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Interpreting spacetimes of any dimension using geodesic deviation
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We present a general method that can be used for geometrical and physical interpretation of an arbitrary
spacetime in four or any higher number of dimensions. It is based on the systematic analysis of relative
motion of free test particles. We demonstrate that the local effect of the gravitational field on particles, as
described by the equation of geodesic deviation with respect to a natural orthonormal frame, can always
be decomposed into a canonical set of transverse, longitudinal and Newton—Coulomb-type components,
isotropic influence of a cosmological constant, and contributions arising from specific matter content of
the Universe. In particular, exact gravitational waves in Einstein’s theory always exhibit themselves via
purely transverse effects with D(D — 3)/2 independent polarization states. To illustrate the utility of this
approach, we study the family of pp-wave spacetimes in higher dimensions and discuss specific
measurable effects on a detector located in four spacetime dimensions. For example, the corresponding
deformations caused by generic higher-dimensional gravitational waves observed in such physical

subspace need not be trace-free.
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L. INTRODUCTION

In the last decade, there has been a growing interest in
exact spacetimes within the context of higher-dimensional
general relativity, primarily motivated by finding particular
models for string theories, AdS/CFT correspondence, and
brane-world cosmology. Such investigations thus concen-
trated mainly on various types of black holes and black
rings, see [1-8] for reviews and further references. More
general static or stationary axisymmetric [9—15], multi-
black hole Majumdar—Papapetrou-type [16-23], and static
solutions with cylindrical/toroidal symmetry [24-28] were
also considered, including uniform and nonuniform black
strings [29-36] with the aim to elucidate their instability
[37-39]. Other important classes of higher-dimensional
exact solutions of Einstein’s equations have also been
studied recently, for example, Robinson-Trautman and
Kerr-Schild spacetimes [40—45], extensions of the
Bertotti-Robinson, (anti-)Nariai, and Plebanski-Hacyan uni-
verses [46], higher-dimensional Friedmann-type [47-51]
and multidimensional cosmological models [20,52] (see
also references therein), specific solitons [24,53,54], or
various exact gravitational waves—in particular those that
belong to nonexpanding Kundt family [55,56], namely,
generalized pp-waves [57-63] (for a study of their colli-
sions see [64]), vanishing scalar invariant (VSI) [62,63],
and constant scalar invariant [65] spacetimes, or relativ-
istic gyratons [66—71].

Fundamental general questions concerning the classifi-
cation of higher-dimensional manifolds based on the alge-
braic structure of the curvature tensor have been clarified
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[72-75], including generalizations of the Newman-Penrose
and the Geroch-Held-Penrose formalisms [76—80]. This
paved the way for a systematic study of wide classes
of algebraically special spacetimes in higher dimensions
[81-84]. Investigation of asymptotic behavior of the
corresponding fields and their global structure, in particu-
lar, properties of gravitational radiation, has also been
initiated [85-99].

Nevertheless, in spite of the considerable effort devoted
to this topic, there are still important aspects concerning
the nature of gravitational fields in higher-dimensional
gravity that remain open. Any sufficiently general method
that could be used to probe geometrical and physical
properties of a given spacetime would be useful. In the
present work, we suggest and develop such an approach,
which is based on investigation and classification of spe-
cific effects of gravity encoded in relative motion of nearby
test particles.

In fact, in standard four-dimensional general relativity,
this has long been used as an important tool for studies of
spacetimes. Relative motion of close free particles helps us
to clarify the structure of a gravitational field in which the
test particles move. When they have no charge and spin,
this is mathematically described by the equation of geo-
desic deviation (sometimes also called the Jacobi equa-
tion), which was first derived in the n-dimensional
(pseudo-)Riemannian geometry by Levi-Civita and
Synge [100-103], see [104] for the historical account.
Shortly after its application to Einstein’s gravity theory
[105—114], it helped, for instance, to understand the be-
havior of test bodies influenced by gravitational waves or
the physical fate of observers falling into black holes.
Textbook descriptions of this equation, which is linear
with respect to the separation vector connecting the
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test particles, are given, e.g., in [115-118]. Let us also
mention that generalizations of the equation of geodesic
deviation to admit arbitrary relative velocities of the
particles were obtained in the works [119-127]. Further
extensions, higher-order corrections to the geodesic de-
viation equation, their particular applications, and refer-
ences can be found in the recent papers [127-134] and in
the monograph [118].

In 1965, Szekeres [114] presented an elegant analysis of
the behavior of nearby test particles in a generic four-
dimensional spacetime. He demonstrated that the overall
effect consists of specific transverse, longitudinal, and
Newton—Coulomb-type components. This was achieved
by decomposing the Riemann curvature tensor into the
Weyl tensor and the terms involving the Ricci tensor (and
Ricci scalar). While the former represents the “free gravi-
tational field,” the latter can be explicitly expressed,
employing Einstein’s field equations, in terms of the cor-
responding components of the energy-momentum tensor,
which describes the matter content. In order to further
analyze the Weyl tensor contribution, Szekeres used the
formalism of self-dual bivectors [135,136] constructed
from null frames. This enabled him to deduce the effects
of gravitational fields on nearby test particles in spacetimes
of various Petrov types. When these results are reexpressed
in a more convenient Newman-Penrose formalism
[137,138], explicit physical interpretation of the corre-
sponding complex scalars W, is obtained. In particular,
the Weyl scalar W, (the only nontrivial component in type-
N spacetimes) represents a purely transverse effect of exact
gravitational waves, the scalar W5 (present, e.g., in type-III
spacetimes) is responsible for longitudinal effects, and W,
(typical for spacetimes of type D) gives rise to Newton-like
deformations of the family of test particles (see [139-141]
for more details; inclusion of a nonvanishing cosmological
constant was described in [128]).

It is the purpose of the present work to extend these
results to arbitrary spacetimes in any dimension D = 4.
The paper is organized as follows. In Sec. 1I, we recall the
equation of geodesic deviation, including its invariant form
with respect to the interpretation orthonormal frame
adapted to an observer. In Sec. III, we perform the canoni-
cal decomposition of the curvature tensor using Einstein’s
equations and the real Weyl tensor components W,... with
respect to an associated null frame. We thus derive an
explicit and general form of the equation of geodesic
deviation. Section IV analyses the character of all canoni-
cal components of a gravitational field. Section V is de-
voted to the discussion of uniqueness of the interpretation
frame, and derivation of explicit relations that give the
dependence of the field components on the observer’s
velocity. In Sec. VI, we describe the effect of pure
radiation, perfect fluid and electromagnetic field on test
particles. Final Sec. VII illustrates the method on the
family of pp-waves in higher dimensions. There are also
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3 Appendices: In Appendix A, we give relations to the
standard complex formalism of D = 4 general relativity,
and in Appendix B we summarize alternative notations
commonly used in literature on D =4 spacetimes.
Finally, in Appendix C the Lorentz transformations of
the W,... scalars are presented.

II. EQUATION OF GEODESIC DEVIATION

The main objective of the present work is to investigate
and characterize the curvature of an arbitrary spacetime of
dimension D = 4 by its local effects on freely falling test
particles (observers). The gravitational field manifests it-
self, in Newtonian terminology, as specific “tidal forces”
that cause the nearby particles to accelerate relative to each
other. This leads to a deviation of corresponding geodesics
whose separation thus changes with time: in various spatial
directions the particles approach or recede from them-
selves, exhibiting thus the specific character of the space-
time in the vicinity of a given event.

In standard and also higher-dimensional general rela-
tivity, such a behavior of free test particles (without
charge and spin) is described by the geodesic deviation
equation [100-118]

D?ZH
dr?
where R* 5, are components of the Riemann curvature

tensor, u® are components of the velocity vector u =
u*a, of the reference (fiducial) particle moving along a
timelike geodesic y(7) = {x%(7), ..., xP~ (1)}, u® = 4=,
the parameter 7 is its proper time (so that u-u =
8ap u®uP = —1), and Z* are components of the separation
vector Z = Z*0 w which connects the reference particle
with another nearby test particle moving along a timelike
geodesic (7). The situation is visualized in Fig. 1.

