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We present a general method that can be used for geometrical and physical interpretation of an arbitrary

spacetime in four or any higher number of dimensions. It is based on the systematic analysis of relative

motion of free test particles. We demonstrate that the local effect of the gravitational field on particles, as

described by the equation of geodesic deviation with respect to a natural orthonormal frame, can always

be decomposed into a canonical set of transverse, longitudinal and Newton–Coulomb-type components,

isotropic influence of a cosmological constant, and contributions arising from specific matter content of

the Universe. In particular, exact gravitational waves in Einstein’s theory always exhibit themselves via

purely transverse effects with DðD� 3Þ=2 independent polarization states. To illustrate the utility of this

approach, we study the family of pp-wave spacetimes in higher dimensions and discuss specific

measurable effects on a detector located in four spacetime dimensions. For example, the corresponding

deformations caused by generic higher-dimensional gravitational waves observed in such physical

subspace need not be trace-free.
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I. INTRODUCTION

In the last decade, there has been a growing interest in
exact spacetimes within the context of higher-dimensional
general relativity, primarily motivated by finding particular
models for string theories, AdS/CFT correspondence, and
brane-world cosmology. Such investigations thus concen-
trated mainly on various types of black holes and black
rings, see [1–8] for reviews and further references. More
general static or stationary axisymmetric [9–15], multi-
black hole Majumdar–Papapetrou-type [16–23], and static
solutions with cylindrical/toroidal symmetry [24–28] were
also considered, including uniform and nonuniform black
strings [29–36] with the aim to elucidate their instability
[37–39]. Other important classes of higher-dimensional
exact solutions of Einstein’s equations have also been
studied recently, for example, Robinson-Trautman and
Kerr-Schild spacetimes [40–45], extensions of the
Bertotti-Robinson, (anti-)Nariai, and Plebański-Hacyan uni-
verses [46], higher-dimensional Friedmann-type [47–51]
and multidimensional cosmological models [20,52] (see
also references therein), specific solitons [24,53,54], or
various exact gravitational waves—in particular those that
belong to nonexpanding Kundt family [55,56], namely,
generalized pp-waves [57–63] (for a study of their colli-
sions see [64]), vanishing scalar invariant (VSI) [62,63],
and constant scalar invariant [65] spacetimes, or relativ-
istic gyratons [66–71].

Fundamental general questions concerning the classifi-
cation of higher-dimensional manifolds based on the alge-
braic structure of the curvature tensor have been clarified

[72–75], including generalizations of the Newman-Penrose
and the Geroch-Held-Penrose formalisms [76–80]. This
paved the way for a systematic study of wide classes
of algebraically special spacetimes in higher dimensions
[81–84]. Investigation of asymptotic behavior of the
corresponding fields and their global structure, in particu-
lar, properties of gravitational radiation, has also been
initiated [85–99].
Nevertheless, in spite of the considerable effort devoted

to this topic, there are still important aspects concerning
the nature of gravitational fields in higher-dimensional
gravity that remain open. Any sufficiently general method
that could be used to probe geometrical and physical
properties of a given spacetime would be useful. In the
present work, we suggest and develop such an approach,
which is based on investigation and classification of spe-
cific effects of gravity encoded in relative motion of nearby
test particles.
In fact, in standard four-dimensional general relativity,

this has long been used as an important tool for studies of
spacetimes. Relative motion of close free particles helps us
to clarify the structure of a gravitational field in which the
test particles move. When they have no charge and spin,
this is mathematically described by the equation of geo-
desic deviation (sometimes also called the Jacobi equa-
tion), which was first derived in the n-dimensional
(pseudo-)Riemannian geometry by Levi-Civita and
Synge [100–103], see [104] for the historical account.
Shortly after its application to Einstein’s gravity theory
[105–114], it helped, for instance, to understand the be-
havior of test bodies influenced by gravitational waves or
the physical fate of observers falling into black holes.
Textbook descriptions of this equation, which is linear
with respect to the separation vector connecting the
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test particles, are given, e.g., in [115–118]. Let us also
mention that generalizations of the equation of geodesic
deviation to admit arbitrary relative velocities of the
particles were obtained in the works [119–127]. Further
extensions, higher-order corrections to the geodesic de-
viation equation, their particular applications, and refer-
ences can be found in the recent papers [127–134] and in
the monograph [118].

In 1965, Szekeres [114] presented an elegant analysis of
the behavior of nearby test particles in a generic four-
dimensional spacetime. He demonstrated that the overall
effect consists of specific transverse, longitudinal, and
Newton–Coulomb-type components. This was achieved
by decomposing the Riemann curvature tensor into the
Weyl tensor and the terms involving the Ricci tensor (and
Ricci scalar). While the former represents the ‘‘free gravi-
tational field,’’ the latter can be explicitly expressed,
employing Einstein’s field equations, in terms of the cor-
responding components of the energy-momentum tensor,
which describes the matter content. In order to further
analyze the Weyl tensor contribution, Szekeres used the
formalism of self-dual bivectors [135,136] constructed
from null frames. This enabled him to deduce the effects
of gravitational fields on nearby test particles in spacetimes
of various Petrov types. When these results are reexpressed
in a more convenient Newman-Penrose formalism
[137,138], explicit physical interpretation of the corre-
sponding complex scalars �A is obtained. In particular,
the Weyl scalar�4 (the only nontrivial component in type-
N spacetimes) represents a purely transverse effect of exact
gravitational waves, the scalar�3 (present, e.g., in type-III
spacetimes) is responsible for longitudinal effects, and �2

(typical for spacetimes of type D) gives rise to Newton-like
deformations of the family of test particles (see [139–141]
for more details; inclusion of a nonvanishing cosmological
constant was described in [128]).

It is the purpose of the present work to extend these
results to arbitrary spacetimes in any dimension D � 4.
The paper is organized as follows. In Sec. II, we recall the
equation of geodesic deviation, including its invariant form
with respect to the interpretation orthonormal frame
adapted to an observer. In Sec. III, we perform the canoni-
cal decomposition of the curvature tensor using Einstein’s
equations and the real Weyl tensor components �A��� with
respect to an associated null frame. We thus derive an
explicit and general form of the equation of geodesic
deviation. Section IV analyses the character of all canoni-
cal components of a gravitational field. Section V is de-
voted to the discussion of uniqueness of the interpretation
frame, and derivation of explicit relations that give the
dependence of the field components on the observer’s
velocity. In Sec. VI, we describe the effect of pure
radiation, perfect fluid and electromagnetic field on test
particles. Final Sec. VII illustrates the method on the
family of pp-waves in higher dimensions. There are also

3 Appendices: In Appendix A, we give relations to the
standard complex formalism of D ¼ 4 general relativity,
and in Appendix B we summarize alternative notations
commonly used in literature on D � 4 spacetimes.
Finally, in Appendix C the Lorentz transformations of
the �A��� scalars are presented.

II. EQUATION OF GEODESIC DEVIATION

The main objective of the present work is to investigate
and characterize the curvature of an arbitrary spacetime of
dimension D � 4 by its local effects on freely falling test
particles (observers). The gravitational field manifests it-
self, in Newtonian terminology, as specific ‘‘tidal forces’’
that cause the nearby particles to accelerate relative to each
other. This leads to a deviation of corresponding geodesics
whose separation thus changes with time: in various spatial
directions the particles approach or recede from them-
selves, exhibiting thus the specific character of the space-
time in the vicinity of a given event.
In standard and also higher-dimensional general rela-

tivity, such a behavior of free test particles (without
charge and spin) is described by the geodesic deviation
equation [100–118]

D2Z�

d�2
¼ R�

���u
�u�Z�; (1)

where R�
��� are components of the Riemann curvature

tensor, u� are components of the velocity vector u ¼
u�@� of the reference (fiducial) particle moving along a
timelike geodesic �ð�Þ � fx0ð�Þ; . . . ; xD�1ð�Þg, u� ¼ dx�

d� ,

the parameter � is its proper time (so that u � u �
g��u

�u� ¼ �1), and Z� are components of the separation

vector Z ¼ Z�@�, which connects the reference particle

with another nearby test particle moving along a timelike
geodesic ��ð�Þ. The situation is visualized in Fig. 1.

FIG. 1. In a curved D-dimensional spacetime, nearby test
particles moving along geodesics accelerate toward or away
from each other, as given by the equation of geodesic deviation
(1). Here, u is the velocity vector of a reference particle, and Z is
the separation vector that represents actual relative position of
the second test particle at a given proper time �.
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Equation (1) explicitly expresses the relative accelera-
tion of two nearby particles by the second absolute (cova-
riant) derivative of the vector field Z along �ð�Þ,

D2Z�

d�2
¼ ðZ�

;�u
�Þ;�u� ¼ Z�

;��u
�u�; (2)

in terms of the local curvature tensor and the actual relative
position of the particles, described by the separation vector
Zð�Þ at the time �.

To be geometrically more precise, the two geodesics
should be understood as specific representatives of a
congruence �ð�; zÞ, i.e., smooth one-parameter family of
geodesics, such that �ð�Þ � �ð�; z ¼ 0Þ and ��ð�Þ �
�ð�; z ¼ constÞ. The proper time � and the parameter z,
which labels the geodesics, can be chosen as coordinates
on the submanifold spanned by the congruence. Thus,
u ¼ @� and Z ¼ @z, and the deviation vector field Z is Lie-
transported along the geodesics generated byu. Consider now
the positions of two test particles at a given time, for example,
P (located at z ¼ 0) andQ (for which z ¼ 1, say) at � ¼ 0,
as shown in Fig. 1. Their coordinates are related by the
exponential map x

�
Q ¼ expðzZÞx�P generated by Z at P ,

where we set z ¼ 1 to locate Q. If the higher-order terms
are negligible, this expression reduces to x

�
Q � x

�
P �

ðZx�ÞP , demonstrating that the separation vectorZ describes
the relative position of the two test particles, and Zð�Þ
gives its evolution that is obtained by solving the Eq. (1).
Such linear approximation improves when the second test
particle moves very close to the reference one, i.e., along
the geodesic z ¼ const � 1, in which case the separation
is described by the vector field zZð�Þ.

