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We investigate N ¼ 1 supersymmetric gauge theories where monopole condensation triggers super-

symmetry breaking in a metastable vacuum. The low-energy effective theory is an O’Raifeartaigh-like

model of the kind investigated recently by Shih where the R symmetry can be spontaneously broken. We

examine several implementations with varying degrees of phenomenological interest.
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I. INTRODUCTION

Magnetic monopoles are fascinating for many reasons.
Decades before grand unified theories (GUTs) were con-
sidered, Dirac [1] realized that the existence of monopoles
implies charge quantization. It turns out that monopoles
and GUTs are intrinsically connected, and monopoles can
arise dynamically as topologically stable gauge field con-
figurations from spontaneous gauge symmetry breaking
[2]. Their dynamics appear quite distinct from other kinds
of objects in quantum field theory, and actions that incor-
porate monopoles into a theory with electric charges have
to be either Lorentz violating [3] or nonlocal [4]. A mag-
netically charged condensate leads to a magnetic dual
Meissner effect and represents one possible explanation
for confinement [5]. (For an excellent review of these
ideas, the reader is directed to [6].)

In 1994 Seiberg and Witten [7] were able to use elliptic
curves to find the low-energy effective action of N ¼ 2
supersymmetric SUð2Þ gauge theories. As the gauge sym-
metry is broken to Uð1Þ we would expect to find heavy
topological monopoles and dyons. They discovered that
some of those topological states become massless weakly
coupled particles at certain singular points on the moduli
space, where the electric gauge coupling diverges.
Furthermore, softly breaking these theories to N ¼ 1
supersymmetry (SUSY) lifted the moduli space and in-
duced the massless monopole to condense, leading to
electric confinement and providing an illuminating per-
spective on the well-known N ¼ 1 phenomenon of gau-
gino condensation. (A pedagogical introduction can be
found in [8].) These results were soon generalized to higher
gauge groups [9]. The higher-dimensional moduli spaces
of these theories contain singular submanifolds where both

electric and magnetic charges of the same Uð1Þ gauge
group become simultaneously massless, providing the first
example of a self-consistent quantum field theory where
this particle content arises dynamically. It is also possible
to apply these methods to the analysis of minimally super-
symmetric N ¼ 1 theories in the Coulomb phase and
extract the holomorphic parts of the low-energy effective
action [10].
SUSY is, of course, extremely interesting for phenome-

nological reasons, the most important one being the stabi-
lization of the weak scale. While there are several possible
mechanisms for breaking supersymmetry [11] and medi-
ating its breaking to the supersymmetric standard model,
no clear favorite has emerged. It is therefore prudent to
continue looking for new ways of breaking SUSY. The
unique properties of monopoles, and the fact that they arise
as light states dynamically and calculably in some theories,
motivate the construction of SUSY-breaking models that
rely on monopole dynamics. The hope is that eventually
some new mechanisms with desirable, novel features
might be found. In this paper, we initiate the study of
such constructions.1

Models involving metastable SUSY breaking [13] cir-
cumvent the restrictive Witten index constraint [14]. The
topic enjoyed a fresh surge of interest since Intriligator,
Seiberg, and Shih showed how theories as simple as super-
symmetric QCD in the free magnetic phase can feature
metastable SUSY-breaking vacua [15], and since then
many models have been proposed to incorporate these
ideas into a phenomenologically viable model [16]. The
authors of [15] also suggested that N ¼ 2 super Yang-
Mills (SYM) might plausibly feature such SUSY-breaking
vacua, and their intuition turned out to be correct.
Deformed N ¼ 2 theories can generate SUSY-breaking
local minima at generic points of their moduli spaces [17],
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1Theories with light monopoles and dyons are also worth
studying since they might yield a possible mechanism of elec-
troweak symmetry breaking [12].
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but the metastable vacua do not lie on the singularity and
the monopoles of the theory play no role. Reference [18]
considers an N ¼ 2 model in the Coulomb phase softly
broken to N ¼ 1 which classically breaks SUSY in a
metastable vacuum via a Fayet-Illiopoulos term. They
find that the SUSY breaking survives the nonperturbative
quantum effects, and that light dyons undergo condensa-
tion at the metastable SUSY-breaking minimum.

Here, we want to construct a dynamical model of super-
symmetry breaking where SUSY would be restored in the
absence of a monopole condensate. Our starting point will
be the N ¼ 1 SUð2Þ3 model [19], where the gauge sym-
metry is broken to Uð1Þ on the moduli space and there are
singular submanifolds on which monopoles or dyons be-
come massless. We then deform the theory to obtain
monopole condensation near a point on the singular sub-
manifold of the moduli space. In the low-energy limit we
find an effective O’Raifeartaigh-type model of the form
recently investigated by Shih [20] which features a meta-
stable SUSY-breaking minimum.

The paper is structured as follows. In Sec. II we briefly
review theN ¼ 1 SUð2Þ3 model with massless monopoles
and parametrize our ignorance of the Kähler potential to
write down an effective theory near a point on the singular
submanifold. In Sec. III we review the Shih-O’Raifeartaigh
model and derive the scaling behavior of some important
quantities determined at 1-loop.We then deform the SUð2Þ3
model to letmonopole condensation trigger supersymmetry
breaking in Sec. IV. Section V explores some variations of
this model, and we conclude with Sec. VI.