R“aﬁyu“uﬁZ”, (1)

FIG. 1. In a curved D-dimensional spacetime, nearby test
particles moving along geodesics accelerate toward or away
from each other, as given by the equation of geodesic deviation
(1). Here, u is the velocity vector of a reference particle, and Z is
the separation vector that represents actual relative position of
the second test particle at a given proper time 7.
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Equation (1) explicitly expresses the relative accelera-
tion of two nearby particles by the second absolute (cova-
riant) derivative of the vector field Z along y(7),

D2z~
dr?

= (ZF u?).su’ = Z";yﬁu"’u‘s, 2)

in terms of the local curvature tensor and the actual relative
position of the particles, described by the separation vector
Z(7) at the time 7.

To be geometrically more precise, the two geodesics
should be understood as specific representatives of a
congruence (7, z), i.e., smooth one-parameter family of
geodesics, such that y(7) = y(r,z=0) and ¥(7)=
v(7, z = const). The proper time 7 and the parameter z,
which labels the geodesics, can be chosen as coordinates
on the submanifold spanned by the congruence. Thus,
u =9, and Z = 9_, and the deviation vector field Z is Lie-
transported along the geodesics generated by u. Consider now
the positions of two test particles at a given time, for example,
P (located at z = 0) and Q (for which z = 1, say) at 7 = 0,
as shown in Fig. 1. Their coordinates are related by the
exponential map xj, = exp(zZ)x’ generated by Z at P,

where we set z = 1 to locate Q. If the higher-order terms

are negligible, this expression reduces to x’é —xp =

(Zx*)p, demonstrating that the separation vector Z describes
the relative position of the two test particles, and Z(7)
gives its evolution that is obtained by solving the Eq. (1).
Such linear approximation improves when the second test
particle moves very close to the reference one, i.e., along
the geodesic z = const < 1, in which case the separation
is described by the vector field zZ(7).

It should also be recalled that the equation of geodesic
deviation (1) is linear with respect to the components of the
separation vector, neglecting higher-order terms in the
Taylor expansion of exact expression for relative accelera-
tion of free test particles. It can thus be used when the
relative velocities of the particles are negligible, i.e., their
geodesics are almost parallel. Generalizations of Eq. (1) to
admit arbitrary relative velocities were obtained and ap-
plied in the works [119-127]. Further extensions, higher-
order corrections to the geodesic deviation equation, and
their specific applications can be found in [129-134] (for
reviews and other references see [118,127,130,134]). Our
aim, however, in this paper is to investigate local relative
motion of nearby free test particles that are initially at rest
with respect to each other. For such an analysis, the clas-
sical geodesic deviation Eq. (1) will be fully sufficient.

Now, in order to obtain invariant results independent of
the choice of coordinates, it is natural to adopt the Pirani
approach [105,106] based on the use of components of the
above quantities with respect to a suitable orthonormal
frame {e,}. At any point of the reference geodesic, this
defines an observer’s framework in which physical mea-
surements are made and interpreted. In particular, the
separation vector is expressed as Z = Z%e,. The timelike
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vector of the frame is identified with the velocity vector of
the observer, e = u, and e, wherei=1,2,...,D — 1,
are perpendicular spacelike unit vectors that form its local
Cartesian basis in the hypersurface orthogonal to u (see
also Fig. 2),

e, e, = gaﬁe;“ef =7, =diag(—-1,1,...,1). 3

Because of the fact that u is parallelly transported, for the
zeroth frame component Z©0 = ¢© - Z = —u - Z we im-
mediately obtain

AV D°Z* a v —
—de = _M,u F = —leﬁ,,u"u M’BZ = 0, (4)
using the skew-symmetry of the Riemann tensor.

Therefore, Z(7) must be at most a linear function of
the proper time. By a natural choice of initial conditions,
consistent with the above construction of the geodesic
congruence (7, z), we set Z© = 0. The temporal compo-
nent of Z thus vanishes and the test particles always stay in
the same spacelike hypersurfaces synchronized by 7.

Physical information about relative motion of the test
particles is thus completely contained in the spatial frame
components Z9(7) = e - Z of the separation vector Z.
These determine the actual relative spatial position of the
two nearby particles. By projecting the geodesic deviation
Eq. (1) onto e = e;), we obtain

i
00¢ZY: o)

where i,j = 1,2,...,D — 1, and we denote the physical
relative acceleration as

76 — gl

S0 = . D2 _ D2
dr? *odr?

The frame components of the Riemann tensor are
Ri0)0)) ERWB,,efi‘)u“uﬁeG). Let us note that Pirani
[105,106] labeled, in D = 4, the frame components of
the ““tidal stress tensor” that occurs in Eq. (5) (with an
opposite sign) as K, = R9,, = R, ,u‘u’. They are
equivalent to the electric part of the Riemann tensor
Eab = Raopo = Racpauu, see [118].

Following Pirani, it is also usually assumed that the
orthonormal frame {e,} is parallelly propagated along the
reference geodesic. However, in our work we do not make
such an assumption. In fact, as a key idea of the proposed
interpretation method, we align the orthonormal frame
with the algebraic structure of a given spacetime instead
(see also Sec. V). This makes the investigation of its
physical properties much easier.

(6)

III. CANONICAL DECOMPOSITION OF THE
CURVATURE TENSOR

The next step is to express the frame components
of the Riemann tensor R o)) Using the standard
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decomposition of the curvature tensor into the traceless
Weyl tensor C,,., and specific combinations of the
Ricci tensor R,, and Ricci scalar R,

2
Rapea = Capea + m(ga[cRd]b — gpcRata)

2

- nga[cgd]b’ (N

we immediately obtain

1
Rixo0n = Cooon + 5 —5 Roo ~ diRoo)
(D—1)(D—-2)

Before substituting this into the geodesic deviation
Eq. (5), we also employ the Einstein field equations,
generalized to any dimension D = 4,

Rab - %Rgab + Agab = 87TTabr 9

where A is a cosmological constant and T, is the
energy-momentum tensor of the matter field. Using (9)
and its trace R = ﬁ(SwT — DA), we rewrite (8) as

2A6;
R =N 4 . .
DH0)(0)G) (D —1)(D —2) {©0)(0)()

8 2T
52| Too ~ %l Too T 5 ]

(10)

The equation of geodesic deviation (5) thus takes the
following invariant form:

P - S S
RN HO)0)G)
8m ) 2 0
+ > T(i)U)Z — T(O)(O) + D1 T1Z .
(11)

The first term represents the isotropic influence of the
cosmological constant A on free test particles, the
second term describes the effect of a “‘free” gravita-
tional field encoded in the Weyl tensor, while the
second line in (11) gives a direct effect of specific
matter present in a given spacetime.

