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We show that the linearly polarized gluon distributions appear in the color dipole model as we derive

the full cross sections of the DIS dijet production and the Drell-Yan dijet (�� jet correlation) process.

Together with the normal Weizsäcker-Williams gluon distribution, the linearly polarized one

will contribute to the DIS dijet production cross section as the coefficient of the cosð2��Þ term in the

correlation limit. We also derive the exact results for the cross section of the Drell-Yan dijet process,

and find that the linearly polarized dipole gluon distribution which is identical to the normal dipole

gluon distribution involves in the cross section. The results obtained in this paper agree with the

previous transverse momentum dependent factorization study. We further derive the small-x

evolution of these linearly polarized gluon distributions and find that they rise as x gets small at high

energy.
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I. INTRODUCTION

In small-x physics, two different unintegrated gluon
distributions [1,2] (also known as transverse momentum
dependent gluon distributions), namely, the Weizsäcker-

Williams gluon distribution xGð1Þ [3,4] and the dipole

gluon distribution xGð2Þ, have been widely used in the
literature. The Weizsäcker-Williams gluon distribution
can be interpreted as the number density of gluons inside
dense hadrons in light-cone gauge. The dipole gluon dis-
tribution, despite of lacking the probabilistic interpretation,
has been thoroughly studied since it appears in many
physical processes [5,6] and it is defined via the Fourier
transform of the simple color dipole amplitude. This dipole
gluon distribution can be probed directly in photon-jet
correlations and Drell-Yan dijet measurement in pA colli-
sions. Recent studies [7,8] on the Weizsäcker-Williams
gluon distribution indicate that it can be directly measured
in DIS dijet production and its operator definition is related
to color quadrupoles instead of normal color dipoles. Other
more complicated dijet processes in pA collisions (e.g., qg
or gg dijets) involve both of these gluon distributions
through convolution in transverse momentum space. The
complete calculations were performed in Ref. [7,8] in both
the transverse momentum dependent (TMD) factorization
formalism and the color dipole model. The results demon-
strate the complete agreement between these two formal-
isms in the kinematical region where they are both valid.

Linearly polarized gluon distributions, denoted as

hðiÞ? ðx; q?Þ,1 where x and q? are the active gluon’s

longitudinal momentum fraction and its transverse mo-
mentum, respectively, were first introduced in Ref. [9].
This new gluon distribution effectively measures an aver-
aged quantum interference between a scattering amplitude
with an active gluon polarized along the x(or y)-axis and a
complex conjugate amplitude with an active gluon polar-
ized along the y(or x)-axis inside an unpolarized hadron.
Because of the unique transverse spin correlation between
the two-gluon fields of the distribution, the linearly polar-
ized gluon distribution can contribute to a physical observ-
able with cosð2��Þ-type azimuthal angular dependence,
or the azimuthally symmetric observables if they come in
pairs. As proposed in Ref. [10], the linearly polarized gluon
distributions can be directly probed in dijet and heavy
quark pair production processes in electron-hadron colli-
sions. As expected, this distribution also contributes to the
cross section in photon pair productions [11,12] and the
standard model Higgs boson production [13–15] in hadron-
hadron collisions. Since the integrated parton distributions
for incoming protons were used in the calculations of
pA collisions in Ref. [7,8], the linearly polarized gluon
distribution does not enter the cross section except for
the Drell-Yan dijet processes as we show in the later
discussion.

1Normally it is denoted as h?g
1 ðx; q?Þ. Here throughout the

paper, in order to avoid confusion on the notation, we use
hðiÞ? ðx; q?Þ with i ¼ 1, 2 to represent the linearly polarized gluon
distributions.
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In Ref. [16], the linearly polarized partner of both
Weizsäcker-Williams and dipole gluon distributions inside
an unpolarized nucleus target is studied in Color Glass
Condensate (CGC) formalism. The corresponding cross sec-
tions of deep inelastic scattering (DIS) dijet production and
the Drell-Yan processes in pA collisions are computed in
terms of the TMD formalism. In both processes, the linearly
polarized gluon distributions appear as the coefficients of the
cosð2��Þ term in the cross section,where theywere found to
be consistent with the small-x formalism as well [16].

Inspired byRef. [16], we perform the detailed calculation
in the color dipole model for the DIS dijet production and
the Drell-Yan dijet processes in pA collisions and we find
identical results as those with the TMD formalism for the
cross sections in the correlation limit, which is defined as a
limit when the final state dijets are almost back-to-back. For
the DIS dijet production, the complete analysis of the
quadrupole amplitude shows that the linearly polarized
gluon distribution of the Weizsäcker-Williams type comes
from the off-diagonal expansion of the quadrupole ampli-
tude. Using a hybrid factorization, we obtain the exact
results for the cross section of the Drell-Yan processes in
pA collisions. In the correlation limit, this exact result
reduces to the TMD cross section obtained in Ref. [16].

