig. 5 we plot the VEVs of the vacuum energy density

and the azimuthal stress for a massless field versus 	0 for
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FIG. 4. The same as in Fig. 2 for the region outside a circular boundary.
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r=a ¼ 2. The numbers near the curves correspond to the
values of the parameter q.

The results given above can be applied to graphitic cones
within the framework of long-wavelength Dirac-like
model for electronic states in graphene (for a review see
[34]). Graphene-made structures have attracted much at-
tention recently due to the experimental observation of a
number of novel electronic properties. The electronic band
structure of graphene close to the Dirac points shows a
conical dispersion EðkÞ ¼ vFjkj, where k is the momen-
tum measured relative to the Dirac points and vF 
 108

cm/s represents the Fermi velocity which plays the role of a
speed of light. The low-energy excitations can be described
by a pair of two-component spinors, c J, J ¼ 1, 2, corre-
sponding to the two inequivalent Fermi points of the
Brillouin zone. The components of the spinor c J corre-
spond to two triangular sublattices of the honeycomb
lattice of graphene. For a flat graphene sheet, in the ab-
sence of interactions that mix the inequivalent Fermi
points, the electronic states attached to these points will
be independent. The Dirac equation for the corresponding
spinors has the form

ðiv�1F �0D0 þ i�lDl �mÞc J ¼ 0; (4.18)

where l ¼ 1, 2, and D� ¼ r� þ ieA� with e ¼ �jej for
electrons. The mass (gap) term in (4.18) is essential in
many physical application. This gap can be generated by
a number of mechanisms. In particular, they include the
breaking of symmetry between two sublattices by intro-
ducing a staggered onsite energy [42] and the deformations
of bonds in the graphene lattice [43]. Another approach is
to attach a graphene monolayer to a substrate, the interac-
tion with which breaks the sublattice symmetry [44].
Graphitic cones are obtained from the graphene sheet if
one or more sectors with the angle 
=6 are removed. The
opening angle of the cone is related to the number of
sectors removed, Nc, by the formula 2
ð1� Nc=6Þ, with
Nc ¼ 1; 2; . . . ; 5 (for the electronic properties of graphitic

cones see, e.g., [45] and references therein). All these
angles have been observed in experiments [46]. For even
values of Nc the periodicity conditions do not mix the
spinors c 1 and c 2. The corresponding expressions for
the Casimir densities for finite radius graphitic nanocones
are obtained from the formulas given above with additional
factor 2 which takes into account the presence of two
inequivalent Fermi points. In standard units, the factor
ℏvF appears as well. For odd values of Nc the periodicity
condition mixes the spinors corresponding to inequivalent
Fermi points. In this case it is convenient to combine two
spinors c 1 and c 2 in a single bispinor. The evaluation for
the corresponding Casimir densities can be done in a way
similar to that described before.

V. HALF-INTEGER VALUES
OF THE PARAMETER �

In this section we consider the VEV of the energy-
momentum tensor for half-integer values of the parameter
	. In this case the mode with j ¼ �	 must be considered
separately.

A. Boundary-free part

For half-integer values of 	, in the boundary-free ge-
ometry the eigenspinors with j � �	 are still given by
Eq. (2.6). For the mode function corresponding to the
special mode with j ¼ �	 one has [21]

c ð�Þð0Þ�;�	ðxÞ¼
�
Eþm


�0rE

�
1=2

eiq	�þiEt
�e�iq�=2

Eþm sinð�r��0Þ
eiq�=2 cosð�r��0Þ

0
@

1
A;

(5.1)

where, as before, E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

p
and we have defined

�0 ¼ arccos½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE�mÞ=2Ep �: (5.2)

As has been noted above, for half-integer values of 	 the
mode with j ¼ �	 corresponds to the irregular mode. The
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FIG. 5. The same as in Fig. 3 for the region outside a circular boundary with r=a ¼ 2.
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contribution of the modes with j � �	 to the VEVof the
energy-momentum tensor remains the same as before.
Special consideration is needed for the mode with j ¼
�	 only. For the contribution of this mode to the VEVs
of the energy density and the radial stress we have the
expressions

hT0
0iðj¼�	Þ0 ¼ � q

2
2r

Z 1
0

d�½Eþm cosð2�r� 2�0Þ�;

hT1
1iðj¼�	Þ0 ¼ q

2
2r

Z 1
0

d�ðE�m2=EÞ; (5.3)

and the contribution to the azimuthal stress vanishes. As
we have done in Sec. II, for the regularization of the

expressions (5.3) we introduce the cutoff function e�s�2
.