The terms proportional to the coefficients Ci;o)0)j)
can further be conveniently expressed using the
Newman—Penrose-type scalars, which are the components
of the Weyl tensor with respect to an associated (real) null
frame {k, I, m;}. This frame is introduced by the relations

1 1
k = — ) l=— — ,

m;=e; fori=2..D—1
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where u = e is the velocity vector of the observer. Thus,
k and [ are future-oriented null vectors, and m; are D — 2
spatial Cartesian vectors orthogonal to them, satisfying

i = %

k'mi:():l'mi. (13)

ml' -m
k=0=1-1,
Using the notation of [93], the components of the Weyl

tensor in such a null frame are determined by the following
scalars (grouped by their boost weight):

\PO”‘ - Cabcdka mf’kc mj?’,

Wi = Cabcdk“mibm;fmz, Wi = Capeak®l®kemd,
Wi = C,p, . mimlmém? Voo = C,p. k?1°1°k4
21kl abed"t i LTS 28 abed ’
J— aib ,,,c,,d Jup— a b qc,,,d
Wai = Copeak?l”mims, Wori = Capeakm71°m5,
Wi = C,pg1°mPmSme Wi = C,p 410k Cm?
3ik abcd i i e 37" abcd i’
W, = Cabcdl“mf?lcm;i, (14)

where i, j, k, [l =2,...,D — 1. All other frame compo-
nents can be obtained using the symmetries of the Weyl
tensor. The scalars in the left column are independent, up to
the obvious constraints

\I,()[ij] =0, \Pokk =0,

\Ifligk) = O, \I’I[i,-k] = 0,

‘1’21','1(1 = q’zklij, \I’zu/‘) = O, (15)
\I’zuj')kl = ‘I’Zfﬂkn = ‘Pzi[/‘kl] =0,

\I'3i<jk) = O, \PS[i/'k] = 0,

\1’4[,','] = O, ‘I’Mk = 0,

while those in the right column of (14) are not independent
because they can be expressed as the contractions (hence
the symbol “T,” which indicates “tracing’”)

q’]ri = \I,Ikki;
\1’25 = \IIZTkk = % 2k1kly
Wori = %(\Ifzikjk + \1}2”)
where W, = %\Ifz,.k,k, Wy = %‘1’2"/’
V=W (16)

In the case D = 4, these Weyl tensor components in the
null tetrad reduce to the standard Newman-Penrose
[137,138] complex scalars W,. Explicit expressions are
given in Appendix A.

Using relations e() = 715(1(’ +1), eq) = 715(k — 1), and
the definition (14), a straightforward calculation then leads
to the following expressions for the components C;)(0)()
of the Weyl tensor, which appear in Eq. (11):
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Cayoon = Yas.
1
Cooog = ﬁ(‘l’m = Vi),

1 17
Coooan = ﬁ(qf”i — Wyp), an

C(i)(O)(O)(j) = _%(\I’Oi./ + \If4ij) - \PzT(i_/‘)y

where i, j=2,...,D — 1 label the spatial directions

orthogonal to the privileged spatial direction of e).
Putting this into (11), we obtain the final invariant and

fully general form of the equation of geodesic deviation:

.. 2A 1 .
A =mzﬂ> + WosZW +7§(W1rf A
+ S—WI:T(I)(I)Z“) + Ty -)Z(f)
D—2 j
2
—( Ty +———T Z<1>], 18
((o><o> D1 ) (18)
.. 2A . )
s A
1 1 4
+ E(\IIITI - \IISTI)Z(I) - E(Woij + \P4l/)Z(j)
8 )
o5 [Tm(l)Z“) + Ty 2"
2 (i)
- T(O)(O) + D— IT V4 . (19)

This completely describes relative motion of nearby free
test particles in any spacetime of an arbitrary dimension D.
In the next section, we will discuss the specific effects
given by particular scalars that represent the contributions
from various components of the gravitational and matter
fields.

Finally, we remark that our notation, which uses W,... in
any dimension, is simply related to the notations employed,
e.g., in [72,73], in [76,81], and recently in [79]. The iden-
tifications for the components present in the invariant form
of the equation of geodesic deviation are summarized in
Table I. More details are given in Appendix B, in particular,
see expressions (B8), (B11), and (B13).

TABLE I. Different equivalent notations used in the literature
for the Weyl scalars that occur in the equations of geodesic
deviation (18) and (19).

Refs. [72,73] Refs. [76,81] Ref. [79]
Wy —Coro1 -P -
Wi —Coj1j -, -
Wig —Coro) -,
Wiz Cioij v v
Wi Coioj Q2
U, Ciitj 2V, Q};
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IV. EFFECT OF CANONICAL COMPONENTS
OF A GRAVITATIONAL FIELD ON
TEST PARTICLES

Let us consider a set of freely falling test particles,
initially at rest relative to each other, which form, e.g., a
small (hyper)sphere. In any curved spacetime, such a
configuration undergoes tidal deformations that can be
deduced from the accelerations measured by the fiducial
observer attached to the reference test particle in the center.
The resulting relative motion represents the effect of a
given gravitational field, whose specific structure is explic-
itly characterized by the system (18) and (19).

First concentrating on the vacuum case, i.e., T, = 0,
the system of equations describing purely gravitational
interaction simplifies considerably to

., 2A
1) — 7 4, 7D
(D - 1)(D—2) s
1 .
+ —=W, — Vs Z(j), 20
\/5( IT 37) (20)
... 2A ) )
70 =__ =" @ 70 _p . 7
(D - 1)(D -2 27
1 1 )
+ —=W,. — ¥ iZ(l)——\I'ij‘i‘\I’:jZ(}).
\/5( T 377) 2( 0 47)
(21)

The overall effect of the gravitational field on test particles
is thus naturally decomposed into clearly identified com-
ponents proportional to the cosmological constant A and
the Weyl scalars W,.... Of course, for algebraically special
spacetimes some (or many) of these coefficients vanish
completely, and even in algebraically general cases specific
numerical values of the scalars W,... can distinguish the
dominant terms from those that are negligible. Let us now
briefly describe the character of each term separately,
including its physical interpretation.
(1) A: isotropic influence of the
background
The presence of the cosmological constant A is
encoded in the term

71 2A 1 0 A
(zm ) T DO-nD-2) (0 6ij)(z(/> )

(22)

cosmological

which can be written as Z0) = #/(\sz)l(i) for all

spatial componentsi = 1,2, ..., D — 1. In parallelly
propagated frames, this yields the following explicit
solutions:
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A=0:2ZV = A;r+ B,

. ’ 2A
> (0: (i) — A. - @
A>0:Z A, cosh PENE 2)7'
+ B;sinh —2A
i ENLEPHL
. ’ 2|A|
< 0: (i) — . e
A<0: Z A, cos (D—l)(D—2)T

2|A|

+ B;si —_—
; sin D= 1)(D_2)’T ,

where A;, B; are constants of integration. These
are characteristic relative motions of test particles
in spacetimes of constant curvature, namely,
Minkowski space, de Sitter space and anti-de Sitter
space, respectively, as derived by Synge [102,103].

(i) Wui: transverse gravitational wave propagating in

the direction +e())
This part of a gravitational field influences the test
particles as

20 1[0 0 \[/zV
()30 v )(5) e

Obviously, this is a purely transverse effect because
there is no acceleration in the privileged spatial
direction e(y). The set of scalars W,; forms a sym-
metric (W, = Wy) and traceless (¥, = 0) ma-
trix of dimension (D — 2) X (D — 2), cf. the last
line in (15), so that it has 3 D(D — 3) independent
components corresponding to polarization modes
(see also [72,78,79]). In direct analogy with a line-
arized Einstein gravity in four [115,116] and higher
dimensions [86,93], W, represents the gravita-
tional wave that propagates along the null direction
k, i.e., in the spatial direction +e(;) [in view of
relations (12) there is k) =k ey >0 while
k(,»)Ek-e(,»)=0 for i=2,...,D_1].
Spacetimes of algebraic type N (for which only
the components W,; = Cy;;; are nonvanishing
[72,73]) can thus be interpreted as exact gravita-
tional waves in any dimension D = 4.

(iii) W37t longitudinal component of a gravitational

field with respect to +e)
Such terms cause longitudinal deformations of a set
of test particles given by

Z(]) - 1 0 \1,3]"_/' Z(l)
700) L\ ¥, 0 70 [
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These (D — 2) scalars W5, which combine motion
in the privileged spatial direction e(;) with motion
in the transverse directions e, are also obtained
using Wy = \P3kk,», where Wy = —W,, and
Wain + Wi + Wi = 0. Longitudinal effects of
this type occur in spacetimes of type III and in
algebraically more general cases.