It should also be recalled that the equation of geodesic
deviation (1) is linear with respect to the components of the
separation vector, neglecting higher-order terms in the
Taylor expansion of exact expression for relative accelera-
tion of free test particles. It can thus be used when the
relative velocities of the particles are negligible, i.e., their
geodesics are almost parallel. Generalizations of Eq. (1) to
admit arbitrary relative velocities were obtained and ap-
plied in the works [119–127]. Further extensions, higher-
order corrections to the geodesic deviation equation, and
their specific applications can be found in [129–134] (for
reviews and other references see [118,127,130,134]). Our
aim, however, in this paper is to investigate local relative
motion of nearby free test particles that are initially at rest
with respect to each other. For such an analysis, the clas-
sical geodesic deviation Eq. (1) will be fully sufficient.

Now, in order to obtain invariant results independent of
the choice of coordinates, it is natural to adopt the Pirani
approach [105,106] based on the use of components of the
above quantities with respect to a suitable orthonormal
frame feag. At any point of the reference geodesic, this
defines an observer’s framework in which physical mea-
surements are made and interpreted. In particular, the
separation vector is expressed as Z ¼ Zaea. The timelike

vector of the frame is identified with the velocity vector of
the observer, eð0Þ ¼ u, and eðiÞ, where i ¼ 1; 2; . . . ; D� 1,
are perpendicular spacelike unit vectors that form its local
Cartesian basis in the hypersurface orthogonal to u (see
also Fig. 2),

e a � eb � g��e
�
a e

�
b ¼ �ab � diagð�1; 1; . . . ; 1Þ: (3)

Because of the fact that u is parallelly transported, for the

zeroth frame component Zð0Þ � eð0Þ � Z ¼ �u � Z we im-
mediately obtain

d2Zð0Þ

d�2
¼ �u�

D2Z�

d�2
¼ �R����u

�u�u�Z� ¼ 0; (4)

using the skew-symmetry of the Riemann tensor.

Therefore, Zð0Þð�Þ must be at most a linear function of
the proper time. By a natural choice of initial conditions,
consistent with the above construction of the geodesic

congruence �ð�; zÞ, we set Zð0Þ ¼ 0. The temporal compo-
nent of Z thus vanishes and the test particles always stay in
the same spacelike hypersurfaces synchronized by �.
Physical information about relative motion of the test

particles is thus completely contained in the spatial frame

components ZðiÞð�Þ � eðiÞ � Z of the separation vector Z.
These determine the actual relative spatial position of the
two nearby particles. By projecting the geodesic deviation

Eq. (1) onto eðiÞ ¼ eðiÞ, we obtain

€Z ðiÞ ¼ RðiÞ
ð0Þð0ÞðjÞZ

ðjÞ; (5)

where i; j ¼ 1; 2; . . . ;D� 1, and we denote the physical
relative acceleration as

€Z ðiÞ � eðiÞ � D
2Z

d�2
¼ eðiÞ�

D2Z�

d�2
: (6)

The frame components of the Riemann tensor are
RðiÞð0Þð0ÞðjÞ � R����e

�
ðiÞu

�u�e�ðjÞ. Let us note that Pirani

[105,106] labeled, in D ¼ 4, the frame components of
the ‘‘tidal stress tensor’’ that occurs in Eq. (5) (with an
opposite sign) as Ka

b � Ra
0b0 ¼ Ra

cbdu
cud. They are

equivalent to the electric part of the Riemann tensor
Eab � Ra0b0 ¼ Racbdu

cud, see [118].
Following Pirani, it is also usually assumed that the

orthonormal frame feag is parallelly propagated along the
reference geodesic. However, in our work we do not make
such an assumption. In fact, as a key idea of the proposed
interpretation method, we align the orthonormal frame
with the algebraic structure of a given spacetime instead
(see also Sec. V). This makes the investigation of its
physical properties much easier.

III. CANONICAL DECOMPOSITION OF THE
CURVATURE TENSOR

The next step is to express the frame components
of the Riemann tensor RðiÞð0Þð0ÞðjÞ. Using the standard
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decomposition of the curvature tensor into the traceless
Weyl tensor Cabcd and specific combinations of the
Ricci tensor Rab and Ricci scalar R,

Rabcd ¼ Cabcd þ 2

D� 2
ðga½cRd�b � gb½cRd�aÞ

� 2

ðD� 1ÞðD� 2ÞRga½cgd�b; (7)

we immediately obtain

RðiÞð0Þð0ÞðjÞ ¼ CðiÞð0Þð0ÞðjÞ þ 1

D� 2
ðRðiÞðjÞ � �ijRð0Þð0ÞÞ

� R�ij

ðD� 1ÞðD� 2Þ : (8)

Before substituting this into the geodesic deviation
Eq. (5), we also employ the Einstein field equations,
generalized to any dimension D � 4,

Rab � 1
2Rgab þ�gab ¼ 8	Tab; (9)

where � is a cosmological constant and Tab is the
energy-momentum tensor of the matter field. Using (9)
and its trace R ¼ 2

2�D ð8	T �D�Þ, we rewrite (8) as

RðiÞð0Þð0ÞðjÞ ¼
2��ij

ðD� 1ÞðD� 2Þ þ CðiÞð0Þð0ÞðjÞ

þ 8	

D� 2

�
TðiÞðjÞ � �ij

�
Tð0Þð0Þ þ 2T

D� 1

��
:

(10)

The equation of geodesic deviation (5) thus takes the
following invariant form:

€ZðiÞ ¼ 2�

ðD� 1ÞðD� 2ÞZ
ðiÞ þ CðiÞð0Þð0ÞðjÞZðjÞ

þ 8	

D� 2

�
TðiÞðjÞZðjÞ �

�
Tð0Þð0Þ þ 2

D� 1
T

�
ZðiÞ

�
:

(11)

The first term represents the isotropic influence of the
cosmological constant � on free test particles, the
second term describes the effect of a ‘‘free’’ gravita-
tional field encoded in the Weyl tensor, while the
second line in (11) gives a direct effect of specific
matter present in a given spacetime.

The terms proportional to the coefficients CðiÞð0Þð0ÞðjÞ
can further be conveniently expressed using the
Newman–Penrose-type scalars, which are the components
of the Weyl tensor with respect to an associated (real) null
frame fk; l;mig. This frame is introduced by the relations

k ¼ 1ffiffiffi
2

p ðuþ eð1ÞÞ; l ¼ 1ffiffiffi
2

p ðu� eð1ÞÞ;

mi ¼ eðiÞ for i ¼ 2; . . . ; D� 1;

(12)

where u � eð0Þ is the velocity vector of the observer. Thus,
k and l are future-oriented null vectors, and mi are D� 2
spatial Cartesian vectors orthogonal to them, satisfying

k � l ¼ �1; mi �mj ¼ �ij;

k � k ¼ 0 ¼ l � l; k �mi ¼ 0 ¼ l �mi: (13)

Using the notation of [93], the components of the Weyl
tensor in such a null frame are determined by the following
scalars (grouped by their boost weight):

�0ij ¼ Cabcdk
amb

i k
cmd

j ;

�1ijk ¼ Cabcdk
amb

i m
c
jm

d
k; �1Ti ¼ Cabcdk

albkcmd
i ;

�2ijkl ¼ Cabcdm
a
i m

b
jm

c
km

d
l ; �2S ¼ Cabcdk

alblckd;

�2ij ¼ Cabcdk
albmc

im
d
j ; �2Tij ¼ Cabcdk

amb
i l

cmd
j ;

�3ijk ¼ Cabcdl
amb

i m
c
jm

d
k; �3Ti ¼ Cabcdl

akblcmd
i ;

�4ij ¼ Cabcdl
amb

i l
cmd

j ; (14)

where i; j; k; l ¼ 2; . . . ; D� 1. All other frame compo-
nents can be obtained using the symmetries of the Weyl
tensor. The scalars in the left column are independent, up to
the obvious constraints

�0½ij� ¼ 0; �
0k

k ¼ 0;

�1iðjkÞ ¼ 0; �1½ijk� ¼ 0;

�2ijkl ¼ �2klij ; �2ðijÞ ¼ 0;

�2ðijÞkl ¼ �2ijðklÞ ¼ �2i½jkl� ¼ 0;

�3iðjkÞ ¼ 0; �3½ijk� ¼ 0;

�4½ij� ¼ 0; �
4k

k ¼ 0;

(15)

while those in the right column of (14) are not independent
because they can be expressed as the contractions (hence
the symbol ‘‘T,’’ which indicates ‘‘tracing’’)

�1Ti ¼ �
1k i

k ;

�2S ¼ �
2Tk

k ¼ 1
2�2kl

kl ;

�2Tij ¼ 1
2ð�2ikj

k þ�2ijÞ
where �2TðijÞ ¼ 1

2�2ikj
k ; �2T½ij� ¼ 1

2�2ij ;

�3Ti ¼ �
3k i

k : (16)

In the case D ¼ 4, these Weyl tensor components in the
null tetrad reduce to the standard Newman-Penrose
[137,138] complex scalars �A. Explicit expressions are
given in Appendix A.
Using relations eð0Þ ¼ 1ffiffi

2
p ðkþ lÞ, eð1Þ ¼ 1ffiffi

2
p ðk� lÞ, and

the definition (14), a straightforward calculation then leads
to the following expressions for the components CðiÞð0Þð0ÞðjÞ
of the Weyl tensor, which appear in Eq. (11):
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Cð1Þð0Þð0Þð1Þ ¼ �2S;

Cð1Þð0Þð0ÞðjÞ ¼ 1ffiffiffi
2

p ð�1Tj ��3TjÞ;

CðiÞð0Þð0Þð1Þ ¼ 1ffiffiffi
2

p ð�1Ti ��3TiÞ;

CðiÞð0Þð0ÞðjÞ ¼ �1
2ð�0ij þ�4ijÞ ��2TðijÞ ;

(17)

where i; j ¼ 2; . . . ; D� 1 label the spatial directions
orthogonal to the privileged spatial direction of eð1Þ.