After the integration we find the following expressions

hT0
0iðj¼�	Þ0;reg ¼� qm2

8
2r
fesm2=2½K0ðsm2=2ÞþK1ðsm2=2Þ�

þ4K1ð2mrÞ�4K0ð2mrÞþoðsÞg;

hT1
1iðj¼�	Þ0;reg ¼� qm2

8
2r
esm

2=2½K0ðsm2=2Þ�K1ðsm2=2Þ�þoðsÞ:
(5.4)

In order to obtain the total VEV we should add the
regularized part corresponding to the modes with
j � �	. For half-integer values of 	, for the series in
the contribution of these modes one hasX

j��	
I�j
ðxÞ ¼ X

j��	
I�jþ�jðxÞ

¼ X1
n¼1
½Iqn�1=2ðxÞ þ Iqnþ1=2ðxÞ�: (5.5)

As a result, for this part in the regularized VEVof the radial
stress one finds

hT1
1iðj��	Þ0;reg ¼ qem

2s

ð2
Þ3=2
Z 1=ð2sÞ

0
dy

y1=2e�m2=ð2yÞ�r2yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ys
p

�X1
n¼1
½Iqn�1=2ðr2yÞ þ Iqnþ1=2ðr2yÞ�: (5.6)

The corresponding parts in the energy density and the
azimuthal stress are given by the relations

hT0
0iðj��	Þ0;reg ¼ �ð2þ r@rÞhT1

1iðj��	Þ0;reg þmh �c c iðj��	Þ0;reg ;

hT2
2iðj��	Þ0;reg ¼ ð1þ r@rÞhT1

1iðj��	Þ0;reg ; (5.7)

where

h �c c iðj��	Þ0;reg ¼ �qmem
2s

ð2
Þ3=2
Z r2=2s

0
dy

y�1=2e�m2=2y�r2yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ys
p

�X1
n¼1
½Iqn�1=2ðr2yÞ þ Iqnþ1=2ðr2yÞ�: (5.8)

The fermionic condensate has been considered in
Ref. [22], and here we need to consider the radial stress
only. After the summation over n by using the formula
given in Sec. II, we find the following representation

hT1
1iðj��	Þ0;reg ¼ em

2s

ð2
Þ3=2
Z 1=2s

0
dy

y1=2e�m2=2yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2ys
p

þ qm2

8
2r
esm

2=2½K0ðsm2=2Þ�K1ðsm2=2Þ�

þm3



em

2s

�Xp
l¼1

cosð
l=qÞFðsÞ1 ð2mrslÞ

þ q




Z 1
0
dy

sinhðyÞsinhð2qyÞ
coshð2qyÞ�cosðq
ÞF

ðsÞ
1 ð2mrcoshyÞ

�
; (5.9)

where 2p � q < 2pþ 2. Note that the second term in the
right-hand side of this formula does not contribute to the
azimuthal stress. Comparing with (5.4), we see that in
the total regularized VEV this part is cancelled by the
part coming from the irregular mode. As a result, for the
total regularized VEVone finds the expression

hT1
1i0;reg ¼

em
2s

ð2
Þ3=2
Z 1=2s

0
dy

y1=2e�m2=2yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ys
p

þm3



em

2s

�Xp
l¼1

cosð
l=qÞFðsÞ1 ð2mrslÞ

þ q




Z 1
0

dy
sinhðyÞ sinhð2qyÞ

coshð2qyÞ � cosðq
Þ
� FðsÞ1 ð2mr coshyÞ

�
þ oðsÞ: (5.10)

The first term in the right-hand side of this expression
corresponds to the contribution coming from the
Minkowski spacetime part. It is subtracted in the renor-
malization procedure and for the renormalized VEVof the
radial stress in a boundary-free conical space one finds

hT1
1i0;ren¼

m3




�Xp
l¼1

cosð
l=qÞFðsÞ1 ð2mrslÞ

þq




Z 1
0
dy

sinhðyÞsinhð2qyÞ
coshð2qyÞ�cosðq
ÞF

ðsÞ
1 ð2mrcoshyÞ�:

(5.11)