Another objective of this paper is to study the small-x
evolution of the linearly polarized gluon distributions. The
small-x evolution of the dipole type linearly polarized gluon
distribution is essentially the evolution of the dipole ampli-
tude, which is governed by the Balitsky-Kovchegov equa-
tion [17,18]. Derived from the evolution of quadrupoles, the
evolution of the linearly polarized Weizsäcker-Williams
gluon distribution is quite complicated. Nevertheless, in
the dilute regime, we find that both linearly polarized gluon
distributions receive the exponential enhancement in terms
of rapidity at high energy as the normal unpolarized gluon
distributions do due to the small-x evolution.

The rest of the paper is organized as follows. In Sec. II,
we calculate the cross sections of the DIS dijet production
and the Drell-Yan processes in pA collisions and demon-
strate that the linearly polarized gluon distributions natu-
rally arise in the dipole model. We discuss the small-x
evolution equations of the linearly polarized gluon distri-
butions in Sec. III. The summary and further discussions
are given in Sec. IV.

II. THE LINEARLY POLARIZED GLUON
DISTRIBUTION IN DIPOLE MODEL

In this section, following Ref. [8], we show that the cross
section of the DIS dijet production and the Drell-Yan dijet
process in the color dipole model, namely, the CGC ap-
proach, involves the linearly polarized gluon distribution
as well. The reason why this does not appear in the original
work in [8] is that there the azimuthal orientation of the
outgoing partons was averaged over.

A. DIS dijet production

After averaging over the photon’s polarization and sum-
ming over the quark and antiquark helicities and colors, the
cross section of the DIS dijet production in the color dipole
model can be cast into

d���
T;LA!q �qX

d3k1d
3k2

¼ Nc�eme
2
q�ðpþ � kþ1 � kþ2 Þ

Z d2x1
ð2�Þ2

d2x01
ð2�Þ2

d2x2
ð2�Þ2

� d2x02
ð2�Þ2 e

�ik1?�ðx1�x0
1
Þe�ik2?�ðx2�x0

2
ÞX
���

c T;L�
�� ðx1 � x2Þ

� c T;L��
�� ðx01 � x02Þ½1þ Sð4Þxg ðx1; x2; x02; x01Þ

� Sð2Þxg ðx1; x2Þ � Sð2Þxg ðx02; x01Þ�; (1)

where the two- and four-point functions, which are char-
acterized by the Wilson lines, take care of the multiple
scatterings between the q �q-pair and the target. They are
defined as

Sð2Þxg ðx1; x2Þ ¼
1

Nc

hTrUðx1ÞUyðx2Þixg ; (2)

Sð4Þxg ðx1; x2; x02; x01Þ ¼
1

Nc

hTrUðx1ÞUyðx01ÞUðx02ÞUyðx2Þixg ;
(3)

with

UðxÞ ¼ P exp

�
igS

Z þ1

�1
dxþTcA�

c ðxþ; xÞ
�
: (4)

The notation h. . .ixg is used for the CGC average of the color charges over the nuclear wave function where xg is the
smallest fraction of longitudinal momentum probed, and is determined by the kinematics. The splitting wave function of
the virtual photon with longitudinal momentum pþ and virtuality Q2 in transverse coordinate space takes the form,

c T�
��ðpþ; z; rÞ ¼ 2�

ffiffiffiffiffiffiffi
2

pþ

s 8<
:
i	fK1ð	fjrjÞ r�	

ð1Þ
?

jrj ½��þ��þð1� zÞ þ ������z�; � ¼ 1;

i	fK1ð	fjrjÞ r�	
ð2Þ
?

jrj ½������ð1� zÞ þ ��þ��þz�; � ¼ 2;
(5)
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c L
��ðpþ; z; rÞ ¼ 2�

ffiffiffiffiffiffiffi
4

pþ

s
zð1� zÞQK0ð	fjrjÞ��� (6)

where z is the momentum fraction of the photon carried by
the quark, � is the photon polarization, � and � are the
quark and antiquark helicities, r the transverse separation
of the pair, 	2f ¼ zð1� zÞQ2, and the quarks are assumed
to be massless.

In order to take the correlation limit, we introduce the
transverse coordinate variables: u ¼ x1 � x2 and v ¼
zx1 þ ð1� zÞx2, and similarly for the primed coordinates,
with respective conjugate momenta ~P? ¼
ð1� zÞk1? � zk2?

2 and q?. The correlation limit ( ~P? ’
k1? ’ k2? � q?) is therefore enforced by assuming u and
u0 are small as compared to v and v0 and then expanding
the integrand with respect to these two variables before
performing the Fourier transform. Following the derivation
in Ref. [8], one can find that the lowest order expansion in
u and u0 of the last line of Eq. (1) gives

� uiu
0
j

1

Nc

hTr½@iUðvÞ�Uyðv0Þ½@jUðv0Þ�UyðvÞixg : (7)

With the help of the identities

Z d2u

ð2�Þ2
d2u0

ð2�Þ2 e
�i ~P?�ðu�u0Þuiu0jruK0ð	fuÞ � ru0K0ð	fu0Þ

¼ 1

ð2�Þ2
�

�ij

ð ~P2
? þ 	2fÞ2

� 4	2f
~P?i

~P?j

ð ~P2
? þ 	2fÞ4

�
; (8)