Putting this into (11), we obtain the final invariant and
fully general form of the equation of geodesic deviation:

€Zð1Þ ¼ 2�

ðD�1ÞðD�2ÞZ
ð1Þ þ�2SZ

ð1Þ þ 1ffiffiffi
2

p ð�1Tj ��3TjÞZðjÞ

þ 8	

D�2

�
Tð1Þð1ÞZð1ÞþTð1ÞðjÞZðjÞ

�
�
Tð0Þð0Þ þ 2

D�1
T

�
Zð1Þ

�
; (18)

€ZðiÞ ¼ 2�

ðD� 1ÞðD� 2ÞZ
ðiÞ ��2TðijÞZðjÞ

þ 1ffiffiffi
2

p ð�1Ti ��3TiÞZð1Þ � 1

2
ð�0ij þ�4ijÞZðjÞ

þ 8	

D� 2

�
TðiÞð1ÞZð1Þ þ TðiÞðjÞZðjÞ

�
�
Tð0Þð0Þ þ 2

D� 1
T

�
ZðiÞ

�
: (19)

This completely describes relative motion of nearby free
test particles in any spacetime of an arbitrary dimensionD.
In the next section, we will discuss the specific effects
given by particular scalars that represent the contributions
from various components of the gravitational and matter
fields.

Finally, we remark that our notation, which uses�A��� in
any dimension, is simply related to the notations employed,
e.g., in [72,73], in [76,81], and recently in [79]. The iden-
tifications for the components present in the invariant form
of the equation of geodesic deviation are summarized in
Table I. More details are given in Appendix B, in particular,
see expressions (B8), (B11), and (B13).

IV. EFFECT OF CANONICAL COMPONENTS
OFA GRAVITATIONAL FIELD ON

TEST PARTICLES

Let us consider a set of freely falling test particles,
initially at rest relative to each other, which form, e.g., a
small (hyper)sphere. In any curved spacetime, such a
configuration undergoes tidal deformations that can be
deduced from the accelerations measured by the fiducial
observer attached to the reference test particle in the center.
The resulting relative motion represents the effect of a
given gravitational field, whose specific structure is explic-
itly characterized by the system (18) and (19).
First concentrating on the vacuum case, i.e., Tab ¼ 0,

the system of equations describing purely gravitational
interaction simplifies considerably to

€Zð1Þ ¼ 2�

ðD� 1ÞðD� 2ÞZ
ð1Þ þ�2SZ

ð1Þ

þ 1ffiffiffi
2

p ð�1Tj ��3TjÞZðjÞ; (20)

€ZðiÞ ¼ 2�

ðD� 1ÞðD� 2ÞZ
ðiÞ ��2TðijÞZðjÞ

þ 1ffiffiffi
2

p ð�1Ti ��3TiÞZð1Þ � 1

2
ð�0ij þ�4ijÞZðjÞ:

(21)

The overall effect of the gravitational field on test particles
is thus naturally decomposed into clearly identified com-
ponents proportional to the cosmological constant � and
the Weyl scalars �A���. Of course, for algebraically special
spacetimes some (or many) of these coefficients vanish
completely, and even in algebraically general cases specific
numerical values of the scalars �A��� can distinguish the
dominant terms from those that are negligible. Let us now
briefly describe the character of each term separately,
including its physical interpretation.
(i) �: isotropic influence of the cosmological

background
The presence of the cosmological constant � is
encoded in the term

€Zð1Þ

€ZðiÞ

 !
¼ 2�

ðD� 1ÞðD� 2Þ
1 0

0 �ij

 !
Zð1Þ

ZðjÞ

 !
;

(22)

which can be written as €ZðiÞ ¼ 2�
ðD�1ÞðD�2ÞZ

ðiÞ for all
spatial components i ¼ 1; 2; . . . ; D� 1. In parallelly
propagated frames, this yields the following explicit
solutions:

TABLE I. Different equivalent notations used in the literature
for the Weyl scalars that occur in the equations of geodesic
deviation (18) and (19).

Refs. [72,73] Refs. [76,81] Ref. [79]

�2S �C0101 �� ��
�2Tij �C0i1j ��ij ��ij

�1Tj �C010j ��j

�3Tj C101j �j �0
j

�0ij C0i0j �ij

�4ij C1i1j 2�ij �0
ij
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� ¼ 0: ZðiÞ ¼ Ai�þ Bi;

�> 0: ZðiÞ ¼ Ai cosh

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ðD� 1ÞðD� 2Þ

s
�

3
75

þ Bi sinh

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ðD� 1ÞðD� 2Þ

s
�

3
75;

�< 0: ZðiÞ ¼ Ai cos

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j�j

ðD� 1ÞðD� 2Þ

s
�

3
75

þ Bi sin

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j�j

ðD� 1ÞðD� 2Þ

s
�

3
75;

where Ai, Bi are constants of integration. These
are characteristic relative motions of test particles
in spacetimes of constant curvature, namely,
Minkowski space, de Sitter space and anti-de Sitter
space, respectively, as derived by Synge [102,103].

(ii) �4ij : transverse gravitational wave propagating in
the direction þeð1Þ
This part of a gravitational field influences the test
particles as

€Zð1Þ

€ZðiÞ

 !
¼ � 1

2

0 0

0 �4ij

 !
Zð1Þ

ZðjÞ

 !
: (23)

Obviously, this is a purely transverse effect because
there is no acceleration in the privileged spatial
direction eð1Þ. The set of scalars �4ij forms a sym-

metric (�4ij ¼ �4ji) and traceless (�
4k

k ¼ 0) ma-

trix of dimension ðD� 2Þ � ðD� 2Þ, cf. the last
line in (15), so that it has 1

2DðD� 3Þ independent
components corresponding to polarization modes
(see also [72,78,79]). In direct analogy with a line-
arized Einstein gravity in four [115,116] and higher
dimensions [86,93], �4ij represents the gravita-
tional wave that propagates along the null direction
k, i.e., in the spatial direction þeð1Þ [in view of

relations (12) there is kð1Þ � k � eð1Þ > 0 while

kðiÞ � k � eðiÞ ¼ 0 for i ¼ 2; . . . ; D� 1].
Spacetimes of algebraic type N (for which only
the components �4ij � C1i1j are nonvanishing

[72,73]) can thus be interpreted as exact gravita-
tional waves in any dimension D � 4.

(iii) �3Ti : longitudinal component of a gravitational
field with respect to þeð1Þ
Such terms cause longitudinal deformations of a set
of test particles given by

€Zð1Þ

€ZðiÞ

 !
¼ � 1ffiffiffi

2
p 0 �3Tj

�3Ti 0

 !
Zð1Þ

ZðjÞ

 !
: (24)

These (D� 2) scalars�3Ti , which combine motion
in the privileged spatial direction eð1Þ with motion

in the transverse directions eðiÞ, are also obtained

using �3Ti � �
3k i

k , where �3ijk ¼ ��3ikj and

�3ijk þ�3jki þ�3kij ¼ 0. Longitudinal effects of
this type occur in spacetimes of type III and in
algebraically more general cases.

(iv) �2S;�2TðijÞ : Newton-Coulomb components of a
gravitational field
The terms

€Zð1Þ

€ZðiÞ

 !
¼ �2S 0

0 ��2TðijÞ

 !
Zð1Þ

ZðjÞ

 !
(25)

give rise to deformations that generalize the classi-
cal Newton–Coulomb-type tidal effects in D ¼ 4,
namely, those in the vicinity of a spherically
symmetric static source. Recall that �2S ¼ �

2Tk
k

[see (16) and (15) for further relations], so that the
ðD� 1Þ � ðD� 1Þ-dimensional matrix in (25) is
symmetric and traceless. These terms are typically
present in type-D spacetimes, for which the nota-
tion �2S � �� and ��2TðijÞ � �S

ij is commonly

used [76,78–82,99], see (B11). As shown in (A6),
the only nonvanishing coefficients of this type in
four dimensions are the diagonal elements
1
2�2S ¼ �2Tð22Þ ¼ �2Tð33Þ � �Re�2.

(v) �1Ti : longitudinal component of a gravitational
field with respect to �eð1Þ
The corresponding effect on test particles is

€Zð1Þ
€ZðiÞ

 !
¼ 1ffiffiffi

2
p 0 �1Tj

�1Ti 0

� �
Zð1Þ
ZðjÞ

 !
; (26)

which is very similar to the acceleration caused by
the longitudinal component �3Ti , as described by
(24). In fact, it is its counterpart: it follows from the
definition (14) that the scalars�1Ti � �

1k i
k (where

�1ijk ¼ ��1ikj and �1ijk þ�1jki þ�1kij ¼ 0) are
equivalent to �3Ti under the interchange k $ l.
Since kð1Þ � k � eð1Þ > 0 while lð1Þ � l � eð1Þ < 0,
the scalars �1Ti represent the longitudinal compo-
nent of the field associated with the spatial direc-
tion �eð1Þ.