Vo5, W,rin: Newton-Coulomb components of a
gravitational field
The terms

JON (W 0 \[z
Lo | = . (25)
70 (S W AVAL

give rise to deformations that generalize the classi-
cal Newton—Coulomb-type tidal effects in D = 4,
namely, those in the vicinity of a spherically
symmetric static source. Recall that W, = \Isz,f
[see (16) and (15) for further relations], so that the
(D — 1) X (D — 1)-dimensional matrix in (25) is
symmetric and traceless. These terms are typically
present in type-D spacetimes, for which the nota-
tion W3 = —® and =W, = P}, is commonly
used [76,78-82,99], see (B11). As shown in (A6),
the only nonvanishing coefficients of this type in
four dimensions are the diagonal elements
%‘1’25 = \I’ZTuz) = \PZT(”) = —Re \Ifz.
W, it longitudinal component of a gravitational
Sfield with respect to —e)
The corresponding effect on test particles is

ZON 10 Wu\fzW®

(zm = \/_g(qu 0 ) 20 ) (29
which is very similar to the acceleration caused by
the longitudinal component W5, as described by
(24). In fact, it is its counterpart: it follows from the
definition (14) that the scalars ¥, = ‘I’l .~ (where
\Pluk = —\Iflfk/ and \Iflfjk + \Ifljkz + \Iflk[/ = () are
equivalent to W5+ under the interchange k < [.
Since k) =k -eq >0 while [y =1-ey <0,
the scalars W, represent the longitudinal compo-
nent of the field associated with the spatial direc-
tion —e.

(vi) Wyi: transverse gravitational wave propagating in

the direction —ey)
This component of a gravitational field is charac-
terized by

20 1(0 0 \[/zD

which is fully equivalent to (23) under k < [. The
scalars W; [which form a symmetric and traceless
(D — 2) X (D — 2) matrix: Wi = Wi, \I’(]kk = 0]
thus describe the transverse gravitational wave
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propagating along the null direction [, i.e., in the
spatial direction —e;). Superposition of gravita-
tional waves that would propagate in both direc-
tions simultaneously (that is, an “outgoing” wave
given by V,; and an “ingoing” wave given by
W) can only be present in spacetimes that are of
algebraically general type.

V. UNIQUENESS OF THE INTERPRETATION
FRAME AND DEPENDENCE OF THE FIELD
COMPONENTS ON THE OBSERVER

The canonical components of a gravitational field de-
scribed in the previous section are represented by the real
coefficients W,.... These are projections of the Weyl tensor
onto particular combinations of the null frame {k, [, m,}, as
defined in (14). They are spacetime scalars and in this
sense the above physical interpretation is invariant. On
the other hand, the values of W,... depend on the choice
of the basis vectors of the frame. In this section, we will
argue that such a dependence corresponds to simple local
Lorentz transformations related to the choice of specific
observer in a given event, and that the natural interpretation
null frame is essentially unique.

Let us consider an observer attached to the reference
(fiducial) test particle moving through some event in the
spacetime, such as the point 2 in Fig. 1, whose velocity
vector is u. This timelike vector (normalized as u - u =
—1) defines an orthogonal spatial hypersurface of dimen-
sion D — 1 spanned by the Cartesian vectors e, where
i=1,2,...,D— 1. Assuming the spacetime is of an
algebraic type I or more special, it is most natural to
associate the corresponding Weyl-aligned null direction
(WAND) with the null vector k of the interpretation
reference frame, see Fig. 2.

The privileged unit vector e(;), defining the longitudinal
spatial direction, is then uniquely obtained by projecting k
onto the spatial subspace orthogonal to u. This also fixes
the normalization of k [to satisfy the first relation in (12)

l k

—
= eVP (1)

FIG. 2. Natural choice of the interpretation null frame and the
related orthonormal frame (12) and (13). Up to spatial rotations
of m; = e(;, they are uniquely given by the velocity vector u of
the observer and the WAND k at any event P of the spacetime.

PHYSICAL REVIEW D 85, 044057 (2012)

we require k - u = — %]. The complementary null vector

[ of the frame is then also uniquely given via the relation
| = \/Eu — k. It only remains to choose the transverse
spatial vectors e, ..., ep_y, i.€., m; = e;). As shown
in Fig. 2, these must lie in the (D — 2)-dimensional sub-
space orthogonal both to u and e(;), so that k - m; = 0 =
I - m; as required by (13). Neglecting possible inversions,
the only remaining freedom is thus standard spatial
rotations represented by the rotation group SO(D — 2),
which acts on the space spanned by m;, see the explicit
relation (C4) presented in Appendix C.

For any spacetime of type N (in which the WAND has
maximal alignment order) the null vector k is unique. In
spacetimes of other algebraic types (namely III;, II;, I;,
and D), different WANDs exist. These can alternatively
be used as the vector k of the interpretation null frame
{k,l, m;}. Because the distinct WANDs can always be
related using the null rotation with fixed [, as given
explicitly by Eq. (C2) in Appendix C, it is straightforward
to evaluate the “new” values of the Weyl scalars Wy...
using the expressions (C6). Notice that the coefficients
W,i;, which are the amplitudes of transverse gravitational
waves propagating along k, are invariant under such a
change.

Let us now consider another observer moving through
the same event P with a different velocity &. Locally, this
transition is just the Lorentz transformation from the origi-
nal reference frame {e,} to {€,} for which

u -+ Zl,;_ll vie(i)

_xD-1,2
1 i=1 Vi

u= (28)

where vy, ..., vp_ are components of the spatial velocity
of the new observer with respect to the original Cartesian
basis e). This can be obtained as the combination of a
boost in the k — I plane followed by a null rotation with
fixed k, see Egs. (C3) and (C1) in Appendix C, if we take
the specific parameters

N |
B = —11, L= Y (29)

1_ )
. =32

where i =2,...,D — 1:

1— .D*IIU.Z
I;: 1= 1 ,
l_Ul
~ 1 D—1 D—1,,2
127[(1—1&)14-\/52 v,m,--i—Mk],
_ND-1,2 P 1—v
=37 v i=2 !
i =m,+ 2 k. (30)
l_Ul

Indeed, & = %(lg + I) gives exactly the relation (28). The

corresponding change of the Weyl scalars W ... can thus be
obtained by combining (C7) with (C5), which yields
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1 - 1~ 1~ :
?\Poi/‘ = Wi, —‘I’lijk =WV — 2\/5‘1’0;[/Xk], —‘I’lTi =W+ \/E‘I’Oi/X/,
Wy = Wi — 220XV s — XV om) + 4(WouXpX; + WouXgX,),  Wog = Wog — 2420 1 X7 — 200 XX,
\ifz[/- = \Ifzfi + \/_\Iflkink — 2\/_\P1T[" j] — 4q’0k[i j]X s
‘i’zTi/ = qIZTif + \/E\Iflik;Xk — \/E‘I’IT:‘X]- - Z‘PO[A-Xka + ‘I’Oijl)(lz,
B\i’y,‘k = \If3ijk + \/E(quliij’ — \Ijzf"Xi + 2X[iq}2Tk][) + 4\I,IT[»/Xk]Xi — 2(\Ifljzka + \Iflliji — \I’Iklin)Xl
+ Wi |X|2 + 4ﬁ\1'0,[ij]X,»X’ — Zﬁ\I'Oi[ij]IXIZ,
B‘i’3Ti =Wy + \/E\I’Zijxj - \/E(‘I’ZTMXI{ + WyeX;) + 2V, X; — \I’ijixk)Xj — ‘I’lTi|X|2
+ 22V XIXK X, — N2W g XI|X |2,
lep4ij = \P4ij + 2\/5(\1’37(in) — ‘1’3(1',‘)ka) + Z\I’Tk,‘leXl — 4\P2Tk(in)Xk + 2‘1’27(ij)|X|2 — Z\I’ZSXin — 4\P2k(in)X
- 2\/5(2\If1k/(,-Xj)X"Xl + ‘I’lu_,-)kalez + \PIT("Xj)lxlz - Z‘PITkaXin) + 4\I’Ok1XleXin
— 4V X XKIX PP+ WX T4, 31)
where we denoted ., 8w 4
20 =S| TowZ" + T<1><j>Z(’)
v.
X, =BL;, = . 32
e 42 (T<o><o> + T)Z(”]r
In particular, for spacetimes of algebraic type N, which 70 = ﬁ TomZV + T(,-)(‘,-)ZO)
admit a WAND of the maximal alignment order, the only
nonvanishing component of thg grflvitational field is ‘I.’4,:/ - (T(O) o+ 2_ T) Z(i):l' (34)
representing the transverse gravitational wave propagating D—1

in the spatial direction e(;). It immediately follows from
(31) and (29) that the transition to any other observer
results just in a simple rescaling of the gravitational wave
amplitudes