Z d2u

ð2�Þ2
d2u0

ð2�Þ2 e
�i ~P?�ðu�u0Þuiu0jK0ð	fuÞK0ð	fu0Þ

¼ 1

ð2�Þ2
4 ~P?i

~P?j

ð ~P2
? þ 	2fÞ4

; (9)

one can integrate over u and u0 and obtain the complete
differential cross section in the correlation limit,

d���
TA!q �qX

dP :S:
¼ �eme

2
q�s�ðx�� � 1Þzð1� zÞðz2 þ ð1� zÞ2Þ

�
�

�ij

ð ~P2
? þ 	2fÞ2

� 4	2f
~P?i

~P?j

ð ~P2
? þ 	2fÞ4

�
ð16�3Þ

�
Z d3vd3v0

ð2�Þ6 e�iq?�ðv�v0Þ2hTr½Fi�ðvÞU½þ�y

� Fj�ðv0ÞU½þ��ixg ; (10)

d���
LA!q �qX

dP :S:
¼�eme

2
q�s�ðx�� �1Þ4z2ð1�zÞ2

�4	2f
~P?i

~P?j

ð ~P2
?þ	2fÞ4

ð16�3Þ
Z d3vd3v0

ð2�Þ6 e�iq?�ðv�v0Þ

�2hTr½Fi�ðvÞU½þ�yFj�ðv0ÞU½þ��ixg : (11)

Here we have used the identity

� hTr½@iUðvÞ�Uyðv0Þ½@jUðv0Þ�UyðvÞixg
¼ g2S

Z 1

�1
dvþdv0þhTr½Fi�ðvÞU½þ�yFj�ðv0ÞU½þ��ixg ;

(12)

where the gauge link U½þ� connects the two coordinate
points by means of longitudinal gauge links going to þ1
and a transverse link at infinity which does not contribute
when the appropriate boundary conditions are taken.
If one integrates over the orientation of ~P?, one can

replace ~P?i
~P?j by

1
2�ij

~P2
?.

3 This replacement allows us to

reduce the above expressions into Eqs. (30) and (31) in
Ref. [8] which only involve the conventional Weizsäcker-
Williams gluon distribution.
Now we are ready to show that the linearly polarized

Weizsäcker-Williams gluon distribution can also arise
naturally in the color dipole model. Since the indices i, j
are symmetric, we can decompose the operator expression
appearing in Eqs. (10) and (11) into two parts with one part
involving only �ij and the other part being traceless,

4
Z d3vd3v0

ð2�Þ3 e�iq?�ðv�v0ÞhTr½Fi�ðvÞU½þ�yFj�ðv0ÞU½þ��ixg

¼ 1

2
�ijxGð1Þðx; q?Þ þ 1

2

�
2qi?q

j
?

q2?
� �ij

�
xhð1Þ? ðx; q?Þ:

(13)

Here xGð1Þðx; q?Þ is the conventional Weizsäcker-Williams
gluon distributionwhile the coefficient of the traceless tensor

xhð1Þ? ðx; q?Þ is the so-called linearly polarized partner of the
conventional Weizsäcker-Williams gluon distribution.
The physical meaning or interpretation of these two

gluon distributions can be better represented in a frame
in which the two components of the transverse momentum

qj? with j ¼ 1, 2 or j ¼ x, y are the same. With qx? ¼ qy?
in this frame, the two symmetric projection operators in
Eq. (13) can be written as,

2One could also define v ¼ 1
2 ðx1 þ x2Þ in this process since

the virtual photon does not have initial interactions with the
nucleus target, then the respective conjugate momentum is P? ¼
1
2 ðk1? � k2?Þ ’ ~P?. P? is the relative momentum of outgoing
partons respect to the center of mass frame. Nevertheless, the
following derivation remains the same in this case.

3In the derivation of Ref. [8], we have employed this as an
underlying assumption.
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1

2
�ij ¼ 1

2

1 0
0 1

� �
¼ 1

2
ðeixejx þ eiye

j
yÞ

¼ 1

2
½"�iþ"jþ þ "�i�"j��; (14)

1

2

�
2qi?q

j
?

q2?
� �ij

�
¼ 1

2

0 1
1 0

� �
¼ 1

2
ðeixejy þ eiye

j
xÞ

¼ 1

2i
½"�iþ"j� � "�i�"

j
þ�; (15)

where eix ¼ ð1; 0Þ and eiy ¼ ð0; 1Þ are 2-dimensional unit

vectors along x-axis and y-axis, respectively, which could
be interpreted as two orthogonal linear polarization vectors
for transversely polarized gluons. As shown in Eqs. (14)
and (15), these two symmetric projection operators can
also be expressed in terms of the two orthogonal circular
polarization vectors for transversely polarized gluons,

"j� � ½	ejx � iejy�=
ffiffiffi
2

p
. For the comparison, we also list

here the antisymmetric projection operator for the polar-
ized gluon helicity distribution,

1

2
ði	ij?Þ ¼

1

2

0 i
�i 0

� �
¼ 1

2
iðeixejy � eiye

j
xÞ

¼ 1

2
½"�iþ"jþ � "�i�"j��: (16)