(vi) �0ij : transverse gravitational wave propagating in
the direction �eð1Þ
This component of a gravitational field is charac-
terized by

€Zð1Þ

€ZðiÞ

 !
¼ � 1

2

0 0

0 �0ij

 !
Zð1Þ

ZðjÞ

 !
; (27)

which is fully equivalent to (23) under k $ l. The
scalars �0ij [which form a symmetric and traceless
ðD� 2Þ � ðD� 2Þ matrix: �0ij ¼ �0ji , �0k

k ¼ 0]

thus describe the transverse gravitational wave
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propagating along the null direction l, i.e., in the
spatial direction �eð1Þ. Superposition of gravita-

tional waves that would propagate in both direc-
tions simultaneously (that is, an ‘‘outgoing’’ wave
given by �4ij and an ‘‘ingoing’’ wave given by
�0ij) can only be present in spacetimes that are of
algebraically general type.

V. UNIQUENESS OF THE INTERPRETATION
FRAME AND DEPENDENCE OF THE FIELD

COMPONENTS ON THE OBSERVER

The canonical components of a gravitational field de-
scribed in the previous section are represented by the real
coefficients�A���. These are projections of the Weyl tensor
onto particular combinations of the null frame fk; l;mig, as
defined in (14). They are spacetime scalars and in this
sense the above physical interpretation is invariant. On
the other hand, the values of �A��� depend on the choice
of the basis vectors of the frame. In this section, we will
argue that such a dependence corresponds to simple local
Lorentz transformations related to the choice of specific
observer in a given event, and that the natural interpretation
null frame is essentially unique.

Let us consider an observer attached to the reference
(fiducial) test particle moving through some event in the
spacetime, such as the point P in Fig. 1, whose velocity
vector is u. This timelike vector (normalized as u � u ¼
�1) defines an orthogonal spatial hypersurface of dimen-
sion D� 1 spanned by the Cartesian vectors eðiÞ, where
i ¼ 1; 2; . . . ; D� 1. Assuming the spacetime is of an
algebraic type I or more special, it is most natural to
associate the corresponding Weyl-aligned null direction
(WAND) with the null vector k of the interpretation
reference frame, see Fig. 2.

The privileged unit vector eð1Þ, defining the longitudinal

spatial direction, is then uniquely obtained by projecting k
onto the spatial subspace orthogonal to u. This also fixes
the normalization of k [to satisfy the first relation in (12)

we require k � u ¼ � 1ffiffi
2

p ]. The complementary null vector

l of the frame is then also uniquely given via the relation

l ¼ ffiffiffi
2

p
u� k. It only remains to choose the transverse

spatial vectors eð2Þ; . . . ; eðD�1Þ, i.e., mi ¼ eðiÞ. As shown

in Fig. 2, these must lie in the (D� 2)-dimensional sub-
space orthogonal both to u and eð1Þ, so that k �mi ¼ 0 ¼
l �mi as required by (13). Neglecting possible inversions,
the only remaining freedom is thus standard spatial
rotations represented by the rotation group SOðD� 2Þ,
which acts on the space spanned by mi, see the explicit
relation (C4) presented in Appendix C.
For any spacetime of type N (in which the WAND has

maximal alignment order) the null vector k is unique. In
spacetimes of other algebraic types (namely IIIi, IIi, Ii,
and D), different WANDs exist. These can alternatively
be used as the vector k of the interpretation null frame
fk; l;mig. Because the distinct WANDs can always be
related using the null rotation with fixed l, as given
explicitly by Eq. (C2) in Appendix C, it is straightforward
to evaluate the ‘‘new’’ values of the Weyl scalars �A���
using the expressions (C6). Notice that the coefficients
�4ij , which are the amplitudes of transverse gravitational
waves propagating along k, are invariant under such a
change.
Let us now consider another observer moving through

the same event P with a different velocity ~u. Locally, this
transition is just the Lorentz transformation from the origi-
nal reference frame feag to f~eag for which

~u ¼ uþP
D�1
i¼1 vieðiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�P
D�1
i¼1 v2

i

q ; (28)

where v1; . . . ; vD�1 are components of the spatial velocity
of the new observer with respect to the original Cartesian
basis eðiÞ. This can be obtained as the combination of a

boost in the k� l plane followed by a null rotation with
fixed k, see Eqs. (C3) and (C1) in Appendix C, if we take
the specific parameters

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�P

D�1
i¼1 v2

i

q
1� v1

; Li ¼ viffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�P

D�1
i¼1 v2

i

q ; (29)

where i ¼ 2; . . . ; D� 1:

~k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�P

D�1
i¼1 v2

i

q
1�v1

k;

~l¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�P

D�1
i¼1 v2

i

q �
ð1�v1Þlþ

ffiffiffi
2

p XD�1

i¼2

vimiþ
P

D�1
i¼2 v2

i

1�v1

k

�
;

~mi¼miþ
ffiffiffi
2

p vi

1�v1

k: (30)

Indeed, ~u � 1ffiffi
2

p ð~kþ ~lÞ gives exactly the relation (28). The

corresponding change of the Weyl scalars�A��� can thus be
obtained by combining (C7) with (C5), which yields

FIG. 2. Natural choice of the interpretation null frame and the
related orthonormal frame (12) and (13). Up to spatial rotations
of mi ¼ eðiÞ, they are uniquely given by the velocity vector u of

the observer and the WAND k at any event P of the spacetime.
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1

B2
~�0ij ¼ �0ij ;

1

B
~�1ijk ¼ �1ijk � 2

ffiffiffi
2

p
�0i½jXk�;

1

B
~�1Ti ¼ �1Ti þ ffiffiffi

2
p

�0ijX
j;

~�2ijkl ¼ �2ijkl � 2
ffiffiffi
2

p ðX½l�1k�ij � X½i�1j�klÞ þ 4ð�0i½kXl�Xj þ�0j½lXk�XiÞ; ~�2S ¼ �2S � 2
ffiffiffi
2

p
�1TiXi � 2�0ijX

iXj;

~�2ij ¼ �2ij þ
ffiffiffi
2

p
�1kijX

k � 2
ffiffiffi
2

p
�1T½iXj� � 4�0k½iXj�Xk;

~�2Tij ¼ �2Tij þ ffiffiffi
2

p
�1ikjX

k � ffiffiffi
2

p
�1TiXj � 2�0ikX

kXj þ�0ij jXj2;
B ~�3ijk ¼ �3ijk þ

ffiffiffi
2

p ð�2lijkX
l ��2jkXi þ 2X½j�2Tk�iÞ þ 4�1T½jXk�Xi � 2ð�1jliXk þ�1ljkXi ��1kliXjÞXl

þ�1ijk jXj2 þ 4
ffiffiffi
2

p
�0l½jXk�XiX

l � 2
ffiffiffi
2

p
�0i½jXk�jXj2;

B ~�3Ti ¼ �3Ti þ ffiffiffi
2

p
�2ijX

j � ffiffiffi
2

p ð�2TkiXk þ�2SXiÞ þ 2ð2�1TjXi ��1kjiX
kÞXj ��1Ti jXj2

þ 2
ffiffiffi
2

p
�0jkX

jXkXi �
ffiffiffi
2

p
�0ijX

jjXj2;
B2 ~�4ij ¼ �4ij þ 2

ffiffiffi
2

p ð�3TðiXjÞ ��3ðijÞkX
kÞ þ 2�2ikjlX

kXl � 4�2TkðiXjÞXk þ 2�2TðijÞ jXj2 � 2�2SXiXj � 4�2kðiXjÞXk

� 2
ffiffiffi
2

p ð2�1klðiXjÞXkXl þ�1ðijÞkX
kjXj2 þ�1TðiXjÞjXj2 � 2�1TkXkXiXjÞ þ 4�0klX

kXlXiXj

� 4�0kðiXjÞXkjXj2 þ�0ij jXj4; (31)

where we denoted

Xi � BLi ¼ vi

1� v1

: (32)

In particular, for spacetimes of algebraic type N, which
admit a WAND of the maximal alignment order, the only
nonvanishing component of the gravitational field is �4ij

representing the transverse gravitational wave propagating
in the spatial direction eð1Þ. It immediately follows from

(31) and (29) that the transition to any other observer
results just in a simple rescaling of the gravitational wave
amplitudes

~� 4ij ¼
ð1� v1Þ2

1�P
D�1
i¼1 v2

i

�4ij : (33)

If the new observer moves only in the spatial direction in
which the wave propagates, v1 > 0 and vi ¼ 0 for i ¼
2; . . . ; D� 1, then ~�4ij ¼ ð1� v1Þ=ð1þ v1Þ�4ij , which is
smaller than�4ij . If the observer’s velocity approaches the
speed of light, v1 ! 1, the amplitudes of the gravitational

wave disappear, ~�4ij ! 0. Contrarily, when the observer
moves against the wave its amplitudes grow, and for
v1 ! �1 they diverge.