(I_Ul)
11— lv

1

V= 5 Wy, (33)

If the new observer moves only in the spatial direction in
which the wave propagates, v; >0 and v; = 0 for i =
2,...,D—1,then W, = (1 —v,)/(1 + v,)¥,y, which is
smaller than W,;. If the observer’s velocity approaches the
speed of light, v; — 1, the amplitudes of the gravitational
wave disappear, q’4ij — 0. Contrarily, when the observer
moves against the wave its amplitudes grow, and for
v — —1 they diverge.

VI. THE EFFECT OF MATTER ON
TEST PARTICLES

Let us now consider the direct effect of specific forms of
matter on relative motion of test particles, as described by
the invariant form of the equation of geodesic deviation
(18) and (19). Setting the cosmological constant A and all
components of the Weyl tensor to zero, it reduces to

It will be illustrative to investigate some important types of
matter usually contained in the families of exact solutions
of Einstein’s equations, namely, pure radiation, perfect
fluids, and electromagnetic fields.
(1) pure radiation
The energy-momentum tensor of a pure radiation
field (or “‘null dust”) aligned along the null direction
k is

Tap = pkaky, (35)

where p is a function representing the radiation
density. Its trace vanishes, 7 = 0, and using (12)
we derive that the only nonvanishing components
of T,, in the equation of geodesic deviation are
Toy0) = T(1ya) = 3 p- Equations (34) thus reduce

considerably to
7 4 0 0 YA
)= ) 36)
7(0) D—=2\0 &; )\ z¥
In an arbitrary dimension D, there is thus no accel-
eration in the longitudinal spatial direction e(;). The
effects in the transverse subspace are isotropic and

(since p > 0) they cause the radial contraction that
may eventually lead to an exact focusing.
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(1) perfect fluid
For a perfect fluid of energy density p and pressure
p (which is assumed to be isotropic), the energy-
momentum tensor is

Tab = (p + P)uaub + P8ab- (37)
Provided the fluid is comoving, its velocity u co-
incides with the observer’s velocity, which is the
vector e of the orthonormal frame. The trace is
T = (D — 1)p — p, and the relevant nonvanishing
frame components are Tg)o) = p, T(1)1) = p, and
Ty = pd;;- The equation of geodesic deviation
thus takes the form

Z0\_ o (D=3)p+(D—1)p(1 0)(Z"
20 ) T -n-2) \0s,;\z0)

(38)

The resulting motion is isotropic, the same in the
longitudinal and all transverse spatial directions.
For positive p and p, the fluid matter causes a
contraction, such as in the case of dust (p = 0),
incoherent radiation (p = g—j p), or stiff fluid
(p = p). However, for matter with a negative pres-
sure, the set of test particles may expand. In par-
ticular, if the matter is described by the equation of
state p = —p = const, it mimics the cosmological
constant A = 87rp since (38) is then completely
equivalent to (22).

(ii1) electromagnetic field
The energy-momentum tensor of an electromag-
netic field is given by

1

T, =—_—
@ p

1
(FachC - ZgachdFCd): (39)

so that its trace is T = 7= (4 — D)F,,F. The
frame components of 7,;,, which occur in expres-
sions (34), are

1 1
Tioy0) = e (F(o)cF(o)c 7 FahFab)y

1 1
Ty = E<F<1>L»F(1)” - ZFabF“”),

1
T = - Foek

(40)
4

@

T :L F\ . F C—l&__F Fab

00 = g\ Focf " = 70iFaf")

In this case, the equation of geodesic deviation
takes the following more complicated form:

Z0\ T T;\(zV il
(2)-(z 7)) @

where
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2

T = 5= FueF)* = FoeF )
3 g
D-1HD-2) """
2
Ti=p3fwef’
2
T = 5= FocF " — 8iiF0cF )

_ 3 ab

D-DD -2 0;iF ., F°. (42)
We observe that the clear distinction between the
longitudinal and transverse spatial directions is not
present, except at very special situations. Some
important particular subcases can be easily identi-
fied and analyzed, for example, a null electromag-
netic field for which the invariant vanishes,
F,,F® = 0, or purely electric aligned field in the
vicinity of static black holes.

VII. AN EXPLICIT EXAMPLE: PP-WAVES
IN HIGHER DIMENSIONS

We conclude this paper by demonstrating the usefulness
of the above interpretation method on an important family
of exact spacetimes, namely, the pp-waves. These are
defined geometrically as admitting a covariantly constant
null vector field k. Such spacetimes thus form a special
subclass of the Kundt spacetimes because the geodesic
congruence generated by k is twist-free, shear-free, and
nonexpanding.

In [55], we investigated general Kundt spacetimes in
higher dimensions, admitting a cosmological constant A
and a Maxwell field aligned with k (which is necessarily a
multiple WAND). In natural coordinates, the metric of all
such pp-waves can be written in the Brinkmann form [57]

ds? = g;;dxidx/ + 2¢;dx'du — 2dudr + cdu?, ~ (43)

where k « @, and g;;, ¢;, ¢ are functions of the transverse
spatial coordinates x* and the null coordinate u. The ex-
plicit Einstein-Maxwell equations can be found in [55],
namely, Eqgs. (115)—(118).

For the metric (43), the interpretation null frame
adapted to a general observer that has the velocity
u=70,+ud, +x*0,. + ...+ P19 is

1

k=—09,
Vi

1= (ﬁr ~ ﬁ)a, + 240,

+ V2320 + .+ V2P0,
1 .
m; = E(e"u + g )mio, + mid . + ...+ mP71o0,

(44)
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where gymim} = 8;;, and nontrivial components of

ijo
the Weyl tensor are

1

Comg = — R
ruru (D_ 1)(D_2)
1
Crivi = —— R, — ————_SRg..
i == N T (D= 1)(D—2) 8
C ! R ! SR
ruui D — o tui (D_ 1)(D_2)
— S 2
Cijkl - Rijkl D 2(gl[k — 8k Rl]z)
2 Reren 45
(D_ 1)(D_2) gl[kgl]]) ( )
2
Cuijk = Ruijk - m(e[stk]i - gi[ij]u)
+ 2 R
—_— e . i
(D —1)(D —2) UM
Ciwju = Riuju — m(c °R;; — 2e(R)), + 8ijRu.)
1

N
Using definition (14), we evaluate the Weyl tensor (45) in
the interpretation null frame (44). Lengthy calculation
(with some ““miraculous’ cancellations) gives the follow-
ing nonvanishing Weyl scalars that enter the equations of
geodesic deviation (18) and (19):

1

Vyg = R,
T (D-1)(D-2)
1 1
Vo = —— R mkml, — —————— SRS,
T p o T T D (D —2) Y
V2

Vo= — =
3T D—2

1 mon
Wy = 2[<5ka,n ) nglsRm,,)x’”x

+ 2(kalu -

(R, X" + Ry i)m¥,

1 .
mgszmu>xm”

1
!
+<Rkulu D= 28k1Ruu) ]m<, i (46)

This is a general result valid for any pp-wave spacetime
because no particular field equations have not yet been
imposed.