II. THE SUð2Þ3 MODEL

The basis for our model of SUSY breaking is the SUð2Þ3
model [19]. After briefly reviewing its main features, we
will expand the theory around a particular point in moduli
space in order to explicitly parametrize our ignorance of
the incalculable Kähler potential.

A. Review

Our starting point is anN ¼ 1 SUSYmodel [19] with a
SUð2Þ1 � SUð2Þ2 � SUð2Þ3 gauge symmetry that is bro-
ken down to a diagonalUð1Þ at low energies. This makes it
possible to apply Seiberg-Witten methods [7,10] to obtain
information about the holomorphic quantities (the super-
potential and gauge kinetic term) of the model. The particle
content of the underlying electric theory is

SUð2Þ1 SUð2Þ2 SUð2Þ3
Q1 h h 1
Q2 1 h h

Q3 h 1 h

(2.1)

The three SUð2Þi gauge groups become strongly coupled
below scales�i. For simplicity we let�i ¼ �. The moduli
space is spanned by four gauge invariants

Mi ¼ detQi ¼ 1
2ðQiÞ��ðQiÞ��������;

T ¼ 1
2ðQ1Þ�1�2

ðQ2Þ�2�3
ðQ3Þ�3�1

��1�1��2�2��3�3 ;
(2.2)

and at generic points in the moduli space the SUð2Þ3 gauge
group is broken down to the diagonalUð1Þ, so the theory is
in the Coulomb phase. The holomorphic quantities of the
low-energy theory are described by an elliptic curve

y2 ¼ ½x2 � ð�4M2 þ�4M3 þ�4M1 �M1M2M3 þ T2Þ�2
� 4�12: (2.3)

Rescaling the variables by defining

uSW ¼ 2ð�4M2 þ�4M3 þ�4M1 �M1M2M3 þ T2Þ;
�2

SW ¼ 2�6;

we see that Eq. (2.3) is identical to theN ¼ 2 SUð2Þ SYM
curve [7],

y2 ¼ ðx2 � 1
2uSWÞ2 ��4

SW: (2.4)

The elliptic curve represents a torus with complex struc-
ture, and the low-energy Uð1Þeff holomorphic gauge cou-
pling is given as the ratio of the two periods of the torus.
The torus can be transformed by an SLð2;ZÞ transforma-
tion, which corresponds to transforming the low-energy
effective Uð1Þ gauge theory into a dyonic dual description.
In the electric description, the electric gauge coupling
approaches zero as u ! 1. The roots of the N ¼ 2
SUð2Þ SYM elliptic curve are degenerate for u ¼ �2�2,
meaning that the torus becomes singular on the corre-
sponding submanifolds of the full moduli space. This
causes the electric gauge coupling to diverge on these
submanifolds, whereas the magnetic/dyonic gauge cou-
pling goes to zero. Therefore certain monopoles or dyons,
which are large, massive, and strongly coupled topological
objects in the weakly coupled electric regime u ! 1,
become elementary, light, and weakly coupled (the mag-
netic coupling goes to zero) near the respective singular-
ities. The monopoles and dyons of the SUð2Þ3 model
become massless when

�4M2 þ�4M3 þ�4M1 �M1M2M3 þ T2 � 2�6 ¼ 0:

(2.5)

Near these two points in moduli space, the effective
potential can be approximated as

Weff ¼ 1

�5
½��4M1 ��4M2 ��4M3

þM1M2M3 � T2 � 2�6�E� ~E� þ fHOTg;
where E�; ~E� are monopoles/dyons, which are light, ele-
mentary, and weakly coupled near the singularity. The
higher-order terms fHOTg only contain higher powers of
the term in square brackets and cannot change the location
of the singularity. Higher powers of monopoles/dyons in
the superpotential are forbidden by global symmetries
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[including an anomalous Uð1ÞR] and holomorphy.
Rescaling the moduli to have mass dimension 1, this
becomes

Weff ¼
�
�M1 �M2 �M3 þM1M2M3

�2

� T2

�
� 2�

�
E� ~E� þ fHOTg: (2.6)

B. Effective theory near a singular point

Wewill deform the SUð2Þ3 model in a way that will lead
to SUSY breaking triggered by monopole condensation. To
that end, wewant to find the effective theory near a singular
point on the moduli space, defined by

M1 ¼ 2�; M2;3 ¼ 0; T ¼ 0: (2.7)

The existence and stability of a SUSY-breaking minimum
(after perturbations are included) in the vicinity of this
point will depend on the exact form of the Kähler potential,
which cannot be calculated using Seiberg-Witten tech-
niques in an N ¼ 1 theory. Instead, we will expand the
effective Lagrangian in small fluctuations around
the supersymmetric state (2.7) and restrict the form of the
Kahler potential using unbroken global symmetries.
Expanding M1 ¼ 2�þ �M1, Eq. (2.6) becomes

Weff ¼
�
�T2

�
� �M1 �M2 �M3

�
E� ~E� þ fHOTg;

(2.8)

where fHOTg now includes terms like M2E� ~E�=� and
T2ME� ~E�=�2. (We explictly keep the T2=� term because
it gives the lowest-order contribution to the potential for
T.) While the Kähler potential is not determined by hol-
omorphy, the weakly coupled degrees of freedom near the
singular point are the monopoles and the moduli, and the
Kählerpotential is nonsingular in terms of these fields with
an expansion in inverse powers of �. The global symme-
tries are then used to constrain the Kähler potential. There
is an S3 symmetry which switches the Mi’s and SUð2Þi’s
around, as well as a slightly less obvious Z4 which acts on
each of the electric quarks as

Qi ! ein�=2Qi: (2.9)

This is an anomaly-free Z4 subgroup [21] of anomalous
Uð1Þ global symmetry under which each of the electric
quarks has charge 1. Under this symmetry, the moduli

transform as Mi ! ein�Mi and T ! ein�=2T, meaning
that Mi and T2 both have charge 2 under the Z4. The x
and y coordinates of the elliptic curve, Eq. (2.3), have
charge 2 and 0, respectively, while � has charge 0.