VI. THE EFFECT OF MATTER ON
TEST PARTICLES

Let us now consider the direct effect of specific forms of
matter on relative motion of test particles, as described by
the invariant form of the equation of geodesic deviation
(18) and (19). Setting the cosmological constant � and all
components of the Weyl tensor to zero, it reduces to

€Zð1Þ ¼ 8	

D� 2

�
Tð1Þð1ÞZð1Þ þ Tð1ÞðjÞZðjÞ

�
�
Tð0Þð0Þ þ 2

D� 1
T

�
Zð1Þ

�
;

€ZðiÞ ¼ 8	

D� 2

�
TðiÞð1ÞZð1Þ þ TðiÞðjÞZðjÞ

�
�
Tð0Þð0Þ þ 2

D� 1
T

�
ZðiÞ

�
: (34)

It will be illustrative to investigate some important types of
matter usually contained in the families of exact solutions
of Einstein’s equations, namely, pure radiation, perfect
fluids, and electromagnetic fields.
(i) pure radiation

The energy-momentum tensor of a pure radiation
field (or ‘‘null dust’’) aligned along the null direction
k is

Tab ¼ 
kakb; (35)

where 
 is a function representing the radiation
density. Its trace vanishes, T ¼ 0, and using (12)
we derive that the only nonvanishing components
of Tab in the equation of geodesic deviation are
Tð0Þð0Þ ¼ Tð1Þð1Þ ¼ 1

2
. Equations (34) thus reduce

considerably to

€Zð1Þ

€ZðiÞ

 !
¼ � 4	


D� 2

0 0

0 �ij

 !
Zð1Þ

ZðjÞ

 !
: (36)

In an arbitrary dimension D, there is thus no accel-
eration in the longitudinal spatial direction eð1Þ. The
effects in the transverse subspace are isotropic and
(since 
 > 0) they cause the radial contraction that
may eventually lead to an exact focusing.
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(ii) perfect fluid
For a perfect fluid of energy density 
 and pressure
p (which is assumed to be isotropic), the energy-
momentum tensor is

Tab ¼ ð
þ pÞuaub þ pgab: (37)

Provided the fluid is comoving, its velocity u co-
incides with the observer’s velocity, which is the
vector eð0Þ of the orthonormal frame. The trace is

T ¼ ðD� 1Þp� 
, and the relevant nonvanishing
frame components are Tð0Þð0Þ ¼ 
, Tð1Þð1Þ ¼ p, and
TðiÞðjÞ ¼ p�ij. The equation of geodesic deviation

thus takes the form

€Zð1Þ

€ZðiÞ

 !
¼�8	

ðD�3Þ
þðD�1Þp
ðD�1ÞðD�2Þ

1 0

0 �ij

 !
Zð1Þ

ZðjÞ

 !
:

(38)

The resulting motion is isotropic, the same in the
longitudinal and all transverse spatial directions.
For positive 
 and p, the fluid matter causes a
contraction, such as in the case of dust (p ¼ 0),
incoherent radiation (p ¼ D�3

D�1
), or stiff fluid

(p ¼ 
). However, for matter with a negative pres-
sure, the set of test particles may expand. In par-
ticular, if the matter is described by the equation of
state p ¼ �
 ¼ const, it mimics the cosmological
constant � ¼ 8	
 since (38) is then completely
equivalent to (22).

(iii) electromagnetic field
The energy-momentum tensor of an electromag-
netic field is given by

Tab ¼ 1

4	

�
FacFb

c � 1

4
gabFcdF

cd

�
; (39)

so that its trace is T ¼ 1
16	 ð4�DÞFabF

ab. The

frame components of Tab, which occur in expres-
sions (34), are

Tð0Þð0Þ ¼ 1

4	

�
Fð0ÞcFð0Þ

c þ 1

4
FabF

ab

�
;

Tð1Þð1Þ ¼ 1

4	

�
Fð1ÞcFð1Þ

c � 1

4
FabF

ab

�
;

Tð1ÞðiÞ ¼ 1

4	
Fð1ÞcFðiÞ

c;

TðiÞðjÞ ¼ 1

4	

�
FðiÞcFðjÞ

c � 1

4
�ijFabF

ab

�
:

(40)

In this case, the equation of geodesic deviation
takes the following more complicated form:

€Zð1Þ

€ZðiÞ

 !
¼ T T j

T i T ij

 !
Zð1Þ

ZðjÞ

 !
; (41)

where

T ¼ 2

D� 2
ðFð1ÞcFð1Þ

c � Fð0ÞcFð0Þ
cÞ

� 3

ðD� 1ÞðD� 2ÞFabF
ab;

T i ¼ 2

D� 2
Fð1ÞcFðiÞ

c;

T ij ¼ 2

D� 2
ðFðiÞcFðjÞ

c � �ijFð0ÞcFð0Þ
cÞ

� 3

ðD� 1ÞðD� 2Þ�ijFabF
ab: (42)

We observe that the clear distinction between the
longitudinal and transverse spatial directions is not
present, except at very special situations. Some
important particular subcases can be easily identi-
fied and analyzed, for example, a null electromag-
netic field for which the invariant vanishes,
FabF

ab ¼ 0, or purely electric aligned field in the
vicinity of static black holes.

VII. AN EXPLICIT EXAMPLE: PP-WAVES
IN HIGHER DIMENSIONS

We conclude this paper by demonstrating the usefulness
of the above interpretation method on an important family
of exact spacetimes, namely, the pp-waves. These are
defined geometrically as admitting a covariantly constant
null vector field k. Such spacetimes thus form a special
subclass of the Kundt spacetimes because the geodesic
congruence generated by k is twist-free, shear-free, and
nonexpanding.
In [55], we investigated general Kundt spacetimes in

higher dimensions, admitting a cosmological constant �
and a Maxwell field aligned with k (which is necessarily a
multiple WAND). In natural coordinates, the metric of all
such pp-waves can be written in the Brinkmann form [57]

d s2 ¼ gij dx
idxj þ 2ei dx

idu� 2dudrþ c du2; (43)

where k / @r and gij, ei, c are functions of the transverse

spatial coordinates xk and the null coordinate u. The ex-
plicit Einstein-Maxwell equations can be found in [55],
namely, Eqs. (115)–(118).
For the metric (43), the interpretation null frame

adapted to a general observer that has the velocity
u ¼ _r@r þ _u@u þ _x2@x2 þ . . .þ _xD�1@xD�1 is

k ¼ 1ffiffiffi
2

p
_u
@r;

l ¼
� ffiffiffi

2
p

_r� 1ffiffiffi
2

p
_u

�
@r þ

ffiffiffi
2

p
_u@u

þ ffiffiffi
2

p
_x2@x2 þ . . .þ ffiffiffi

2
p

_xD�1@xD�1 ;

mi ¼ 1

_u
ðek _uþ gjk _x

jÞmk
i@r þm2

i@x2 þ . . .þmD�1
i @xD�1 ;

(44)

INTERPRETING SPACETIMES OF ANY DIMENSION . . . PHYSICAL REVIEW D 85, 044057 (2012)

044057-9



where gklm
k
im

l
j ¼ �ij, and nontrivial components of

the Weyl tensor are

Cruru ¼ � 1

ðD� 1ÞðD� 2Þ
sR;

Criuj ¼ 1

D� 2
sRij �

1

ðD� 1ÞðD� 2Þ
sRgij;

Cruui ¼ 1

D� 2
Rui � 1

ðD� 1ÞðD� 2Þ
sRei;

Cijkl ¼ sRijkl �
2

D� 2
ðgi½ksRl�j � gj½ksRl�iÞ

þ 2

ðD� 1ÞðD� 2Þ
sRgi½kgl�j;

Cuijk ¼ Ruijk � 2

D� 2
ðe½jsRk�i � gi½jRk�uÞ

þ 2

ðD� 1ÞðD� 2Þ
sRe½jgk�i;

Ciuju ¼ Riuju � 1

D� 2
ðc sRij � 2eðiRjÞu þ gijRuuÞ

þ 1

ðD� 1ÞðD� 2Þ
sRðcgij � eiejÞ:

(45)

Using definition (14), we evaluate the Weyl tensor (45) in
the interpretation null frame (44). Lengthy calculation
(with some ‘‘miraculous’’ cancellations) gives the follow-
ing nonvanishing Weyl scalars that enter the equations of
geodesic deviation (18) and (19):

�2S ¼ 1

ðD� 1ÞðD� 2Þ
sR;

�2Tij ¼ 1

D� 2
sRklm

k
im

l
j �

1

ðD� 1ÞðD� 2Þ
sR�ij;

�3Ti ¼ �
ffiffiffi
2

p
D� 2

ðsRkm _xm þ Rku _uÞmk
i ;

�4ij ¼ 2

��
sRkmln �

1

D� 2
gkl

sRmn

�
_xm _xn

þ 2

�
Rkmlu � 1

D� 2
gklRmu

�
_xm _u

þ
�
Rkulu � 1

D� 2
gklRuu

�
_u2
�
mk

ðim
l
jÞ: (46)

This is a general result valid for any pp-wave spacetime
because no particular field equations have not yet been
imposed.

Notice that �2Tij ¼ �2TðijÞ . Moreover, in accordance
with the relations (16) and (15), �2S ¼ �

2Tk
k and

�
4k

k ¼ 0 so that any pp-wave is traceless.