Notice that W,z = W,.w). Moreover, in accordance
with the relations (16) and (15), W=V, ," and
W,." =0 so that any pp-wave is traceless.

The relative tidal motion of nearby test particles in
general pp-waves will thus be caused by the combination
of the transverse gravitational wave (23) propagating along
k with amplitude W, the longitudinal component (24) of
the gravitational field with amplitude W5z, and the
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Newton-Coulomb contribution (25) determined by the
scalars Wy and W,

., 1 .
70 =P, 70 — ﬁ\pwjz(ﬁy

o . 1 1 .

720 = =W, Z0) — \/—E%T,-z(l) ~3 W, ZY.  (47)
There is also the isotropic background influence (22) if the
cosmological constant A is present, or the interaction (41)
with the electromagnetic field.

The scalars (46) that enter (47) combine kinematics
(namely the velocity components x™, i of the observer)
with the specific curvature of spacetime encoded in the
only nonvanishing components of the Riemann and Ricci
tensors, namely,

— S
Rijkl - Rijkl’

Ruijk=%eri; =€~ &ijuk = Giku))
+ Sr?]l'(%gkm wt €mi) = TG imu + € 1)
iuju =5t €ui = Cii = 8ijun)
tg (zgik « e G8 e e )

s]"k (ek u %C,k)y (48)

R

and

R;; = SRij’

Ri, = [87Cgiju + e;)]i + [87Ggiju + e l(Inyg) x
+ g g™ (Gimrer ) — $8imi&in) — (N/Z) i
—3(8"¢ ;)i —5(g"c NIn\fg) ;i + (87e;.)

+ (g¢; )(Inyg) ; + g ey, e

— (In\/8) (49)

where *R;;, and °R;; denote, respectively, the Riemann and
Ricci tensors correspondlng to the spatial metric g;; only.
The Ricci scalar °R (equal to R) of this transverse (D — 2)-
dimensional Riemannian space enters, in fact, only the
Newton-Coulomb scalars W, and W,;.;. Interestingly,
these are also independent of the velocity of the observer.

There is a big simplification if we restrict ourselves to
vacuum pp-waves. As shown in [55], the absence of an
aligned electromagnetic field requires that the cosmologi-
cal constant A also vanishes, so that the transverse
Riemannian space must be Ricci flat, °R;; = 0. In such a
case, ¥, = 0 = W,;. Moreover, since R;, = 0= R,,,
the Weyl scalar W5, also vanishes and the gravitational
wave amplitudes reduce to

Ruu =

- Zg’fg 8iku8jlu

\1,41'/' = 2[5kaln)'cm)'c” + 2kalu).6ml;t + Rkulul}tz] mﬁmi)
(50)
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Taking the simplest possibility of a flat transverse space,
8ij = 0ijs 6D

we obtain an important family of exact vacuum plane-
fronted gravitational waves (possibly representing an ex-
ternal field of gyratons [66,67]), which propagate in
Minkowski space. In fact, these metrics with

S — — 1 _
Ry =0, Rk = 5exij — €jinh

Riju = eiuj + €jui — cip) + e en . (52)

belong to the family of VSI spacetimes [63].

If the functions e; can be globally removed by a suitable
coordinate transformation (in the absence of gyratonic
sources), the metric reduces to

ds? = 8;;dx'dx/ — 2dudr + c(x%, u)du?. (53)

In such a case, the spatial vectors of the null frame (44) are
simply m; = (x'/i)d, + @, and the frame is parallelly
transported. This implies that the physical relative accel-
erations (6) are, in fact, ordinary time derivatives of the
components of the separation vector, Z¥ = dd—:zZ(i).
Moreover, 1 = const along the geodesic since there is
I'; s = 0 for the metric (53).

The scalar components of the gravitational field (50)
and (52) simplify to

"lf4!_f = _I;lzC,ij. (54)

Using (49), the only remaining Einstein’s vacuum equa-
tion R,, =0 reads Ac = 8Yc;; =0, which explicitly
guarantees that the (D — 2) X (D — 2) symmetric matrix
of the wave amplitudes W, is traceless. The equations of
geodesic deviation thus reduce to

270 ?z0 1 .
=0 ke E”ZC’UZ(})’ (55)

dr?

]

exhibiting the transverse character of the vacuum gravi-
tational pp-waves propagating along e(). In general,
there are 1D(D — 3) independent polarization modes
corresponding to the same number of free components
of the matrix Wi.

In particular, if the metric function c is a quadratic form
of the transverse spatial coordinates,

D-1
c=Y A(x)? (56)
i=2
where the constant coefficients A ; must satisfy

D—1
Y A =0 (57)
i=2
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W,; is a traceless diagonal matrix with eigenvalues
W,; = —2A;i#*. The amplitudes are constant, i.e., the
corresponding gravitational waves are homogeneous. If
the test particles are initially at rest [Z0(r =0) =0,
Z0(r =0) = Zg) = const], equations of geodesic devia-
tion (55) for (56) can be explicitly integrated to

z0 =z,
Zg) cosh(y/A;lal7) for A; >0,
20 = { 29 cost=Til) for A, <0,
Zg) for A; = 0.

(58)

Therefore, in the transverse spatial directions e(;) with
A ; > 0 the test particles recede, while in those directions
with A; <0 they focus. There is also a possibility that
A;=0, in which case there is no influence of the
gravitational wave in the corresponding transverse spatial
directions.

This results in completely new effects that are not
allowed in classical D = 4 general relativity for which
i =2, 3 and the constraint (57) is simply A, = —A;.
Therefore, either a vacuum gravitational pp-wave in four-
dimensional spacetime is absent (A, = — A5 = 0), or it
generates specific particle motions in both transverse di-
rections ey and e (focusing in one of them). In higher
dimensions, however, the amplitudes are coupled via the
D-dimensional ~ constraint A, = —A; - Y2 ' A,
From the point of view of a detector located on a
(I + 3)-dimensional brane with spatial directions e(;),
€(2), €(3), this would clearly exhibit itself as a violation of
standard TT-property of gravitational waves (unless
bl A; =0, which corresponds to a very special sub-
case). Such an anomalous behavior could possibly serve as
a sign of the existence of higher dimensions (see also
discussion of a similar effect within the context of line-
arized five-dimensional gravitational waves [91]).

It may also happen that A, = 0 for some k [in which
case the metric function ¢ given by (56) is independent of
the corresponding spatial coordinate x] and thus there is
no effect of the vacuum gravitational pp-wave on test
particles in the transverse spatial direction e(). Even the
special situations with A, = 0 or A; = 0 are allowed.

VIII. CONCLUSIONS

Let us conclude this work by quoting from the classic
monograph [115], page 35: “In Einstein’s geometric the-
ory of gravity, the equation of geodesic deviation summa-
rizes the entire effect of geometry on matter.”” This is true
not only in standard D = 4 general relativity, but also in its
extension to any higher number of dimensions. Indeed, we
have explicitly demonstrated that the geodesic deviation
equation, expressed in a suitable reference frame adapted
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to the observer’s geodesic and to the specific algebraic
structure of a given spacetime, can be used as a useful
tool for analyzing and understanding the specific effects of
the gravitational field in an arbitrary dimension.

In particular, we derived the general canonical decom-
position (18) and (19) of relative accelerations of nearby
test particles freely falling in any spacetime. The gravita-
tional contributions, identified and described in Sec. 1V,
consist of the isotropic background influence (22) of the
cosmological constant A, transverse gravitational waves
(23) and (27), complementary longitudinal effects (24) and
(26), and the Newton-Coulomb component (25) of the
gravitational field. The matter contributions were dis-
cussed in Sec. VI, namely, the influence of a pure radiation
field (null dust) (36), perfect fluid (38), and generic elec-
tromagnetic field (41).