Around the point in moduli space (2.7), the global
symmetries of the model are broken from S3 to S2, which
exchangesM2 andM3, and Z4 is broken to Z2, under which
T ! �T and the Mi are singlets. Defining a field basis

’i ¼ ð�M1;M2;M3; T; Eþ; ~EþÞ, we write the Kähler po-
tential as an expansion in the small fluctuations

K ¼ ’y
j K

j
i’

i þO
�
’3

�

�
; (2.10)

where Kj
i is a Hermitian positive-definite matrix. The

symmetries then restrict Kj
i to be of the form

Kj
i ¼

� �ei� �ei� 0 0 0
�e�i� � � 0 0 0
�e�i� � � 0 0 0
0 0 0 � 0 0
0 0 0 0 	 0
0 0 0 0 0 	

2
666666664

3
777777775
; (2.11)

where all parameters are real and positive definiteness
requires � > 0, 	> 0, �> �, �ð�þ �Þ> 2�2. The pre-
cise values of these parameters are unknown but presum-
ably Oð1Þ.
We can now define new degrees of freedom ~Mi to

diagonalize the upper 3� 3 corner of Kj
i . Upon rescaling,

all degrees of freedom can then be made canonical to
quadratic order in the Kähler potential, giving a effective
superpotential valid in the neighborhood of Eq. (2.7),

Weff ¼
�
a ~M1 þ b ~M2 þ c ~M3 � d

T2

�

�
Eþ ~Eþ; (2.12)

where the coefficients a; b; c; d are unknown complexOð1Þ
numbers into which we have absorbed the canonical re-
scaling of the monopole fields. As long as the S2 symmetry
is unbroken, one can show that c ¼ 0, but we include this
coefficient for generality since it will be induced perturba-
tively by explicit S2 breaking effects, as discussed in
Sec. IV.

III. THE SHIH-O’RAIFEARTAIGH MODEL

Triggering SUSY breaking via monopole condensation
can be achieved by deforming the SUð2Þ3 model to re-
semble the Shih-O’Raifeartaigh model [20] in the low-
energy limit (near a singular point of moduli space). In
this section, we will briefly review the Shih-O’Raifeartaigh
model and then derive some scaling behavior which will be
important in ensuring the stability of our SUSY-breaking
local minimum against incalculable corrections.

A. The model

In [20], Shih wrote down an O’Raifeartaigh model with
a single pseudomodulus and R charges other than 0 or 2
which can break R symmetry spontaneously without tun-
ing.2 The superpotential is

W ¼ 
X�1�2 þm1�1�3 þ 1
2m2�

2
2 þ fX: (3.1)

2See [22] for some studies of spontaneous R breaking in
models with multiple pseudomoduli.
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The R charges are RX ¼ 2, R�1
¼ �1, R�2

¼ 1, R�3
¼ 3.

The tree-level scalar potential is

V ¼ j
�1�2 þ fj2 þ j
X�2 þm1�3j2
þ j
X�1 þm2�2j2 þ jm1�1j2: (3.2)

Via field redefinitions we can let all the parameters be real
and positive. It is useful to define the two dimensionless
parameters:

y ¼ 
f

m1m2

; r ¼ m2

m1

: (3.3)

For y < 1, there exists a pseudoflat direction that breaks
SUSY:

�i ¼ 0; X arbitrary ) hVi ¼ f2: (3.4)

The field X is a pseudomodulus, meaning it does
not receive a potential at tree-level but does get one at
1-loop. The pseudomoduli space is stable in a neighbor-
hood of the origin jXj< Xmax, where

Xmax � m1




1� y2

2y
: (3.5)

The 1-loop Coleman-Weinberg potential [23] can stabilize
X at the origin for r & 2 or break the R symmetry and
induce a nonzero hXi for r * 2, see Fig. 1. There is also a
SUSY runaway:

�1 ¼
ffiffiffiffiffiffiffiffiffi
fm2


2X

s
; �2 ¼�

ffiffiffiffiffiffiffi
fX

m2

s
; �3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2fX3

m2
1m2

s
; X!1:

(3.6)

Along this runaway direction, V ¼ fm2
1m2=ð
2jXjÞ, so the

value of jXj at which the potential energy becomes equal to
the false vacuum energy f2 is

jXj ¼ Xcross � m1


y
¼

ffiffiffiffiffiffiffiffiffiffi
f


ry3

s
: (3.7)

For smaller values of jXj, the potential energy is larger than
f2 along the runaway direction. The width of the potential
barrier that separates the false vacuum from the runaway
scales with negative powers of y and 
, so if either is small
the parametric longevity of the SUSY-breaking minimum
can be guaranteed.