The relative tidal motion of nearby test particles in
general pp-waves will thus be caused by the combination
of the transverse gravitational wave (23) propagating along
k with amplitude �4ij , the longitudinal component (24) of
the gravitational field with amplitude �3Ti , and the

Newton-Coulomb contribution (25) determined by the
scalars �2S and �2Tij :

€Zð1Þ ¼ �2SZ
ð1Þ � 1ffiffiffi

2
p �3TjZðjÞ;

€ZðiÞ ¼ ��2TðijÞZðjÞ � 1ffiffiffi
2

p �3TiZð1Þ � 1

2
�4ijZ

ðjÞ: (47)

There is also the isotropic background influence (22) if the
cosmological constant � is present, or the interaction (41)
with the electromagnetic field.
The scalars (46) that enter (47) combine kinematics

(namely the velocity components _xm, _u of the observer)
with the specific curvature of spacetime encoded in the
only nonvanishing components of the Riemann and Ricci
tensors, namely,

Rijkl¼ sRijkl;

Ruijk¼ 1
2ðek;ij�ej;ikþgij;uk�gik;ujÞ
þ s�m

ijð12gkm;uþe½m;k�Þ� s�m
ikð12gjm;uþe½m;j�Þ;

Riuju¼ 1
2ðei;ujþej;ui�c;ij�gij;uuÞ
þgklð12gik;uþe½k;i�Þð12gjl;uþe½l;j�Þ
� s�k

ijðek;u� 1
2c;kÞ; (48)

and

Rij ¼ sRij;

Riu ¼ ½gjkð12gij;u þ e½j;i�Þ�;k þ ½gjkð12gij;u þ e½j;i�Þ�ðln ffiffiffi
g

p Þ;k
þ gjkglmðgim;ke½l;j� � 1

4gkm;igjl;uÞ � ðln ffiffiffi
g

p Þ;ui;
Ruu ¼ �1

2ðgijc;jÞ;i � 1
2ðgijc;jÞðln

ffiffiffi
g

p Þ;i þ ðgijej;uÞ;i
þ ðgijej;uÞðln ffiffiffi

g
p Þ;i þ gijgkle½i;k�ej;l

� 1
4g

ijgklgik;ugjl;u � ðln ffiffiffi
g

p Þ;uu; (49)

where sRijkl and
sRij denote, respectively, the Riemann and

Ricci tensors corresponding to the spatial metric gij only.

The Ricci scalar sR (equal to R) of this transverse (D� 2)-
dimensional Riemannian space enters, in fact, only the
Newton-Coulomb scalars �2S and �2Tij . Interestingly,
these are also independent of the velocity of the observer.
There is a big simplification if we restrict ourselves to

vacuum pp-waves. As shown in [55], the absence of an
aligned electromagnetic field requires that the cosmologi-
cal constant � also vanishes, so that the transverse
Riemannian space must be Ricci flat, sRij ¼ 0. In such a

case, �2S ¼ 0 ¼ �2Tij . Moreover, since Riu ¼ 0 ¼ Ruu,
the Weyl scalar �3Ti also vanishes and the gravitational
wave amplitudes reduce to

�4ij ¼ 2 ½sRkmln _x
m _xn þ 2Rkmlu _x

m _uþ Rkulu _u
2�mk

ðim
l
jÞ:

(50)
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Taking the simplest possibility of a flat transverse space,

gij ¼ �ij; (51)

we obtain an important family of exact vacuum plane-
fronted gravitational waves (possibly representing an ex-
ternal field of gyratons [66,67]), which propagate in
Minkowski space. In fact, these metrics with

sRijkl ¼ 0; Ruijk ¼ 1
2ðek;ij � ej;ikÞ;

Riuju ¼ 1
2ðei;uj þ ej;ui � c;ijÞ þ �kle½k;i�e½l;j�; (52)

belong to the family of VSI spacetimes [63].
If the functions ei can be globally removed by a suitable

coordinate transformation (in the absence of gyratonic
sources), the metric reduces to

d s2 ¼ �ijdx
idxj � 2dudrþ cðxk; uÞdu2: (53)

In such a case, the spatial vectors of the null frame (44) are
simply mi ¼ ð _xi= _uÞ@r þ @xi , and the frame is parallelly
transported. This implies that the physical relative accel-
erations (6) are, in fact, ordinary time derivatives of the

components of the separation vector, €ZðiÞ ¼ d2

d�2
ZðiÞ.

Moreover, _u ¼ const along the geodesic since there is
�u
�� ¼ 0 for the metric (53).

The scalar components of the gravitational field (50)
and (52) simplify to

�4ij ¼ � _u2c;ij: (54)

Using (49), the only remaining Einstein’s vacuum equa-
tion Ruu ¼ 0 reads �c � �ijc;ij ¼ 0, which explicitly

guarantees that the ðD� 2Þ � ðD� 2Þ symmetric matrix
of the wave amplitudes �4ij is traceless. The equations of
geodesic deviation thus reduce to

d2Zð1Þ

d�2
¼ 0;

d2ZðiÞ

d�2
¼ 1

2
_u2c;ijZ

ðjÞ; (55)

exhibiting the transverse character of the vacuum gravi-
tational pp-waves propagating along eð1Þ. In general,

there are 1
2DðD� 3Þ independent polarization modes

corresponding to the same number of free components
of the matrix �4ij .

In particular, if the metric function c is a quadratic form
of the transverse spatial coordinates,

c ¼ XD�1

i¼2

AiðxiÞ2; (56)

where the constant coefficients Ai must satisfy

XD�1

i¼2

Ai ¼ 0; (57)

�4ij is a traceless diagonal matrix with eigenvalues
�4ij ¼ �2Ai _u

2. The amplitudes are constant, i.e., the
corresponding gravitational waves are homogeneous. If

the test particles are initially at rest [ _ZðiÞð� ¼ 0Þ ¼ 0,

ZðiÞð� ¼ 0Þ ¼ ZðiÞ
0 ¼ const], equations of geodesic devia-

tion (55) for (56) can be explicitly integrated to

Zð1Þ ¼ Zð1Þ
0 ;

ZðiÞ ¼

8>>><
>>>:
ZðiÞ
0 coshð ffiffiffiffiffiffiffiffi

Ai

p j _uj�Þ for Ai > 0;

ZðiÞ
0 cosð ffiffiffiffiffiffiffiffiffiffiffiffi�Ai

p j _uj�Þ for Ai < 0;

ZðiÞ
0 for Ai ¼ 0:

(58)

Therefore, in the transverse spatial directions eðiÞ with

Ai > 0 the test particles recede, while in those directions
with Ai < 0 they focus. There is also a possibility that
Ai ¼ 0, in which case there is no influence of the
gravitational wave in the corresponding transverse spatial
directions.
This results in completely new effects that are not

allowed in classical D ¼ 4 general relativity for which
i ¼ 2, 3 and the constraint (57) is simply A2 ¼ �A3.
Therefore, either a vacuum gravitational pp-wave in four-
dimensional spacetime is absent (A2 ¼ �A3 ¼ 0), or it
generates specific particle motions in both transverse di-
rections eð2Þ and eð3Þ (focusing in one of them). In higher

dimensions, however, the amplitudes are coupled via the
D-dimensional constraint A2 ¼ �A3 �P

D�1
i¼4 Ai.

From the point of view of a detector located on a
(1þ 3)-dimensional brane with spatial directions eð1Þ,
eð2Þ, eð3Þ, this would clearly exhibit itself as a violation of

standard TT-property of gravitational waves (unlessP
D�1
i¼4 Ai ¼ 0, which corresponds to a very special sub-

case). Such an anomalous behavior could possibly serve as
a sign of the existence of higher dimensions (see also
discussion of a similar effect within the context of line-
arized five-dimensional gravitational waves [91]).
It may also happen that Ak ¼ 0 for some k [in which

case the metric function c given by (56) is independent of
the corresponding spatial coordinate xk] and thus there is
no effect of the vacuum gravitational pp-wave on test
particles in the transverse spatial direction eðkÞ. Even the

special situations with A2 ¼ 0 or A3 ¼ 0 are allowed.

VIII. CONCLUSIONS

Let us conclude this work by quoting from the classic
monograph [115], page 35: ‘‘In Einstein’s geometric the-
ory of gravity, the equation of geodesic deviation summa-
rizes the entire effect of geometry on matter.’’ This is true
not only in standardD ¼ 4 general relativity, but also in its
extension to any higher number of dimensions. Indeed, we
have explicitly demonstrated that the geodesic deviation
equation, expressed in a suitable reference frame adapted
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to the observer’s geodesic and to the specific algebraic
structure of a given spacetime, can be used as a useful
tool for analyzing and understanding the specific effects of
the gravitational field in an arbitrary dimension.

In particular, we derived the general canonical decom-
position (18) and (19) of relative accelerations of nearby
test particles freely falling in any spacetime. The gravita-
tional contributions, identified and described in Sec. IV,
consist of the isotropic background influence (22) of the
cosmological constant �, transverse gravitational waves
(23) and (27), complementary longitudinal effects (24) and
(26), and the Newton-Coulomb component (25) of the
gravitational field. The matter contributions were dis-
cussed in Sec. VI, namely, the influence of a pure radiation
field (null dust) (36), perfect fluid (38), and generic elec-
tromagnetic field (41).

In the final Sec. VII, we also exemplified these results on
an important family of exact pp-waves in higher dimen-
sions (admitting a covariantly constant null vector field k).
Their nontrivial amplitudes are given by expressions (46).
The vacuum VSI subclass of such Kundt spacetimes rep-
resents purely transverse gravitational waves propagating
along the WAND k (in general associated with gyratonic
sources). These exact gravitational waves have amplitudes
�4ij determined by Eqs. (50) and (52), which form a
ðD� 2Þ � ðD� 2Þ symmetric traceless matrix. Its
1
2DðD� 3Þ components characterize the independent po-

larization modes. Explicit solution of the invariant equa-
tion of geodesic deviation for the metric function (56) is
given in (58). Because of coupling between the eigenvalues
of �4ij , such higher-dimensional gravitational waves
could possibly be identified observationally in (1þ 3)-
dimensional brane as a violation of standard TT-property.