From Eqs. (14) and (16), it is natural to interpret Gð1Þ as a
probability distribution to find unpolarized gluons, while
the polarized gluon helicity distribution could be inter-
preted as a difference of two probability distributions to
find positive helicity gluons and negative helicity gluons,

respectively. From Eq. (15), it appears that hð1Þ? does not

have a probability interpretation in terms of the base po-

larization vectors "j�, which are the eigenstates of angular
momentum operators.4 Instead, it could be interpreted as a
transverse spin correlation function to find the gluons in the
amplitude and complex conjugate amplitude to be in two

orthogonal polarization states. In a general frame, qj? ¼
ðqx?; qy?Þ ¼ q?ðcos�; sin�Þ, the projection operator for

hð1Þ? can be written as,

1

2

�
2qi?q

j
?

q2?
� �ij

�
¼ 1

2

cosð2�Þ sinð2�Þ
sinð2�Þ � cosð2�Þ

� �
; (17)

which includes the special case in Eq. (15) when� ¼ �=4.
Since the projection operator in Eq. (17) is proportional to

a rotation matrix of the azimuthal angle, the hð1Þ? could also

be interpreted as ‘‘azimuthal correlated’’ gluon distribu-
tions [12,13]. Because the gluons in the amplitude and
complex conjugate amplitude are in different transverse
spin states, this kind of gluon distributions could contribute
to the observables with cosð2��Þ-type azimuthal depen-
dence, or azimuthal symmetric observables if they come in
pairs.
Substitute Eq. (13) into Eqs. (10) and (11), we obtain

d���
TA!q �qX

dP :S:
¼ �eme

2
q�s�ðx�� � 1Þzð1� zÞ

� ðz2 þ ð1� zÞ2Þ 	4f þ ~P4
?

ð ~P2
? þ 	2fÞ4

�
�
xGð1Þðx; q?Þ �

2	2f
~P2
?

	4f þ ~P4
?

� cosð2��Þxhð1Þ? ðx; q?Þ
�
; (18)

d���
LA!q �qX

dP :S:
¼ �eme

2
q�s�ðx�� � 1Þz2ð1� zÞ2 8	2f

~P2
?

ð ~P2
? þ 	2fÞ4

�½xGð1Þðx; q?Þ þ cosð2��Þxhð1Þ? ðx; q?Þ�;
(19)

where �� ¼ � ~P? ��q? with � ~P? and �q? being the

azimuthal angle of ~P? and q?, respectively. This result
is in complete agreement with the one obtained in Ref. [16]
by using the TMD approach. The coefficient of the
cosð2��Þ term in the above cross section can provide us
the direct information of the linearly polarizedWeizsäcker-

Williams gluon distribution xhð1Þ? ðx; q?Þ. It is also easy to

see that the xhð1Þ? ðx; q?Þ term vanishes if one averages the

cross section over the orientation of either ~P? or q? due to
the factor cosð2��Þ. This is transparent when one uses the
variables P? and q? since they can be interpreted as the
relative transverse momentum with respect to the center of
mass frame of these two outgoing partons and the total
transverse momentum of the CM frame, respectively.
Last but not least, one can see that the contribution from

the linearly polarized gluon distribution vanishes ifQ ¼ 0,
i.e., the real photon nucleus scattering only involves the
conventionalWeizsäcker-Williams gluon distribution. This
is because the real photon cannot generate a
cosð2��Þ-type transverse spin correlation that matches

the transverse spin correlation generated by hð1Þ? .

Let us now study the behavior of xhð1Þ? ðx; q?Þ in the

McLerran-Venugopalan (MV) model [19] for a large nu-
cleus with A nucleons inside. Using the quadrupole results

4However, if one chooses different base polarization vectors as
ei1 ¼ 1ffiffi

2
p ð1; 1Þ and ei2 ¼ 1ffiffi

2
p ð1;�1Þ, which are not the eigenstates

of angular momentum operators, one can find that Eq. (15)
becomes 1

2 ðei1ej1 � ei2e
j
2Þ which would allow us to interpret hð1Þ?

as the linearly polarized gluon density along the direction of the
linear polarization. In a general frame, the polarization vectors
are found to be ei1 ¼ ðcos�; sin�Þ and ei2 ¼ ðsin�;� cos�Þ
which convert Eq. (17) into 1

2 ðei1ej1 � ei2e
j
2Þ as well. This indi-

cates that the interpretation of the linearly polarized gluon
distributions depends on the choice of the polarization vectors.
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calculated in Ref. [8], one can cast the analytical form of

xhð1Þ? ðx; q?Þ into [16]

xhð1Þ? ðx; q?Þ ¼ 2

�s

�
�ij � 2qi?q

j
?

q2?

�Z d2vd2v0

ð2�Þ2ð2�Þ2
� e�iq?�ðv�v0ÞhTr½@iUðvÞ�Uyðv0Þ
� ½@jUðv0Þ�UyðvÞixg

¼ S?
2�3�s

N2
c � 1

Nc

Z 1

0
dr?r?