Combining the results (5.4), (5.7), and (5.10), for the
renormalized VEVs of the energy density and the azimu-
thal stress we obtain the expressions

hT0
0i0;ren ¼ hT1

1i0;ren �
qm2

2
2r
½K1ð2mrÞ � K0ð2mrÞ�;

hT2
2i0;ren ¼

m3




�Xp
l¼1

cosð
l=qÞFðsÞ2 ð2mrslÞ

þ q




Z 1
0

dy
sinhðyÞ sinhð2qyÞ

coshð2qyÞ � cosðq
Þ
� FðsÞ2 ð2mr coshðyÞÞ

�
; (5.12)
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where the function FðsÞ2 ðxÞ is defined by Eq. (2.32). As we

see, for half-integer values of 	, when an irregular mode is
present, the energy density and the radial stress differ. In
the case of a massless field the radial stress is expressed as

hT1
1i0;ren ¼

1

8
r3

�Xp
l¼1

cosð
l=qÞ
s3l

þ q




Z 1
0

dy
sinhðyÞ sinhð2qyÞ

coshð2qyÞ � cosðq
Þ
1

cosh3y

�
;

(5.13)

and for the energy density and the azimuthal stress one has

hT0
0i0;ren ¼ hT1

1i0;ren ¼ �hT2
2i0;ren=2: (5.14)

Of course, in this case the renormalized VEV is traceless.

B. Region inside a circular boundary

Now we consider the region inside a circle with radius a.
The contribution of the modes with j � �	 is given by
Eq. (3.12) where now the summation goes over j � �	.
For the evaluation of the contribution coming from the

mode with j ¼ �	, we note that the negative-energy
eigenspinor for this mode has the form [21]

c ð�Þ�;�	ðxÞ ¼ b0ffiffiffi
r
p eiq	�þiEt

�e�iq�=2

Eþm sinð�r� �0Þ
eiq�=2 cosð�r� �0Þ

0
@

1
A; (5.15)

where �0 is defined by Eq. (5.2). From boundary condition
(2.4) it follows that the eigenvalues of � are solutions of the
equation

m sinð�aÞ þ � cosð�aÞ ¼ 0: (5.16)

We denote the positive roots of this equation by �l ¼ �a,
l ¼ 1; 2; . . . . From the normalization condition, for the
coefficient in Eq. (5.15) one has

b20 ¼
Eþm

aE�0

½1� sinð2�aÞ=ð2�aÞ��1: (5.17)

Using Eq. (5.15), for the contributions of the mode under
consideration to the energy density and the radial stress we
find

hT0
0ij¼�	 ¼ �

q

2
a2r

X1
l¼1

�2
l þ�2 þ�½�l sinð2�lr=aÞ �� cosð2�lr=aÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
l þ�2

q
½1� sinð2�lÞ=ð2�lÞ�

;

hT1
1ij¼�	 ¼

q

2
a2r

X1
l¼1

�2
l =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
l þ�2

q
1� sinð2�lÞ=ð2�lÞ ; (5.18)

where � ¼ ma and the presence of a cutoff function is
assumed. The contribution to the azimuthal stress vanishes:
hT2

2ij¼�	 ¼ 0. For the summation of the series in
Eq. (5.18), we use the Abel-Plana-type formula [40,47]

X1
l¼1


fð�lÞ
1�sinð2�lÞ=ð2�lÞ¼�


fð0Þ=2
1=�þ1

þ
Z 1
0
dzfðzÞ

� i
Z 1
0
dz

fðizÞ�fð�izÞ
zþ�
z��e

2zþ1
: (5.19)

For the functions fðzÞ corresponding to Eq. (5.18) one has
fð0Þ ¼ 0. The second term on the right-hand side of
Eq. (5.19) gives the part corresponding to the boundary-
free geometry. As a result, the VEVs are presented in the
decomposed form (no summation)

hTi
iij¼�	 ¼ hTi

i iðj¼�	Þ0 þ hTi
iib;j¼�	; (5.20)

where the boundary-induced parts are given by the expres-
sions

hT0
0ib;j¼�	¼�

q


2r

Z 1
m
dx

x2�m2þm½xsinhð2xrÞþmcoshð2xrÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�m2
p

ðxþmx�me
2axþ1Þ ; hT1

1ib;j¼�	¼
q


2r

Z 1
m
dx

x2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�m2
p

xþm
x�me

2axþ1
: (5.21)

Note that

hT0
0ib;j¼�	 ¼ �hT1

1ib;j¼�	 þmh �c c ib;j¼�	; (5.22)

where

h �c c ib;j¼�	 ¼ q


2r

Z 1
m

dx
m� x sinhð2xrÞ �m coshð2xrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 �m2
p