We hope that the presented general method of interpret-
ing exact spacetimes, based of the study of geodesic de-
viation, will help to elucidate the physical and geometrical
properties of various explicit solutions of Einstein’s equa-
tions in an arbitrary dimension.
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APPENDIX A: RELATION TO COMPLEX
NOTATION IN D ¼ 4

In standard D ¼ 4 general relativity, it is usual—instead
of the real null frame fk; l;m2;m3g—to introduce a com-
plex null tetrad fk; l;m; �mg and to parametrize the Weyl
tensor by the corresponding five complex components.
These Newman-Penrose scalar quantities �A, first defined
in [137], are closely related to the real quantities intro-
duced in our text. Here, we present a dictionary relating

these two notations. InD ¼ 4, the transverse spatial index i
runs only over two values 2, 3 and we can combine the real
vectors mi into the complex vectors

m � 1ffiffiffi
2

p ðm2 � im3Þ; �m � 1ffiffiffi
2

p ðm2 þ im3Þ: (A1)

Any real spatial vector V spanned on m2, m3 can be
parametrized by a complex number V via the relation

V ¼ V2m2 þ V3m3 ¼ 1ffiffiffi
2

p ð �Vmþ V �mÞ; (A2)

so that V ¼ V2 � iV3 and jVj2 � ðV2Þ2 þ ðV3Þ2 ¼ V �V.
In four dimensions, there are only two real independent

components of the Weyl tensor for each boost weight,
namely,

�022 ¼ ��033 ; �023 ¼ �032 ;

�1T2 ¼ �1332 ¼ ��1323 ; �1T3 ¼ �1223 ¼ ��1232 ;

�22323 ¼ �23232 ¼ ��23223 ¼ ��22332

¼ 2�2T22 ¼ 2�2T33 ¼ �2S;

�223 ¼ ��232 ¼ 2�2T23 ¼ �2�2T32 ;

�3T2 ¼ �3332 ¼ ��3323 ; �3T3 ¼ �3223 ¼ ��3232 ;

�422 ¼ ��433 ; �423 ¼ �432 : (A3)

These can be combined into five complex NP components
[140,141] defined by

�0 ¼ Cabcdk
ambkcmd; �1 ¼ Cabcdk

albkcmd;

�2 ¼ Cabcdk
amb �mcld; �3 ¼ Cabcdl

akblc �md;

�4 ¼ Cabcdl
a �mblc �md;

(A4)

as

�0 ¼ �022 � i�023 ; �1 ¼ 1ffiffiffi
2

p ð�1T2 � i�1T3Þ;

�2 ¼ � 1

2
ð�22323 þ i�223Þ;

�3 ¼ 1ffiffiffi
2

p ð�3T2 þ i�3T3Þ; �4 ¼ �422 þ i�423 :

(A5)

Notice the differences with respect to the notation used in
[93]: here we have relabeled all transverse spatial indices
as i ! iþ 1 to achieve that the privileged spatial direction
is denoted as m1 ¼ eð1Þ, and the scalars �2S, �2Tij are

defined in (14) without the unnecessary factor 2. (Also,
there is a missing factor 1

2 in Eq. (A.7c) in [93].) Inversely,

we obtain
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�022 ¼ ��033 ¼ Re�0; �023 ¼ �032 ¼ �Im�0;

�1T2 ¼ ffiffiffi
2

p
Re�1; �1T3 ¼ � ffiffiffi

2
p

Im�1;

�2S ¼ 2�2T22 ¼ 2�2T33 ¼ �22323 ¼ �2Re�2;

�223 ¼ �2 Im�2;

�3T2 ¼ ffiffiffi
2

p
Re�3; �3T3 ¼ ffiffiffi

2
p

Im�3;

�422 ¼ ��433 ¼ Re�4; �423 ¼ �432 ¼ Im�4: (A6)

According to (17), the orthonormal components CðiÞð0Þð0ÞðjÞ of the Weyl tensor are

Cð1Þð0Þð0Þð1Þ ¼ �2Re�2; Cð1Þð0Þð0Þð2Þ ¼ þRe�1 �Re�3; Cð1Þð0Þð0Þð3Þ ¼ �Im�1 � Im�3;

Cð2Þð0Þð0Þð2Þ ¼ Re�2 � 1
2Re�0 � 1

2Re�4; Cð3Þð0Þð0Þð3Þ ¼ Re�2 þ 1
2Re�0 þ 1

2Re�4; Cð2Þð0Þð0Þð3Þ ¼ 1
2 Im�0 � 1

2 Im�4:

(A7)

Explicit equations of geodesic deviation (11) in D ¼ 4 thus take the form

€Zð1Þ ¼ �

3
Zð1Þ � 2Re�2Z

ð1Þ þ ðRe�1 � Re�3ÞZð2Þ � ðIm�1 þ Im�3ÞZð3Þ

þ 4	

�
Tð1Þð1ÞZð1Þ þ Tð1Þð2ÞZð2Þ þ Tð1Þð3ÞZð3Þ �

�
Tð0Þð0Þ þ 2

3
T

�
Zð1Þ

�
;

€Zð2Þ ¼ �

3
Zð2Þ þ Re�2Z

ð2Þ þ ðRe�1 � Re�3ÞZð1Þ � 1

2
ðRe�0 þ Re�4ÞZð2Þ þ 1

2
ðIm�0 � Im�4ÞZð3Þ

þ 4	

�
Tð2Þð1ÞZð1Þ þ Tð2Þð2ÞZð2Þ þ Tð2Þð3ÞZð3Þ �

�
Tð0Þð0Þ þ 2

3
T

�
Zð2Þ

�
;

€Zð3Þ ¼ �

3
Zð3Þ þ Re�2Z

ð3Þ � ðIm�1 þ Im�3ÞZð1Þ þ 1

2
ðIm�0 � Im�4ÞZð2Þ þ 1

2
ðRe�0 þ Re�4ÞZð3Þ

þ 4	

�
Tð3Þð1ÞZð1Þ þ Tð3Þð2ÞZð2Þ þ Tð3Þð3ÞZð3Þ �

�
Tð0Þð0Þ þ 2

3
T

�
Zð3Þ

�
: (A8)

This fully agrees with the results presented in our pre-
vious work [128] [after permuting the indices as
1 ! 2 ! 3 ! 1, and changing the signs of all imaginary
parts due to a convention different from (A1)].

APPENDIX B: RELATION TO OTHER NOTATIONS
USED IN D � 4

In the literature on higher-dimensional spacetimes, it
is common to use alternative conventions for the null
frame and the corresponding components. In particular,
in the fundamental papers on algebraic classification of
the Weyl tensor [72,73] the null frame f‘;n;mig, where
i ¼ 2; . . . ; D� 1,

‘ � m0; n � m1; m2; . . . ;mD�1; (B1)

is employed such that the metric is gab ¼ 2‘ðanbÞ þ
�ijm

i
am

j
b, i.e.,

‘ � n ¼ 1; mi �mj ¼ �ij;

‘ � ‘ ¼ 0 ¼ n � n; ‘ �mi ¼ 0 ¼ n �mi:
(B2)

Following [72,73], the Weyl tensor can be decomposed
into the frame components

Cabcd ¼ 4C0i0jnfami
bncm

j
dg

þ 8C010infa‘bncmi
dg þ 4C0ijknfami

bm
j
cmk

dg
þ 4C0101nfa‘bnc‘dg þ 8C0i1jnfami

b‘cm
j
dg

þ 4C01ijnfa‘bmi
cm

j
dg þ Cijklm

i
fam

j
bm

k
cm

l
dg

þ 8C101i‘fanb‘cmi
dg þ 4C1ijk‘fami

bm
j
cmk

dg
þ 4C1i1j‘fami

b‘cm
j
dg; (B3)

where Tfabcdg � 1
2 ðT½ab�½cd� þ T½cd�½ab�Þ is a useful

notation representing the standard symmetries of the
curvature tensor. The terms in the separate lines of
(B3) are sorted according to their boost weight corre-
sponding to the scaling

~‘ ¼ �‘; ~n ¼ ��1n; ~mi ¼ mi: (B4)

Using (B2), we immediately infer that the various scalar
components in (B3) are explicitly given as

INTERPRETING SPACETIMES OF ANY DIMENSION . . . PHYSICAL REVIEW D 85, 044057 (2012)

044057-13



C0i0j ¼ Cabcd‘
amb

i ‘
cmd

j ; C0ijk ¼ Cabcd‘
amb

i m
c
jm

d
k;

C010i ¼ Cabcd‘
anb‘cmd

i ; Cijkl ¼ Cabcdm
a
i m

b
jm

c
km

d
l ;

C0101 ¼ Cabcd‘
anb‘dnc; C01ij ¼ Cabcd‘

anbmc
im

d
j ;

C0i1j ¼ Cabcd‘
amb

i n
cmd

j ; C1ijk ¼ Cabcdn
amb

i m
c
jm

d
k;

C101i ¼ Cabcdn
a‘bncmd

i ; C1i1j ¼ Cabcdn
amb

i n
cmd

j :

(B5)

They are subject to a number of mutual relations that
follow from the symmetries and from the trace-free
property of the Weyl tensor, see [72]:

C0i0
i ¼ 0; C010j ¼ C0ij

i; C0½ijk� ¼ 0;

C0101 ¼ C0i1
i; Ci½jkl� ¼ 0;

C0i1j ¼ �1
2Cikj

k þ 1
2C01ij; C011j ¼ �C1ij

i;

C1½ijk� ¼ 0; C1i1
i ¼ 0:

(B6)

Now, by comparing (B2) with our definition (13) it
follows that the two null frames (B1) and (12) are
related simply as

k � ‘; l � �n; mi � mi: (B7)

Putting this identification into (B5), and comparing with
(14), we observe that

�0ij � C0i0j;

�1ijk � C0ijk; �1Ti � �C010i;

�2ijkl � Cijkl; �2ij � �C01ij;

�2S � �C0101; �2Tij � �C0i1j;

�3ijk � �C1ijk; �3Ti � C101i;

�4ij � C1i1j: (B8)

Moreover, the relations (B6) are equivalent to the con-
straints (15) and (16).