B. Scaling behavior

We will eventually construct a model which reduces to
the Shih-O’Raifeartaigh model in a low-energy limit, up
to incalculable Kähler corrections and higher-order terms
in the superpotential. To ensure that these incalculable
contributions to the scalar potential do not destabilize the
false vacuum we will have to understand the scaling be-
havior of the pseudomodulus mass, the vacuum expecta-
tion value (VEV), and the gradient of the potential barrier.
The first step is to separate out the f=
 scaling from the

r; y scaling by redefining a dimensionless version of the
1-loop Coleman-Weinberg potential

VCWðjXjÞ ¼ 1

64�2
Trð�1ÞFM4 log

M2

�2
(3.8)

in the following fashion:

~x ¼
ffiffiffiffi



p jXjffiffiffi
f

p ; ~VCWð~xÞ � 1


2f2
VCW

�
~xffiffiffiffi



p ffiffiffi
f

p �
: (3.9)

Then ~VCWð~xÞ depends only on ~x; y; r (up to an additive
constant). In these units, Xmax from Eq. (3.5) becomes

~x max ¼ 1� y2

2y3=2r1=2
: (3.10)

We can now easily explore the r; y, scaling of ~VCWð~xÞ
numerically.
There are two regimes of interest. For the first numerical

scan we let r 2 ð0; 10Þ to explore the interesting r�Oð1Þ
behavior of VCW and make the plots of hXi, the gradient of
the potential barrier and the mass of the pseudomodulus
shown in Figs. 2–4.

1 2 3 4
x

0.002

0.004

0.006

0.008

Vcw

r 1.5 , y 0.20

0.5 1.0 1.5 2.0 2.5
x

0.0004

0.0002

0.0002

0.0004

0.0006

0.0008

Vcw

r 4.0 , y 0.20

FIG. 1 (color online). Two examples of the 1-loop Coleman-Weinberg potential VCW (shifted by a constant) that generate zero and

nonzero VEV for X. Note that jXj ¼
ffiffiffi
f



q
~x and VCW ¼ 
2f2 ~VCW.
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The second scan looked at log10ðrÞ 2 ð1; 8Þ to extract
scaling behaviors with r and y varying over many orders of
magnitude. These extracted scalings turned out to give
reasonable order-of-magnitude estimates for r�Oð1Þ as
well. The results can be summarized as follows:

(i) For any r, there exists a ymax < 1 such that one can
find a local minimum 0 � hjXji<Xmax on the pseu-
domoduli space that is stabilized by quantum cor-
rections along the X direction. In other words,
y < ymax is a requirement for metastable SUSY

FIG. 3 (color online). The maximum value of the gradient dV
dX

in the interval jXj 2 ðhjXji; XmaxÞ, in units of
ffiffiffiffiffiffiffiffiffiffi

5f3

p
.

FIG. 2 (color online). The pseudomodulus VEV hjXji in units of (a)
ffiffiffiffiffiffiffiffiffi
f=


p
and (b) Xmax. White areas indicate that the 1-loop

Coleman-Weinberg potential slopes away from the origin without any local minima. Notice that for r * 2, R symmetry is
spontaneously broken.

FIG. 4 (color online). The pseudomodulus mass mX generated

by VCW in units of
ffiffiffiffiffiffiffiffi

3f

p
.
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breaking, which is stronger than y < 1. From the
scan, we are able to extract the following scaling
behavior:

ymax � 2

r
; (3.11)

where the error is �100%, �30%, and <1% for
r� 1, �10, and >100, respectively. Hence, we can
extract an interesting constraint for large r that
must be satisfied to guarantee the existence of a
SUSY-breaking local minimum:


f & m2
1 for r * 10: (3.12)

(ii) The pseudomodulus VEV hXi is 0 for r & 2. For
r * 2 a good approximation is

hXi � ry

2
Xmax ¼ ð1� y2Þm2

4

; (3.13)

with errors Oð10%Þ, Oð1%Þ when r�Oð1Þ and
r > 10, respectively.

(iii) The maximum (positive) gradient between hXi and
Xmax is roughly given by

�
�V

�jXj
�
max

� 1

8�2

ffiffiffi
y

r

r
�

ffiffiffiffiffiffiffiffiffiffi

5f3

q
¼ 1

8�2


3f2

m2

;

(3.14)

as long as y is not very close to ymax, in which case
the gradient approaches 0.

(iv) As shown in Fig. 4, the behavior of the pseudomo-
dulus mass mostly depends on y with the exception
of the dip near r � 2. Ignoring the dip, the mass
scales as

mX � 1

3
y�

ffiffiffiffiffiffiffiffi

3f

q
¼ 1

3

ffiffiffiffiffiffiffiffiffiffi

5f3

p
m1m2

: (3.15)

Let us reexamine the lifetime of the SUSY-breaking
minimum in light of these scalings. The pseudomodulus
VEV is at hXi ¼ 0 or hXi � ð1� y2Þm2ð4
Þ�1. The small-
est value of jXj at which the SUSY runaway has a lower
potential energy than the potential of the pseudoflat direc-
tion is Xcross ¼ m1ð
yÞ�1. If hXi is not zero, one can show
using y < ymax � 2=r that hXi=Xcross � ryð1� y2Þ=4 &
ð1� y2Þ=2< 1=2, so regardless of r the barrier width
scales as Xcross, or �Oðy�1
�1Þ. Therefore, if either y or

 is small, the longevity of the supersymmetry-breaking
vacuum is guaranteed. Since y�1 * r for a SUSY vacuum,
the presence of such vacuum when r is large also guaran-
tees its longevity.