In the final Sec. VII, we also exemplified these results on
an important family of exact pp-waves in higher dimen-
sions (admitting a covariantly constant null vector field k).
Their nontrivial amplitudes are given by expressions (46).
The vacuum VSI subclass of such Kundt spacetimes rep-
resents purely transverse gravitational waves propagating
along the WAND £k (in general associated with gyratonic
sources). These exact gravitational waves have amplitudes
W, determined by Egs. (50) and (52), which form a
(D—2)X(D—2) symmetric traceless matrix. Its
%D(D — 3) components characterize the independent po-
larization modes. Explicit solution of the invariant equa-
tion of geodesic deviation for the metric function (56) is
given in (58). Because of coupling between the eigenvalues
of W, such higher-dimensional gravitational waves
could possibly be identified observationally in (1 + 3)-
dimensional brane as a violation of standard TT-property.

We hope that the presented general method of interpret-
ing exact spacetimes, based of the study of geodesic de-
viation, will help to elucidate the physical and geometrical
properties of various explicit solutions of Einstein’s equa-
tions in an arbitrary dimension.
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APPENDIX A: RELATION TO COMPLEX
NOTATIONIN D =4

In standard D = 4 general relativity, it is usual—instead
of the real null frame {k, I, m,, m;}—to introduce a com-
plex null tetrad {k, [, m, m} and to parametrize the Weyl
tensor by the corresponding five complex components.
These Newman-Penrose scalar quantities W, first defined
in [137], are closely related to the real quantities intro-
duced in our text. Here, we present a dictionary relating
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these two notations. In D = 4, the transverse spatial index i
runs only over two values 2, 3 and we can combine the real
vectors m; into the complex vectors

1 1
m = 7(”12 - im3), m= 72(m2 + lm';) (Al)

NG NG

Any real spatial vector V spanned on m,, m; can be
parametrized by a complex number V via the relation

1 -
V =Vm, + V3m; = —Z(Vm + Vm),

7
sothat V= V2 —iV3and |V|? = (V?)2 + (V3)2 = VV.
In four dimensions, there are only two real independent

components of the Weyl tensor for each boost weight,
namely,

(A2)

‘1’022 = —‘1’033, \I"023 = \1’032,
‘I’ITZ = \1’1332 = —‘I’lm, ‘Psz = \I’1223 = —‘I’lzzz,
‘I’22323 = \1’23232 = —‘1’23223 = —‘1’22332
= Z\PZT” = Z\PZT” = ‘1’25,
\P223 = —\I’232 = 2\1’2T23 = —2\P2T32,
‘I’3T2 = \1’3332 = —\I’3323, \I’3T3 = \1’3223 = —\I’3232,
‘l’422 = —‘l’433, \P423 = \If432. (A3)

These can be combined into five complex NP components
[140,141] defined by

l:[,0 == Cabcdk”mbkcmd, \Ifl == Cabcdkalbkcmd,
\PZ = Cahcdk“mbn_acld, \I’:J, = Cahcdlakblcl’hd,

\P4 = Cabcdla n_ib lcrhd,

(A4)

as

1
\I’O = \P()ZZ - iq,023, \I’l = —2(\I,IT2 - i\PIT3)’

1
v, = — 5(‘1’22323 +iW,m),

v, = %(‘1’37& + i‘I’3T3), v, = \1’422 + i‘I’423.

(AS5)

Notice the differences with respect to the notation used in
[93]: here we have relabeled all transverse spatial indices
as i — i + 1 to achieve that the privileged spatial direction
is denoted as m; = e(;), and the scalars W,g, W,z are
defined in (14) without the unnecessary factor 2. (Also,
there is a missing factor % in Eq. (A.7¢c) in [93].) Inversely,
we obtain
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‘1’022 = —\Ifoﬁ = Re‘l’o,
W2 = 2ReW,,

PHYSICAL REVIEW D 85, 044057 (2012)

\I’Om = \1'032 = —Im‘I’O,
W = —2Im¥,,

\Ifzs = 2\P2T22 = 2\P2T33 = \1’22323 = —2Re‘lf2,

\I’zzs = —ZIm‘I’Z,
\PSTZ == \/5RC‘~I’3,
\If4zz = _\I’433 == Re\If4,

\Ir3T3 == \/EIH’I\I’&
\P423 = q’432 = Im’\P4

(A6)

According to (17), the orthonormal components C )0 of the Weyl tensor are

Cayoom = ~2ReWs,  Cuyp) o)) = +ReW; —ReWs,

Coyoo@ = ReW, — 1ReW, — sReW,,

Caoz) = ReW, +3ReW, + JReW,,

Ciyooe = ~Im¥; —ImWs,
Coooe) = %Im‘I’O - %Im\lu.
(A7)

Explicit equations of geodesic deviation (11) in D = 4 thus take the form

A

AR ?z“) —2Re¥,Z + (ReW, — Re¥3)Z? — (Im¥, + ImW;)Z®)

5 }
+ 47| Ty ZV + Ty Z? + Ty 29 - (T<0)<o> + gT)Z“) .

A

. 1 1
70 = §Z<2> + ReW¥,Z? + (Re¥, — ReW;)Zz) — 3 (ReW, + ReW,)Z? + 3 (Im¥, — Im¥,)Z®)

i} 5 -
+ 47| Toy)ZY + Ty Z? + T3 2% - (T(o)(0> + gT)ZQ) .

2
+ 477[T(3)(1)Z(1) + Ty Z? + Ty Z® — (T(O)(O) + gT)Z<3>].

This fully agrees with the results presented in our pre-
vious work [128] [after permuting the indices as
1 —2— 3 — 1, and changing the signs of all imaginary
parts due to a convention different from (A1)].

APPENDIX B: RELATION TO OTHER NOTATIONS
USEDIN D =4

In the literature on higher-dimensional spacetimes, it
is common to use alternative conventions for the null
frame and the corresponding components. In particular,
in the fundamental papers on algebraic classification of
the Weyl tensor [72,73] the null frame {f, n, m;}, where
i=2...,D—1,

€ =m,, n=m,, m,,..., Mp_q, (B1)

is employed such that the metric is g,, = 2€(,n;) +
8;mymy, ie.,
€-n=1,

€-€=0=n-n, £-m;=0=n-m,

m; -m; = &, (B2)

A 1 1
708 = §Z(3) + ReW,Z® — (ImV¥; + ImW3)Z(V) + 5 (ImWo — ImW¥,)Z? + 5 ReWy + ReW,)Z®

(A8)

Following [72,73], the Weyl tensor can be decomposed
into the frame components

Cabea = 4C050j"{am2”cm{1}
+ 8C010in{a€bncmil} + 4C0ijkn{am;;m£m’[‘l}
+ 4Co1ngtpn Ly + 8C0i1jn{am§,€cmé}
+ 4C01ijn{a€bmi.m£} + Cijklméamim’jmé}

+ 8C101i€{anb€cm;} + 4C15jk€{am2m{m’;}

+ 4C1i1j€{améfcm{1}, (B3)
where  Tipeay = 5 (Tiapfea) + Tieagas) 18 @ useful

notation representing the standard symmetries of the
curvature tensor. The terms in the separate lines of
(B3) are sorted according to their boost weight corre-
sponding to the scaling

=M, i=Aln m; = m,. (B4)
Using (B2), we immediately infer that the various scalar

components in (B3) are explicitly given as
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d

— a.,bpc,d — a b C
Coioj = Capeat®mit mj;, Coijik = Capeat®m; m;my,

— a,,bpc.,,d b
Cor0i = Capeatn’€ my;,

J

— a Cad
Cijit = Capeamimimimy,

Coio1 = Capeat®n”€4n®, Cotij = Capealn”mim,

COilj = Cabcdfam?ncm;[, Clijk = Cubcdnamibmjmz’

Cio1i = Capean®€"n‘m?, Ciitj = Capean®min‘ms.
(BS)

They are subject to a number of mutual relations that
follow from the symmetries and from the trace-free
property of the Weyl tensor, see [72]:

Coin' =0, Coroj = Co;j, Copijr) = 0,
Coro1 = Coir", Citjrng = 0,
?11 . il jkI] ; (B6)
Coiij = =3Cu;" *2Cop  Cony = =Cyyfs
Cl[ijk] =0, Cmi =0.