ðxþmx�m e
2ax þ 1Þ

(5.23)

is the corresponding part in the fermionic condensate. The
contribution of the modes j � �	 remains the same and is
obtained from the corresponding expressions given above
for non-half-integer values of 	 by the direct substitution
	 ¼ 1=2.
Expression (5.21) for the boundary-induced part is sim-

plified for a massless field

hT0
0ib;j¼�	 ¼ �hT1

1ib;j¼�	 ¼
q

48a2r
: (5.24)
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Unlike the fermionic condensate, the boundary-induced
VEVs diverge at the circle center. Note that for a massless
field these VEVs are finite on the boundary. Adding the
part corresponding to the regular modes, for the total VEVs
in the massless case we get

hT0
0ib ¼

q

48a2r
� q


2a3
X1
n¼1

Z 1
0

dxx2VðIÞqn�1=2;qnþ1=2ðxÞ

� ½I2qn�1=2ðxr=aÞ � I2qnþ1=2ðxr=aÞ�;

hT2
2ib ¼

2q2


2a2r

X1
n¼1

n
Z 1
0

dxxVðIÞqn�1=2;qnþ1=2ðxÞ

� Iqn�1=2ðxr=aÞIqnþ1=2ðxr=aÞ; (5.25)

and for the radial stress one has hT1
1ib ¼ �hT0

0ib � hT2
2ib.

The boundary-free parts in this case are given by
Eqs. (5.13) and (5.14).

In the region outside a circular boundary there are no
irregular modes and the VEV of the energy-momentum
tensor is a continuous function of the parameter 	 at half-
integer values. The corresponding expression is obtained
taking the limit 	0 ! 1=2 in the expressions for the VEVs
given above for 	0 � 1=2.

VI. CONCLUSION

We have investigated the VEVof the energy-momentum
tensor for a massive fermionic field in a (2þ 1)-
dimensional conical spacetime with a circular boundary
on which the field obeys the MIT bag boundary condition.
In addition, we have assumed the presence of magnetic flux
located at the cone apex. A special case of boundary
conditions at the apex is considered when the MIT bag
boundary condition is imposed at a finite radius, which is
then taken to zero. In the presence of a circular boundary,
the VEV of the energy-momentum tensor is decomposed
into the boundary-free and boundary-induced parts.

First we consider the geometry of a conical space with-
out boundaries. The corresponding VEV is evaluated by
making use of mode-sum formula (2.5) with the eigenspi-
nors given by Eq. (2.6). For the regularization of the mode
sums we have introduced an exponential cutoff function.
The application of the formula (2.26) allowed us to explic-
itly extract from the VEVs the parts corresponding to the
Minkowski spacetime in the absence of the magnetic flux.
The renormalization is reduced to the subtraction of this
part. The renormalizaed VEVs in the boundary-free ge-
ometry are given by Eq. (2.30). These VEVs are even and
periodic functions of the parameter 	, related to the mag-
netic flux by Eq. (2.8). The corresponding radial stress is
equal to the energy density. For a massless field the renor-
malized VEV of the energy density is expressed as
Eq. (2.34), and the azimuthal stress is obtained from the
zero-trace condition. In the special case of integer q and for
the parameter 	 given by Eq. (2.37), the general formula is
reduced to Eq. (2.38). In this case, the renormalized VEV

vanishes in a conical space with q ¼ 2. Various other
special cases are considered. In particular, for the magnetic
flux in background of Minkowski spacetime one has the
expressions (2.42). In this case the corresponding energy
density is positive.
The effects induced by a circular boundary, concentric