IV. BREAKING SUSY BY MONOPOLE
CONDENSATION

Now we want to deform the SUð2Þ3 model such that,
near the monopole singularity, the monopoles condense
and the low-energy effective theory (below the condensa-
tion scale) resembles the Shih-O’Raifeartaigh model of
metastable SUSY breaking. This mechanism should be
dynamical in the sense that SUSY is restored in the
weak-coupling limit � ! 0. To achieve this, we introduce
SUð2Þ3-singlet fields �1;2;3; Z; Y, and the following tree-

level superpotential to the electric theory:

Wtree ¼ ~mðQQÞA þ
~


�UV

ðQQÞB�1�2 þ 1

2
m2�

2
2

þm1�1�3 þ aZ
�UV

Q1Q2Q3Zþ aYðQQÞCY:
(4.1)

Here, ðQQÞA;B;C are linear combinations of Q2
1, Q

2
2, Q

2
3,

and �2 that become the canonical ~M1;2;3 perturbations

around the point, Eq. (2.7), in the IR. The electric quark
mass ~m and the UV-physics scale �UV must be much
smaller and larger, respectively, than � to protect the
nonperturbative SUð2Þ3 dynamics. For the same reason,
the Yukawa coupling aY must be much less than unity. The

couplings ~
 and aZ are perturbative. These deformations
explicitly break the S3 symmetry, while the Z4 symmetry is
reduced to Z2, with T and Z both having charge 1.
Crucially, this is still sufficient to prevent any quadratic
Kähler mixing in the low-energy theory except amongst

the Mi perturbations, but in Eq. (2.12) a nonzero c�
Oðmaxf 1

16�2
~
 �
�UV

; 1
16�2 aZ

�
�UV

; 1
16�2 aYgÞ will be generated.

In the magnetic theory near the monopole singularity
Wtree is mapped to

�W ¼ ��2 ~M1 þ 
 ~M2�1�2 þm2

2
�2

2 þm1�1�3

þmZZT þmY
~M3Y; (4.2)

where �2 �m� 	 �2, �� ~
�=�UV 	 1, mZ �
aZ�

2=�UV 	 �, and mY � aY� 	 �. By absorbing
phases into the fields appropriately, all the parameters
can be made real and positive.

A. Metastable SUSY-breaking vacuum

The rationale behind choosing the particular form of the
deformations, Eq. (4.2), is the following: the mass terms
for ZT and ~M3Y stabilize the respective moduli at the
origin, while F ~M1

¼ aEþ ~Eþ ��2 forces the monopoles

to condense, which creates an effective tadpole for ~M2.
This generates an effective Shih-O’Raifeartaigh model,
where the pseudomodulus is a mixture of the composite
degrees of freedom ~M1; ~M2 and the tadpole is generated by
the monopole condensate.
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Let us examine this more carefully. SettingF ~M3;T;Y;Z
¼ 0

gives

h ~M3i ¼ hTi ¼ hZi ¼ 0; hYi ¼ �c
hEþ ~Eþi
mY

: (4.3)

To ensure that we havemasslessmonopoles, setF ~Eþ;Eþ ¼ 0

by enforcing

h ~M1i ¼ �b

a
h ~M2i: (4.4)

If the monopoles condense, the remainder of the theory
looks exactly like the Shih-O’Raifeartaigh model.
Minimizing jF ~M1

j2 þ jF ~M2
j2 under the assumption that

�i ¼ 0 gives the monopole VEV

hEþ ~Eþi ¼ a

a2 þ b2
�2: (4.5)

The ~M1 tadpole ensures that monopole condensation is
energetically preferable. The tree-level vacuum energy is

hV0i ¼ b2

a2 þ b2
�4; (4.6)

and receives contributions from both nonzero F ~M1;2
.

It is now clear that in the low-energy limit this theory
resembles the Shih-O’Raifeartaigh model, with the pseu-
domodulus X corresponding to a mixture of the composite
~M1 and ~M2 while the tadpole fX is generated by monopole
condensation, with f��2. [In fact we may simply set
X ¼ ~M2 and f ¼ ab�2=ða2 þ b2Þ �m�. The ~M1 content
of the pseudomodulus has no effect other than to rescale its
mass by an Oð1Þ factor with respect to the corresponding
expression for the Shih-O’Raifeartaigh model.]

To summarize, we have shown that the point

h ~M3i ¼ hTi ¼ hZi ¼ h�ii ¼ 0; hYi ¼ � chEþ ~Eþi
mY

;

hEþ ~Eþi ¼ a

a2 þ b2
�2; h ~M1i ¼ �b

a
X; h ~M2i ¼ X;

(4.7)

constitutes a tree-level stable pseudomoduli space parame-
trized by the value of ~M2. The tree-level spectrum can be
divided into four groups:

(i) ~M1; ~M2; ~M3: These three chiral superfields have a
supersymmetric spectrum. There are two massive
modes with masses OðmY;�Þ and one zero mode
chiral superfield. The fermion component of the zero
mode is the Goldstino. The complex scalar compo-
nent of the zero mode multiplet is X. jXj is the
pseudomodulus and receives a VEV at 1-loop level,
whereas the phase of X is the Goldstone boson of the
global Uð1ÞR under which X has charge þ2. This is
not a global symmetry of the electric superpotential,
but is an accidental symmetry in the IR when irrele-
vant (nonrenormalizable) interactions are neglected.