J2ðq?r?Þ
r2? ln 1

r2?�
2

�
�
1� exp

�
� 1

4
r2?Q

2
sg

��
; (20)

where J2ðq?r?Þ is the Bessel function of the first kind and
Q2

sg ¼ �sg
2Nc


2 ln 1
r2?�

2 with 
2 ¼ A
2S?

. For q2? � Q2
sg,

we find that xhð1Þ? ðx; q?Þ ’ �sACFNc

�2q2?
, which is identical to

xGð1Þðx; q?Þ and agrees with the perturbative QCD results.
It is important to notice that it scales like A since each
nucleon contributes additively in the dilute regime. In this
regime, the dominant contribution to the gluon distribution
comes from a single two-gluon exchange with a transverse
momentum transfer q? in the color dipole picture. For the
case �2 
 q2? 
 Q2

sg one absorbs the ln 1
r2?�

2 factor into

the definition of the saturation momentum and finds

xhð1Þ? ðx; q?Þ ’ �sACFNc

�2Q2
sg

which is an approximate constant.

It scales like A2=3 since Q2
sg � A1=3 as a result of strong

nuclear shadowing. It is interesting to note that, in the low
q2? region, the effect of multiple scatterings between

probes and target nuclei can be viewed as or attributed
to a single scattering with the momentum transfer of
order Q2

sg. As compared to the small q2? behavior of the

conventional Weizsäcker-Williams gluon distribution

xGð1Þðx; q?Þ ’ S?
4�3�s

N2
c�1
Nc

ln
Q2

sg

q2?
, we find that xGð1Þðx;q?Þ

xhð1Þ? ðx;q?Þ
’

ln
q2?
�2 ln

Q2
sg

q2?
� 1 where we have replaced r? by 1

q?
. These

gluon distributions obtained in the MV model can be
viewed as an initial condition for the small-x evolution.

In addition, we can also find that xGð1Þðx; q?Þ �
xhð1Þ? ðx; q?Þ for any value of q? which ensures the posi-

tivity of the total cross section.

B. Drell-Yan dijet process

Following the prompt photon-jet correlation calculation
in Ref. [8], it is straightforward to calculate the cross
section of dijet (q��) production in Drell-Yan processes
in pA collisions. The calculation is essentially the same,
except for the slightly different splitting function since the
final state virtual photon, which eventually decays into a
di-lepton pair, has a finite invariant massM. By taking into
account the photon invariant mass, the splitting wave
functions of a quark with longitudinal momentum pþ
splitting into a quark and virtual photon pair in transverse
coordinate space become

c T�
��ðpþ; kþ1 ; rÞ ¼ 2�

ffiffiffiffiffiffi
2

kþ1

s 8<
:
i	MK1ð	MjrjÞ r�	

ð1Þ
?

jrj ð������ þ ð1� zÞ��þ��þÞ; � ¼ 1;

i	MK1ð	MjrjÞ r�	
ð2Þ
?

jrj ð��þ��þ þ ð1� zÞ������Þ; � ¼ 2:

; (21)

c L
��ðpþ; kþ1 ; rÞ ¼ 2�

ffiffiffiffiffiffi
2

kþ1

s
ð1� zÞMK0ð	MjrjÞ���; (22)

where 	2M ¼ ð1� zÞM2, � is the photon polarization, �, � are helicities for the incoming and outgoing quarks, and z ¼ kþ1
pþ

is the momentum fraction of the incoming quark carried by the photon.
At the end of the day, for the correlation between the final state virtual photon and quark in pA collisions, we have

d�pA!��qþX
DP

dy1dy2d
2k1?d2k2?

¼ X
f

xpqfðxp;
Þ�e:m:e
2
f

2�2
ð1� zÞz2S?Fxgðq?Þ

�
½1þ ð1� zÞ2� q2?

½ ~P2
? þ 	2M�½ð ~P? þ zq?Þ2 þ 	2M�

� 	2M

�
1

~P2
? þ 	2M

� 1

ð ~P? þ zq?Þ2 þ 	2M

�
2
�
; (23)

with Fxgðq?Þ ¼
R d2r?

ð2�Þ2 e
�iq?�r? 1

Nc
hTrUð0ÞUyðr?Þixg ,

q? ¼ k1? þ k2? and ~P? ¼ ð1� zÞk1? � zk2?. In the
MV model, Fxgðq?Þ ’ 1

�Q2
sq
expð� q2?

Q2
sq
Þ with Q2

sq ¼ CF

Nc
Q2

sg

being the quark saturation momentum. qfðxp;
Þ is the
integrated quark distribution with flavor f in the proton
projectile. Here we used the hybrid factorization which

allows us to use integrated parton distributions since the
proton projectile is considered to be dilute as compared to
the nucleus target. The first term in the curly brackets arises
solely from the transverse splitting function in Eq. (21)
while the second term is the sum of contributions from both
the transverse and longitudinal splitting functions. We
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would like to emphasize that the above cross section in
Eq. (23) is an exact result regardless of the relative size
between q? and ~P?. By taking the correlation limit,
namely q? 
 ~P?, we arrive at the result which is identical
to the one obtained from TMD factorization [16]5

d�pA!��qþX
DP

dy1dy2d
2k1?d2k2?