with the cone apex, are considered in Sec. III. In the in-
terior region the eigenvalues for � are quantized by the
boundary condition and they are solutions of Eq. (3.2). The
mode sums for the separate components of the energy-
momentum tensor are given by Eq. (3.5) and contain the
summation over these eigenvalues. The application of the
Abel-Plana-type summation formula allows us to extract
from the VEVs the parts corresponding to the boundary-
free geometry and to present the boundary-induced parts in
terms of rapidly convergent integrals suitable for numerical
evaluation. The corresponding expressions are given by
Eq. (3.12). The boundary-induced parts are even and peri-
odic functions of the parameter 	 with the period equal
to 1. Note that for the boundary-induced part the energy
density is not equal to the radial stress. For a massless field
the general formulas are reduced to Eq. (3.14) for the
energy density and the azimuthal stress. The expression
for the radial stress is obtained by using the tracelessness of
the energy-momentum tensor. At the cone apex the
boundary-induced VEVs vanish for j	0j< ð1� 1=qÞ=2
and they diverge when j	0j> ð1� 1=qÞ=2. In particular,
the VEVs are divergent for a magnetic flux in background
of Minkowski spacetime. Near the boundary, the
boundary-induced parts in the VEVs dominate. The lead-
ing terms in the asymptotic expansions over the distance
from the boundary are given by Eq. (3.21). The energy
density is negative near the boundary, whereas the stresses
may change the sign with dependence of the field mass.
The vacuum energy-momentum tensor in the region out-

side a circular boundary is considered in Sec. IV. After the
subtraction of the boundary-free parts and bymaking use of
complex rotation, we present the boundary-induced parts in
the form (4.8) and (4.10), for massive and massless fields,
respectively. As in the interior region, they are even and
periodic functions of the parameter 	with the period equal
to 1. For small values of the circle radius when the radial
distance is fixed, the boundary-induced VEVs for a massive
field behave as ða=rÞ2q	 with q	 defined by Eq. (3.17). For a
massless field the leading terms vanish and the behavior of
the VEVs is like ða=rÞ2q	þ1. At large distances from the
circle, the boundary-induced VEVs are exponentially sup-
pressed for a massive field and they decay as power-law for
a massless field. For points near the boundary the VEVs
diverge. The leading terms in the expansions over the
distance from the boundary are given by Eq. (4.17).
In the case of half-integer values of the parameter 	, a

special consideration is needed for the mode with j ¼ �	.
In the boundary-free geometry the corresponding mode
functions are given by Eq. (5.1). The contribution of the
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special mode to the azimuthal stress vanishes. The renor-
malized expressions are given by Eq. (5.11) for the radial
stress and by Eq. (5.12) for the energy density and azimu-
thal stress. Note that, in the case under consideration the
radial stress, in general, is not equal to the energy density.
This equality takes place for a massless field only [see
Eqs. (5.13) and (5.14)]. In the presence of circular bound-
ary and for half-integer values of 	, the mode function for
the special mode j ¼ �	 is given by Eq. (5.15). The
corresponding eigenvalues for � are roots of Eq. (5.16).
Similar to the boundary-free case, the contribution of the
special mode to the VEVof the azimuthal stress vanishes.
The expressions for the energy density and radial stress,
Eq. (5.18), are given in terms of series over the eigenvalues
of �. For the summation of these series we use the sum-
mation formula (5.19). This allows us to separate the
boundary-free part. The boundary-induced parts for the
contributions of the special mode are given by
Eqs. (5.21) and (5.24) for massive and massless fields,
respectively. The total VEVs are obtained adding the parts
coming from the modes with j � �	. The latter are
obtained from the formulas given before, putting directly
half-integer values for 	. In particular, for a massless field
we have the expressions (5.25).

From the point of view of the physics in the region
outside the conical defect core, the geometry considered
in the present paper can be viewed as a simplified model
for the nontrivial core. This model presents a framework
in which the influence of the finite core effects on
physical processes in the vicinity of the conical defect
can be investigated. The corresponding results may shed
light upon features of finite core effects in more realistic

models, including those used for defects in crystals and
superfluid helium. In addition, the problem considered
here is of interest as an example with combined topo-
logical and boundary-induced quantum effects, in which
the physical characteristics can be found in closed ana-
lytic form.
Nanocones of carbon appear as a natural environment

for applications of the calculations presented in this paper.
Like graphene, carbon nanocones, have long-wavelength
free electrons which are described effectively as Dirac
fermions. Localized defects like the apex and the boundary
of the cone act as scatterers producing standing-wave
patterns in the electron density. The interaction between
these defects is given by hT00i as computed in section III.
From this, the force between the scatterers can be esti-
mated. More importantly, our work sets the background for
the study of adsorbed atoms in the nanocone surface, a
subject of very high interest nowadays [48] since they are
good candidates for gas storage. Adsorbed atoms become
additional defects acting, again, as electron scatterers.
Therefore, the fermionic Casimir effect with the inclusion
of extra point defects gives the interaction between the
adsorbed atoms and the apex or the boundary and among
themselves [49]. This will be the subject of a forthcoming
publication.
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