(ii) T; Z: Their spectrum is also supersymmetric and

massive with masses mZ þOð� ffiffiffiffiffiffiffiffiffiffiffiffiffi
mZ=�

p Þ.
(iii) Y; Eþ; ~Eþ: Two massive chiral superfields have the

same mass as the non-zero modes in the ~Mi group.
The other superfield is eaten by the magnetic gauge
superfield since theUð1Þmag is broken by the mono-

pole VEV.
(iv) �1; �2; �3: The scalar and fermion masses of these

fields are identical to the corresponding masses
from the Shih-O’Raifeartaigh model [with the
substitution f ! ab�2=ða2 þ b2Þ], and are further-
more the only masses that depend on the
pseudomodulus.

The 1-loop Coleman-Weinberg potential for X is generated
exclusively by the �i masses, giving us an effective low-
energy Shih-O’Raifeartaigh model below the monopole
condensation scale and a corresponding SUSY-breaking
vacuum. All the results from Sec. III carry over and apply
near the origin of our field perturbations.

B. Vacuum stability vs incalculable corrections

Wewill now check what constraints the various scales in
the theory must satisfy to ensure that the Shih-
O’Raifeartaigh metastable SUSY-breaking vacuum of the
deformed SUð2Þ3 model is not wiped out by 1=� sup-
pressed corrections which we have so far neglected under
the assumption that they would be small in the neighbor-
hood of the monopole singularity.
There are two sources for these corrections:

(a) irrelevant terms in the superpotential, Eqs (2.12) and
(4.2), and (b) cubic and higher-order terms in the fields in
the Kähler potential. We can ignore the higher-order cor-
rections in evaluating the Coleman-Weinberg potential,
since their contributions are subdominant to the tree-level
mass dependence on the pseudomodulus jXj (this will be
demonstrated below). That means we must check two
things: that the higher-order corrections do not destabilize
any field directions that were flat prior to taking those
corrections into account, and that those corrections do
not overpower the Coleman-Weinberg potential and desta-
bilize the jXj VEV.
Since the flat direction corresponding to the Goldstone

boson of the broken Uð1Þ is protected, and assuming that
the tree-level masses of M3, T, Z, Y, �1, and �2 are
sufficiently large, all we need to worry about are the 1=�
suppressed corrections involving the pseudomodulus X.
The dangerous ones are Kähler terms cubic in X and non-
renormalizable superpotential terms. These terms are al-
lowed because of the spontaneous breaking (4.4) and
explicit breaking (4.1) of the Z4 global symmetry to Z2.
Both types contribute terms of the form

�V � V0

X þ Xy

�
�m2�ðXþ XyÞ: (4.8)
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The potential for X generated by VCW looks like a
Mexican hat in the X-complex plane. The phase is unde-
termined, but jXj receives a VEV from VCW. Adding terms
like Eq. (4.8), i.e., linear terms in X, will generate a definite
VEV for �X while shifting the VEV of jXj. So to ensure
stability, we must check that the linear tilt due to a defor-
mation like �V �m2�X does not overpower the stabiliz-
ing effect of VCWðjXjÞ. (We now drop the absolute value
signs and use X to describe the component of that field
along the tilt direction.) The potential for X including
higher-order corrections looks schematically like this:

VðXÞ � VCWðXÞ þm2�X: (4.9)

(Note that we have replaced �2 by m�, which is sufficient
for the required order-of-magnitude estimates.) To make
sure that the local minimum of VðXÞ is not destroyed by the
tilt, we require that the rough scale of the gradient of the
potential barrier is much larger than the scale of the gra-
dient of the tilt. Using the result of our numerical scan in
Eq. (3.14), we obtain the following inequality which must
be satisfied to ensure that our mechanism of SUSY break-
ing survives the effect of higher-order corrections:�

�V

�X

�
max


 m2� ) Oð10�2Þ
�

�

�UV

�
3 m2�2

m2


 m2�;

(4.10)

which can be simplified to

m2

�
	 Oð10�2Þ �

�
�

�UV

�
3
: (4.11)

There is also another constraint on the scales from SUSY
breaking:


m�

m1m2

� y < ymax � 1

r
; (4.12)

which becomes

�

�UV

&

�
m1

�

�
2
�
�

m

�
: (4.13)

To illustrate these constraints, define the powers
cUV; cm; c1; c2 such that

�

�UV

� 10�cUV ;
m

�
� 10�cm;

m1

�
� 10�c1 ;

m2

�
� 10�c2 :

(4.14)

Then Eqs. (4.11) and (4.13) imply

c2 > 2þ 3cUV; c1 &
1
2ðcm þ cUVÞ; (4.15)

in addition to cUV, cm � 2 which protects the nonpertur-
bative monopole physics. There are clearly a variety of
ways that this can be satisfied. For example, we could
reasonably set �=�UV � 0:01 and m1 �m2, i.e.,
cUV ¼ 2, c1 ¼ c2. Then cm � 14 and c1;2 ¼ 8 when the

inequality is saturated. (For cm > 14, c1;2 can be somewhat

larger.) In this case the hierarchies of the model are

m 	 m1;2 	 � 	 �UV: (4.16)

Finally, to ensure that ~M3 is not destabilized by Kähler
corrections mY � aY� 	 � cannot be too small. The
lower bound is

aY 
 m

�
: (4.17)

We emphasize that these constraints, while restricting us
to certain areas of the model’s parameter space, do not
represent tuning. There is no particular balancing of pa-
rameters involved in stabilizing the false vacuum. The
above hierarchies merely guarantee that certain potentially
destabilizing contributions are subdominant.