��������q?
 ~P?

¼ X
f

xpqfðxp;
ÞxGð2Þðxg; q?Þ½Hqg!q��

� cosð2��ÞH?
qg!q�� �; (24)

with �� ¼ � ~P? ��q? , xGð2Þðx; q?Þ ¼ q2?Nc

2�2�s
S?Fxgðq?Þ

and

Hqg!q�� ¼ �s�e:m:e
2
fð1� zÞz2
Nc

�
1þ ð1� zÞ2
½ ~P2

? þ 	2M�2

� 2z2	2M ~P2
?

½ ~P2
? þ 	2M�4

�
; (25)

H?
qg!q�� ¼ �s�e:m:e

2
fð1� zÞz2
Nc

2z2	2M ~P2
?

½ ~P2
? þ 	2M�4

: (26)

In this case, the relevant gluon distribution is the so-called
dipole gluon distribution as demonstrated in Refs. [7,8,20].
As discussed in Ref. [16], according to the operator defi-
nition of dipole type gluon distributions [7,8,20],

xGij
DPðx; q?Þ ¼ 2

Z d��d�?
ð2�Þ3Pþ eixP

þ���iq?��?

� hPjTr½Fþið��; �?ÞU½��y

� Fþjð0ÞU½þ��jPi; (27)

¼ qi?q
j
?Nc

2�2�s

S?Fxgðq?Þ; (28)

¼ 1

2
�ijxGð2Þðx; q?Þ þ 1

2

�
2qi?q

j
?

q2?
� �ij

�
xhð2Þ? ðx; q?Þ;

(29)

where the gauge link U½�� is composed by longitudinal
gauge links going to �1. This shows that the linearly
polarized partner of the dipole gluon distribution is exactly
the same as the dipole gluon distribution.6 From Eq. (29),

with the proper normalization, we can also find that the
linearly polarized gluon distribution xhð2Þ? ðx; q?Þ ¼
xGð2Þðx; q?Þ.
Furthermore, one can see that for the prompt photon-jet

correlation, the linearly polarized gluon distribution does
not contribute sinceH?

qg!q�� vanishes whenM ¼ 0. This is

also due to the fact that the real photon in the final state
cannot generate the transverse spin correlation that
matches the transverse spin correlation of the incoming
gluon in the qg ! q� subprocess. It takes two matched
transverse spin correlations to get a nonvanish observable
effect.

C. Resummation

For the purpose of the Collins-Soper-Sterman resumma-
tion [21] discussed in Ref. [14], it is also useful to define
the coordinate expression of the linearly polarized
Weizsäcker-Williams gluon distribution as follows

x~hð1Þij? ðx; b?Þ ¼ 1

2

Z
d2q?e�iq?�b?

�
�
2qi?q

j
?

q2?
� �ij

�
xhð1Þ? ðx; q?Þ; (30)

and it is straightforward to find that in the MV model

x~hð1Þij? ðx; b?Þ ¼ 1

2

�
�ij � 2bi?b

j
?

b2?

�
S?
�2�s

N2
c � 1

Nc

1

b2? ln 1
b2?�

2

�
�
1� exp

�
� 1

4
b2?Q

2
sg

��
: (31)

This can be compared to the normal Weizsäcker-Williams

gluon distribution in b? space defined as x ~Gð1Þðx; b?Þ ¼R
d2q?e�iq?�b?xGð1Þðx; q?Þ,

x ~Gð1Þðx; b?Þ ¼ S?
�2�s

N2
c � 1

Nc

ln 1
b2?�

2 � 2

b2? ln 1
b2?�

2

�
�
1� exp

�
� 1

4
b2?Q

2
sg

��
: (32)

At small b?, x~hð1Þij? ðx; b?Þ is proportional to

(�ij � 2bi?b
j
?=b

2
?) times a constant, whereas

xGð1Þðx; b?Þ behaves as ln 1
�2b2?

due to the logarithmic

term in Q2
sg. These properties are consistent with their

perturbative behaviors at large transverse momentum [14].

5To compare with Ref. [16], one can compute the Mandelstam

variables and find that ŝ ¼ ðk1 þ k2Þ2 ¼ M2 þ ð1�zÞðM2þk2
1?Þ

z þ
zk2

2?
ð1�zÞ � 2k1? � k2? ¼ ~P2

?þ	2M
zð1�zÞ , û ¼ ~P2

?þ	2M
z and t̂ ¼ ~P2

?
1�z .

6There is a factor of 2 between these two distributions in
Ref. [16] due to different normalization.
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Similarly for the dipole gluon counterparts, one gets

x~hð2Þij? ðx; b?Þ ¼ 1

2

�
�ij
? � 2bi?b

j
?

b2?

�
NcS?
2�2�s

� exp

�
� 1

4
Q2

sqb
2
?

�
Q2

sq

�
�

1

ln 1
�2b2?

þ b2?Q
2
sq

4

�
1� 1

ln 1
�2b2?