Now, by comparing (B2) with our definition (13) it
follows that the two null frames (B1) and (12) are
related simply as

k = ’6, l = _n, m,- = ml'. (B7)
Putting this identification into (B5), and comparing with
(14), we observe that

Woi = Coio;

Wi = Coijir Wi = —Cooi

\Ifzijkz = Cijkl: ‘1’21./‘ = _C()]ij,

Vo5 = —Coion Wori = —Coitj»

Wy = =Chijp Wiz = Cion

Wy = Cuyj (B8)

Moreover, the relations (B6) are equivalent to the con-
straints (15) and (16).

Also, in [62,63,76,83] the notation

W, =3Ciaj, Wik = 3Cusij» W; = Cio; (B9
was introduced and employed, which is useful for studies
of type-N and type-III spacetimes, and
_lCikjk’

(B10)

= A — 1 S =
®;; = Coinj, o7 = 3Co1:) o7

i ij = 2
— — _1 ij
¢ = C0101 - ECij 9,

(where CI)?J-, (I)f]-, ® denote antisymmetric, symmetric parts
of ®;; and its trace, respectively) which is convenient for
type-D spacetimes [78,81,82,99]. In view of (B8), we thus

easily identify

PHYSICAL REVIEW D 85, 044057 (2012)

\Ifzijkt = Cijklr ‘I’zu = —2(135, \IIZS = —(I),
’\IlzTij = _(I)ij’ q’:},ijk = _2\Ifjkl" \I,3Ti = \I}l"
\P4ij = 2\P” (Bl 1)

Very recently, in the generalization of the Geroch-Held-
Penrose formalism to higher dimensions [79], another
convention was suggested, namely,

Q5 = Conj» Vije = Coijeo Wi = Coion
Q=Cujp Vip=Cuyp Y= Cuon
D, = Cijur- (B12)

These scalars are straightforwardly related to the quantities
used in the present paper:

Wy = Qij,

W = Wiy, Vi =—¥,

Wi = Dy, Wi = _2‘13?1"

Vyg=—-®, Wy = =0y,

Wi = =W, Wy =V,

Wy = Q. (B13)

APPENDIX C: LORENTZ TRANSFORMATIONS
OF THE NULL FRAME AND THE
CHANGES OF W, .

It is well known (see, e.g., [72,73,93]) that general
transformations between different null frames can be com-
posed from the following simple Lorentz transformations:

(1) null rotation with k fixed (parametrized by D — 2

real parameters L'):

k=k I=I1+\2Lim;+|L1k, m;=m,+~2Lk,
(CI)

(i1) null rotation with l fixed (parametrized by D — 2

real parameters K'):
k=k+2K'm,+|KI*l, =1, m,=m,+2Ki,
(C2)

(iii) boost in the k — I plane (parametrized by a real
number B):

k=Bk, [=BY m=m, (C3)
(iv) spatial rotation in the space of m; (parametrized by
an orthogonal matrix ®,/):

=1,

. (C4)
with (I)i/q)kléjl = Bik'

i = (I)i/mj,
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Because of (13), L' = L;, K' = K;, and we employ a shorthand |L|> = L'L,, |K|*> = K'K;. Under these Lorentz
transformations of the frame, the Weyl scalars change as
(i) null rotation with k fixed:

"Poi j

= ’\I’Oij)

‘Iflijk = \I’lijk - Zﬁqfoi[jl,k],
== ’\IIITI + \/E"I’OULJ,

U,
q’zijkl
W
’\Pzij
By
’\I,3i_/'k

\I,3Ti

= ‘I’zijkl — 2\/-2—(14[1\1’1@‘/ — L[i\Ifl/-]kz) + 4(\If0i[kLl]Lj + \Poj[lLk]Li),

= Wy — 220 LI — 2W,, LiLJ,
= Wy + V2V LF — 2420 oLy — 4V gL LY,

= \PZT"‘/' + \/z\;[,]ikij — \/E\I"ITI'LJ- - Z\I’OikLij + \Pofl/’lle,

= \I’3ijk + \/E(‘I’zu_/kLl — Wz_/kLi + ZL[j\I’ZTk]i)

+ 4\If1T[/-Lk]Ll~ — 2(‘IfljziLk + \IflzjkLi — \IflwiLj)Ll + \Plijk|L|2 + 4\/5\1’01[/Lk]Ll~Ll — 2\/§qfog[bka]|L|2,

= Wy + 2V, L — N2(Wypu Lk + WogL;)

+ 20V, L; — Wi LYL) — W L2 + 22V LILFL; — 2%y, LI|L|%,

@4;/ = \1’4:'/ + 2\/5(\I’3T(iLj) — ‘I’3(i,')kLk)

+ 2Woua LXLY — AWy Ly L% + 2W, 0 |L> — 2WogL,L; — 4W i Ly LK
— V20 i Ly LEL + W o LF|LI2 + W, L) |LI? — 29, LFL,L )

+ 4V LFL'L,L; — 4y L) LF|L> + Wy |LI%,

(i1) null rotation with [ fixed:

\Iroi j

‘I’lijk

‘I’lTi

v ijkl
2
Wos
W2if
Worii
2 ijk
3
\PST:'
\P4i/'

=Wy + 2\/5(‘1’1T([Kj) - qfl([/)kKk)

+ 2Wyun K K — 4K Wy K* + 2W, 00 |[K[* — 2Wos KK + 4W 0K ;) KX
— 222V K ) K*K' + Wy KK + VoK) K> — 2V K} KK )
+ 4V W K*K'KK; — 4W 1K) K*|K|* + W0 K%,

= Wi + V2(WyuinK! + WK, — 2V, Kg)
+ A4V KK — 2(WauKy + WK, — WauK)K! + Wy | K|?

+ 42V KK K — 229, KK |,

== \IflTi + \/E\szin - ﬁ(\pzTinj + q’ZSKi)
+2QWsK; — Wau KK — Wap|[K? + 229, K KK — 29, K| K|,
= \I'Zijkl — 2\/5(1([1\1’3@7 — K[i\I’y-]u) + 4(\Ir4i[kK1]Kj + \PM[’Kk]Ki)’

== \Ifzs - 2\/§‘P3TiKi - 2\P4inin,

= \Ifzij — \/5\1}31:1]1{]( + 2\/§\II3T["Kj] + 4\If4k[in]Kk,
= \I"ZTij + \/5\1’3_/k;Kk — \/§‘P3TjKi — 2\1’4_/kKkKl- + \I’4ij|K|2,

= ‘I’3ijk — 2\/5\1’4'[ka]’
= \P3Ti + \/5\1/4!./ij
= \If4ij,

044057-15
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(iii1) boost in the kK — I plane:

PHYSICAL REVIEW D 85, 044057 (2012)

\Poij = BZ’\POij,
q’lijk = B\Iflijk, q}lTi = qulTi,
\’i’zijkl == \Pzijkl, \I~I2ij == ’\pzij, q’zs == ’\IIZS’ \irzTij - ’\IIZTij,
\I~,3ijk - Bil’\I,Si/'k, @37‘1’ = 37]W3Ti,
\i’4u = B2V, (C7)
(iv) spatial rotation in the space of m;:
\i,oij == (I)iP(I)j‘I\IIOM,
\I,]ijk - q)io(bjp(pkq\lflolzq, \PIT[ - cI)ip\I,ITp,
Wys = DD DD Wy, Wog = Wy,
"i’zij - q)ipq)jq\lrzpq, "I’2Tij - (Dipq)jq\PZqu,
@yjk == q)iocpqu)qu’3ul’q, @37‘1’ = q)ipq’3TP,
Wy = DD AW . (C8)
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