Also, in [62,63,76,83] the notation

�ij � 1
2C1i1j; �ijk � 1

2C1kij; �i � C101i (B9)

was introduced and employed, which is useful for studies
of type-N and type-III spacetimes, and

�ij � C0i1j; �A
ij � 1

2C01ij; �S
ij � �1

2Cikj
k;

� � C0101 ¼ �1
2Cij

ij; (B10)

(where�A
ij,�

S
ij,� denote antisymmetric, symmetric parts

of �ij and its trace, respectively) which is convenient for

type-D spacetimes [78,81,82,99]. In view of (B8), we thus
easily identify

�2ijkl � Cijkl; �2ij � �2�A
ij; �2S � ��;

�2Tij � ��ij; �3ijk � �2�jki; �3Ti � �i;

�4ij � 2�ij: (B11)

Very recently, in the generalization of the Geroch-Held-
Penrose formalism to higher dimensions [79], another
convention was suggested, namely,

�ij � C0i0j; �ijk � C0ijk; �i � C010i;

�0
ij � C1i1j; �0

ijk � C1ijk; �0
i � C101i;

�ijkl � Cijkl: (B12)

These scalars are straightforwardly related to the quantities
used in the present paper:

�0ij � �ij;

�1ijk � �ijk; �1Ti � ��i;

�2ijkl � �ijkl; �2ij � �2�A
ij;

�2S � ��; �2Tij � ��ij;

�3ijk � ��0
ijk; �3Ti � �0

i;

�4ij � �0
ij: (B13)

APPENDIX C: LORENTZ TRANSFORMATIONS
OF THE NULL FRAME AND THE

CHANGES OF �A���
It is well known (see, e.g., [72,73,93]) that general

transformations between different null frames can be com-
posed from the following simple Lorentz transformations:
(i) null rotation with k fixed (parametrized by D� 2

real parameters Li):

~k¼k; ~l¼lþ ffiffiffi
2

p
LimiþjLj2k; ~mi¼miþ

ffiffiffi
2

p
Lik;

(C1)

(ii) null rotation with l fixed (parametrized by D� 2
real parameters Ki):

~k¼kþ ffiffiffi
2

p
KimiþjKj2l; ~l¼l; ~mi¼miþ

ffiffiffi
2

p
Kil;

(C2)

(iii) boost in the k� l plane (parametrized by a real
number B):

~k ¼ Bk; ~l ¼ B�1l; ~mi ¼ mi; (C3)

(iv) spatial rotation in the space ofmi (parametrized by
an orthogonal matrix �i

j):

~k ¼ k; ~l ¼ l;

~mi ¼ �i
jmj; with �i

j�k
l�jl ¼ �ik:

(C4)
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Because of (13), Li ¼ Li, K
i ¼ Ki, and we employ a shorthand jLj2 � LiLi, jKj2 � KiKi. Under these Lorentz

transformations of the frame, the Weyl scalars change as
(i) null rotation with k fixed:

~�0ij ¼ �0ij ;

~�1ijk ¼ �1ijk � 2
ffiffiffi
2

p
�0i½jLk�;

~�1Ti ¼ �1Ti þ ffiffiffi
2

p
�0ijL

j;

~�2ijkl ¼ �2ijkl � 2
ffiffiffi
2

p ðL½l�1k�ij � L½i�1j�klÞ þ 4ð�0i½kLl�Lj þ�0j½lLk�LiÞ;
~�2S ¼ �2S � 2

ffiffiffi
2

p
�1TiLi � 2�0ijL

iLj;

~�2ij ¼ �2ij þ
ffiffiffi
2

p
�1kijL

k � 2
ffiffiffi
2

p
�1T½iLj� � 4�0k½iLj�Lk;

~�2Tij ¼ �2Tij þ ffiffiffi
2

p
�1ikjL

k � ffiffiffi
2

p
�1TiLj � 2�0ikL

kLj þ�0ij jLj2;
~�3ijk ¼ �3ijk þ

ffiffiffi
2

p ð�2lijkL
l ��2jkLi þ 2L½j�2Tk�iÞ

þ 4�1T½jLk�Li � 2ð�1jliLk þ�1ljkLi ��1kliLjÞLl þ�1ijk jLj2 þ 4
ffiffiffi
2

p
�0l½jLk�LiL

l � 2
ffiffiffi
2

p
�0i½jLk�jLj2;

~�3Ti ¼ �3Ti þ ffiffiffi
2

p
�2ijL

j � ffiffiffi
2

p ð�2TkiLk þ�2SLiÞ
þ 2ð2�1TjLi ��1kjiL

kÞLj ��1Ti jLj2 þ 2
ffiffiffi
2

p
�0jkL

jLkLi �
ffiffiffi
2

p
�0ijL

jjLj2;
~�4ij ¼ �4ij þ 2

ffiffiffi
2

p ð�3TðiLjÞ ��3ðijÞkL
kÞ

þ 2�2ikjlL
kLl � 4�2TkðiLjÞLk þ 2�2TðijÞ jLj2 � 2�2SLiLj � 4�2kðiLjÞLk

� 2
ffiffiffi
2

p ð2�1klðiLjÞLkLl þ�1ðijÞkL
kjLj2 þ�1TðiLjÞjLj2 � 2�1TkLkLiLjÞ

þ 4�0klL
kLlLiLj � 4�0kðiLjÞLkjLj2 þ�0ij jLj4; (C5)

(ii) null rotation with l fixed:

~�0ij ¼ �0ij þ 2
ffiffiffi
2

p ð�1TðiKjÞ ��1ðijÞkK
kÞ

þ 2�2ikjlK
kKl � 4Kði�2TjÞkKk þ 2�2TðijÞ jKj2 � 2�2SKiKj þ 4�2kðiKjÞKk

� 2
ffiffiffi
2

p ð2�3klðiKjÞKkKl þ�3ðijÞkK
kjKj2 þ�3TðiKjÞjKj2 � 2�3TkKkKiKjÞ

þ 4�4klK
kKlKiKj � 4�4kðiKjÞKkjKj2 þ�4ij jKj4;

~�1ijk ¼ �1ijk þ
ffiffiffi
2

p ð�2lijkK
l þ�2jkKi � 2�2Ti½jKk�Þ

þ 4�3T½jKk�Ki � 2ð�3jliKk þ�3ljkKi ��3kliKjÞKl þ�3ijk jKj2
þ 4

ffiffiffi
2

p
�4l½jKk�KiK

l � 2
ffiffiffi
2

p
�4i½jKk�jKj2;

~�1Ti ¼ �1Ti þ ffiffiffi
2

p
�2jiK

j � ffiffiffi
2

p ð�2TijKj þ�2SKiÞ
þ 2ð2�3TjKi ��3kjiK

kÞKj ��3Ti jKj2 þ 2
ffiffiffi
2

p
�4jkK

jKkKi �
ffiffiffi
2

p
�4ijK

jjKj2;
~�2ijkl ¼ �2ijkl � 2

ffiffiffi
2

p ðK½l�3k�ij � K½i�3j�klÞ þ 4ð�4i½kKl�Kj þ�4j½lKk�KiÞ;
~�2S ¼ �2S � 2

ffiffiffi
2

p
�3TiKi � 2�4ijK

iKj;

~�2ij ¼ �2ij �
ffiffiffi
2

p
�3kijK

k þ 2
ffiffiffi
2

p
�3T½iKj� þ 4�4k½iKj�Kk;

~�2Tij ¼ �2Tij þ ffiffiffi
2

p
�3jkiK

k � ffiffiffi
2

p
�3TjKi � 2�4jkK

kKi þ�4ij jKj2;
~�3ijk ¼ �3ijk � 2

ffiffiffi
2

p
�4i½jKk�;

~�3Ti ¼ �3Ti þ ffiffiffi
2

p
�4ijK

j;

~�4ij ¼ �4ij ; (C6)
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(iii) boost in the k� l plane:

~�0ij ¼ B2�0ij ;

~�1ijk ¼ B�1ijk ;
~�1Ti ¼ B�1Ti ;

~�2ijkl ¼ �2ijkl ;
~�2ij ¼ �2ij ;

~�2S ¼ �2S; ~�2Tij ¼ �2Tij ;

~�3ijk ¼ B�1�3ijk ;
~�3Ti ¼ B�1�3Ti ;

~�4ij ¼ B�2�4ij ; (C7)

(iv) spatial rotation in the space of mi:

~�0ij ¼ �i
p�j

q�0pq ;

~�1ijk ¼ �i
o�j

p�k
q�1opq ; ~�1Ti ¼ �i

p�1Tp ;

~�2ijkl ¼ �i
n�j

o�k
p�l

q�2nopq ; ~�2S ¼ �2S;

~�2ij ¼ �i
p�j

q�2pq ; ~�2Tij ¼ �i
p�j

q�2Tpq ;

~�3ijk ¼ �i
o�j

p�k
q�3opq ; ~�3Ti ¼ �i

p�3Tp ;

~�4ij ¼ �i
p�j

q�4pq : (C8)
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[40] J. Podolský and M. Ortaggio, Classical Quantum Gravity
23, 5785 (2006).

[41] M. Ortaggio, J. Podolský, and M. Žofka, Classical
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(1977).
[123] A. N. Aleksandrov and K.A. Piragas, Theor. Math. Phys.

38, 48 (1979).
[124] W.Q. Li and W.T. Ni, J. Math. Phys. (N.Y.) 20, 1473

(1979).
[125] I. Ciufolini, Phys. Rev. D 34, 1014 (1986).
[126] I. Ciufolini and M. Demianski, Phys. Rev. D 34, 1018

(1986).
[127] C. Chicone and B. Mashhoon, Classical Quantum Gravity

19, 4231 (2002).
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