�
2
�
; (33)

and

x ~Gð2Þðx;b?Þ¼ NcS?
2�2�s

exp

�
�1

4
Q2

sqb
2
?

�
Q2

sq

�
�
1� 2

ln 1
�2b2?

�b2?Q
2
sq

4

�
1� 1

ln 1
�2b2?

�
2
�
:

(34)

Again, in the small b? limit, they behave the same as those
Weizsäcker-Williams gluon distributions, respectively. It is
interesting to notice that their large b? behaviors are
different. For the dipole gluon distributions, they decrease
exponentially whereas the Weizsäcker-Williams ones have
power behaviors. These expressions can be viewed as the
initial conditions of the resummation discussed in
Ref. [14].

III. SMALL-x EVOLUTION OF THE LINEARLY
POLARIZED GLUON DISTRIBUTIONS

In this section, we discuss the small-x evolution of the
linearly polarized gluon distributions. We separate the
discussions into two parts: the first part is on the evolution
of the linearly polarized dipole gluon distribution since it is
trivial and it only involves the dipole amplitude; then we
derive the evolution equation for the linearly polarized
Weizsäcker-Williams gluon distribution from the small-x
evolution equation of quadrupoles.

A. The evolution of the linearly polarized
dipole gluon distribution

According to the definition of the linearly polarized
dipole gluon distribution, and the above calculation of
the cross section of dijet (q��) production in Drell-Yan
processes in pA collisions, we know that the linearly
polarized partner of the dipole gluon distribution is iden-
tical to the normal dipole gluon distribution, i.e.,

xhð2Þ? ðx; q?Þ ¼ xGð2Þðx; q?Þ. In general, one can write these
distributions in terms of the dipole amplitude, namely, the
two point function of Wilson lines 1

Nc
hTrðUðx?ÞUyðy?ÞÞi

as follows

xhð2Þ? ðx; q?Þ ¼ xGð2Þðx; q?Þ

¼ q2?Nc

2�2�s

Z
d2x?

Z d2y?
ð2�Þ2 e

�iq?�ðx?�y?Þ

� 1

Nc

hTrUðx?ÞUyðy?ÞiY: (35)

The small-x evolution of the dipole amplitude follows the
well-known Balitsky-Kovchegov equation [17,18] which
reads

@

@Y
hTr½UðxÞUyðyÞ�iY

¼ ��sNc

2�2

Z
d2z?

ðx? � y?Þ2
ðx? � z?Þ2ðz? � y?Þ2

�
�
hTr½UðxÞUyðyÞ�iY

� 1

Nc

hTr½UðxÞUyðzÞ�Tr½UðzÞUyðyÞ�iY
�
: (36)

In the dilute regime, the Balitsky-Kovchegov equation
reduces to the famous BFKL equation which leads to the
exponential growth in terms of the rapidity Y ’ ln1x .

B. The evolution of the linearly polarized
Weizsäcker-Williams gluon distribution

The operator definition of the Weizsäcker-Williams
gluon distribution can be obtained from the quadrupole
correlator whose initial condition can be throughly calcu-
lated in the MV model. In Refs. [22–25], the small-x
evolution equation of the quadrupole has been derived
and studied analytically. Similarly to the Balitsky-
Kochegov equation for dipoles, quadrupoles follow
BFKL evolution in the dilute regime and reach the satura-
tion regime as a stable fixed point. In addition, one expects
that quadrupoles should also exhibit the same geometrical
scaling behavior as dipoles. Recently, using the JIMWLK
renormalization equation [26,27], the first numerical stud-
ies [28] of the small-x evolution of quadrupoles indeed
observe evidence of traveling wave solutions and geomet-
ric scaling for the quadrupole. According to [16] and
Refs. [7,8,20], the Weizsäcker-Williams gluon distribution
can be written as

xGij
WWðx;k?Þ¼� 2

�S

Z d2v

ð2�Þ2
d2v0

ð2�Þ2e
�ik?�ðv�v0Þ

�hTr½@iUðvÞ�Uyðv0Þ½@jUðv0Þ�UyðvÞiY
(37)

¼�ij

2
xGð1Þðx;q?Þþ1

2

�
2
qi?q

j
?

q2?
��ij

�

�xhð1Þ? ðx;q?Þ: (38)
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The evolution equation for the correlator hTr½@iUðvÞ�Uyðv0Þ½@jUðv0Þ�UyðvÞiY can be obtained from the evolution equation

of the quadrupole 1
Nc
hTrðUðx1ÞUyðx01ÞUðx2ÞUyðx02ÞÞiY by differentiating with respect to xi1 and xj2, and then setting xi1 ¼

x0i2 ¼ vi and xj2 ¼ x0j1 ¼ v0j. Then the resulting evolution equation becomes7

@

@Y
hTr½@iUðvÞ�Uyðv0Þ½@jUðv0Þ�UyðvÞiY

¼��sNc

2�2

Z
d2z?

ðv�v0Þ2
ðv�zÞ2ðz�v0Þ2 hTr½@

iUðvÞ�Uyðv0Þ½@jUðv0Þ�UyðvÞiY

��sNc

2�2

Z
d2z?