C. Weak-coupling limit and supersymmetric runaways

By inspection of Eq. (4.1) it is clear that in the weak
coupling or classical limit (� ! 0), supersymmetry is
restored with one supersymmetric vacuum at the origin
of field space: Qi ¼ �i ¼ Z ¼ Y ¼ 0. This means that
supersymmetry breaking depends on the nonperturbative
SUð2Þ3 dynamics.
In the � � 0 case, this model has two runaways which

both resemble the runaway in the Shih-O’Raifeartaigh
model. The first runaway3 takes F ~M2

, F�i
! 0 in a manner

analogous to Eq. (3.6), but this is not a supersymmetric
runaway since F ~M1

� 0. The other runaway is the only

supersymmetric runaway in this model. Increasing the
monopole VEV from hEþ ~Eþi ¼ a�2=ða2 þ b2Þ to �2=a
sets F ~M1

¼ 0. F ~M2
; F�i

are identical to the F terms in the

Shih-O’Raifeartaigh model with the replacement X ! ~M2

and f ! b�2

a , and are taken to zero via the Shih-

O’Raifeartaigh runaway, Eq. (3.6). In both cases
FY;Z;T; ~M3

¼ 0 via the VEVs in Eq. (4.3) just like in the

SUSY-breaking minimum, and ~M1 is free to move however
it has to in order to set FE; ~E ¼ 0. The trajectory of ~M1

depends on the other fields and implicitly includes all the
corrections to the monopole mass in Eq. (2.12) that we can
ignore close to the origin of our perturbations.
Assuming we can trust our approximately canonical

Kähler potential, the potential energy along both runaways

VSUSY run ¼ b4�4

ða2 þ b2Þ2 þ
m2

1m2�
4


2j ~M2j
ab

a2 þ b2
;

VSUSY run ¼ m2
1m2�

2


2j ~M2j
b

a
;

(4.18)

3Using the word runaway implies that there is a SUSY-
breaking minimum along this runaway at X ¼ 1, but it is in
fact more likely that the fields would eventually roll into the
SUSY-runaway.
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becomes equal to the potential energy of the SUSY-
breaking pseudomoduli space

VPMS ¼ b2

a2 þ b2
�4; (4.19)

when

~M 2 ¼ m2
1m2


2�2

a2 þ b2

ab
: (4.20)

For the explicit examples of scales considered below
Eq. (4.15), this is much less than�, making the calculation
trustworthy, but even if noncanonical Kähler corrections
become important it would not significantly change the
result that the width of the potential barrier between the
SUSY-breaking pseudomoduli space and both runaways is
of roughly the same size along the X direction. (The same
can be said for the distance along the �i directions, since

along both runaways �i scales with hEþ ~Eþi1=2 ��.)
However, since the SUSY runaway is separated from the
SUSY-breaking local minimum by an Oð�4Þ potential
barrier, the decay path of the false vacuum is much more
likely to be across the tiny barrier created by VCW to either
the SUSY breaking or supersymmetric runaway.
Therefore, since 
 is small, the same arguments that ensure
longevity of the false vacuum in the Shih-O’Raifeartaigh
model apply here as well.

D. Aligning the electric deformations

There is one possible source of tuning in this model,
which is the alignment of the deformations in the electric
theory. If the coefficients of Q2

i and �2 in the linear
combinations ðQQÞA;B;C are not properly chosen in the

electric superpotential, Eq. (4.1), then they do not corre-
spond to the canonical IR degrees of freedom ~Mi and the
effective IR superpotential will not exactly resemble
Eq. (4.2).

We can get a feeling for the required level of alignment
by considering the following, more general, superpotential:

�W ¼ ��2ð ~M1 þ �12 ~M2 þ �13 ~M3Þ þ 
ð ~M2 þ �21 ~M1

þ �23 ~M3Þ�1�2 þm2

2
�2

2 þm1�1�3 þmZZT

þmYð ~M3 þ �31 ~M1 þ �32 ~M2ÞY: (4.21)

Most of these misalignments are harmless, shifting tree-
level VEVs or inducing tree-level tadpoles for the pseudo-
modulus. However, some can destabilize the SUSY-
breaking vacuum.

The �21 term, apart from inducing a tree-level pseudo-
modulus tadpole like �12, shifts the effective 
 coupling in
the fermion contribution to VCW. For r < 10, the maximum
allowed values of �21 that do not destroy the local mini-
mum lie in the range �max

21 � 10�2–10�7 depending on r
and y, with �max

21 decreasing for larger r and smaller y. This

represents the required level of tuning in the ðQQÞA;B linear

combinations.
The �31 and �32 terms give a mass to the pseudomodulus

mX ¼ �YmY � �YaY�, where �Y ¼ 1
2 ð�32 � b

a �31Þ.
Adding a pseudomodulus mass to the Shih-
O’Raifeartaigh model creates a SUSY minimum at X ¼
f=mX and tilts the pseudomoduli space away from the
origin. We have to make sure that VCW is not overwhelmed
by this gradient, which, at a position hXi on the pseudo-
moduli space, is given by�

�V

�X

�
mX

¼ m2
XhXi þ fmX: (4.22)

Translating this to our effective Shih-O’Raifeartaigh model
and using Eqs. (3.13) and (3.14), we obtain the following
upper bounds:

�YaY 	
8><
>:

1
8�2

�
�

�UV

�
3

m
m2

when r & 2; i:e:hXi ¼ 0

1ffiffiffiffiffiffi
8�2

p
�

�
�UV

�
2

m
m2

when r * 2; i:e:hXi � 0;

(4.23)

where we have used the fact that for small 
, hXi 
 f
when r * 2.
Consider the explicit example of scales considered be-

low Eq. (4.15). aY is already a small number satisfying
10�14 	 aY 	 1. The constraint equation (4.23) gives

�YaY 	
��10�16 when r & 2; i:e:hXi ¼ 0
�10�13 when r * 2; i:e:hXi � 0:

(4.24)

If we take aY � 10�13, �Y could be as big as 10�3 for
hXi ¼ 0 and unity for hXi � 0, representing the required
level of tuning in the ðQQÞC linear combination.

V. OTHER SUSY-BREAKING DEFORMATIONS
OF THE SUð2Þ3 MODEL

In Sec. IV we constructed a theory of monopole-
triggered SUSY breaking based on the SUð2Þ3 model.
This method of deforming models with massless mono-
poles to induce SUSY breaking seems fairly general, and it
is instructive to try and embed the Shih model differently
into the monopole sector.
The first alternative possibility is to make �2 composite

instead of the pseudomodulus X. Starting from Eq. (2.12),
this would lead us to add the deformations and singlet
fields

�W ¼ �f ~M1 þ Xð
T�1 ��2Þ þm1�1�3

þmZZ ~M2 þmYY ~M3: (5.1)

These couplings preserve the Z2 global symmetry as
long as �1 and �3 are also charged. The ~M1 tadpole
induces a monopole VEV which generates a mass for T,
completing the Shih-O’Raifeartaigh sector. The coupling

� ð�=�UVÞ2 comes from an operator that is higher
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dimensional than in the model of Sec. IV. The stability of X
against incalculable Kähler corrections as well as
the existence of a SUSY-breaking minimum requires the
hierarchy

m1 	 �; m 	 � 	 �UV: (5.2)

Turning off the SUð2Þ3 gauge interactions (� ! 0) does
not destroy the SUSY-breaking pseudomoduli space at tree
level, meaning the gauge interactions deform a classically
existing SUSY-breaking minimum, similar to [18]. Since
the goal of this paper is to find a model of dynamical
monopole-triggered SUSY breaking we will not pursue
this possibility further.

The ‘‘most dynamical’’ embedding of the Shih-
O’Raifeartaigh sector into the SUð2Þ3 model is to make
both the pseudomodulus X and�2 composite. Since we are
using ‘‘more’’ of the monopole sector to break SUSY this
requires fewer deformations:

�W ¼ �f ~M1 þ 
 ~M2T�1 þm1�1�3 þmYYM3: (5.3)

Again, the ~M1 tadpole induces a monopole VEV, which
now provides a tadpole for ~M2 as well as a mass for T,
which act as the pseudomodulus and �2, respectively. The
stability of X against Kähler corrections and the existence
of the SUSY-breaking vacuum requires m 	 � due to the
smallness of 
� ð�=�UVÞ3:

�
m

�

�
	

�
�

�UV

�
9
;

m1

�
*

�
�

�UV

�
3
: (5.4)

As desired, SUSY is restored in the � ! 0 limit. Both of
these models feature standard Shih-O’Raifeartaigh run-
aways in the strong coupling case, with ~M1 adjusting to
keep the trajectory on the singularity.

This latter model appears more elegant than the model of
Sec. IV, but it suffers the unfortunate drawback that Kähler
corrections render the T-mass incalculable, a result of the
monopole VEV doing double duty. While this also does not
fulfill our requirements for a calculable monopole-
triggered dynamical SUSY-breaking theory, these two al-
ternative deformations of the SUð2Þ3 model demonstrate
how one might produce many more models of SUSY
breaking that include monopole dynamics.

VI. CONCLUSIONS

Monopoles have many unique characteristics that make
them very interesting. Their unusual dynamics might hold
the key to constructing novel models of supersymmetry (or
perhaps electroweak) breaking. Topological monopoles,
traditionally treated as nonperturbative objects, can be
calculationally controlled using Seiberg-Witten methods.
This opens up new avenues for model building.
In our model, supersymmetry breaking is triggered by

monopole condensation. A suitably deformed SUð2Þ3 the-
ory with massless monopoles takes on the form of an
effective Shih-O’Raifeartaigh model with a metastable
SUSY-breaking local minimum. In constructing such a
model within the limitations of N ¼ 1 supersymmetry,
it is important to check that incalculable Kähler corrections
do not destabilize the false vacuum. We have shown that
these contributions can be controlled, and through appro-
priate choices of scales can be made subdominant.
Additional deformations of the SUð2Þ3 model, with vary-
ing characteristics, demonstrate more generally how mod-
els with massless monopoles might be deformed to induce
SUSY breaking. It is our hope that this will open up new
investigations which might eventually yield elegant
mechanisms of breaking supersymmetry that circumvent
some of the problems encountered by other approaches. It
would be interesting to explore SUSY breaking in theories
that have both massless electrically and magnetically
charged particles.
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