1

Nc

ðv�v0Þ2
ðv�zÞ2ðz�v0Þ2

�ðv�v0Þi
ðv�v0Þ2�

ðv�zÞi
ðv�zÞ2

�

�fhTr½UðvÞUyðv0Þ½@jUðv0Þ�UyðzÞ�Tr½UðzÞUyðvÞ�iY�hTr½UðzÞUyðv0Þ½@jUðv0Þ�UyðvÞ�Tr½UðvÞUyðzÞ�iYg

��sNc

2�2

Z
d2z?

1

Nc

ðv�v0Þ2
ðv�zÞ2ðz�v0Þ2

�ðv0 �vÞj
ðv0 �vÞ2�

ðv0 �zÞj
ðv0 �zÞ2

�

�fhTr½½@iUðvÞ�UyðzÞUðv0ÞUyðvÞ�Tr½UðzÞUyðv0Þ�iY�hTr½½@iUðvÞ�Uyðv0ÞUðzÞUyðvÞ�Tr½Uðv0ÞUyðzÞ�iYg

��sNc

4�2

Z
d2z?

1

Nc

�
@iv@

j
v0

ðv�v0Þ2
ðv�zÞ2ðz�v0Þ2

�

�fhTr½Uðv0ÞUyðzÞ�Tr½UðzÞUyðv0Þ�iYþhTr½UðvÞUyðzÞ�Tr½UðzÞUyðvÞ�iY�hTr½Uðv0ÞUyðvÞ�Tr½UðvÞUyðv0Þ�iY�N2
cg:

(39)

The evolution equation of the Weizsäcker-Williams
gluon distributions can be obtained by contracting the
above correlator with �ij and the one for the linearly

polarized partner by contracting with ð2 qi?q
j

?
q2?

� �ijÞ.
Although the expression is quite complicated in general,
the result gets simplified in the dilute regime as in
Ref. [23]. In the dilute regime, the correlator which yields
theWeizsäcker-Williams gluon distribution can be reduced
to a simple form in terms of �ðv; v0Þ

hTr½@iUðvÞ�Uyðv0Þ½@jUðv0Þ�UyðvÞiY
¼ CF

2
@iv@

j
v0�ðv; v0ÞY; (40)

where CF

2 �ðv; v0Þ is the leading order dipole amplitude

which satisfies the BFKL equation

@

@Y
�ðx1; x2ÞY ¼ Nc�s

2�2

Z
d2z

ðx1 � x2Þ2
ðx1 � zÞ2ðx2 � zÞ2

� ½�ðx1; zÞY þ �ðz; x2ÞY � �ðx1; x2ÞY�:
(41)

In the dilute regime where the gluon density is low, we
know that the Weizsäcker-Williams gluon distributions,

xGð1Þðx; q?Þ and xhð1Þ? ðx; q?Þ, as well as the dipole gluon

distributions all reduce to the same leading twist result.
Therefore, despite of the distinct behavior in the saturation
regime, we find that all these four types of gluon distribu-
tions follow the BFKL equation in the dilute regime where
the gluon density is low. The physical consequence of this
results is that the linearly polarized gluon distributions
should be as important as the normal gluon distributions
in the low-x region since they also receive the exponential
rise in rapidity Y due to the BFKL evolution. Furthermore,
according to the discussion in Refs. [29,30], the BFKL
evolution together with a saturation boundary can give rise
to the geometrical scaling behavior [31–33] of the dipole
gluon distribution. Since the quadrupole evolution equa-
tion also contains the same property as discussed in
Refs. [23,28], the Weizsäcker-Williams gluon distribution
and its linearly polarized partner should exhibit geometri-
cal scaling behavior as well, although their evolution equa-
tions are much more complicated in the saturation regime.
In terms of the traveling wave picture [29,34] for the
evolution of dipoles and quadrupoles, the velocities of
the traveling waves for dipoles and quadruples are identi-
cal, since the velocity is determined by BFKL evolution.
This implies that the energy dependence of the saturation
momentum Q2

s ’ Q2
0ðx0=xÞ� with Q0 ¼ 1 GeV, x0 ¼

3� 10�3 and � ¼ 0:29, should be universal for all these
four different gluon distributions.

IV. CONCLUSION

We perform the color dipole model calculation of the
cross section of DIS dijet and Drell-Yan dijet processes, and

7This evolution equation involves derivatives of the Wilson
lines and complicated kernels which make it very hard to solve
directly. However, one can extract the evolution information by
numerically solving the evolution equation for quadrupoles first
and then making numerical differentiation and identification of
coordinates.
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demonstrate that the linearly polarized partners of the
Weizsäcker-Williams and dipole gluon distributions natu-
rally arise in these processes. This result is in complete
agreement with Ref. [16] and implies that the measurement
of the cosð2��Þ asymmetries in these dijet processes can be
a direct probe of these two different linearly polarized gluon
distributions. In addition, the small-x evolution studies
of the linearly polarized gluon distributions reveals that
they also rise exponentially as function of the rapidity at
high energy and they should also exhibit the geometrical

scaling behavior as the normal unpolarized gluon distribu-
tions do.
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